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Notation

N0 and N denote the sets of natural numbers, N0 = {0, 1, . . .} and N = {1, 2, . . .}.

R denotes the set of real numbers.

bxc denotes the largest integer less than or equal to x.

X, Y , Z, Zi, S denote random variables.

ak = P(X = k), k ∈ N0, denote local probabilities of random variable X.

bk = P(Y = k), k ∈ N0, denote local probabilities of random variable Y .

ck = P(Z = k), k ∈ N0, denote local probabilities of random variable Z.

zk = P(Z = k), k ∈ N0, denote local probabilities of random variable Z.

hik = P(Zi = k), k ∈ N0, denote local probabilities of random variable Zi.

sk = P(S = k), k ∈ N0, denote local probabilities of random variable S.

A(x) =
∑[x]

k=0 ak denotes a distribution function of random variable X.

B(x) =
∑[x]

k=0 bk denotes a distribution function of random variable Y .

C(x) =
∑[x]

k=0 ck denotes a distribution function of random variable Z.

D(x) =
∑[x]

k=0 sk denotes a distribution function of random variable S.

FZ(x) =
∑[x]

k=0 zk denotes a distribution function of random variable Z.

Hi(x) =
∑[x]

k=0 hik denotes a distribution function of random variable Zi.

Symbol ab(k), k ∈ N0, where ak, bk are local probabilities is understood in the
convolution sense, e.g., ab(k) =

∑∞
i=0 aibk−i.

SymbolAB(k) is understood in the convolution sense, e.g., AB(k) =
∑∞

i=0 A(i)B(k−
i).

EX denotes the mean of a random variable X.

IA(x) =

1, x ∈ A,

0, x /∈ A.
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Notation

u ∈ N0 denotes the initial insurer’s surplus.

Wu(n) denotes the insurer’s surplus at the time moment n ∈ N0.

ψ(u) denotes the ruin probability.

ϕ(u) denotes the survival probability.

Tu denotes the ruin time.

i.i.d. – independent identically distributed.

r.v. – random variable.

d.f. – distribution function.

p.m.f. – probability mass function.
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Introduction

Research problem and actuality

The finite-time and ultimate ruin probabilities of the discrete-time risk model
with inhomogeneous claims describing insurance business are investigated in this
thesis.

Risk theory (collective risk theory, ruin theory) uses mathematical models to
describe an insurer’s vulnerability to insolvency/ruin. The one of the most popular
model is Cramer-Lundberg model, developed in 1903, and its further extensions
(S. Andersen model, compound binomical model, etc.). The model describes
an insurance company who experiences two opposing cash flows: incoming cash
premiums and outgoing claims and also depends on initial surplus. Such model
is called a risk model. The central object of the risk model is to investigate the
probability that the insurer’s surplus level eventually falls below zero (making the
firm bankrupt). The risk model was widely investigated by the different countries’
scientists as De Vylder [10, 11], Gerber, Shiu [17, 19, 38–40], of period for one
hundred years. But just recently, in the beginning of 21-st century, the risk model
with inhomogeneous claims has been investigated. As insurance companies usually
encounter different type of claims, this risk model with better describing of reality,
becomes more analyzed risk model. The risk model with inhomogeneous claims
can be defined as multi-risk model (model with several series of various claims) or
multi-seasonal risk model (model with several series of various claims, where each
claim repeats with the same time interval). Multi-risk model has been investigated
by Lu [28, 29], Picard, Lefevre and Coulibaly [34], Wang and Wang [45, 46], where
authors have obtained asymptotic formulas, whereas in this thesis we find out the
algorithms for calculation of the exact values of the ruin probabilities. There
are exist only few works where the algorithms for finding the exact values of the
ruin probabilities were obtained. For instance, Raducan, Vernic and Zbaganu in
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Introduction

[35] have obtained the recursive algorithm used to evaluate ruin probability of
the continuous time risk model with claims sizes distributed in Erlang’s family
with different parameters. The algorithms for finding the exact values of the
ruin probabilities of the discrete-time risk model with inhomogeneous claims were
obtained by Bieliauskienė and Šiaulys in [3], Blaževičius, Bieliauskienė and Šiaulys
in [4], Damarackas and Šiaulys in [8]. In this thesis we extend previously obtained
results and find out the recursive relations for calculating the exact values of the
ruin probabilities for more complicated risk models.

Aims and tasks

The main purpose of the thesis is to obtain recursive formulas for the ruin proba-
bilities calculation of the discrete-time risk model with inhomogeneous claims. In
particular, we focus on the following tasks:

• Establishing the minimum requirements under which the ultimate ruin prob-
ability of the discrete-time risk model with inhomogeneous claims is equal
to one (so-called net profit condition).

• Investigating the behaviour of the ultimate ruin probability of the discrete-
time risk model with inhomogeneous claims when initial capital u tends to
infinity.

• Obtaining the recursive relations for calculation of the exact values of the
finite-time ruin probability for discrete-time any multi-risk model.

• Obtaining the recursive relations for calculation of the exact values of ul-
timate ruin probability for the discrete-time bi-risk model and risk model
with three inhomogeneous claims.

• Obtaining the recursive relations for calculation of the exact values of finite-
time and ultimate ruin probability for the discrete-time three-seasonal risk
model.

• Testing the obtained algorithms, using software, and introducing the nu-
merical values.
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Introduction

Novelty

All results are new. They extend, generalize and complement the results on finding
ruin probabilities of discrete-time risk model with several inhomogeneous claims
obtained by other authors. Obtained recursive relations enable fast calculation
of the finite-time and ultimate ruin probabilities of the discrete-time multi-risk
model and discrete-time three-seasonal model. Moreover, the results are tested
using software and numerical values of the recursive formulas are presented. The
obtained results have been approved in local and international conferences and
exposed in the papers [20, 21].

Conferences

• The 55th Conference of Lithuanian Mathematical Society, Vilnius, Lithua-
nia, 26–27 June 2014.

• The 56th Conference of Lithuanian Mathematical Society, Kaunas, Lithua-
nia, 16–17 June 2015.

• Quantitative methods in economics, SGGW, Warsaw, Poland, 22–23 June
2015.

• 19th International Congress on Insurance: Mathematics and Economics
(IME), The University of Liverpool, Liverpool, United Kingdom, 24–26 June
2015.

Publications

The main results of the thesis are published in the following papers:

• A. Grigutis, A. Korvel and J. Šiaulys. Ruin probabilities of a discrete-time
multi-risk model. Information technology and control, 44:367-379, 2015

• A. Grigutis, A. Korvel and J. Šiaulys. Ruin probabilities in the three-
seasonal discrete-time risk model. Modern Stochastics: Theory and Ap-
plications, 2:421-441, 2015.
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Introduction

Defended propositions

• Established net profit condition for the ultimate ruin probabilities calcula-
tion of the discrete-time risk model with inhomogeneous claims.

• The ultimate ruin probability of the discrete-time risk model with inhomo-
geneous claims tends to zero as initial capital u tends to infinity.

• Obtained recursive relations for calculation of the exact values of the finite-
time ruin probability of the discrete-time any multi-risk model.

• Obtained recursive relations for calculation of the exact values of the ulti-
mate ruin probability of the discrete-time bi-risk model and risk model with
three inhomogeneous claims.

• Obtained recursive relations for calculation of the exact values of the finite-
time and ultimate ruin probability of the discrete-time three-seasonal risk
model.

Structure of the thesis

Chapter 1 contains the outlines of risk theory and risk model. In this chapter we
review the model, present all necessary definitions and the main characteristics.

In Chapter 2 the discrete-time multi-risk model is investigated. Following the
proof of Theorem 2.1 the recursive relations are obtained for calculation of the
finite-time ruin probabilities of the discrete-time any multi-risk model.

In Chapter 3 the discrete-time bi-risk model and risk model with three inho-
mogeneous claims are investigated. The meaning of the net profit condition for
bi-risk model is shown in Theorem 3.2. Theorems 3.2 and 3.3 provide an algo-
rithm for finding ψ(0) and ψ(1). The recursive procedure to calculate the exact
values of ultimate ruin probabilities ψ(u), u > 2 of bi-risk model is obtained by
Theorems 3.1 and 3.2.
For the risk model with three inhomogeneous claims the meaning of the net profit
condition is shown in Theorem 3.4. Theorem 3.5 provide an algorithm for finding
the exact values of ultimate ruin probabilities.

In Chapter 4 the multi-seasonal risk model are described. Previously obtained
results for finite-time and ultimate ruin probabilities calculation of bi-seasonal
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risk model are introduced. Theorem 4.3 provides an algorithm for finite-time
ruin probabilities calculation of the discrete-time three-seasonal risk model. The
recursive relations to calculate the exact values of the ultimate ruin probabilities
for three-seasonal risk model are obtained in Theorem 4.4.

Finally, in Chapter 5, numerical examples of the obtained recursive relations
are presented. In this Chapter we show how the obtained procedures can be
applied for calculation of the finite-time and ultimate ruin probabilities.
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Chapter 1

Outline of Risk theory and risk
model

In actuarial science and applied probability ruin theory [16] (risk theory, collective
risk theory) uses mathematical models to describe an insurer’s vulnerability to
insolvency/ruin. In such models key quantities of interest are the probability of
ruin, distribution of surplus immediately prior to ruin and deficit at time of ruin.

The theoretical foundation of ruin theory, known as the Cramér–Lundberg
model (or classical compound Poisson risk model, classical risk process or Poisson
risk process) was introduced in beginning of the 20th century by the Swedish
actuary Filip Lundberg [30]. Lundberg’s work was republished in the 1930s by
Harald Cramér [7]. The model describes an insurance company who experiences
two opposing cash flows: incoming cash premiums and outgoing claims.

E. Sparre Andersen [41] extended the classical model in 1957 and proposed
another model as a generalization of the classical (Poisson) risk theory. Instead
of assuming only exponentially distributed independent interclaim times, he in-
troduced a more general number process (so-called renewal process, see Definition
1.1) but retained the assumption of independence.

1.1 Sparre Andersen model

Nowadays the Sparre Andersen model is one of the most popular and used models
in nonlife insurance mathematics, which describes the evolution of the insurance
company’s wealth over time which is measured by the assets it holds. The insurer’s
surplus depends on the initial capital, premium income, and outgoing claims. We
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1.1. Sparre Andersen model

will introduce the model and define the main concepts used.

Definition 1.1. Renewal counting process. Let θ1, θ2, . . . be an independent iden-
tically distributed (i.i.d.) sequence of nonnegative random variables (r.v.’s). Then
the random walk

T0 = 0, Tn = θ1 + . . .+ θn, n ∈ N = {1, 2, 3, . . .},

is said to be a renewal sequence and the counting process

Θ(t) = #{n > 1 : Tn 6 t}, t > 0,

is the corresponding renewal counting process.

The sequences T0, T1, T2, . . . and θ1, θ2, . . . are also referred as the sequences
of the arrival and inter-arrival times of the renewal process Θ, respectively.

Definition 1.2. Aggregate claim amount process. The total claim amount process
or aggregate claim amount process is a process defined by:

S(t) =

Θ(t)∑
i=1

Zi =
∞∑
i=1

ZiI[0,t](Ti), t > 0,

where Z1, Z2, . . . is a sequel of nonnegative i.i.d. r.v.s and Z1, Z2, . . . and θ1, θ2,
. . . are mutually independent.

Definition 1.3. Surplus process. The process W

Wu(t) = u+ ct− S(t), t > 0 (1.1)

is called surplus or balance process. Here u = Wu(0) is the initial surplus, c –
premium payment rate and S(t) is the total claim amount process.

In figure 1.1 we can see the behaviour of the surplus process Wu(t).

7



1. Outline of Risk theory and risk model
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Figure 1.1. Behaviour of the surplus process Wu(t)

1.2 Discrete-time risk model

If u ∈ N0, c = 1, θ = 1, and Z is an integer-valued, then we call the model defined
by (1.1) a discrete-time risk model. In this case, the behaviour of the process W
can be considered only for natural time moments n ∈ N0.

Definition 1.4. We say that insurer’s surplus Wu(n) varies according to a discrete-
time risk model (homogeneous discrete-time risk model) if for each n ∈ N0

Wu(n) = u+ n−
n∑
i=1

Zi (1.2)

and the following restrictions are satisfied:
• the initial insurer’s surplus u = Wu(0) is a nonnegative integer number, i.e.

u ∈ N0;
• claim amounts Z1, Z2, Z3, ... are independent copies of a nonnegative integer-

valued random variable Z.
The claim amount generator Z can be characterized by probability mass func-

tion (p.m.f.)
zk = P(Z = k), k ∈ N0

or by the cumulative distribution function (c.d.f.)

FZ(x) =

bxc∑
k=0

zk, x ∈ R.
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1.3. Discrete-time multi-risk model

The discrete-time risk model describe insurer’s capital level only in discrete
time moments while the classical risk model or Sparre Andersen model are a
continuous time models. We can get various generalizations of the discrete-time
risk model by weakening the requirements of definition above. For instance, we
can suppose that an initial insurer’s surplus u is some real nonnegative number in
the Eq. (1.2). We can suppose that generating random variable Z is nonnegative
real-valued random variable. We can suppose that premium during the time unit
is equal to some constant, not necessarily to one. Finally, we can suppose that
the random claim amounts Z1, Z2, Z3, . . . are independent but not necessarily
identically distributed. In the scientific literature, such generalized models are
often called just a discrete-time risk models because of a key feature of the model
– the surplus calculation in the discrete-time moments.

The homogeneous discrete-time risk model has been extensively investigated
by De Vylder and Goovaerts ([10], [11]), Dickson ([13], [14]), Gerber [18], Seal [37],
Shiu ([39], [40]), Picard and Lefèvre ([32], [33]), Lefèvre and Loisel [24], Leipus
and Šiaulys [25], Tang [43] and other authors.

1.3 Discrete-time multi-risk model

Usually, each insurance company works with several series of various claims. Each
series of claims {Zj1, Zj2, . . .}, j ∈ {1, 2, . . . , K}, can be driven by a specific initial
surplus uj, a specific premium rate cj, and a specific series of inter-arrival times
{θj1, θj2, . . .}.

There are two different ways to consider insurance business in this situation.
The first way is to create the so-called multidimensional renewal risk model. In
this case, we suppose that the insurer’s surplus at each moment of time t > 0 is
a random vector

(W1,u1(n),W2,u2(n), . . . ,WK,uK (n)) ,

where

Wj,uj(n) = uj + cjn−
Θj(n)∑
i=1

Zji, n > 0, j = 1, 2, . . . , K,

and Θj(n) is the renewal process generated by the r.v. θj1. Several problems
related to the multidimensional renewal risk model were investigated by Collamore
[6], Sundt [42], Vernic [44], Denuit et al. [12], Picard et al. [34], Hult et al. [23],

9



1. Outline of Risk theory and risk model

Yuen et al. [47], Li et al. [26], Avram et al. [2], Dang et al. [9], Chen et al. [5]
and He et al. [22].

The second way to consider insurance business with several series of claims is
related to the multi-risk model. We say that the insurer’s surplus varies according
to the multi-risk model if

Wu(n) = u+ cn−
K∑
j=1

Θj(n)∑
i=1

Zji (1.3)

for all time moments n > 0. Here we suppose that {Zj1, Zj2, . . .} are independent
and identically distributed (i.i.d.) r.v.s for each fixed j = 1, 2, . . . , K. The r.v.s
{θj1, θj2, . . .} generating counting renewal processes Θj(n) are also i.i.d. The ran-
dom claim amounts {Zj1, Zj2, . . .}Kj=1 and random inter-arrival times {θj1, θj2, . . .}Kj=1

are mutually independent. We note that the r.v.s Z11, Z21, . . . , ZK1 and θ11, θ21, . . . , θK1

in (1.3) may have different distributions.
In the multidimensional risk model, each series of claim amounts has its own

dimension, whereas in the multi-risk model, all series of claims are placed in one
basket. The multi-risk model was investigated by Wang and Wang ([45, 46]) and
by Lu ([28], [29]), where problems related to large deviations of the sum in (1.3)
were considered. When all renewal counting processes Θj(n) in (1.3) are generated
by degenerate r.v.s, the multi-risk model becomes a discrete-time multi-risk model.
For instance, if K = 3, c = 1, θ11 = 1, θ21 = 2, and θ31 = 3, then from (1.3) it
follows that

Wu(n) = u+ n−
bnc∑
i=1

Z1i −
bn/2c∑
i=1

Z2i −
bn/3c∑
i=1

Z3i

for all time moments n > 0.

1.4 Discrete-time multi-seasonal model

If r.v.s Z1, Z2, . . . are independent but not necessarily identically distributed, then
the model defined by (1.2) is called the inhomogeneous discrete-time risk model.
The multi-seasonal risk model can be described as inhomogeneous risk model with
several differently distributed claim amounts which periodically change.

The difference between multi-risk model and multi-seasonal model is such,
that in multi-risk model the differently distributed claim amounts repeat with
different interclaim time and in multi-seasonal risk model differently distributed

10



1.5. Main characteristics

claim amounts repeat with the same interclaim time.

1.5 Main characteristics

The ruin time and the ruin probability are the main extremal characteristics of any
risk model. In this section we present the main characteristics of the discrete-time
risk model, which, essentially, are defined equally for any risk model, investigated
in this thesis.

At each moment n the insurer’s surplus may remain positive, or become neg-
ative, or vanish to zero. The situation, when the capital falls below or is equal to
zero, is called insolvency or ruin.

Definition 1.5. The ruin time. The first time Tu when insurer’s surplus becomes
non-positive is called the ruin time, i.e.

Tu =

inf {n ∈ N : Wu(n) 6 0},

∞, if Wu(n) > 0 for all n ∈ N.
(1.4)

Definition 1.6. Finite time ruin probability. The probability to ruin by the mo-
ment T ∈ N is called the finite-time ruin probability

ψ(u, T ) = P(Tu 6 T ).

Definition 1.7. Ultimate ruin probability. The ultimate ruin probability is defined
by

ψ(u) = P(Tu <∞).

Definition 1.8. Ultimate survival probability. The ultimate survival probability
is defined by

ϕ(u) = 1− ψ(u) = P(Tu =∞).

11



1. Outline of Risk theory and risk model

The presented definitions imply that:

ψ(u, T ) = P
( T⋃
n=1

{
u+ n−

n∑
i=1

Zi 6 0
})

= P
(

max
16n6T

n∑
i=1

(Zi − 1) > u

)
,

ψ(u) = P
( ∞⋃
n=1

{
u+ n−

n∑
i=1

Zi 6 0
})

= P
(

sup
n>1

n∑
i=1

(Zi − 1) > u

)
,

ϕ(u) = P
( ∞⋂
n=1

{
u+ n−

n∑
i=1

Zi > 0
})

,

lim
T↗∞

ψ(u, T ) = ψ(u).

12



Chapter 2

Finite-time ruin probabilities of
the discrete-time multi-risk
model

In this chapter we present the main obtained recursive relations for the finite-time
ruin probabilities calculation of the discrete-time multi-risk model. The method
used for obtaining the algorithm is the law of total probability. The same method
can be found in [4, 8, 13].

We say that the insurer’s surplus Wu varies according to the discrete-time
multi-risk model if, for all time moments n ∈ N0,

Wu(n) = u+ n−
K∑
i=1

bn/ic∑
j=1

Zij, (2.1)

where K is a fixed natural number, u ∈ N0 is the insurer’s initial surplus, and
Zi1, Zi2, . . . are independent copies of an integer valued nonnegative r.v. Zi for each
i ∈ {1, 2, . . . , K}. In addition, the series of r.v.s {Zi1, Zi2, . . .}Ki=1 are mutually
independent.

Obviously, every discrete-time multi-risk model is generated by the insurer’s
initial surplus u and collection of r.v.s Z1, Z2, . . . , ZK . The claim amount Z1

occurs at every time moment, Z2 occurs at every second time moment, and so on.
The nonnegative integer-valued r.v.s Z1, Z2, . . . , ZK generating the multi-risk

13



2. Finite-time ruin probabilities of the discrete-time multi-risk model

model can be described by the local probabilities

hik = P(Zi = k), k ∈ N0, i = 1, 2, . . . , K,

or by their distribution functions (d.f.)

Hi(x) =
∑
k6x

hik, x ∈ R, i = 1, 2, . . . , K.

If K = 2, then (2.1) implies that

Wu(n) = u+ n−
n∑
k=1

Xk −
bn/2c∑
l=1

Yl, n ∈ N0, (2.2)

where u ∈ N0, X1, X2, . . . are independent copies of a nonnegative integer valued
r.v.X = Z1, and Y1, Y2, . . . are independent copies of an integer valued r.v. Y = Z2.

We call the model defined by (2.2) a discrete-time bi-risk model. It is clear
that such a model is generated by the insurer’s surplus u and two random claim
amounts X and Y , where X occurs at every time increment, and Y occurs at
every double time increment. In such a case, we use the following notation for the
local probabilities and d.f.s of X and Y :

ak = P(X = k), k ∈ N0;

bl = P(Y = l), l ∈ N0;

A(x) =
∑

06k6bxc

ak, x ∈ R;

B(x) =
∑

06l6bxc

bl, x ∈ R.

Theorem 2.1. Suppose that r.v.s Z1, Z2, . . . , ZK, K > 1, generate the discrete-
time multi-risk model. For all u, l ∈ N0, let

DKlu = {kij ∈ N0 : i ∈ {1, 2, . . . , K}, j ∈ N, BKl 6 u+ l}

and
DKlu = {kij ∈ N0 : i ∈ {1, 2, . . . , K}, j ∈ N, BKl > u+ l} ,

where

14



BKl =
K∑
i=1

b(l+1)/ic∑
j=1

kij =
l+1∑
j=1

k1j +

b(l+1)/2c∑
j=1

k2j + · · ·+
b(l+1)/Kc∑

j=1

kKj.

Then, for all u ∈ N0, we have:

ψ(u, 1) =
∑
k11>u

h1k11 ,

ψ(u, 2) = ψ(u, 1) +
∑
k116u

k11+k12+k21>u+1

h1k11h1k12h2k21 ,

ψ(u, T ) = ψ(u, T − 1) +
∑

D⊆DK
0u∩DK

1u∩···∩DK
(T−2)u

∩DK
(T−1)u

∏
kij∈D

hikij

for all T ∈ {3, 4, . . . ,M}, where M is the least common multiple of numbers
1, 2, . . . , K.
If u ∈ N0 and T >M + 1, then

ψ(u, T ) = ψ(u,M)

+
∑

D⊆DK
0u∩DK

1u∩···∩DK
(M−2)u

∩DK
(M−1)u

∏
kij∈D

hikijψ(u+M − BK(M−1), T −M).

For a larger K, the obtained recursive formulas are quite complex, and numer-
ical application of these formulas requires much resources. Otherwise, when K is
relatively small, the formulas of Theorem 2.1 imply a sufficiently simple algorithm
to calculate finite-time ruin probabilities. For example, in the bi-risk model, for
each u ∈ N0, we have that



ψ(u, 1) =
∑
k>u

ak,

ψ(u, 2) = ψ(u, 1) +
∑
k6u

k+ l+m>u+1

akalbm,

ψ(u, T ) = ψ(u, 2) +
∑
k6u

k+ l+m6u+1

ψ(u+ 2− k − l −m,T − 2) akalbm, T > 3.

(2.3)

Theorem 2.1 allows us to calculate the values of ψ(u, T ), u ∈ N0, T ∈ N, for
an arbitrary discrete-time multi-risk model.
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2. Finite-time ruin probabilities of the discrete-time multi-risk model

Proof. We prove the assertion only in the particular case K = 2. In fact, we prove
only the equations given in (2.3). The proof of the general case is similar.
By the definition of the finite-time ruin probability

ψ(u, T ) = P
( T⋃

n=1

{Wu(n) 6 0 }
)

(2.4)

we have that

ψ(u, 1) = P(Wu(1) 6 0) = P(u+ 1−X1 6 0) = P(X > u) =
∑
k>u

ak.

Similarly,

ψ(u, 2) = P
(
{Wu(1) 6 0} ∪ {Wu(2) 6 0}

)
= P{Wu(1) 6 0}+ P({Wu(2) 6 0} ∩ {Wu(1) > 0})

= ψ(u, 1) +
u∑
k=0

P(X1 +X2 + Y1 > u+ 2, X1 = k)

by the law of total probability. It is obvious that the second term of the last
equality is

u∑
k=0

P(k +X2 + Y1 > u+ 2) ak =
∑
k6u

k+l+m>u+1

akalbm.

Consequently, the first two equalities of (2.3) hold. It remains to prove the third
one.

If T > 3, then equalities (2.1), (2.4) and the law of total probability imply

16



that

ψ(u, T ) = P
( T⋃
n=1

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj 6 0
})

= P (u+ 1−X1 6 0)

+
∑
k6u

ak

∞∑
l=0

∞∑
m=0

P
(
X2 = l, Y1 = m,

T⋃
n=2

{
u+ n− k −

n∑
i=2

Xi −
bn/2c∑
j=1

Yj 6 0
})

= ψ(u, 1) +
∑
k6u

ak
∑

l,m: k+l+m>u+1

albm

+
∑
k6u

ak
∑

l,m: k+l+m6u+1

albm P
( T⋃
n=3

{
u+ n− k − l −m

−
n∑
i=3

Xi −
bn/2c∑
j=2

Yj 6 0
})

.

The random variablesX1, X2, . . . are independent and identically distributed (i.i.d.)
as well as the r.v.s Y1, Y2, . . .. Therefore,

n∑
i=3

Xi
d
=

n−2∑
i=1

Xi , (2.5)

bn/2c∑
j=2

Yj
d
=

bn/2c−1∑
j=1

Yj (2.6)

for n ∈ {3, 4, . . .}. The last relations and the second equality of (2.3) imply that

ψ(u, T ) = ψ(u, 2)

+
∑
k6u

k+l+m6u+1

akalbm P
( T−2⋃

τ=1

{
u+ 2 + τ − k − l −m−

τ∑
i=1

Xi −
bτ/2c∑
j=1

Yj 6 0
})

.

Now we see that the last equality of (2.3) follows from expression (2.4), and the
particular case of Theorem 2.1 is proved.

The presented algorithm for calculation of the finite-time ruin probabilities of
the multi-risk model returns accurate values. For instance, for the bi-risk model
generated by r.v.’s X and Y such that a1 = P(X = 1) = 1/2, a2 = P(X = 2) =

1/2, b1 = P(Y = 1) = 0, b2 = P(Y = 2) = 1/2, b3 = P(Y = 3) = 1/2 and for

17



2. Finite-time ruin probabilities of the discrete-time multi-risk model

u = 1 we obtain:
ψ(1, 1) = 1/2,

ψ(1, 2) = 1/2 + 1/2 · 1/2 · 1/2 + 1/2 · 1/2 · 1/2 + 1/2 · 1/2 · 1/2 + 1/2 · 1/2 · 1/2 = 1,

ψ(1, T ) = 1, T > 3.

More complicated examples are demonstrated in Chapter 5 (Examples 1, 2, 3, 4).
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Chapter 3

Ultimate ruin probabilities of the
discrete-time multi-risk model

In this chapter we investigate the discrete-time bi-risk model and multi-risk model
with three independent series of claim amounts and present the main obtained
recursive relations to calculate the ultimate ruin probabilities. We use the same
method as for finding the algorithm for the finite-time ruin probabilities calcula-
tion, i.e. the law of total probability.

3.1 Bi-risk model

Bi-risk model is defined in Chapter 2 (see Eq. (2.2)). We use the same notation
of claim amounts, its’ d.f.’s and local probabilities for bi-risk model as in Chapter
2.

Theorem 3.1. Let us consider a discrete-time bi-risk model with generating r.v.s
X and Y . Then, for all u ∈ N0,

ψ(u) =
∑
k>u

ak +
∑
k6u

k+l+m>u+1

akalbm +
∑
k6u

k+l+m6u+1

ψ(u+ 2− k − l −m) akalbm.

Proof. The proof is similar to the proof of Theorem 2.1. Indeed, by (2.4) and the
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3. Ultimate ruin probabilities of the discrete-time multi-risk model

law of total probability we have that

ψ(u) = P
( ∞⋃
n=1

{Wu(n) 6 0}
)

= P(Wu(1) 6 0) + P(Wu(1) > 0, Wu(2) 6 0)

+ P
(
Wu(1) > 0, Wu(2) > 0,

∞⋃
n=3

{Wu(n) 6 0}
)

=
∑
k>u

ak +
∑
k6u

k+l+m>u+1

akalbm

+
∑
k6u

k+l+m6u+1

akalbm P
( ∞⋃
n=3

{
u+ n− k − l −m−

n∑
i=3

Xi −
bn/2c∑
j=2

Yj 6 0
})

.

To complete the proof, it suffices to observe that the last sum equals

∑
k6u

k+l+m6u+1

akalbm P
( ∞⋃
τ=1

{
u+ 2 + τ − k − l −m−

τ∑
i=1

Xi −
bτ/2c∑
j=1

Yj 6 0
})

=
∑
k6u

k+l+m6u+1

akalbm ψ(u+ 2− k − l −m)

due to Eqs. (2.5), (2.6) and definition (2.4). Theorem 2.1 is proved.

We see from the last theorem that we can calculate the values of ψ(u) for
u > 2 if we know ψ(0) and ψ(1). Theorems 3.2 and 3.3 provide an algorithm for
finding ψ(0) and ψ(1).

For every u ∈ N0, we denote:

AAB(u) =
∑

k+l+m6u

akalbm,

AAB(u) = 1− AAB(u).

Theorem 3.2. Let us consider a discrete-time bi-risk model with generating r.v.s
X and Y for finite means EX and EY .

(i) If µX,Y := EX + EY/2 > 1 and the r.v.s X, Y are non-degenerate, then
ψ(u) = 1 for all u ∈ N0.
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3.1. Bi-risk model

(ii) If µX,Y < 1 and b0 = 0, then we have:

ψ(0) = 2µX,Y − 1,

ψ(1) = 1− 2

AAB(1)
(1− µX,Y ) ,

ψ(u) =
1

AAB (1)

( u−1∑
v=1

ψ(v)AAB(u+ 1− v) +
∞∑

v=u+1

AAB(v)

)

for all u ∈ {2, 3, . . .}.

Proof. Proof of part (i). Let

Sn :=
n∑
i=1

Xi +

bn/2c∑
j=1

Yj − n, n ∈ N. (3.1)

It follows from (2.4) that, for every u ∈ N,

ψ(u) = P(Sn > u for some n ∈ N) > P(S2m > u for some m ∈ N)

> P(lim sup
m→∞

S2m > 2u). (3.2)

However,

S2m =
2m∑
i=1

Xi +
m∑
j=1

Yj − 2m=
m∑
i=1

ξi

for every m ∈ N, where {ξ1, ξ2, . . .} are independent copies of the r.v. ξ = X1 +

X2 + Y1 − 2.
Since Eξ > 0 and P(ξ = 0) < 1, we have that

P(lim sup
m→∞

S2m =∞) = 1 (3.3)

(see, for instance, Proposition 7.2.3 in [36]). The obtained relations (3.2) and
(3.3) imply part (i) of Theorem 3.2.

Proof of part (ii) consists of several steps.

• First, we prove that the condition µX,Y < 1 implies

lim
u→∞

ψ(u) = 0. (3.4)
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3. Ultimate ruin probabilities of the discrete-time multi-risk model

According to definition (2.4) we have that, for every u ∈ N,

ψ(u) = P(Sn > u for some n ∈ N)

6 P
(

sup
m∈N

S2m > u
)

+ P
(

sup
m∈N

S2m+1 > u
)
, (3.5)

where Sn is defined in (3.1). It is clear that

S2m

2m
=

1

2m

m∑
i=1

ξi,

where r.v.s ξ1, ξ2, . . . are described in the proof of part (i). Hence, by the strong
law of large numbers,

S2m

2m

a.s.→
t→∞

1

2
Eξ = µX,Y − 1 =: −∆ < 0.

Therefore,

P
(

sup
m>p

∣∣∣S2m

2m
+ ∆

∣∣∣ 6 ∆

2

)
→
p→∞

1. (3.6)

If N > 2 and u is positive, then

P
(

sup
m∈N

S2m < u
)

> P
(N−1⋂
m=1

{
S2m 6

u

2

}
,
∞⋂

m=N

{
S2m 6

u

2

})

> P
(N−1⋂
m=1

{
S2m 6

u

2

})
+ P

( ∞⋂
m=N−1

{
S2m 6

u

2

})
− 1

> P
(N−1⋂
m=1

{
S2m 6

u

2

})
+ P

(
sup
m>N

∣∣∣S2m

2m
+ ∆

∣∣∣ 6 ∆

2

)
− 1.

This inequality and relation (3.6) imply that

lim
u→∞

P
(

sup
m∈N

S2m < u
)

= 1. (3.7)

On the other hand, for all m ∈ N,

S2m+1

2m+ 1
=

2m

2m+ 1

1

2m

m∑
i=1

ξi +
X2m+1 − 1

2m+ 1
.
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3.1. Bi-risk model

Due to the strong law of large numbers,

1

m

m∑
i=1

ξi
a.s.→

m→∞
2µX,Y ,

X2m+1 − 1

2m+ 1

a.s.→
m→∞

0 .

Therefore,
S2m+1

2m+ 1

a.s.→
m→∞

−∆ ,

and we obtain
lim
u→∞

P
(

sup
m∈N

S2m+1 < u
)

= 1 (3.8)

using the same procedure as for the sums S2m, m ∈ N. Eq. (3.4) follows now from
estimate (3.5) and Eqs. (3.7), (3.8).

• In this step, we prove that

ψ(0) + a0b0A(v + 1)ψ(1)

=
v+1∑
u=1

AAB(u) + a2
0b0 ψ(v + 2) + ψ(v + 1)

−
v+1∑
u=1

ψ(u)AAB(v + 2− u) + a0b0 (A(v + 1)− a0) (3.9)

for all v ∈ N0.
From Theorem 3.1 we have that

ψ(u) = AAB(u+ 1) + au+1a0b0 +
∑
k6u

k+l+m6u+1

ψ(u+ 2− k − l −m) akalbm

for all u ∈ N0. Therefore,

v∑
u=0

ψ(u) =
v∑

u=0

AAB(u+ 1) + a0b0

v∑
u=0

au+1 + S, (3.10)

where v ∈ N0, and

S =
v∑

u=0

∑
k6u

k+l+m6u+1

akalbm ψ(u+ 2− k − l −m).
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3. Ultimate ruin probabilities of the discrete-time multi-risk model

Changing the order of summation in S, we obtain the following expression of S:

v∑
u=0

u∑
k=0

u+1−k∑
l=0

u+1−k−l∑
m=0

akalbmψ(u+ 2− k − l −m)

=
v∑
k=0

v∑
u=k

u+1−k∑
l=0

u+1−k−l∑
m=0

akalbmψ(u+ 2− k − l −m)

=
v∑
k=0

v+1−k∑
l=1

v∑
u=k+l−1

u+1−k−l∑
m=0

akalbmψ(u+ 2− k − l −m)

+
v∑
k=0

0∑
l=0

v∑
u=k

u+1−k−l∑
m=0

akalbmψ(u+ 2− k − l −m)

=
v∑
k=0

v+1−k∑
l=1

v∑
u=k+l−1

u+1−k−l∑
m=0

akalbmψ(u+ 2− k − l −m)

+ a0

v∑
k=0

v∑
u=k

u+1−k−l∑
m=0

akbmψ(u+ 2− k −m)

=
v∑
k=0

v+1−k∑
l=1

v+1−k−l∑
m=0

v∑
u=k+l+m−1

akalbmψ(u+ 2− k − l −m)

+ a0b0

v∑
k=0

v∑
u=k

akψ(u+ 2− k)

+ a0

v∑
k=0

v+1−k∑
m=1

v∑
u=k+m−1

akbmψ(u+ 2− k −m)

=
v∑
k=0

v+1−k∑
l=1

v+1−k−l∑
m=0

v+2−k−l−m∑
r=1

ψ(r)akalbm

+ a0b0

v∑
k=0

v+2−k∑
r=2

ψ(r)ak

+ a0

v∑
k=0

v+1−k∑
m=1

v+2−k−m∑
r=1

ψ(r)akbm.

Now, changing the order of summation in the opposite direction, we get that
S can be written in the following form:
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3.1. Bi-risk model

v∑
k=0

v+1−k∑
l=1

v+2−k−l∑
r=1

ψ(r)
v+2−k−l−r∑

m=0

akalbm

+ a0b0

v+2∑
r=2

ψ(r)
v+2−r∑
k=0

ak + a0

v∑
k=0

v+1−k∑
r=1

ψ(r)
v+2−k−r∑
m=1

akbm

=
v∑
k=0

v+1−k∑
r=1

ψ(r)
v+2−k−r∑

l=1

v+2−k−l−r∑
m=0

akalbm

+ a0b0

v+2∑
r=2

ψ(r)
v+2−r∑
k=0

ak + a0

v+1∑
r=1

ψ(r)
v+1−r∑
k=0

v+2−k−r∑
m=1

akbm

=
v+1∑
r=1

ψ(r)
v+1−r∑
k=0

v+2−k−r∑
l=1

v+2−k−l−r∑
m=0

akalbm

+ a0b0

v+2∑
r=2

ψ(r)
v+2−r∑
k=0

ak + a0

v+1∑
r=1

ψ(r)
v+1−r∑
k=0

v+2−k−r∑
m=1

akbm

=
v+1∑
r=1

ψ(r)AAB(v + 2− r)− a0b0A(v + 1)ψ(1) + a2
0b0ψ(v + 2).

The last expression and Eq. (3.10) immediately imply relation (3.9).

• In this step, we complete the proof of Theorem 3.2. By Eq. (3.4) we have

lim
v→∞

v+1∑
u=1

ψ(u)AAB(v + 2− u) = 0.

On the other hand,

lim
v→∞

v+1∑
u=1

AAB(u) =
∞∑
u=0

AAB(u)− AAB(0) = 2µX,Y − 1 + a2
0b0

because of
∞∑
u=0

AAB(u) = 2µX,Y .

Therefore,
ψ(0) + a0b0ψ(1) = 2µX,Y + a0b0 − 1 (3.11)
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3. Ultimate ruin probabilities of the discrete-time multi-risk model

as v →∞ in both sides of Eq. (3.9).
If b0 = 0, then ψ(0) = 2µX,Y − 1, and the first statement of part (ii) follows.
If we set v = 0 and b0 = 0 in (3.9), then we get

ψ(1) = 1− 1− ψ(0)

AAB(1)
= 1− 1− ψ(0)

a2
0b1

,

and the second equality of (ii) follows. The third equality of (ii) also follows from
(3.9) if b0 = 0. Theorem 3.2 is proved.

Theorem 3.3. Let us consider a discrete-time bi-risk model with generating r.v.s
X and Y . Suppose that a0 6= 0, b0 6= 0, and µX,Y = EX + EY/2 < 1. Then

ψ(0) = 1− 2(µX,Y − 1) lim
n→∞

γn+1 − γn
βn+1 − βn

,

ψ(1) =
1

a0b0

(2µX,Y − 1 + a0b0 − ψ(0)) ,

where {βn} and {γn} are two recurrent sequences defined as follows:

β0 = 1, β1 = − 1

a0b0

, βn =
1

α0

(
βn−2 −

n−1∑
i=1

αiβn−i − an−1

)
, n ∈ {2, 3, . . .},

γ0 = 0, γ1 =
1

a0b0

, γn =
1

α0

(
γn−2 −

n−1∑
i=1

αiγn−i + an−1

)
, n ∈ {2, 3, . . .},

and αr =
∑

k+l+m=r

akalbm for r ∈ N0.

Proof. Recall that αk = P(X1+X2+Y1 = k) for all k ∈ N0. Let ϕ(u) = 1−ψ(u) be
the survival probability of the discrete-time bi-risk model for the initial insurer’s
surplus u ∈ N0. By definition (2.4), the law of total probability, and Eqs. (2.5),
(2.6) we obtain
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3.1. Bi-risk model

ϕ(u) = P
( ∞⋂
n=1

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj > 0
})

= P
( ∞⋂
n=2

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj > 0
})

− P
( ∞⋂
n=2

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj > 0
}
, X1 > u+ 1

)

=
u+1∑
k=0

P
(
X1 +X2 + Y1 = k,

∞⋂
n=3

{
u+ n−

n∑
i=3

Xi −
bn/2c∑
j=2

Yj − k > 0
})

− P
(
X1 = u+ 1, X2 = 0, Y1 = 0,

∞⋂
n=3

{
u+ n−

n∑
i=3

Xi −
bn/2c∑
j=2

Yj > 0
})

=
u+1∑
k=0

αkϕ(u+ 2− k)− a0b0au+1ϕ(1).

So, for an arbitrary u ∈ N0, we have that

ϕ(u) =
u+1∑
k=0

αu+1−k ϕ(k + 1)− a0b0au+1ϕ(1). (3.12)

Let βn and γn be two recurrent sequences defined in Theorem 3.3. Let us prove
by induction that

ϕ(n) = βnϕ(0) + 2(1− µX,Y )γn (3.13)

for all n > 0. If n = 0, then (3.13) is evident. If n = 1, then relation (3.13) follows
from (3.11) because

ϕ(1) = − 1

a0b0

ϕ(0) +
2(1− µX,Y )

a0b0

.

We now prove that (3.13) is true for n = N + 1 assuming that it holds for
n 6 N . Substituting u = N − 1 into Eq. (3.12), we get

ϕ(N − 1) =
N∑
k=0

αN−k ϕ(k + 1)− a0b0aNϕ(1).
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3. Ultimate ruin probabilities of the discrete-time multi-risk model

Therefore,

ϕ(N + 1) =
1

α0

(
ϕ(N − 1)−

N∑
k=1

αkϕ(N − k + 1) + a0b0aNϕ(1)
)
,

and by the induction hypothesis we have that

ϕ(N + 1)

=
1

α0

(
βN−1ϕ(0) + 2(1− µX,Y ) γN−1 −

N∑
k=1

αk

(
βN−k+1ϕ(0)

+ 2(1− µX,Y )γN−k+1

)
+ a0b0aN(β1ϕ(0) + 2(1− µX,Y )γ1)

)
= ϕ(0)

(
1

α0

(
βN−1 −

N∑
k=1

αkβN+1−k + a0b0aNβ1

))

+ 2(1− µX,Y )

(
1

α0

(
γN−1 −

N∑
k=1

αkγN+1−k + a0b0aNγ1

))
= βN+1ϕ(0) + 2(1− µX,Y ) γN+1.

Consequently, Eq. (3.13) holds for all n > 0.
Now we derive both equalities of Theorem 3.3. The sequence ψ(u), u ∈ N0, is

nonincreasing by (2.4). Therefore, ϕ(u) is nondecreasing with respect to u, and
there exists a finite limit lim

u→∞
ϕ(u). Consequently,

lim
n→∞

(ϕ(n+ 1)− ϕ(n)) = 0.

From the last equality and relation (3.13) we obtain that

lim
n→∞

(
(βn+1 − βn)ϕ(0) + 2(1− µX,Y ) (γn+1 − γn)

)
= 0.

Therefore,
ϕ(0) = 2(µX,Y − 1) lim

n→∞

γn+1 − γn
βn+1 − βn

, (3.14)

provided that
inf
n∈N0

| βn+1 − βn| > c (3.15)

for a positive constant c.
We observe that the statement of Theorem 3.3 follows immediately from (3.14)
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3.1. Bi-risk model

and (3.11). It remains to show that{
β2k+1 6 β2k−1,

β2k > β2k−2,
(3.16)

for all k ∈ N because (3.15) with c = 2 follows from (3.16) by considering odd
and even n separately.

It is easy to see that (3.16) is true for k = 0. Let us show that it holds for
k = N + 1 if it does for k = 1, 2, . . . , N. If k = N + 1, then

β 2N+2 =
1

α0

(
β2N −

2N+1∑
i=1

αiβ 2N+2−i − a2N+1

)
.

By the induction hypothesis,

β 2N+2

>
1

α0

(β2N − α2β2N − α4β2N − · · · − α2Nβ2N − α1β1 − α3β1 − · · · − α2N+1β1 − a2N+1)

=
1

α0

(β2N(1− α2 − α4 − · · · − α2N)− β1(α1 + α3 + · · ·+ α2N+1)− a2N+1)

>
1

α0

(β2Nα0 +
1

a0b0

α2N+1 − a2N+1)

> β2N . (3.17)

Similarly, by the induction hypothesis and the proved estimate (3.17) we have

β2N+3

=
1

α0

(
β2N+1 −

2N+2∑
i=1

αiβ2N+3−i − a2N+2

)
6

1

α0

(β2N+1(1 + α2 − α4 − · · · − α2N+2))

6 β2N+1. (3.18)

Inequalities (3.17) and (3.18) imply that (3.16) holds for all k ∈ N. This finishes
the proof of Theorem 3.3.

The obtained algorithm works in a following way: first step should be calcu-
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3. Ultimate ruin probabilities of the discrete-time multi-risk model

lation of ψ(0), then ψ(1) using calculated value of ψ(0) (Theorems 3.2, 3.3). This
step should be repeated for every ψ(u), u ∈ {2, 3, . . .} using recursive formula
(Theorems 3.1, 3.2).

Let us consider the bi-risk model generated by r.v.’s X and Y such that a0 =

P(X = 0) = 3/4, a1 = P(X = 1) = 1/8, a2 = P(X = 2) = 1/8, b1 = P(Y =

1) = 9/10, b2 = P(Y = 2) = 1/10. In this case, net profit condition holds, i.e.
µX,Y = EX + EY/2 = 37/40 < 1. Then, from Theorem 3.2 we obtain:

ψ(0) = 2µX,Y − 1 = 2 · 37/40− 1 = 17/20,

ψ(1) = 1− 2

a2
0b1

(1− µX,Y ) = 19/27,

ψ(2) =
1

a2
0b1

(
ψ(1)AAB(2) +

∞∑
v=0

AAB(v)− AAB(0)− AAB(1)

− AAB(2)

)
= 1195/2187.

. . . etc (see Example 2 in Chapter 5).

Another example is demonstrated in Chapter 5 (Example 1).

3.2 Multi-risk model with three independent se-
ries of claim amounts

In this section we present the multi-risk model with three nonidentically dis-
tributed independent series of claim amounts where the claims repeat with time
periods of one, two and three units accordingly, that is, claim distributions coin-
cide at times {1, 2, 3, . . .}, at times {2, 4, 6, . . .} and at times {3, 6, 9, . . .}. claims.
We present the recursive formulas to calculate the ultimate ruin probabilities.

The discrete-time risk model with three inhomogeneous claims is obtained
from Eq. (2.1) with K = 3. The more accurate definition is presented below.

Definition 3.1. We say that the insurer’s surplus Wu(n) follows the three claims
risk model if

Wu(n) = u+ n−
n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk (3.19)

for each n ∈ N0 and the following assumptions hold:
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3.2. Multi-risk model with three independent series of claim amounts

• the initial insurer’s surplus u ∈ N0,
• X1, X2, . . . are independent copies of nonnegative integer-valued r.v. X,
Y1, Y2, . . . are independent copies of nonnegative integer-valued r.v. Y ,
Z1, Z2, . . . are independent copies of nonnegative integer-valued r.v. Z.

Let us define p.m.f.’s and p.d.f.’s by the following equalities

ak = P(X1 = k), bk = P(Y1 = k), ck = P(Z1 = k), k ∈ N0,

A(x) =

bxc∑
k=0

ak, B(x) =

bxc∑
k=0

bk, C(x) =

bxc∑
k=0

ck, x > 0.

Let
P(X1 + . . .+Xi + Y1 + . . . Yj + Z1 + . . .+ Zk = m) = aibjck(m),

and

P(X1 + . . .+Xi + Y1 + . . . Yj + Z1 + . . .+ Zk 6 m) = AiBjCk(m),

where i = 0, 6, j = 0, 3, k = 0, 2 and m = 0, 1, 2, . . .

• If any of i, j, k equals zero, then we do not have such random variable in
convolution.

• If any of i, j, k equals one, we include the corresponding r. v. in convolution
only one time.

• AiBjCk(m) = 1− AiBjCk(m).
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3. Ultimate ruin probabilities of the discrete-time multi-risk model

By the law of total probability we have, that survival probability

ϕ(u) = P
( ∞⋂
n=1

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
})

(3.20)

= P
( ∞⋂
n=2

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
})

− P
( ∞⋂
n=2

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 > u+ 1

)

= P
( ∞⋂
n=3

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
})

− P
( ∞⋂
n=3

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 +X2 + Y1 > u+ 2

)

− P
( ∞⋂
n=3

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 > u+ 1

)

+ P
( ∞⋂
n=3

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 +X2 + Y1 > u+ 2, X1 > u+ 1

)
.

Continuing in the same way we obtain:

ϕ(u) = P
( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
})

− P
( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 + . . .+X5 + Y1 + Y2

+ Z1 > u+ 5

)
− P

( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 + . . .+X5 + Y1 + Y2

+ Z1 > u+ 4

)
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3.2. Multi-risk model with three independent series of claim amounts

+ P
( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 + . . .+X4 + Y1 + Y2

+ Z1 > u+ 4, X1 + . . .+X5 + Y1 + Y2 + Z1 > u+ 5

)
− P

( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 +X2 +X3 + Y1 + Z1 > u+ 3

)

+ P
( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 + . . .+X5 + Y1 + Y2

+ Z1 > u+ 5, X1 +X2 +X3 + Y1 + Z1 > u+ 3

)
+ P

( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 + . . .+X4 + Y1 + Y2

+ Z1 > u+ 4, X1 +X2 +X3 + Y1 + Z1 > u+ 3

)
− P

( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 + . . .+X5 + Y1 + Y2

+ Z1 > u+ 5, X1 + . . .+X4 + Y1 + Y2 + Z1 > u+ 4, X1 +X2

+X3 + Y1 + Z1 > u+ 3

)
− P

( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 +X2 + Y1 > u+ 2

)

+ P
( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 + . . .+X5 + Y1 + Y2

+ Z1 > u+ 5, X1 +X2 + Y1 > u+ 2

)
+ P

( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 + . . .+X4 + Y1 + Y2

+ Z1 > u+ 4, X1 +X2 + Y1 > u+ 2

)
− P

( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 + . . .+X5 + Y1 + Y2

+ Z1 > u+ 5, X1 + . . .+X4 + Y1 + Y2 + Z1 > u+ 4, X1 +X2

+ Y1 > u+ 2

)
+ P

( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 +X2 +X3 + Y1

+ Z1 > u+ 3, X1 +X2 + Y1 > u+ 2

)
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3. Ultimate ruin probabilities of the discrete-time multi-risk model

+ P
( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 + . . .+X5 + Y1 + Y2

+ Z1 > u+ 5, X1 + . . .+X4 + Y1 + Y2 + Z1 > u+ 4, X1 +X2

+X3 + Y1 + Z1 > u+ 3, X1 +X2 + Y1 > u+ 2

)
− P

( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 > u+ 1

)

+ P
( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 + . . .+X5 + Y1 + Y2

+ Z1 > u+ 5, X1 > u+ 1

)
+ P

( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 + . . .+X4 + Y1 + Y2

+ Z1 > u+ 4, X1 > u+ 1

)
− P

( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 + . . .+X5 + Y1 + Y2

+ Z1 > u+ 5, X1 + . . .+X4 + Y1 + Y2 + Z1 > u+ 4, X1 > u+ 1

)
+ P

( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 +X2 +X3 + Y1

+ Z1 > u+ 3, X1 > u+ 1

)
− P

( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 + . . .+X5 + Y1 + Y2

+ Z1 > u+ 5, X1 +X2 +X3 + Y1 + Z1 > u+ 3, X1 > u+ 1

)
− P

( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 + . . .+X4 + Y1 + Y2

+ Z1 > u+ 4, X1 +X2 +X3 + Y1 + Z1 > u+ 3, X1 > u+ 1

)
+ P

( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 + . . .+X5 + Y1 + Y2

+ Z1 > u+ 5, X1 + . . .+X4 + Y1 + Y2 + Z1 > u+ 4, X1 +X2

+X3 + Y1 + Z1 > u+ 3, X1 > u+ 1
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3.2. Multi-risk model with three independent series of claim amounts

+ P
( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 +X2

+ Y1 > u+ 2, X1 > u+ 1

)
− P

( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 + . . .+X5 + Y1 + Y2

+ Z1 > u+ 5, X1 +X2 + Y1 > u+ 2, X1 > u+ 1

)
− P

( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 + . . .+X4 + Y1 + Y2

+ Z1 > u+ 4, X1 +X2 + Y1 > u+ 2, X1 > u+ 1

)
+ P

( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 + . . .+X5 + Y1 + Y2

+ Z1 > u+ 5, X1 + . . .+X4 + Y1 + Y2 + Z1 > u+ 4, X1 +X2

+ Y1 > u+ 2, X1 > u+ 1

)
− P

( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 +X2 +X3 + Y1

+ Z1 > u+ 3, X1 +X2 + Y1 > u+ 2, X1 > u+ 1

)
+ P

( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 + . . .+X5 + Y1 + Y2

+ Z1 > u+ 5, X1 +X2 +X3 + Y1 + Z1 > u+ 3, X1 +X2

+ Y1 > u+ 2, X1 > u+ 1

)
+ P

( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 + . . .+X4 + Y1 + Y2

+ Z1 > u+ 4, X1 +X2 +X3 + Y1 + Z1 > u+ 3, X1 +X2

+ Y1 > u+ 2, X1 > u+ 1

)
− P

( ∞⋂
n=6

{
u+ n−

n∑
i=1

Xi −
bn/2c∑
j=1

Yj −
bn/3c∑
k=1

Zk > 0
}
, X1 + . . .+X5 + Y1 + Y2

+ Z1 > u+ 5, X1 + . . .+X4 + Y1 + Y2 + Z1 > u+ 4, X1 +X2 +X3 + Y1

+ Z1 > u+ 3, X1 +X2 + Y1 > u+ 2, X1 > u+ 1
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=
u+5∑
k=0

a6b3c2(u+ 5− k)ϕ(k + 1)−
u+5∑
j=u+1

aj

u+5−j∑
k=0

a5b3c2(u+ 5− j − k)ϕ(k + 1)

−
u∑
j=0

aj

u+5−j∑
i1=u+1−j

ab(i1)

u+5−j−i1∑
k=0

a4b2c2(u+ 5− j − i1 − k)ϕ(k + 1)

−
u∑
j=0

aj

u+1−j∑
i1=0

ab(i1)

u+5−j−i1∑
i2=u+3−j−i1

ac(i2)

×
u+5−j−i1−i2∑

k=0

a3b2c2(u+ 5− j − i1 − i2 − k)ϕ(k + 1)

−
u∑
j=0

aj

u+1−j∑
i1=0

ab(i1)

u+2−j−i1∑
i2=0

ac(i2)

u+5−j−i1−i2∑
i3=u+4−j−i1−i2

ab(i3)

×
u+5−j−i1−i2−i3∑

k=0

a2bc(u+ 5− j − i1 − i2 − i3 − k)ϕ(k + 1)

−
u∑
j=0

aj

u+1−j∑
i1=0

ab(i1)

u+2−j−i1∑
i2=0

ac(i2)

u+3−j−i1−i2∑
i3=0

ab(i3)

u+5−j−i1−i2−i3∑
i4=u+5−j−i1−i2−i3

ai4

×
u+5−j−i1−i2−i3∑

k=0

abc(u+ 5− j − i1 − i2 − i3 − i4 − k)ϕ(k + 1).

From this equality we see that the values of ϕ(u+ 6) are recursively related to
ϕ(0), ϕ(1),. . ., ϕ(u+ 5) for u > 0.

Net profit condition

Our first result describes the meaning of the net profit condition in the discrete-
time risk model with three inhomogeneous claims.

Theorem 3.4. Let us consider a three claims model generated by independent
r.v.’s. X, Y and Z for finite means EX, EY and EZ. If EX+EY/2 +EZ/3 > 1,
then ψ(u) = 1 for each initial surplus u ∈ N0. If EX + EY/2 + EZ/3 = 1, then
we have the following possible cases:
• ψ(0) = 1 and ψ(u) = 0 for all u ∈ N if {a1 = b0 = c0 = 1} or {a0 = b2 =

c0 = 1} or {a0 = b0 = c3 = 1};
• ψ(u) = 1 for all u ∈ N0 = {0, 1, 2, . . .} if a6b3c2(6) < 1.
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Proof. We rewrite the equality (3.20) in a following form

ϕ(u) (3.21)

=
u+5∑
k=0

a6b3c2(u+ 5− k)ϕ(k + 1)

−
4∑

k=0

ϕ(k + 1)
5−k∑
j=1

au+ja
5b3c2(5− k − j)

−
3∑

k=0

ϕ(k + 1)
5−k∑
j=2

∑
i16u

ai1ab(u+ j − i1)a4b2c2(5− k − j)

−
2∑

k=0

ϕ(k + 1)
5−k∑
j=3

∑
i16u

i26u+1−i1

ai1ab(i2)ac(u+ j − i1 − i2)a3b2c(5− k − j)

−
1∑

k=0

ϕ(k + 1)
5−k∑
j=4

∑
i16u

i26u+1−i1
i36u+2−i1−i2

ai1ab(i2)ac(i3)ab(u+ j − i1 − i2 − i3)a2bc(5− k − j)

− ϕ(1)abc(0)
∑
i16u

i26u+1−i1
i36u+2−i1−i2

i46u+3−i1−i2−i3

ai1ab(i2)ac(i3)ab(i4)au+5−i1−i2−i3−i4

:= S0(u)− S1(u)− S2(u)− S3(u)− S4(u)− S5(u).

Therefore, for v ∈ N0 we have

v∑
u=0

ϕ(u) =
v∑

u=0

6∑
k=0

Sk(u). (3.22)
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So, for the sum S0(u) we obtain

v∑
u=0

S0(u) =
4∑

k=0

v∑
u=0

a6b3c2(u+ 5− k)ϕ(k + 1)

+
v+5∑
k=5

v∑
u=k−5

a6b3c2(u+ 5− k)ϕ(k + 1)

=
4∑

k=0

ϕ(k + 1){A6B3C2(v + 5− k)− A6B3C2(4− k)}

+
v+5∑
k=5

ϕ(k + 1)A6B3C2(v + 5− k)

=
5∑

k=1

ϕ(k){A6B3C2(v + 6− k)− A6B3C2(5− k)}

−
5∑

k=0

ϕ(k)A6B3C2(v + 6− k) +
v+6∑
k=0

ϕ(k)A6B3C2(v + 6− k) := S̃0.

For the sum S1(u) we obtain

v∑
u=0

S1(u) =
4∑

k=0

ϕ(k + 1)
5−k∑
j=0

a5b3c2(5− k − j)
v∑

u=0

au+j

=
4∑

k=0

ϕ(k + 1)
5−k∑
j=0

a5b3c2(5− k − j)A(v + j) := S̃1.
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For the sum S2(u) we obtain

v∑
u=0

S2(u) =
3∑

k=0

ϕ(k + 1)
v∑

u=0

u∑
i1=0

5−i1−k∑
j=2−i1

ai1ab(u+ j) a4b2c2(5− i1 − j − k)

=
3∑

k=0

ϕ(k + 1)
v∑

i1=0

ai1

5−i1−k∑
j=2−i1

v∑
u=i1

ab(u+ j) a4b2c2(5− i1 − j − k)

=
3∑

k=0

ϕ(k + 1)
v∑

i1=0

ai1

5−i1−k∑
j=2−i1

{AB(j + v)− AB(j − 1)}a4b2c2(5− i1 − j − k)

=
3∑

k=0

ϕ(k + 1)
v∑

i1=0

ai1

5−k∑
j=2

{AB(v + j − i1)− AB(j − 1)}a4b2c2(5− k − j)

=
3∑

k=0

ϕ(k + 1)
5−k∑
j=2

a4b2c2(5− k − j)
v∑

i1=0

ai1{AB(v + j − i1)− AB(j − 1)} := S̃2.

For the sum S3(u) we obtain

v∑
u=0

S3(u) =
2∑

k=0

ϕ(k + 1)
v∑

u=0

u∑
i1=0

ai1

u+1−i1∑
i2=0

ab(i2)
5−k∑
j=3

ac(u+ j − i1 − i2)a3b2c(5− k − j)

=
2∑

k=0

ϕ(k + 1)
v∑

i1=0

ai1

v∑
u=i1

u+1−i1∑
i2=0

ab(i2)
5−k∑
j=3

ac(u+ j − i1 − i2)a3b2c(5− k − j)

= ab(0)
2∑

k=0

ϕ(k + 1)
v∑

i1=0

ai1

v∑
u=i1

5−k∑
j=3

ac(j + u− i1)a3b2c(5− k − j)

+
2∑

k=0

ϕ(k + 1)
v∑

i1=0

ai1

v+1−i1∑
i2=1

ab(i2)
v∑

u=i2+i1−1

5−k∑
j=5

ac(j + u− i1

− i2)a3b2c(5− k − j)

= ab(0)
2∑

k=0

ϕ(k + 1)
5−k∑
j=3

v∑
i1=0

ai1{AC(v + j − i1)

− AC(j − 1)}a3b2c(5− k − j)

+
2∑

k=0

ϕ(k + 1)
5−k∑
j=3

v∑
i1=0

v+1−i1∑
i2=1

ai1ab(i2){AC(v + j − i1 − i2)

− AC(j − 2)}a3b2c(5− k − j) := S̃3.
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For the sum S4(u) we obtain

v∑
u=0

S4(u) =
1∑

k=0

ϕ(k + 1)
v∑

u=0

u∑
i1=0

u+1−i1∑
i2=0

u+2−i1−i2∑
i3=0

5−k∑
j=4

ai1ab(i2)ac(i3)ab(u+ j − i1 − i2 − i3)

× a2bc(5− k − j)
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=
1∑

k=0

ϕ(k + 1)
v∑

i1=0

v∑
u=i1

u+1−i1∑
i2=0

u+2−i1−i2∑
i3=0

5−k∑
j=4

ai1ab(i2)ac(i3)ab(u+ j − i1 − i2 − i3)

× a2bc(5− k − j)

= ab(0)
1∑

k=0

ϕ(k + 1)
v∑

i1=0

v∑
u=i1

u+2−i1∑
i3=0

u+2−i1−i2∑
j=0

5−k∑
j=4

ai1ac(i3)ab(u+ j − i1 − i3)

× a2bc(5− k − j)

+
1∑

k=0

ϕ(k + 1)
v∑

i1=0

v+1−i1∑
i2=1

v∑
u=i1+i2−1

u+2−i1−i2∑
i3=0

5−k∑
j=4

ai1ab(i2)ac(i3)ab(u+ j − i1 − i3)

× a2bc(5− k − j)

= ab(0)ac(0)
1∑

k=0

ϕ(k + 1)
v∑

i1=0

ai1

5−k∑
j=4

v∑
u=i1

ab(u+ j − i1)a2bc(5− k − j)

+ ab(0)ac(1)
1∑

k=0

ϕ(k + 1)
v∑

i1=0

ai1

5−k∑
j=4

v∑
u=i1

ab(u+ j − 1− i1)a2bc(5− k − j)

+ ac(0)
1∑

k=0

ϕ(k + 1)
v∑

i1=0

ai1

v+1−i1∑
i2=1

5−k∑
j=4

v∑
u=i1+i2−1

ab(i2)ab(u+ j − 1− i1 − i2)

× a2bc(5− k − j)

+
1∑

k=0

ϕ(k + 1)
v∑

i1=0

v+1−i1∑
i2=1

v+2−i1−i2∑
i3=1

v∑
u=i1+i2+i3−1

5−k∑
j=4

ai1ab(i2)ab(u+ j − 1− i1 − i2)ac(i3)

× a2bc(5− k − j)

= a2bc(0)
1∑

k=0

ϕ(k + 1)
5−k∑
j=4

v∑
i1=0

ai1(AB(v + j − i1)− AB(j − 1))

× a2bc(5− k − j)

+ ab(0)ac(1)
1∑

k=0

ϕ(k + 1)
5−k∑
j=4

v∑
i1=0

ai1(AB(v − 1 + j − i1)− AB(j − 2))

× a2bc(5− k − j)

+ ab(0)
1∑

k=0

ϕ(k + 1)
5−k∑
j=4

v∑
i1=0

ai1

v+2−i1∑
i3=2

ac(i3)(AB(v + j − i1 − i3)− AB(j − 3))

× a2bc(5− k − j)

+ ab(0)
1∑

k=0

ϕ(k + 1)
5−k∑
j=4

v∑
i1=0

ai1

v+1−i1∑
i2=1

ab(i2)(AB(v + j − i1 − i2)

− AB(j − 2)) a2bc(5− k − j)

+
1∑

k=0

ϕ(k + 1)
5−k∑
j=4

v∑
i1=0

ai1

v+1−i1∑
i2=1

ab(i2)

v+2−i1−i2∑
i3=1

ac(i3)(AB(v + j − i1 − i2 − i3)

− AB(j − 3)) a2bc(5− k − j) := S̃4.
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We rewrite sum S5(u) in following form

S5(u) =abc(0)ϕ(1)
u+3∑
i1=0

u+3−i1∑
i2=0

u+3−i1−i2−i3∑
i3=0

ai1ab(i2)ac(i3)ab(i4)au+5−i1−i2−i3−i4

− a2b2c(0)ϕ(1)a2

u+1∑
i1=0

u+1−i1∑
i2=0

ai1ab(i2)ac(u+ 3− i1 − i2)

+ a2b2c(0)ϕ(1)a2ab(0)ac(2)au+1

− abc(0)ϕ(1)
u∑

i1=0

u+3−i1∑
i2=u+2−i1

u+3−i1−i2∑
i3=0

u+3−i1−i2−i3∑
i4=0

ai1ab(i2)ac(i3)

× ab(i4)au+5−i1−i2−i3−i4

− abc(0)ϕ(1)
u+3∑

i1=u+1

u+3−i1∑
i2=0

u+3−i1−i2∑
i3=0

u+3−i1−i2−i3∑
i4=0

ai1 ab(i2)ac(i3)

× ab(i4)au+5−i1−i2−i3−i4

= abc(0)ϕ(1)
u+3∑
k=0

a4b2c(k)au+5−k − a2b2c(0)ϕ(1)a2

u+1∑
k=0

a2b(k)ac(u+ 3− k)

+ a3b3c(0)a2ac(2)ϕ(1)au+1

− abc(0)ϕ(1)
u∑

i1=0

ai1

1∑
i2=0

1−i2∑
i3=0

1−i2−i3∑
i4=0

ab(i2)ac(i3)ab(i4)a3−i2−i3−i4

− abc(0)ϕ(1)
2∑

i1=0

ai1

2−i1∑
i2=0

2−i1−i2∑
i3=0

2−i1−i2−i3∑
i4=0

ab(i2)ac(i3)

× ab(i4)a4−i1−i2−i3−i4

= abc(0)ϕ(1)
u+3∑
k=0

a4b2c(k)au+5−k − a2b2c(0)ϕ(1)a2

u+1∑
k=0

a2b(k) ac(u+ 3− k)

+ a3b3c(0)a2ac(2)ϕ(1)au+1

− abc(0)ϕ(1)
u∑

i1=0

ai1

1∑
i2=0

ab(u+ 2 + i2 − i1)

1−i2∑
k=0

a2bc(k)a3−i2−k

− abc(0)ϕ(1)
2∑

i1=0

au+1+i1

2−i1∑
k=0

a3b2c(k)a4−i1−k.
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Then,

v∑
u=0

S5(u) = abc(0)ϕ(1)
v∑

u=0

u+3∑
k=0

au+5−ka
4b2c(k)

− a2b2c(0)ϕ(1)a2

v∑
u=0

u+1∑
k=0

ac(u+ 3− k)a2b(k)

+ a3b3c(0)a1ac(2)ϕ(1)(A(v + 1)− A(0))
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− abc(0)ϕ(1)
v∑

u=0

u∑
i1=0

1∑
i2=0

ai1ab(u+ 2 + i2 − i1)

1−i2∑
k=0

a2bc(k)a3−i2−k

− abc(0)ϕ(1)
v∑

u=0

2∑
i1=0

au+1+i1

2−i1∑
k=0

a3b2c(k)a4−i1−k

= abc(0)ϕ(1)
2∑

k=0

v∑
u=0

au+5−ka
4b2c(k)

+ abc(0)ϕ(1)
v+3∑
k=0

v∑
u=k−3

au+5−ka
4b2c(k)

− a2b2c(0)ϕ(1)a2

v∑
u=0

ac(u+ 3)a2b(0)

− a2bc(0)ϕ(1)a2

v+1∑
k=1

v∑
u=k−1

ac(u+ 3− k)a2b(k)

+ a3b3c(0)a2 ac(2)ϕ(1)(A(v + 1)− A(0))

− abc(0)ϕ(1)
v∑

i1=0

ai1

1∑
i2=0

v∑
u=i1

ab(u+ 2 + i2 − i1)

1−i2∑
k=0

a2bc(k)a3−i2−k

− abc(0)ϕ(1)
2∑

i1=0

v∑
u=0

au+1+i1

2−i1∑
k=0

a3b2c(k)a4−i1−k

= abc(0)ϕ(1)
2∑

k=0

(A(v + 5− k)− A(4− k))a4b2ck

+ abc(0)ϕ(1)
v+3∑
k=0

(A(v + 5− k)− A(1))a4b2c(k)

− a4b3c(0)ϕ(1)a2(AC(v + 3)− AC(2))

− a2b2c(0)ϕ(1)a2

v+1∑
k=1

(AC(v + 3− k)− AC(1))a2b(k)

+ a3b3c(0)a2ac(2)ϕ(1)(A(v + 1)− A(0))

− abc(0)ϕ(1)
1∑

i2=0

1−i2∑
k=0

a2bc(k)a3−i2−k

v∑
i1=0

ai1(AB(v + 2 + i2 − i1)

− AB(i2 + 1))− abc(0)ϕ(1)
2∑

i1=0

(A(v + 1 + i1)

− A(i1))

2−i1∑
k=0

a3b2c(k)a4−i1−k := S̃5.
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Substituting S̃0, S̃1, S̃2, …, S̃5 into (3.22) we get

v+6∑
k=0

ϕ(k)A6B3C2(v + 6− k)−
v+6∑

k=v+1

ϕ(k) (3.23)

=
5∑

k=1

ϕ(k){A6B3C2(v + 6− k)− A6B3C2(5− k)}

−
5∑

k=0

ϕ(k)A6B3C2(v + 6− k)−
5∑

k=1

S̃k.

Sequence ϕ(u), u ∈ N0, is bounded and non decreasing. So, there exists a limit
lim
u→∞

ϕ(u) := ϕ(∞). For all 1 6 N < v + 6 we have

S(v) =
v+6∑
k=0

ϕ(k)A6B3C2(v + 6− k) =
N∑
k=0

ϕ(k)A6B3C2(v + 6− k)

+
v+6∑

k=N+1

ϕ(k)A6B3C2(v + 6− k) = S1N(v) + S2N(v).

0 6 S1N(v) 6
v+6∑
k=0

A6B3C2(v + 6− k) 6
∞∑

l=v+6−N

A6B3C2(l).

S2N(v) 6 ϕ(∞)
v+6∑

k=N+1

A6B3C2(v + 6− k) 6 ϕ(∞)
v+6−N−1∑

l=0

A6B3C2(l).

S2N(v) > ϕ(N + 1)
v+6∑

k=N+1

A6B3C2(v + 6− k) = ϕ(N + 1)
v+6−N−1∑

l=0

A6B3C2(l).
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Thus,

lim sup
v→∞

S(v) 6 lim sup
v→∞

S1N(v) + lim sup
v→∞

S2N(v) (3.24)

6 lim sup
v→∞

∞∑
l=v+6−N

A6B3C2(l) + ϕ(∞)
v+6−N−1∑

l=0

A6B3C2(l)

= 0 + ϕ(∞)E(6X + 3Y + 2Z), (3.25)

where EX, EY and EZ are finite means.
From the other side, for all 1 6 N < v + 6, we have

lim inf
v→∞

S(v) > lim inf
v→∞

S1N(v) + lim inf
v→∞

S2N(v)

> ϕ(N + 1) lim inf
v→∞

v+6−N−1∑
l=0

A6B3C2(l) = ϕ(N + 1)E(6X + 3Y + 2Z).

Thus,

lim inf
v→∞

S(v) > ϕ(∞)E(6X + 3Y + 2Z). (3.26)

From (3.24) and (3.26), we get

lim
v→∞

v+6∑
k=0

ϕ(k)A6B3C2(v + 6− k)

= ϕ(∞) lim
v→∞

v+6∑
k=0

A6B3C2(v + 6− k)

= ϕ(∞)(6EX + 3EY + 2EZ). (3.27)

As v →∞, the relations (3.23) and (3.27) imply that

ϕ(∞)(6− 6EX − 3EY − 2EZ) (3.28)

= ϕ(0) + ẑ1ϕ(1) + ẑ2ϕ(2) + ẑ3ϕ(3) + ẑ4ϕ(4) + ẑ5ϕ(5),
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where

ẑ5 = a5b3c2(0),

ẑ4 = A6B3C2(1) + A(0) a6b3c2(1) + A(1) a6b3c2(0)

+ AB(1) a4b2c2(0),

ẑ3 = A6B3C2(2) +
3∑

i1=1

A(i1 − 1) a5b3c2(3− i1) +
3∑

i2=2

AB(i2 − 1) a4b2c2(3− i2)

+ a3b2c(0) {AC(2) + AB(0) ac(2)},

ẑ2 = A6B3C2(3) +
4∑

i1=1

A(i1 − 1) a5b3c2(4− i1) +
4∑

i2=2

AB(i2 − 1) a4b2c2(4− i2)

+
4∑

i3=3

a3b2c(4− i3){AC(i3 − 1) + AB(0) ac(i3 − 1)},

ẑ1 = A6B3C2(4) +
5∑

i1=1

A(i1 − 1) a5b3c2(5− i1) +
5∑

i2=2

AB(i2 − 1) a4b2c2(5− i2)

+
5∑

i3=3

a3b2c(5− i3){AC(i3 − 1) + AB(0) ac(i3 − 1)}

+ a2bc(0)
5∑

i4=4

AB(i4 − 1) a2bc(5− i4)

+ ab(0) ac(1)
5∑

i4=4

AB(i4 − 2) a2bc(5− i4)

+ ab(0) AC(1)
5∑

i4=4

AB(i4 − 3) a2bc(5− i4)

+ abc(0)
2∑

k=0

A(4− k) a4b2c(k) + abc(0) A2B2C(2) A(1)

+ a4b3c(0) a2 AC(2) + a2b2c(0) a2 A2B(0) AC(1)

+ a3b3c(0) a2 ac(2) A(0)− abc(0)
1∑

i2=0

1−i2∑
k=0

abc(k) a3−i2−k AB(i2 + 1)

− abc(0)
2∑

i1=0

2−i1∑
k=0

a3b2c(k) a4−i1−k A(i1).
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Now we consider the last equality and examine all possible cases.
(I) If EX + EY/2 + EZ/3 > 1, then (3.28) implies that ϕ(∞) = 0 because

the left side at (3.28) is nonnegative in all cases. So, in this case ψ(u) = 1 for all
u ∈ {0, 1, 2, . . .}.

(II) If EX + EY/2 + EZ/3 = 1, then (3.28) implies that

ϕ(0) + ẑ1ϕ(1) + ẑ2ϕ(2) + ẑ3ϕ(3) + ẑ4ϕ(4) + ẑ5ϕ(5) = 0.

Additionally, in this situation we have that a6b3c2(6) = 1 or a6b3c2(6) < 1.
(II-A) If a6b3c2(6) = 1, then we have

a6b3c2(0) = 0,

a6b3c2(1) = 0,

a6b3c2(2) = 0,

a6b3c2(3) = 0,

a6b3c2(4) = 0,

a6b3c2(5) = 0,

a6b3c2(6) = 1,

ϕ(0) + ẑ1ϕ(1) + ẑ2ϕ(2) + ẑ3ϕ(3) + ẑ4ϕ(4) + ẑ5ϕ(5) = 0.

Taking into account that all numbers ak, bk and ck are local probabilities for
all k ∈ N0, the last system implies the following possible cases.

(a) {a1 = b0 = c0 = 1} and ϕ(0) = 0. In this case, ψ(0) = 1 and ψ(u) = 0, u ∈
{1, 2, . . .}.

(b) {a0 = b2 = c0 = 1} and ϕ(0) = 0. In this case, ψ(0) = 1 and ψ(u) = 0 for
u ∈ {1, 2, . . .}.

(c) {a0 = b0 = c3 = 1} and ϕ(0) = 0. In this case, ψ(0) = 1 and ψ(u) = 0 for
u ∈ {1, 2, . . .}.

(II-B) If a6b3c2(6) < 1 and EX + EY/2 + EZ/3 = 1 then it is necessary that
a6b3c2(0) 6= 0 or a6b3c2(1) 6= 0 or a6b3c2(2) 6= 0 or a6b3c2(3) 6= 0 or a6b3c2(4) 6= 0
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or a6b3c2(5) 6= 0. In this situation, it is sufficient to consider the following cases

{a6b3c2(0) 6= 0}, {a6b3c2(0) = 0, a6b3c2(1) 6= 0},

{a6b3c2(0) = 0, a6b3c2(1) = 0, a6b3c2(2) 6= 0},

{a6b3c2(0) = 0, a6b3c2(1) = 0, a6b3c2(2) = 0, a6b3c2(3) 6= 0},

{a6b3c2(0) = 0, a6b3c2(1) = 0, a6b3c2(2) = 0, a6b3c2(3) = 0, a6b3c2(4) 6= 0},

{a6b3c2(0) = 0, a6b3c2(1) = 0, a6b3c2(2) = 0, a6b3c2(3) = 0, a6b3c2(4) = 0, a6b3c2(5) 6= 0}.

(d) If a6b3c2(0) 6= 0 then (3.28) implies that ϕ(0) = ϕ(1) = ϕ(2) = ϕ(3) =

ϕ(4) = ϕ(5) = 0, and from (3.20) we obtain ϕ(u) = 0 for all u ∈ {6, 7, . . .}. So,
ψ(u) = 1 if u ∈ {0, 1, . . .} in the case.

(e) If a6b3c2(0) = 0 and a6b3c2(1) 6= 0 then (3.28) implies that ϕ(0) = ϕ(1) =

ϕ(2) = ϕ(3) = ϕ(4) = 0, and from (3.20) we obtain ϕ(u) = 0 for all u ∈ {5, 6, . . .}.
So, ψ(u) = 1 if u ∈ {0, 1, . . .} in the case.

(f) If a6b3c2(0) = 0 and a6b3c2(1) = 0 and a6b3c2(2) 6= 0 then (3.28) implies
that ϕ(0) = ϕ(1) = ϕ(2) = ϕ(3) = 0, and from (3.20) we obtain ϕ(u) = 0 for all
u ∈ {4, 5, . . .}. So, ψ(u) = 1 if u ∈ {0, 1, . . .} in the case.

(g) If a6b3c2(0) = 0 and a6b3c2(1) = 0 and a6b3c2(2) = 0 and a6b3c2(3) 6= 0

then (3.28) implies that ϕ(0) = ϕ(1) = ϕ(2) = 0, and from (3.20) we obtain
ϕ(u) = 0 for all u ∈ {3, 4, . . .}. So, ψ(u) = 1 if u ∈ {0, 1, . . .} in the case.

(h) If a6b3c2(0) = 0 and a6b3c2(1) = 0 and a6b3c2(2) = 0 and a6b3c2(3) = 0

and a6b3c2(4) 6= 0 then (3.28) implies that ϕ(0) = ϕ(1) = 0, and from (3.20) we
obtain ϕ(u) = 0 for all u ∈ {2, 3, . . .}. So, ψ(u) = 1 if u ∈ {0, 1, . . .} in the case.

(i) If a6b3c2(0) = 0 and a6b3c2(1) = 0 and a6b3c2(2) = 0 and a6b3c2(3) = 0 and
a6b3c2(4) = 0 and a6b3c2(5) 6= 0 then (3.28) implies that ϕ(0) = 0, and from (3.20)
we obtain ϕ(u) = 0 for all u ∈ {1, 2, . . .}. So, ψ(u) = 1 if u ∈ {0, 1, . . .} in the case.

In all cases, equalities (3.28) and (3.20) imply that ϕ(u) = 0 and, so, ψ(u) = 1

for all u ∈ N0. Theorem 3.4 is proved.

Recursive formulas

Our second statement proposes a recursive procedure for calculation of the ulti-
mate survival probabilities ϕ(u) = 1− ψ(u), u ∈ N0.

Theorem 3.5. Let us consider a three claims risk model generated by independent
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r.v.’s. X, Y and Z. Suppose that EX + EY/2 + EZ/3 < 1. Then the following
list of statements holds:
• lim
u→∞

ϕ(u) = 1.
• If a0 6= 0, b0 6= 0 and c0 6= 0, then

ϕ(n) = β0
nϕ(0) + β1

nϕ(1) + β2
nϕ(2) + β3

nϕ(3) + β4
nϕ(4) (3.29)

+ γn(6− 6EX − 3EY − 2EZ), n ∈ N0

where β0
0 = 1, β0

1 = 0, β0
2 = 0, β0

3 = 0, β0
4 = 0, β0

5 = − 1
a5b3c2(0)

,

β0
n = 1

a6b3c2(0)

(
β0
n−6 −

∑n−1
k=1 a

6b3c2(k) β0
n−k − a(n− 5)

)
, n > 6;β1

0 = 0, β1
1 = 1, β1

2 = 0, β1
3 = 0, β1

4 = 0, β1
5 = − ẑ1

a5b3c2(0)
,

β1
n = 1

a6b3c2(0)

(
β1
n−6 −

∑n−1
k=1 a

6b3c2(k) β1
n−k + z1(n− 6)− a(n− 5)ẑ1

)
, n > 6;β2

0 = 0, β2
1 = 0, β2

2 = 1, β2
3 = 0, β2

4 = 0, β2
5 = − ẑ2

a5b3c2(0)
,

β2
n = 1

a6b3c2(0)

(
β2
n−6 −

∑n−1
k=1 a

6b3c2(k) β2
n−k + z2(n− 6)− a(n− 5)ẑ2

)
, n > 6;β3

0 = 0, β3
1 = 0, β3

2 = 0, β3
3 = 1, β3

4 = 0, β3
5 = − ẑ3

a5b3c2(0)
,

β3
n = 1

a6b3c2(0)

(
β3
n−6 −

∑n−1
k=1 a

6b3c2(k) β3
n−k + z3(n− 6)− a(n− 5)ẑ3

)
, n > 6;β4

0 = 0, β4
1 = 0, β4

2 = 0, β4
3 = 0, β4

4 = 1, β4
5 = − ẑ4

a5b3c2(0)
,

β4
n = 1

a6b3c2(0)

(
β4
n−6 −

∑n−1
k=1 a

6b3c2(k) β4
n−k + z4(n− 6)− a(n− 5)ẑ4

)
, n > 6;γ0 = 0, γ1 = 0, γ2 = 0, γ3 = 0, γ4 = 0, γ5 = 1

a5b3c2(0)
,

γn = 1
a6b3c2(0)

(
γn−6 −

∑n−1
k=1 a

6b3c2(k) γn−k + a(n− 5)
)
, n > 6.

Coefficients z1(n− 6), z2(n− 6), z3(n− 6), z4(n− 6) are defined below.

• If {a0 6= 0, b0 = 0, c0 6= 0, b1 6= 0} then

ϕ(n) = β̃0
nϕ(0) + β̃1

nϕ(1) + γ̃n(6− 6EX − 3EY − 2EZ), n ∈ N0, (3.30)

where
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β̃0
0 = β0

0 , β̃
0
1 = β0

1 , β̃
0
2 = − 1

a4b2c2(2)
,

β̃1
0 = β1

0 , β̃
1
1 = β1

1 , β̃
1
2 = − ẑ1

a4b2c2(2)
,

γ̃0 = γ0, γ̃1 = γ1, γ̃2 = 1
a4b2c2(2)

,

β̃0
n = 1

a6b3c2(3)

(
β̃0
n−3 −

∑n−1
k=1 a

6b3c2(k + 3) β̃0
n−k − a(n− 2)

)
, n > 3,

β̃1
n = 1

a6b3c2(3)

(
β̃1
n−3 −

∑n−1
k=1 a

6b3c2(k + 3) β̃1
n−k + z1(n− 3)− a(n− 2)ẑ1

)
, n > 3,

γ̃n = 1
a6b3c2(3)

(
γ̃n−3 −

∑n−1
k=1 a

6b3c2(k + 3) γ̃n−k + a(n− 2)
)
, n > 3.

Coefficient z1(n− 3) is defined below.

• If {a0 6= 0, b0 6= 0, c0 = 0, c1 6= 0} then

ϕ(n) = β̆0
nϕ(0) + β̆1

nϕ(1) + β̆2
nϕ(2) + γ̆n(6− 6EX − 3EY − 2EZ), n ∈ N0, (3.31)

where

β̆0
0 = β0

0 , β̆
0
1 = β0

1 , β̆
0
2 = β0

2 , β̆
0
3 = − 1

a5b3c2(2)
,

β̆1
0 = β1

0 , β̆
1
1 = β1

1 , β̆
1
2 = β1

2 , β̆
1
3 = − ẑ1

a5b3c2(2)
,

β̆2
0 = β2

0 , β̆
2
1 = β2

1 , β̆
2
2 = β2

2 , β̆
2
3 = − ẑ2

a5b3c2(2)
,

γ̆0 = γ0, γ̆1 = γ1, γ̆2 = γ2, γ̆3 = 1
a5b3c2(2)

,

β̆0
n = 1

a6b3c2(2)

(
β̆0
n−4 −

∑n−1
k=1 a

6b3c2(k + 2) β̆0
n−k − a(n− 3)

)
, n > 4,

β̆1
n = 1

a6b3c2(2)

(
β̆1
n−4 −

∑n−1
k=1 a

6b3c2(k + 2) β̆1
n−k + z1(n− 4)− a(n− 3)ẑ1

)
, n > 4,

β̆2
n = 1

a6b3c2(2)

(
β̆2
n−4 −

∑n−1
k=1 a

6b3c2(k + 2) β̆2
n−k + z2(n− 4)− a(n− 3)ẑ2

)
, n > 4,

γ̆n = 1
a6b3c2(2)

(
γ̆n−4 −

∑n−1
k=1 a

6b3c2(k + 2) γ̆n−k + a(n− 3)
)
, n > 4.

Coefficients z1(n− 4), z2(n− 4) are defined below.

• If {a0 6= 0, b0 6= 0, c0 = c1 = 0, c2 6= 0} then

ϕ(n) = β̂0
nϕ(0) + γ̂n(6− 6EX − 3EY − 2EZ), n ∈ N0, (3.32)

where
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β̂0

0 = β0
0 , β̂

0
1 = − 1

2a60b
3
0c

2
2
, γ̂0 = γ0, γ̂1 = 1

2a60b
3
0c

2
2
,

β̂0
n = 1

a6b3c2(4)

(
β̂0
n−2 −

∑n−1
k=1 a

6b3c2(k + 4) β̂0
n−k − an

2a0

)
, n > 2,

γ̂n = 1
a6b3c2(4)

(
γ̂n−2 −

∑n−1
k=1 a

6b3c2(k + 4) γ̂n−k + an
2a0

)
, n > 2.

• If {a0 6= 0, b0 = 0, c0 = 0, b1 6= 0, c1 6= 0} then

ϕ(0) = 6− 6EX − 3EY − 2EZ, (3.33)

ϕ(1) =
ϕ(0)

a6b3c2(5)
,

ϕ(n) =
1

a6b3c2(5)

(
ϕ(n− 1)−

u−1∑
k=1

a6b3c2(n+ 5− k)ϕ(k)
)
, n > 2.

Proof. Let we consider the case EX + EY/2 + EZ/3 < 1. First we prove that
ϕ(∞) = 1 or, equivalently, ψ(∞) = 0. Let

Sn :=
n∑
i=1

Xi +

bn/2c∑
j=1

Yj +

bn/3c∑
k=1

Zk − n, n ∈ N.

Hence,

S6m =
6m∑
i=1

Xi +
3m∑
j=1

Yj +
2m∑
k=1

Zk − 6m=
m∑
i=1

ξi

for every m ∈ N, where {ξ1, ξ2, . . .} are independent copies of the r.v. ξ = X1 +

X2 + · · ·+X6 + Y1 + Y2 + Y3 + Z1 + Z2 − 6.
According to the definition

ψ(u) = P(Sn > u for some n ∈ N) 6 P
(

sup
m∈N

S6m > u
)

+ P
(

sup
m∈N

S6m+1 > u
)

+ . . .

(3.34)

+ P
(

sup
m∈N

S6m+5 > u
)

= P
(

sup
m∈N

S6m > u
)

+
5∑

k=1

P
(

sup
m∈N

S6m+k > u
)
,

where k ∈ N.
It is clear that

S6m

6m
=

1

6m

m∑
i=1

ξi.
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Hence, the strong law of large numbers implies that

S6m

6m

a.s.→
m→∞

1

6
Eξ =

1

6
(6EX + 3EY + 2EZ − 6) =: −∆ < 0.

Therefore,

P
(

sup
m>m̃

∣∣∣S6m

6m
+ ∆

∣∣∣ 6 ∆

2

)
→

m̃→∞
1. (3.35)

If N > 2 and u is positive, then

P
(

sup
m∈N

S6m < u
)
> P

((N−1⋂
m=1

{
S6m 6

u

2

})
∩
( ∞⋂
m=N

{
S6m 6

u

2

}))

> P
((N−1⋂

m=1

{
S6m 6

u

2

}))
+ P

(( ∞⋂
m=N−1

{
S6m 6

u

2

}))
− 1

> P
((N−1⋂

m=1

{
S6m 6

u

2

}))
+ P

(
sup
m>N

∣∣∣S6m

6m
+ ∆

∣∣∣ 6 ∆

2

)
− 1.

This inequality and relation (3.35) imply that

lim
u→∞

P
(

sup
m∈N

S6m < u
)

= 1. (3.36)

On the other hand, for each p = 1, . . . , 5, p ∈ N and for all m ∈ N,

S6m+p

6m+ p
=

6m

6m+ p

1

6m

n∑
i=1

ξi +

p∑
i=1

X6m+i +
bp/2c∑
j=1

Y6m+j +
bp/3c∑
k=1

Z6m+k − p

6m+ p
.

Due to the strong law of large numbers,

1

m

m∑
i=1

ξi
a.s.→

m→∞
6EX + 3EY + 2EZ,

p∑
i=1

X6m+i +
bp/2c∑
j=1

Y6m+j +
bp/3c∑
k=1

Z6m+k − p

6m+ p

a.s.→
m→∞

0 for each p = 1, . . . , 5, p ∈ N.

Therefore, for each p = 1, . . . , 5, p ∈ N

S6m+p

6m+ p

a.s.→
m→∞

−∆ ,

53
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and we obtain
lim
u→∞

P
(

sup
m∈N

S6m+p < u
)

= 1 (3.37)

using the same procedure as for the sums S6m, m ∈ N. Equality ψ(∞) = 0 follows
from estimate (3.34) and Eqs. (3.36) and (3.37).

Substituting ϕ(∞) = 1 into (3.28), we get

(6− 6EX − 3EY − 2EZ) (3.38)

= ϕ(0) + ẑ1ϕ(1) + ẑ2ϕ(2) + ẑ3ϕ(3) + ẑ4ϕ(4) + ẑ5ϕ(5).

Now we consider formulas (3.20) and (3.38) to get a suitable recursion proce-
dure described in Theorem 3.5.
• First, let a0 6= 0, b0 6= 0 and c0 6= 0 and let the sequences β0

n, β
1
n, . . . , β

4
n, γn

be defined in the formulation of Theorem 3.5.
We prove (3.29) by induction. We observe that relation (3.38) implies imme-

diately:

ϕ(0) = β0
0ϕ(0) + β1

0ϕ(1) + β2
0ϕ(2) + β3

0ϕ(3) + β4
0ϕ(4) + γ0(6− 6EX − 3EY − 2EZ),

ϕ(1) = β0
1ϕ(0) + β1

1ϕ(1) + β2
1ϕ(2) + β3

1ϕ(3) + β4
1ϕ(4) + γ1(6− 6EX − 3EY − 2EZ),

ϕ(2) = β0
2ϕ(0) + β1

2ϕ(1) + β2
2ϕ(2) + β3

2ϕ(3) + β4
2ϕ(4) + γ2(6− 6EX − 3EY − 2EZ),

ϕ(3) = β0
3ϕ(0) + β1

3ϕ(1) + β2
3ϕ(2) + β3

3ϕ(3) + β4
3ϕ(4) + γ3(6− 6EX − 3EY − 2EZ),

ϕ(4) = β0
4ϕ(0) + β1

4ϕ(1) + β2
4ϕ(2) + β3

4ϕ(3) + β4
4ϕ(4) + γ4(6− 6EX − 3EY − 2EZ).

Now suppose that equality (3.29) holds for all n = 0, 1, . . . , N , and we will prove
that (3.29) holds for n = N+1. First, we rewrite equality (3.20) in following form

ϕ(u) =
u+5∑
k=0

a6b3c2(u+ 5− k)ϕ(k + 1)−
5∑

k=1

zk(u)ϕ(k), (3.39)
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where

zk(u) =
6−k∑
i=1

6−k∑
j=i

∑
⋂i

l=1 Il

a
b(4+i)/5c
k1

abb(3+i)/5c(k2)acb(2+i)/5c(k3)abb(1+i)/5c(k4)abi/5c(k5)×

× a6−ib3−bi/2cc2−bi/3c(6− j − k),

and Il is a summation region

Il =

{
kl; 0;u+ l − 1−

l−1∑
m=0

km

}
1

([
4 + i− l

5

])
⋃{

kl;u+ j −
l−1∑
m=0

km;u+ j −
l−1∑
m=0

km

}
1

([
5 + l − i

5

])
,

According to (3.39) for u = N − 5 we have

ϕ(N − 5) =
N∑
k=1

a6b3c2(k)ϕ(N − k + 1) + a6b3c2(0)ϕ(N + 1)−
5∑

k=1

zk(N − 5)ϕ(k).

Therefore,

ϕ(N + 1) =
1

a6b3c2(0)

(
ϕ(N − 5)−

N∑
k=1

a6b3c2(k)ϕ(N − k + 1) +
5∑

k=1

zk(N − 5)ϕ(k)
)
,
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and by the induction hypothesis we get

ϕ(N + 1) =
1

a6b3c2(0)

(
β0
N−5ϕ(0) + β1

N−5ϕ(1) + β2
N−5ϕ(2) + β3

N−5ϕ(3) + β4
N−5ϕ(4)

+ γN−5(6− 6EX − 3EY − 2EZ)−
N∑
k=1

a6b3c2(k)
(
β0
N−k+1ϕ(0) + β1

N−k+1ϕ(1)

+ β2
N−k+1ϕ(2) + β3

N−k+1ϕ(3) + β4
N−k+1ϕ(4) + γN−k+1(6− 6EX − 3EY − 2EZ)

)
+

5∑
k=1

zk(N − 5)ϕ(k)
)

= ϕ(0)
( 1

a6b3c2(0)

(
β0
N−5 −

N∑
k=1

a6b3c2(k)β0
N−k+1

))
+ ϕ(1)

( 1

a6b3c2(0)

(
β1
N−5 −

N∑
k=1

a6b3c2(k)β1
N−k+1

)
+ z1(N − 5)

)
+ ϕ(2)

( 1

a6b3c2(0)

(
β2
N−5 −

N∑
k=1

a6b3c2(k)β2
N−k+1

)
+ z2(N − 5)

)
+ ϕ(3)

( 1

a6b3c2(0)

(
β3
N−5 −

N∑
k=1

a6b3c2(k)β3
N−k+1

)
+ z3(N − 5)

)
+ ϕ(4)

( 1

a6b3c2(0)

(
β4
N−5 −

N∑
k=1

a6b3c2(k)β4
N−k+1

)
+ z4(N − 5)

)
+ (6− 6EX − 3EY − 2EZ)

( 1

a6b3c2(0)

(
γN−5 −

N∑
k=1

a6b3c2(k)γN−k+1

))
+ ϕ(5)

( 1

a6b3c2(0)
z5(N − 5)

)
.

(3.40)

Since

ϕ(5) = − 1

a6b3c2(0)

(
ϕ(0) + ẑ1ϕ(1) + ẑ2ϕ(2) + ẑ3ϕ(3) + ẑ4ϕ(4) + 6− 6EX − 3EY − 2EZ

)
due to (3.29) and z5(N − 5) = a(N − 4)a6b3c2(0) we obtain from (3.40) that

ϕ(N + 1) = β0
N+1ϕ(0) + β1

N+1ϕ(1) + β2
N+1ϕ(2) + β3

N+1ϕ(3) + β4
N+1ϕ(4)

+ γN+1(6− 6EX − 3EY − 2EZ).
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Hence, the desired relation (3.29) holds for all n ∈ N0 by induction.
• If {a0 6= 0, b0 = 0, c0 6= 0, b1 6= 0} then it follows from equality (3.38) that

ϕ(0)+ ẑ1ϕ(1)+ ẑ2ϕ(2) = 6−6EX−3EY −2EZ. Hence, ϕ(0) = β̃0
0ϕ(0)+ β̃1

0ϕ(1)+

γ̃0(6 − 6EX − 3EY − 2EZ). This is equality (3.30) for n = 0. The validity of
(3.30) for other n can be derived from (3.39) using the induction arguments.
• In the case {a0 6= 0, b0 6= 0, c0 = 0, c1 6= 0}, then it follows from equality

(3.38) that ϕ(0)+ ẑ1ϕ(1)+ ẑ2ϕ(2)+ ẑ3ϕ(3) = 6−6EX−3EY −2EZ. The validity
of (3.31) for n ∈ N0 can be derived from (3.39) using the induction arguments
again.
• In the case {a0 6= 0, b0 6= 0, c0 = c1 = 0, c2 6= 0}, then it follows from equality

(3.38) that ϕ(0) + ẑ1ϕ(1) = 6 − 6EX − 3EY − 2EZ. The validity of (3.32) for
n ∈ N0 can be derived from (3.39) using the induction arguments again.
• In the case {a0 6= 0, b0 = 0, c0 = 0, b1 6= 0, c1 6= 0}, it follows immediately

from (3.38) that ϕ(0) = 6 − 6EX − 3EY − 2EZ. For n = 0 we get ϕ(1) =

ϕ(0)/a6b3c2(5) from (3.39) and for n > 2 we obtain recursive formula (3.33) from
(3.39).

Theorem 3.5 is proved.
The obtained algorithm works in a following way: first step should be cal-

culation of ϕ(0), then ϕ(1) using calculated value of ϕ(0). This step should be
repeated for every ϕ(u), u ∈ {2, 3, . . .}. The ruin probabilities can be found from
calculated values of survival probabilities using formula ϕ(u) = 1− ψ(u).

Let us demonstrate the simplest case, where b0 = c0 = 0. Consider the
risk model generated by r.v.’s X, Y and Z such that a0 = P(X = 0) = 0.9,
a1 = P(X = 1) = 0.05, a2 = P(X = 2) = 0.05, b1 = P(Y = 1) = 0.99,
b2 = P(Y = 2) = 0.01, c1 = P(Z = 1) = 0.99, c2 = P(Z = 2) = 0.01. In this case,
net profit condition holds, i.e. EX + EY/2 + EZ/3 = 0.991 < 1. Then, from Eq.
(3.33) we obtain:

ϕ(0) = 6− 6EX − 3EY − 2EZ = 0.05,

ϕ(1) =
ϕ(0)

a6b3c2(5)
= 0.099,

ϕ(2) =
1

a6b3c2(5)
(ϕ(1)− a6b3c2(6)ϕ(1)) = 0.196,

. . . etc.
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A few numerical examples for calculating ruin probabilities are also presented
in Chapter 5 (Examples 3, 4).
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Chapter 4

Ruin probabilities in the
three-seasonal discrete-time risk
model

This chapter deals with the discrete-time risk model with three nonidentically
distributed claims. We suppose that the claims repeat with time periods of three
units, i.e. claim distributions coincide at times {1, 4, 7, . . .}, at times {2, 5, 8, . . .}
and at times {3, 6, 9, . . .}. We present the recursive formulas to calculate the
finite-time and ultimate ruin probabilities.

Several formulas and procedures for computing finite-time ruin probability
and ultimate ruin probability of discrete-time homogeneous risk model, defined
by (1.2), have been proposed in the literature. Here we present some of them
having the recursive form.
• For the homogeneous discrete-time risk model, it holds that (see, for instance,

[10, 14, 15]):

ψ(u, 1) = 1− FZ(u), u ∈ N0,

ψ(u, T ) = ψ(u, 1) +
u∑
k=0

ψ(u+ 1− k, T − 1)zk, u ∈ N0, T ∈ {2, 3, . . .}.

• If model (1.2) is generated by the claim generator Z such that EZ < 1 then
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the ultimate ruin probability is defined by formulas (see, for instance, [14, 15, 40]):

ψ(0) = EZ, (4.1)

ψ(u) =
u−1∑
j=1

(1− FZ(j))ψ(u− j) +
∞∑
j=u

(1− FZ(j)), u ∈ N. (4.2)

If the homogeneous discrete-time risk model is generated by Z satisfying con-
dition EZ > 1, then the net profit condition does not hold and, in such a case, we
have that ψ(u) = 1 for all u ∈ N0 according to the general renewal theory (see,
for instance, [31] and references therein).

The formulas presented above enable us to calculate ψ(u) and ψ(u, T ) for
u ∈ N0 and T ∈ N. Nevertheless, there exist many other methods which allow to
calculate or estimate the finite-time and the ultimate ruin probabilities. Some of
them can be found in [1, 27, 33].

The assumption for claim amounts {Z1, Z2, . . .} to be non-identically dis-
tributed random variables is the natural generalization of the homogeneous model.
If r.v.’s {Z1, Z2, . . .} are independent but not necessarily identically distributed,
then the model, defined by equality (1.2) is called the inhomogeneous discrete-time
risk model. For such model, a recursive procedure for calculation of finite-time
ruin probabilities can be found in [3, 4]. For the finite-time ruin probabilities

ψ(j)(u, T ) = P
( T⋃
n=1

{
u+ n−

n∑
i=1

Zi+j 6 0
})

, j ∈ N0

we have the following theorem.

4.1 Review of the bi-seasonal risk model

Theorem 4.1. Let us consider the inhomogeneous discrete-time risk model defined
by Eq. (1.2) in which u ∈ N0, z(j)

k = P(Z1+j = k), k, j ∈ N0, and F
(j)
Z (x) =

P(Z1+j 6 x), x ∈ R. Then

ψ(j)(u, 1) = 1− F (j)
Z (u),

ψ(j)(u, T ) = ψ(j)(u, 1) +
u∑
k=0

ψ(j+1)(u+ 1− k, T − 1)z
(j)
k
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for all u ∈ N0 and T ∈ {2, 3, . . .}.

According to this theorem, we can calculate the finite-time ruin probability
ψ(0)(u, T ) of the initial model for all u ∈ N0 and T ∈ N. Unfortunately, it is
impossible to get formulas similar to the formulas (4.1) and (4.2) for the general
case because in the case of nonidentically distributed claims, the future of model
behaviour at each time can be completely new. In paper [8], the general discrete-
time risk model was restricted to the model with two kinds of claims. In this
model, there are two differently distributed claim amounts which periodically
change. We call such a model the bi-seasonal discrete-time risk model. In [8] (see
Theorem 2.3) the following statement is proved for the calculation of the ultimate
ruin probability.

Theorem 4.2. Let us consider a bi-seasonal discrete-time risk model generated by
independent random claim amounts X and Y , i.e. Z2k+1

d
=X for k ∈ {0, 1, . . .}

and Z2k
d
=Y for k ∈ {1, 2, . . .}. Denote S = X + Y and xn = P(X = n),

yn = P(Y = n), sn = P(S = n) for n ∈ N0 = {0, 1, . . .}.
• If EX + EY < 2, then lim

u→∞
ψ(u) = 0.

• If s0 = x0y0 6= 0, then:

ψ(0) = 1− (2− ES) lim
n→∞

bn+1 − bn
an − an+1

,

1− ψ(u) = αu(1− ψ(0)) + βu(2− ES), u ∈ N,

where {αn}, {βn}, n ∈ N0, are two sequences of real numbers defined recursively
by equalities:

α0 = 1, α1 = − 1

y0

, αn =
1

s0

(
αn−2 −

n−1∑
i=1

siαn−i − xn−1

)
, n > 2

β0 = 0, β1 =
1

y0

, βn =
1

s0

(
βn−2 −

n−1∑
i=1

siβn−i + xn−1

)
, n > 2.

• If s0 6= 0, then

ψ(1) = 1− (1 + ψ(0)− ES)/y0,

ψ(u) = 1 +
1

s0

(
ψ(u− 2)− 1 +

u−1∑
k=1

sk(1− ψ(u− k))

)
− xu−1(1− ψ(1))

x0

,

u ∈ {2, 3, . . .}.
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• If x0 = 0, y0 6= 0, then s1 6= 0 and ψ(0) = 1.
• If x0 6= 0, y0 = 0, then s1 6= 0 and ψ(0) = ES − 1.
• If s0 = 0, then for u ∈ N

ψ(u) = 1− 1

s1

(
1− ψ(u− 1)−

u∑
k=2

sk(1− ψ(u− k + 1))

)
.

4.2 Main results

Below we present the model under consideration.

Definition 4.1. We say that the insurer’s surplus Wu(n) follows the three-seasonal
risk model if Wu(n) is given by equality (1.2) for each n ∈ N0 and the following
assumptions hold:
• the initial insurer’s surplus u ∈ N0,
• the random claim amounts Z1, Z2, . . . are nonnegative integer-valued inde-

pendent r.v.’s,
• for all k ∈ N0 it holds that Z3k+1

d
=Z1, Z3k+2

d
=Z2 and Z3k+3

d
=Z3.

Let us define p.m.f.’s and p.d.f.’s by the following equalities

ak = P(Z1 = k), bk = P(Z2 = k), ck = P(Z3 = k), sk = P(S = k), k ∈ N0,

where S = Z1 + Z2 + Z3,

A(x) =

bxc∑
k=0

ak, B(x) =

bxc∑
k=0

bk, C(x) =

bxc∑
k=0

ck, D(x) =

bxc∑
k=0

sk, x > 0.

It is not difficult to see that the definitions of ruin time, finite-time ruin prob-
ability, ultimate ruin probability and ultimate survival probability remains the
same. All expressions of these quantities have no differences from the expres-
sions of the respective quantities of the homogeneous discrete-time risk model.
While the procedures to calculate the finite-time or the ultimate probabilities are
more complex with respect to respective procedures in the homogeneous or in the
bi-seasonal discrete-time risk models.

Our first result follows immediately from Theorem 4.1. The obtained formulas
allow us to calculate the finite-time ruin probabilities ψ(u, T ) = ψ(0)(u, T ) in the
three-seasonal discrete-time risk model for all u ∈ N0 and all T ∈ N.
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Theorem 4.3. Let us consider the above three-seasonal discrete-time risk model.
For each u ∈ N0 we have that

ψ(u, 1) = ψ(0)(u, 1) =
∑
k>u

ak, ψ
(1)(u, 1) =

∑
k>u

bk, ψ
(2)(u, 1) =

∑
k>u

ck,

and for all u ∈ N0 and all T ∈ {2, 3, . . .} we have the following recursive equalities:

ψ(u, T ) = ψ(0)(u, T ) = ψ(0)(u, 1) +
u∑
k=0

ψ(1)(u+ 1− k, T − 1)ak,

ψ(1)(u, T ) = ψ(1)(u, 1) +
u∑
k=0

ψ(2)(u+ 1− k, T − 1)bk,

ψ(2)(u, T ) = ψ(2)(u, 1) +
u∑
k=0

ψ(0)(u+ 1− k, T − 1)ck.

Net profit condition

Our second result describes the meaning of the net profit condition in the three-
seasonal discrete-time risk model.

Theorem 4.4. Let us consider a three-seasonal discrete-time risk model generated
by independent random claim amounts Z1, Z2 and Z3. If ES > 3, then ψ(u) = 1

for each initial surplus u ∈ N0. If ES = 3, then we have the following possible
cases:
• ψ(0) = ψ(1) = ψ(2) = 1 and ψ(u) = 0 for u ∈ {3, 4, . . .} if {a3 = b0 = c0 =

1};
• ψ(0) = ψ(1) = 1 and ψ(u) = 0 for u ∈ {2, 3, . . .} if {a0 = b3 = c0 = 1} or

{a2 = b1 = c0 = 1} or {a1 = b2 = c0 = 1} or {a2 = b0 = c1 = 1};
• ψ(0) = 1 and ψ(u) = 0 for all u ∈ N if {a0 = b0 = c3 = 1} or {a0 = b2 =

c1 = 1} or {a0 = b1 = c2 = 1} or {a1 = b0 = c2 = 1} or {a1 = b1 = c1 = 1};
• ψ(u) = 1 for all u ∈ N0 = {0, 1, 2, . . .} if s3 < 1.

63



4. Ruin probabilities in the three-seasonal discrete-time risk model

Proof. For an arbitrary u ∈ N0, we have

ϕ(u) = P
( ∞⋂
n=1

{u+ n−
n∑
i=1

Zi > 0}
)

= P
( ∞⋂
n=3

{u+ n−
n∑
i=1

Zi > 0} ∩ {Z1 > u+ 1} ∩ {Z1 + Z2 > u+ 2}
)

− P
( ∞⋂
n=3

{u+ n−
n∑
i=1

Zi > 0} ∩ {Z1 > u+ 1}
)

− P
( ∞⋂
n=3

{u+ n−
n∑
i=1

Zi > 0} ∩ {Z1 + Z2 > u+ 2}
)

+ P
( ∞⋂
n=3

{u+ n−
n∑
i=1

Zi > 0}
)

(4.3)

Since the model is three-seasonal the last probability in (4.3) can be expressed by
sum

u+2∑
k=0

sk P
( ∞⋂
n=1

{u+ n+ 3− k −
n∑
i=1

Zi > 0}
)

=
u+2∑
k=0

sk ϕ(u+ 3− k), (4.4)

where, as above, sk = P(Z1 + Z2 + Z3 = k) for k ∈ N0.
The second probability in (4.3) is equal to expression

∞∑
k=u+1

ak P
(⋂
n>3

{u+ n− k − Z2 − Z3 −
n∑
i=4

Zi > 0}
)

= au+2 P(Z2 + Z3 = 0) P
( ∞⋂
n=4

{n− 2−
n∑
i=4

Zi > 0}
)

+ au+1 P(Z2 + Z3 = 0) P
( ∞⋂
n=4

{n− 1−
n∑
i=4

Zi > 0}
)

+ au+1 P(Z2 + Z3 = 1) P
( ∞⋂
n=4

{n− 2−
n∑
i=4

Zi > 0}
)

= au+2b0c0ϕ(1) + au+1b0c0ϕ(2) + au+1b0c1ϕ(1) + au+1b1c0ϕ(1). (4.5)
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Similarly, the third probability in (4.3) is

P(Z1 + Z2 = u+ 2) P(Z3 = 0) P
( ∞⋂
n=4

{n− 2−
n∑
i=4

Zi > 0}
)

= c0ϕ(1)
u+2∑
k=0

akbu+2−k, (4.6)

and, finally, the first probability in (4.3) is

P(Z1 = u+ 1) P(Z2 = 1) P(Z3 = 0) P
( ∞⋂
n=4

{n− 2−
n∑
i=4

Zi > 0}
)

+ P(Z1 = u+ 2) P(Z2 = 0) P(Z3 = 0) P
( ∞⋂
n=4

{n− 2−
n∑
i=4

Zi > 0}
)

= au+1b1c0ϕ(1) + au+2b0c0ϕ(1). (4.7)

Substituting (4.4)-(4.7) into (4.3) we get that

ϕ(u) =
u+2∑
k=0

sk ϕ(u+ 3− k)− au+1b0c0ϕ(2)

− au+1b0c1ϕ(1)− c0ϕ(1)
u+2∑
k=0

akbu+2−k (4.8)

for all u ∈ N0.
Therefore, for v ∈ N0 we have

v∑
u=0

ϕ(u) =
v∑

u=0

u+2∑
k=0

skϕ(u+ 3− k)

− b0c0ϕ(2)(A(v + 1)− a0)− b0c1ϕ(1)(A(v + 1)− a0)

− c0ϕ(1)
v∑

u=0

u+2∑
k=0

akbu+2−k. (4.9)

We observe that the sum
v∑

u=0

u+2∑
k=0

akbu+2−k
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can be rewritten in the following form

a0

v∑
u=0

bu+2 + a1

v∑
u=0

bu+1 + a2

v∑
u=0

bu +
v+2∑
k=3

ak

v∑
u=k−2

bu+2−k

= a0(B(v + 2)− b0 − b1) + a1(B(v + 1)− b0) + a2B(v)

+
v+2∑
k=3

ak B(v + 2− k)

=
v+2∑
k=0

ak B(v + 2− k)− a0b0 − a0b1 − a1b0. (4.10)

While, similarly, the sum

v∑
u=0

u+2∑
k=0

skϕ(u+ 3− k)

is

v+3∑
k=1

ϕ(k) D(v + 3− k)− s0ϕ(1)− s1ϕ(1)− s0ϕ(2), (4.11)

where
D(x) =

bxc∑
k=0

sk =

bxc∑
k=0

P(Z1 + Z2 + Z3 = k).

Relations (4.9), (4.10) and (4.11) imply that

v∑
k=0

ϕ(k) =
v+3∑
k=1

ϕ(k) D(v + 3− k)

− b0c0ϕ(2)A(v + 1)− b0c1ϕ(1)A(v + 1)

− c0ϕ(1)
v+2∑
k=0

ak B(v + 2− k).

Or, equivalently,
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v+3∑
k=0

ϕ(k)(1−D(v + 3− k)) = ϕ(v + 1) + ϕ(v + 2) + ϕ(v + 3)

− ϕ(0)D(v + 3)− b0c0ϕ(2)A(v + 1)− b0c1ϕ(1)A(v + 1)

+ c0ϕ(1)

( v+2∑
k=0

akB(v + 2− k) + A(v + 2)

)
. (4.12)

For each K ∈ [1, v + 2) we have

v+2∑
k=0

akB(v + 2− k) =
K∑
k=0

akB(v + 2− k) +
v+2∑

k=K+1

akB(v + 2− k).

Therefore

lim sup
v→∞

v+2∑
k=0

akB(v + 2− k) 6
∞∑

k=K+1

ak

for each K > 1, and so

lim
v→∞

v+2∑
k=0

akB(v + 2− k) = 0. (4.13)

Sequence ϕ(u), u ∈ N0, is bounded and non decreasing. So, there exists a limit
lim
u→∞

ϕ(u) := ϕ(∞). Similarly, as in derivation of (4.13) we can get that

lim sup
v→∞

v+3∑
k=0

(ϕ(∞)− ϕ(k))(1−D(v + 3− k)) 6 sup
k>K+1

(ϕ(∞)− ϕ(k))ES.

for each fixed K > 1. Therefore

lim
v→∞

v+3∑
k=0

ϕ(k)(1−D(v + 3− k))

= ϕ(∞) lim
v→∞

v+3∑
k=0

(1−D(k))

= ϕ(∞)ES. (4.14)

The relations (4.12), (4.13) and (4.14) imply that

ϕ(∞)(3− ES) = ϕ(0) + b0c0ϕ(2) + b0c1ϕ(1) + c0ϕ(1). (4.15)
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Now we consider the last equality and examine all possible cases.
(I) If ES > 3, then (4.15) implies that ϕ(∞) = 0 because the left side at (4.15)

is nonnegative in all cases. So, in this case ψ(u) = 1 for all u ∈ {0, 1, 2, . . .}.
(II) If ES = 3, then (4.15) implies that

ϕ(0) + b0c0ϕ(2) + b0c1ϕ(1) + c0ϕ(1) = 0.

Additionally, in this situation we have that s3 = 1 or s3 < 1.
(II-A) If s3 = 1, then we have

a0b0c0 = 0,

a1b0c0 + a0b1c0 + a0b0c1 = 0,

a0b0c2 + a0b2c0 + a2b0c0 + a1b1c0 + a0b1c1 + a1b0c1 = 0,

a0b0c3 + a0b3c0 + a3b0c0 + a1b2c0 + a2b1c0

+a0b1c2 + a0b2c1 + a1b0c2 + a2b0c1 + a1b1c1 = 1,

ϕ(0) + b0c0ϕ(2) + b0c1ϕ(1) + c0ϕ(1) = 0.

Taking into account that all numbers ak, bk and ck are local probabilities for all
k ∈ N0, the last system implies the following possible cases.

(a) {a3 = b0 = c0 = 1} and ϕ(0) = ϕ(1) = ϕ(2) = 0. In this case, ψ(0) =

ψ(1) = ψ(2) = 1 and ψ(u) = 0, u ∈ {3, 4, . . .}, because

Wu(n) =


u− 2 if n ≡ 1 mod 3,

u− 1 if n ≡ 2 mod 3,

u if n ≡ 0 mod 3.

(b) {a0 = b3 = c0 = 1} and ϕ(0) = ϕ(1) = 0. In this case, ψ(0) = ψ(1) = 1

and ψ(u) = 0 for u ∈ {2, 3, . . .} because

Wu(n) =


u+ 1 if n ≡ 1 mod 3,

u− 1 if n ≡ 2 mod 3,

u if n ≡ 0 mod 3.

(c) {a0 = b0 = c3 = 1} and ϕ(0) = 0. In this case, ψ(0) = 1 and ψ(u) = 0 for
u ∈ {1, 2, . . .} because
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Wu(n) =


u+ 1 if n ≡ 1 mod 3,

u+ 2 if n ≡ 2 mod 3,

u if n ≡ 0 mod 3.

(d) {a2 = b1 = c0 = 1} and ϕ(0) = ϕ(1) = 0. In this case, ψ(0) = ψ(1) = 1

and ψ(u) = 0 for u ∈ {2, 3, . . .}.
(e) {a1 = b2 = c0 = 1} and ϕ(0) = ϕ(1) = 0. In this case, ψ(0) = ψ(1) = 1

and ψ(u) = 0 for u ∈ {2, 3, . . .}.
(f) {a0 = b2 = c1 = 1} and ϕ(0) = 0. In this case, ψ(0) = 1 and ψ(u) = 0 for

u ∈ {1, 2, . . .}.
(g) {a0 = b1 = c2 = 1} and ϕ(0) = 0. In this case, ψ(0) = 1 and ψ(u) = 0 for

u ∈ {1, 2, . . .}.
(h) {a2 = b0 = c1 = 1} and ϕ(0) = ϕ(1) = 0. In this case, ψ(0) = ψ(1) = 1

and ψ(u) = 0 for u ∈ {2, 3, . . .}.
(i) {a1 = b0 = c2 = 1} and ϕ(0) = 0. In this case, ψ(0) = 1 and ψ(u) = 0 for

u ∈ {1, 2, . . .}.
(j) {a1 = b1 = c1 = 1} and ϕ(0) = 0. In this case, ψ(0) = 1 and ψ(u) = 0 for

u ∈ {1, 2, . . .}.
(II-B) If s3 < 1 and ES = 3 then it is necessary that s0 6= 0 or s1 6= 0 or

s2 6= 0 because on the contrary ES = 3s3 + 4s4 + 5s5 + . . . > 3(s3 + s4 + . . .) = 3.
In this situation, it is sufficient to consider the following cases

{s0 6= 0}, {s0 = 0, s1 6= 0}, {s0 = 0, s1 = 0, s2 6= 0}.

(k) If s0 = a0b0c0 6= 0 then (4.15) implies that ϕ(0) = ϕ(1) = ϕ(2) = 0, and
from (4.8) we obtain ϕ(u) = 0 for all u ∈ {3, 4, . . .}. So, ψ(u) = 1 if u ∈ {0, 1, . . .}
in the case.

(l) If s0 = a0b0c0 = 0 and s1 = a0b0c1 + a0b1c0 + a1b0c0 6= 0 then there exist
the following possible cases

(l-1) {a0 = 0, a1 6= 0, b0 6= 0, c0 6= 0}. In this situation, equality (4.15)
implies that ϕ(0) = ϕ(1) = ϕ(2) = 0, while (4.8) implies that ϕ(u) = 0 for all
u ∈ {3, 4, . . .}. So, ψ(u) = 1 for all u ∈ {0, 1, . . .} in the case.

(l-2) {a0 6= 0, b0 = 0, b1 6= 0, c0 6= 0}. In this situation, equality (4.15) implies
that ϕ(0) = ϕ(1) = 0, and (4.8) implies that ϕ(u) = 0 for all u ∈ {2, 3, . . .}.
Therefore ψ(u) = 1 for all u ∈ {0, 1, . . .} again.
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(l-3) {a0 6= 0, b0 6= 0, c0 = 0, c1 6= 0}.
Equality (4.15) implies that ϕ(0) = ϕ(1) = 0, and (4.8) implies that ϕ(u) = 0 for
all u ∈ {2, 3, . . .}. So, in this case ψ(u) = 1 for all u ∈ {0, 1, . . .}.

(m) If s0 = a0b0c0 = 0, s1 = a0b0c1 + a0b1c0 + a1b0c0 = 0 and
s2 = a0b0c2 + a0b2c0 + a2b0c0 + a1b1c0 + a1b0c1 + a0b1c1 6= 0 then there exist the
following possible cases.

(m-1) {a0 = 0, a1 = 0, a2 6= 0, b0 6= 0, c0 6= 0};
(m-2) {a0 6= 0, b0 = 0, b1 = 0, b2 6= 0, c0 6= 0};
(m-3) {a0 6= 0, b0 6= 0, c0 = 0, c1 = 0, c2 6= 0};
(m-4) {a0 = 0, a1 6= 0, b0 = 0, b1 6= 0, c0 6= 0};
(m-5) {a0 = 0, a1 6= 0, b0 6= 0, c0 = 0, c1 6= 0};
(m-6) {a0 6= 0, b0 = 0, b1 6= 0, c0 = 0, c1 6= 0}.

In all cases, equalities (4.15) and (4.8) imply that ϕ(u) = 0 and, so, ψ(u) = 1 for
all u ∈ N0. Theorem 4.4 is proved.

Recursive formulas

Our last statement proposes a recursive procedure for calculation of the ultimate
survival probabilities ϕ(u) = 1− ψ(u), u ∈ N0.

Theorem 4.5. Let us consider a three-seasonal discrete-time risk model generated
by independent random claim amounts Z1, Z2 and Z3. Denote S = Z1 +Z2 +Z3,
sn = P(S = n) for n ∈ N0 and suppose that ES < 3. Then the following list of
statements holds.
• lim
u→∞

ϕ(u) = 1.
• If s0 6= 0, then

ϕ(n) = αnϕ(0) + βnϕ(1) + γn(3− ES), n ∈ N0, (4.16)

where 
α0 = 1, α1 = 0, α2 = − 1

b0c0
,

αn = 1
s0

(
αn−3 −

n−1∑
k=1

skαn−k − an−2

)
, n > 3;

β0 = 0, β1 = 1, β2 = − c1
c0
− 1

b0
,

βn = 1
s0

(
βn−3 −

n−1∑
k=1

skβn−k − an−2c0 + c0

n−1∑
k=0

akbn−1−k

)
, n > 3;
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γ0 = 0, γ1 = 0, γ2 = 1

b0c0
,

γn = 1
s0

(
γn−3 −

n−1∑
k=1

skγn−k + an−2

)
, n > 3.

• If {a0 = 0, b0 6= 0, c0 6= 0, a1 6= 0} thenϕ(0) = 0,

ϕ(n) = β̂nϕ(1) + γ̂n(3− ES), n ∈ N,
(4.17)

where
β̂1 = β1, β̂2 = β2, γ̂1 = γ1, γ̂2 = γ2,

β̂n = 1
s1

(
β̂n−2 −

n∑
k=2

skβ̂n−k+1 − an−1c0 − c0ϕ(1)
n∑
k=1

akbn−k

)
, n > 3,

γ̂n = 1
s1

(
γ̂n−2 −

n∑
k=2

skγ̂n−k+1 + an−1

)
, n > 3.

• If {a0 6= 0, b0 = 0, c0 6= 0, b1 6= 0} then

ϕ(n) = α̃nϕ(0) + γ̃n(3− ES), n ∈ N, (4.18)

where 
α̃1 = −1/c0, α̃2 = c1/c

2
0 + 1/(a0b1c0), γ̃1 = 1/c0, γ̃2 = −c1/c

2
0,

α̃n = 1
s1

(
α̃n−2 −

n∑
k=2

skα̃n−k+1 −
n−1∑
k=0

akbn−k

)
, n > 3,

γ̃n = 1
s1

(
γ̃n−2 −

n∑
k=2

skγ̃n−k+1 +
n−1∑
k=0

akbn−k

)
, n > 3.

• If {a0 6= 0, b0 6= 0, c0 = 0, c1 6= 0} then

ϕ(n) = ᾰnϕ(0) + γ̆n(3− ES), n ∈ N0, (4.19)

where 
ᾰ0 = 1, ᾰ1 = −1/(b0c1), γ̆0 = 0, γ̆1 = 1/(b0c1),

ᾰn = 1
s1

(
ᾰn−2 −

n∑
k=2

skᾰn−k+1 −
n−1∑
k=0

akbn−k

)
, n > 2,

γ̆n = 1
s1

(
γ̆n−2 −

n∑
k=2

skγ̆n−k+1 +
n−1∑
k=0

akbn−k

)
, n > 2.
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• If {a0 = 0, b0 = 0, c0 6= 0} then ϕ(0) = 0, ϕ(1) = (3− ES)/c0 and

ϕ(u+ 1) =
1

s2

(
(1− s3)ϕ(u)−

u−1∑
k=1

ϕ(k)su+3−k

+c0ϕ(1)
u+2∑
k=0

akbu+2−k

)
, u ∈ N. (4.20)

• If {a0 = 0, b0 6= 0, c0 = 0} then ϕ(0) = s2ϕ(1), ϕ(1) = (3− ES)/(s2 + b0c1)

and

ϕ(u+ 1) =
1

s2

(
(1− s3)ϕ(u)−

u−1∑
k=1

ϕ(k)su+3−k

+au+1b0c1ϕ(1)
)
, u ∈ N. (4.21)

• If {a0 6= 0, b0 = 0, c0 = 0} then ϕ(0) = 3− ES, ϕ(1) = (3− ES)/s2 and

ϕ(u+ 1) =
1

s2

(
(1− s3)ϕ(u) +

u−1∑
k=1

ϕ(k)su+3−k

)
, u ∈ N. (4.22)

• If {a0 = a1 = 0, b0 6= 0, c0 6= 0} then ϕ(0) = 0, ϕ(1) = (3− ES)/(1/a2 + c0)

and the recursion formula (4.20) is satisfied.
• If {a0 6= 0, b0 = b1 = 0, c0 6= 0} then ϕ(0) = 0, ϕ(1) = (3 − ES)/c0 and the

same recursion formula (4.20) holds.
• If {a0 6= 0, b0 6= 0, c0 = c1 = 0} then ϕ(0) = 3−ES, ϕ(1) = (3−ES)/s2 and

the recursion formula (4.22) is satisfied.

We observe that all formulas presented in Theorem 4.5 can be used to calculate
numerical values of survival or ruin probabilities for an arbitrary three-seasonal
risk model and for an arbitrary initial surplus value u. The algorithms based on
the derived relations work quite quickly and return accurate values.

Now we present the proof of the Theorem 4.5. Equality (4.15) from the previ-
ous section plays a crucial role in the proof.

Proof. Let we consider the case ES < 3. First we prove that ϕ(∞) = 1. According
to the definition

ϕ(∞) = lim
u→∞

P
( ∞⋂
n=1

{ n∑
i=1

(Zi − 1) < u
})

= lim
u→∞

P
(

sup
u>1

ηn < u

)
,
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where
ηn =

n∑
i=1

(Zi − 1), n ∈ N.

If n = 3N , N ∈ N, then

ηn
n

=
η3N

3N
=

1

3

(
1

N

N∑
i=1

(Z3i−2 − 1)

+
1

N

N∑
i=1

(Z3i−1 − 1) +
1

N

N∑
i=1

(Z3i − 1)

)
.

If n = 3N + 1, N ∈ N, then

ηn
n

=
η3N+1

3N + 1
=

N + 1

3N + 1

1

N + 1

N+1∑
i=1

(Z3i−2 − 1)

+
N

3N + 1

(
1

N

N∑
i=1

(Z3i−1 − 1) +
1

N

N∑
i=1

(Z3i − 1)

)
.

If n = 3N + 2, N ∈ N, then

ηn
n

=
η3N+2

3N + 2
=

N

3N + 2

1

N

N∑
i=1

(Z3i − 1)

+
N + 1

3N + 2

(
1

N + 1

N+1∑
i=1

(Z3i−2 − 1) +
1

N + 1

N+1∑
i=1

(Z3i−1 − 1)

)
.

Hence, the strong law of large numbers implies that

ηn
n
→
n→∞

1

3
(EZ1 − 1 + EZ2 − 1 + EZ3 − 1) =

ES − 3

3

almost surely.
It follows from this that

P
(

sup
m>n

∣∣∣ηm
m

+ µ
∣∣∣ < µ

2

)
→
n→∞

1 (4.23)

with µ := (ES − 3)/3 > 0.
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4. Ruin probabilities in the three-seasonal discrete-time risk model

For an arbitrary positive u and arbitrary N ∈ N, we have

P
(

sup
n>1

ηn < u

)
> P

(( N⋂
n=1

{
ηn 6

u

2

})
∩
( ∞⋂
n=N+1

{
ηn 6

u

2

}))

> P
( N⋂
n=1

{
ηn 6

u

2

})
+ P

( ∞⋂
n=N+1

{
ηn 6 0

})
− 1

> P
( N⋂
n=1

{
ηn 6

u

2

})
+ P

(
sup

m>N+1

∣∣∣ηm
m

+ µ
∣∣∣ < µ

2

)
− 1.

The last inequality implies that

lim
u→∞

P
(

sup
n>1

ηn < u

)
> P

(
sup

m>N+1

∣∣∣ηm
m

+ µ
∣∣∣ < µ

2

)
for an arbitrary N ∈ N.
Hence, according to (4.23), we have that ϕ(∞) = 1.
Substituting this into (4.15), we get

3− ES = ϕ(0) + b0c0ϕ(2) + b0c1ϕ(1) + c0ϕ(1). (4.24)

In addition, equality (4.8) can be rewritten in the following way

ϕ(u) =
u+2∑
k=0

su+2−k ϕ(k + 1)− au+1b0c0ϕ(2)− au+1b0c1ϕ(1)

− c0ϕ(1)
u+2∑
k=0

akbu+2−k, u ∈ N0. (4.25)

Now we consider the last two formulas to get a suitable recursion procedure de-
scribed in Theorem 4.5.
• At first let s0 = a0b0c0 6= 0 and let sequences αn, βn, γn be defined in the

formulation of Theorem 4.5.
We prove (4.16) by induction. We observe that relation (4.24) implies imme-

74
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diately:

ϕ(0) = α0ϕ(0) + β0ϕ(1) + γ0(3− ES),

ϕ(1) = α1ϕ(0) + β1ϕ(1) + γ1(3− ES),

ϕ(2) = α2ϕ(0) + β2ϕ(1) + γ2(3− ES).

Now suppose that equality (4.16) holds for all n = 0, 1, . . . , N − 1, and we will
prove that (4.16) holds for n = N . By (4.25) we have

ϕ(N − 3) =
N−1∑
k=0

sN−1−k ϕ(k + 1)− aN−2b0c0ϕ(2)− aN−2b0c1ϕ(1)

− c0ϕ(1)
N−1∑
k=0

akbN−1−k.

Therefore, using the induction hypothesis, we get

s0ϕ(N) = ϕ(N − 3)−
N−1∑
k=1

skϕ(N − k) + aN−2b0c0ϕ(2)

+ aN−2b0c1ϕ(1) + c0ϕ(1)
N−1∑
k=0

akbN−1−k

= αN−3ϕ(0) + βN−3ϕ(1) + γN−3(3− ES)

−
N−1∑
k=1

sk(αN−kϕ(0) + βN−kϕ(1)

+ γN−k(3− ES)) + aN−2b0c0ϕ(2) + aN−2b0c1ϕ(1)

+ c0ϕ(1)
N−1∑
k=0

akbN−1−k. (4.26)

Since

ϕ(2) = − 1

b0c0

ϕ(0)− c1

c0

ϕ(1)− 1

b0

ϕ(1) +
3− ES
b0c0
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4. Ruin probabilities in the three-seasonal discrete-time risk model

due to (4.24), we obtain from (4.26) that

ϕ(N) = ϕ(0)
1

s0

(
αN−3 −

N−1∑
k=1

skαN−k − aN−2

)

+ ϕ(1)
1

s0

(
βN−3 −

N−1∑
k=1

skβN−k − aN−2c0 + c0

N−1∑
k=0

akbN−1−k

)

+ (3− ES)
1

s0

(
γN−3 −

N−1∑
k=1

skγN−k + aN−2

)
= αNϕ(0) + βNϕ(1) + γN(3− ES).

Hence, the desired relation (4.16) holds for all n ∈ N0 by induction.
• If {a0 = 0, b0 6= 0, c0 6= 0, a1 6= 0} then s0 = 0 and s1 6= 0. Equality (4.25)

with u = 0 implies that ϕ(0) = 0. The recursive relation (4.17) can be derived
from the basic equalities (4.24) and (4.25) in the same manner as was derived
relation (4.16).
• If {a0 6= 0, b0 = 0, c0 6= 0, b1 6= 0} then it follows from equality (4.24) that

3−ES = ϕ(0)+c0ϕ(1). Hence ϕ(1) = α̃1ϕ(0)+ γ̃1(3−ES). This is equality (4.18)
for n = 1. The validity of (4.18) for other n can be derived from (4.25) using the
induction arguments.
• In the case {a0 6= 0, b0 6= 0, c0 = 0, c1 6= 0}, formula (4.19) follows from

(4.24) if n = 1. For other n formula (4.19) follows from (4.25) using the induction
arguments again.
• In the case {a0 = 0, b0 = 0, c0 6= 0}, we have that s0 = s1 = 0 and s2 6= 0

because of ES < 3. It follows immediately from (4.25) that ϕ(0) = 0, whereas
from (4.24) it follows that ϕ(1) = (3 − ES)/s2. Finally, the recursive formula
(4.20) we can get from (4.25) using the above induction procedure.
• In the case {a0 = 0, b0 6= 0, c0 = 0}, similarly as in the previous one we

derive that ϕ(0) = s2ϕ(1) from (4.25), we derive that 3 − ES = ϕ(0) + b0c1ϕ(1)

from (4.24) and the desired formula (4.21) we derive from (4.25) again.
• The case {a0 6= 0, b0 = 0, c0 = 0} is considered fully analogously as the both

previous cases. Here we omit details.
We have that ES < 3. So, it remains to study the following possible cases:

{a0 = a1 = 0, b0 6= 0, c0 6= 0}, {a0 6= 0, b0 = b1 = 0, c0 6= 0},

{a0 6= 0, b0 6= 0, c0 = c1 = 0}.
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In all these cases, the presented recursion relations follow from equality (4.25)
and the initial values of survival probability ϕ(0) and ϕ(1) can be obtained using
equality (4.24) together with equality (4.25) with u = 0 or u = 1. Theorem 4.5 is
proved.

A few numerical examples for calculation of the ruin probabilities in the various
versions of the three-seasonal risk model are presented in Chapter 5 (Examples 5,
6, 7).
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Chapter 5

Numerical examples

In this section, we present examples of computing numerical values of the finite-
time ruin probability and the ultimate ruin probability for various discrete-time
multi-risk models. All calculations are carried out using software MATHEMAT-
ICA.

Example 1. Let us consider the bi-risk model generated by r.v.s X and Y

having the following simple distributions:

X 0 1 2

P 3/4 1/8 1/8
;

Y 0 1 2

P 1/10 8/10 1/10
.

Using Theorem 2.1, we obtain Table 1 of the values of the function ψ(u, T ).
The last row of this table shows the values of ψ(u) obtained by Theorems 3.1 and
3.3. Note that the net profit condition is satisfied in this example.

Table 1. Values of functions ψ(u, T ) and ψ(u) for the model in Example 1.
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T \ u 0 1 2 3 4 5 6 7 8 9 10 20 30

1 0.25 0.125 0 0 0 0 0 0 0 0 0 0 0

2 0.484 0.258 0.064 0.017 0.002 0 0 0 0 0 0 0 0

3 0.542 0.285 0.087 0.023 0.003 0 0 0 0 0 0 0 0

4 0.606 0.345 0.134 0.046 0.012 0.002 0 0 0 0 0 0 0

5 0.620 0.362 0.147 0.053 0.015 0.004 0.001 0 0 0 0 0 0

6 0.650 0.398 0.180 0.074 0.026 0.008 0.002 0 0 0 0 0 0

7 0.659 0.408 0.190 0.081 0.029 0.009 0.002 0.001 0 0 0 0 0

8 0.677 0.433 0.215 0.098 0.039 0.014 0.005 0.001 0 0 0 0 0

9 0.683 0.440 0.222 0.104 0.043 0.016 0.006 0.002 0 0 0 0 0

10 0.695 0.458 0.241 0.119 0.052 0.022 0.008 0.003 0.001 0 0 0 0

20 0.737 0.522 0.314 0.182 0.101 0.053 0.027 0.013 0.006 0.003 0.001 0 0

30 0.754 0.549 0.348 0.216 0.129 0.075 0.043 0.023 0.012 0.007 0.003 0 0

40 0.762 0.563 0.367 0.235 0.146 0.090 0.054 0.032 0.018 0.010 0.006 0 0

50 0.768 0.572 0.378 0.248 0.158 0.100 0.062 0.038 0.023 0.014 0.008 0 0

60 0.771 0.578 0.386 0.256 0.166 0.107 0.068 0.043 0.027 0.016 0.100 0 0

70 0.773 0.582 0.392 0.262 0.172 0.112 0.073 0.047 0.030 0.019 0.012 0 0

80 0.775 0.584 0.396 0.266 0.176 0.116 0.076 0.049 0.032 0.020 0.013 0 0

90 0.776 0.587 0.399 0.270 0.180 0.119 0.079 0.052 0.034 0.022 0.014 0.0001 0

100 0.777 0.589 0.401 0.272 0.182 0.122 0.081 0.053 0.035 0.023 0.015 0.0001 0

300 0.780 0.594 0.409 0.281 0.191 0.130 0.089 0.061 0.041 0.028 0.019 0.0004 0.00001

∞ 0.780 0.594 0.409 0.281 0.191 0.131 0.089 0.061 0.041 0.028 0.019 0.0004 0.00001

Example 2. Let us now consider the bi-risk model generated by a r.v. X as
in Example 1 and a r.v. Y such that P(Y = 1) = 9/10 and P(Y = 2) = 1/10. In
such a case, we have that b0 = P(Y = 0) = 0 and µX,Y < 1. We fill Table 2 by
applying Theorems 2.1 and 3.2.

Table 2. Values of functions ψ(u, T ) and ψ(u) for the model in Example 2.

T \ u 0 1 2 3 4 5 6 7 8 9 10 20 30

1 0.25 0.125 0 0 0 0 0 0 0 0 0 0 0

2 0.494 0.269 0.067 0.019 0.002 0 0 0 0 0 0 0 0

3 0.557 0.297 0.092 0.025 0.004 0 0 0 0 0 0 0 0

4 0.630 0.363 0.146 0.050 0.014 0.003 0.001 0 0 0 0 0 0

5 0.644 0.382 0.160 0.059 0.017 0.004 0.001 0 0 0 0 0 0

6 0.678 0.424 0.199 0.084 0.029 0.009 0.002 0.001 0 0 0 0 0

7 0.687 0.436 0.210 0.092 0.034 0.011 0.003 0.001 0 0 0 0 0

8 0.709 0.465 0.240 0.113 0.047 0.017 0.006 0.002 0 0 0 0 0

9 0.714 0.473 0.249 0.120 0.051 0.020 0.007 0.002 0.001 0 0 0 0

10 0.729 0.495 0.272 0.139 0.063 0.027 0.010 0.004 0.001 0 0 0 0

20 0.779 0.575 0.368 0.225 0.130 0.072 0.038 0.019 0.009 0.004 0.002 0 0

30 0.801 0.612 0.416 0.275 0.174 0.107 0.064 0.037 0.020 0.011 0.006 0 0

40 0.813 0.634 0.446 0.307 0.204 0.133 0.085 0.053 0.032 0.019 0.011 0 0

50 0.821 0.648 0.466 0.329 0.226 0.153 0.101 0.066 0.042 0.026 0.016 0 0

60 0.826 0.658 0.480 0.345 0.243 0.168 0.115 0.077 0.051 0.033 0.021 0.0001 0

80 0.833 0.672 0.500 0.368 0.266 0.190 0.135 0.095 0.065 0.045 0.030 0.0003 0

100 0.838 0.680 0.512 0.382 0.281 0.205 0.149 0.107 0.076 0.054 0.038 0.0006 0

300 0.849 0.701 0.542 0.419 0.321 0.246 0.188 0.144 0.110 0.084 0.064 0.0037 0.0002

∞ 0.850 0.704 0.546 0.424 0.327 0.252 0.194 0.150 0.116 0.089 0.069 0.0052 0.0004

Example 3. Let now us consider the three claims model generated by r.v’.s
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X, Y and Z having the following simple distributions:

X 0 1 2

P 0.92 0.07 0.01
;

Y 1 2

P 0.95 0.05
;

Z 1 2

P 0.85 0.15
.

Using Theorem 2.1 we obtain Table 3 of the values of the function ψ(u, T ).
The last row of this table shows values of ultimate time function ψ(u) obtained
by Theorem 3.5.
Note that EZ1 + EZ2/2 + EZ3/3 < 1 in the case under consideration.

Table 3. Values of functions ψ(u, T ) and ψ(u) for the model in Example 3.

T \ u 0 1 2 3 4 5 6 7 8 9 10 15 20

1 0.080 0.010 0 0 0 0 0 0 0 0 0 0 0

2 0.196 0.031 0.003 0 0 0 0 0 0 0 0 0 0

3 0.371 0.084 0.013 0.002 0 0 0 0 0 0 0 0 0

4 0.450 0.128 0.027 0.004 0.001 0 0 0 0 0 0 0 0

5 0.456 0.132 0.028 0.004 0.001 0 0 0 0 0 0 0 0

6 0.624 0.261 0.081 0.019 0.004 0.001 0 0 0 0 0 0 0

7 0.628 0.265 0.082 0.020 0.004 0.001 0 0 0 0 0 0 0

8 0.636 0.273 0.087 0.022 0.004 0.001 0 0 0 0 0 0 0

9 0.656 0.296 0.101 0.028 0.006 0.001 0 0 0 0 0 0 0

10 0.673 0.318 0.115 0.034 0.008 0.002 0 0 0 0 0 0 0

11 0.674 0.319 0.116 0.034 0.009 0.002 0 0 0 0 0 0 0

12 0.722 0.386 0.164 0.058 0.018 0.005 0.001 0 0 0 0 0 0

13 0.724 0.388 0.166 0.059 0.018 0.005 0.001 0 0 0 0 0 0

14 0.727 0.393 0.170 0.062 0.019 0.005 0.001 0 0 0 0 0 0

15 0.736 0.407 0.181 0.068 0.022 0.006 0.002 0 0 0 0 0 0

16 0.744 0.420 0.192 0.075 0.026 0.008 0.002 0.001 0 0 0 0 0

17 0.744 0.421 0.193 0.076 0.026 0.008 0.002 0.001 0 0 0 0 0

18 0.769 0.463 0.232 0.101 0.039 0.013 0.004 0.001 0 0 0 0 0

19 0.770 0.464 0.233 0.102 0.039 0.014 0.004 0.001 0 0 0 0 0

20 0.772 0.468 0.236 0.104 0.040 0.014 0.005 0.001 0 0 0 0 0

30 0.818 0.556 0.331 0.177 0.087 0.039 0.017 0.006 0.002 0.001 0 0 0

40 0.838 0.598 0.381 0.222 0.120 0.061 0.029 0.013 0.005 0.002 0 0 0

50 0.855 0.635 0.428 0.268 0.158 0.087 0.046 0.023 0.011 0.005 0.002 0 0

∞ 0.990 0.973 0.955 0.936 0.918 0.900 0.883 0.865 0.849 0.832 0.816 0.739 0.670

Example 4. We say that a r.v. ξ has the Poisson distribution with parameter
λ > 0 (ξ ∼ Π(λ)) if P(ξ = k) = e−λλk/k!, k ∈ N0. Consider the multi-risk model
generated by three r.v.s X ∼ Π(1/3), Y ∼ Π(1/4), and Z ∼ Π(1/5). We fill Table
4 of numerical values of the functions ψ(u, T ) and ψ(u) using the same theorems
as in Example 3.

Table 4. Ruin probabilities for the Poisson model.
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T \ u 0 1 2 3 4 5 6 7 8 9 10 15 20

1 0.283 0.045 0.005 0 0 0 0 0 0 0 0 0 0

2 0.367 0.088 0.017 0.003 0 0 0 0 0 0 0 0 0

3 0.397 0.110 0.025 0.005 0.001 0 0 0 0 0 0 0 0

4 0.416 0.125 0.033 0.008 0.002 0 0 0 0 0 0 0 0

5 0.420 0.129 0.035 0.009 0.002 0 0 0 0 0 0 0 0

6 0.430 0.139 0.040 0.011 0.003 0.001 0 0 0 0 0 0 0

7 0.432 0.140 0.041 0.012 0.003 0.001 0 0 0 0 0 0 0

8 0.434 0.143 0.043 0.012 0.003 0.001 0 0 0 0 0 0 0

9 0.436 0.145 0.044 0.013 0.004 0.001 0 0 0 0 0 0 0

10 0.438 0.146 0.045 0.014 0.004 0.001 0 0 0 0 0 0 0

11 0.438 0.147 0.046 0.014 0.004 0.001 0 0 0 0 0 0 0

12 0.439 0.148 0.047 0.014 0.004 0.001 0 0 0 0 0 0 0

13 0.439 0.149 0.047 0.014 0.004 0.001 0 0 0 0 0 0 0

14 0.440 0.149 0.047 0.015 0.004 0.001 0 0 0 0 0 0 0

15 0.440 0.149 0.047 0.015 0.004 0.001 0 0 0 0 0 0 0

16 0.440 0.150 0.048 0.015 0.005 0.001 0 0 0 0 0 0 0

17 0.440 0.150 0.048 0.015 0.005 0.001 0 0 0 0 0 0 0

18 0.441 0.150 0.048 0.015 0.005 0.001 0 0 0 0 0 0 0

19 0.441 0.150 0.048 0.015 0.005 0.001 0 0 0 0 0 0 0

20 0.441 0.150 0.048 0.015 0.005 0.001 0 0 0 0 0 0 0

30 0.441 0.150 0.048 0.015 0.005 0.001 0 0 0 0 0 0 0

40 0.441 0.150 0.048 0.015 0.005 0.001 0 0 0 0 0 0 0

50 0.441 0.150 0.048 0.015 0.005 0.001 0 0 0 0 0 0 0

∞ 0.493 0.226 0.132 0.101 0.092 0.089 0.088 0.087 0.087 0.087 0.087 0.087 0.087

Example 5. Suppose that the three-seasonal discrete-time risk model is gen-
erated by r.v.’s

Z1 0 1 2
P 0.5 0.25 0.25

,
Z2 0 1 2
P 0.4 0.3 0.3

,
Z3 0 1 2
P 0.3 0.35 0.35

.

In Table 5, we can find values of the finite-time ruin probability for initial
surplus u ∈ {0, 1, . . . 10, 20} and times T ∈ {1, 2, . . . , 10, 20} together with values
of the ultimate ruin probability for the same u.

Table 5. Values of functions ψ(u, T ) and ψ(u) for the model in Example 5.
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T \ u 0 1 2 3 4 5 6 7 8 9 10 20

1 0.5 0.25 0 0 0 0 0 0 0 0 0 0

2 0.65 0.325 0.075 0 0 0 0 0 0 0 0 0

3 0.703 0.404 0.128 0.026 0 0 0 0 0 0 0 0

4 0.733 0.445 0.169 0.046 0.007 0 0 0 0 0 0 0

5 0.751 0.475 0.2 0.066 0.014 0.002 0 0 0 0 0 0

6 0.768 0.503 0.233 0.089 0.026 0.005 0.001 0 0 0 0 0

7 0.779 0.523 0.256 0.106 0.035 0.009 0.002 0 0 0 0 0

8 0.788 0.538 0.275 0.122 0.045 0.014 0.003 0.001 0 0 0 0

9 0.796 0.554 0.295 0.139 0.056 0.019 0.006 0.001 0 0 0 0

10 0.802 0.566 0.310 0.152 0.065 0.024 0.008 0.002 0 0 0 0

20 0.836 0.632 0.402 0.243 0.138 0.075 0.038 0.018 0.008 0.003 0.001 0

∞ 0.877 0.722 0.541 0.404 0.301 0.224 0.167 0.125 0.093 0.069 0.052 0.003

Numerical values of the finite-time ruin probability are calculated using the
algorithm presented in Theorem 4.3. While values of the ultimate ruin probability
are obtained using formulas of Theorem 4.5. Namely, first we observe that ES =

2.7 and s0 6= 0 in the case. So, Eq. (4.16) holds for an arbitrary n ∈ N0. In
particular, ϕ(250) = α250ϕ(0) + β250ϕ(1) + 0.3γ250,

ϕ(251) = α251ϕ(0) + β251ϕ(1) + 0.3γ251,

According to the first statement of Theorem 4.5 we can suppose that ϕ(250) ≈
ϕ(251) ≈ 1. So, we get ϕ(0) and ϕ(1) from the above system after calculating val-
ues of {α0, α1, . . . α251}, {β0, β1, . . . , β251} and {γ0, γ1, . . . , γ251}. Now it remains
to use equality (4.16) again to obtain values ϕ(u) = 1 − ψ(u) for initial surplus
values u ∈ {2, 3, . . . , 10, 20}.

Example 6. Suppose now that the three-seasonal discrete-time risk model is
generated by three Poison distributions: Z1 with parameter 1/2, Z2 with param-
eter 2/3 and Z3 with parameter 4/5. In Table 6, there are presented values of
the finite-time ruin probability for u ∈ {0, 1, . . . 10, 20}, T ∈ {1, 2, . . . , 10, 20} and
values of the ultimate ruin probability for u ∈ {0, 1, . . . 10, 20}. All calculations
are made similarly as in the previous example.

Table 6. Ruin probabilities for the Poison model.
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T \ u 0 1 2 3 4 5 6 7 8 9 10 20

1 0.393 0.09 0.014 0.002 0 0 0 0 0 0 0 0

2 0.481 0.152 0.037 0.008 0.001 0 0 0 0 0 0 0

3 0.535 0.205 0.066 0.019 0.005 0.001 0 0 0 0 0 0

4 0.549 0.221 0.075 0.023 0.006 0.002 0 0 0 0 0 0

5 0.562 0.236 0.086 0.028 0.009 0.002 0.001 0 0 0 0 0

6 0.576 0.254 0.099 0.036 0.012 0.004 0.001 0 0 0 0 0

7 0.581 0.26 0.103 0.038 0.013 0.004 0.001 0 0 0 0 0

8 0.585 0.266 0.109 0.042 0.015 0.005 0.002 0.001 0 0 0 0

9 0.591 0.274 0.115 0.046 0.017 0.006 0.002 0.001 0 0 0 0

10 0.593 0.277 0.118 0.048 0.018 0.007 0.002 0.001 0 0 0 0

20 0.605 0.295 0.134 0.059 0.026 0.011 0.005 0.002 0.001 0.0003 0.0001 0

∞ 0.609 0.3 0.139 0.064 0.029 0.013 0.006 0.003 0.001 0.001 0.0002 0

Example 7. We say that r.v. ξ has the geometric distribution with parameter
p ∈ (0, 1) and we denote ξ ∼ G(p) if P(ξ = k) = p(1− p)k, k ∈ N0. Suppose that
the three-seasonal risk model is generated by r.v.’s Z1 ∼ G(3/4), Z2 ∼ G(2/3) and
Z3 ∼ G(1/3). In Table 7, we present values of the finite-time and infinite-time
ruin probabilities for this geometric model. Values of initial surplus u and times
T we left the same as in the previous examples.
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5. Numerical examples

Table 7. Ruin probabilities for the geometric model.

T \ u 0 1 2 3 4 5 6 7 8 9 10 20

1 0.25 0.063 0.016 0.004 0.001 0 0 0 0 0 0 0

2 0.333 0.111 0.037 0.012 0.004 0.001 0 0 0 0 0 0

3 0.556 0.34 0.218 0.143 0.094 0.063 0.042 0.028 0.019 0.012 0.008 0

4 0.566 0.35 0.226 0.149 0.099 0.066 0.044 0.029 0.019 0.013 0.009 0

5 0.576 0.362 0.236 0.156 0.104 0.069 0.046 0.031 0.021 0.014 0.009 0

6 0.653 0.461 0.334 0.243 0.176 0.127 0.091 0.065 0.046 0.033 0.023 0.001

7 0.657 0.466 0.338 0.247 0.18 0.13 0.093 0.067 0.048 0.034 0.024 0.001

8 0.661 0.471 0.344 0.252 0.184 0.133 0.096 0.069 0.049 0.035 0.025 0.001

9 0.703 0.529 0.406 0.312 0.239 0.181 0.137 0.102 0.076 0.056 0.042 0.002

10 0.705 0.532 0.409 0.315 0.241 0.184 0.139 0.104 0.078 0.057 0.042 0.002

20 0.774 0.635 0.528 0.438 0.363 0.298 0.243 0.197 0.159 0.127 0.101 0.008

∞ 0.927 0.879 0.84 0.803 0.769 0.736 0.705 0.675 0.647 0.619 0.593 0.385
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Conclusions

In this last Chapter, a brief summary of the results obtained is given.

• The net profit condition for the ultimate ruin probabilities of the discrete-
time risk model with inhomogeneous claims was established.

• The ultimate ruin probability of the discrete-time risk model with inhomo-
geneous claims tends to zero as initial capital u tends to infinity.

• The recursive relations for calculation of the the exact values of the finite-
time ruin probabilities of the discrete-time any multi-risk model were ob-
tained.

• The recursive relations for calculation of the the exact values of the ulti-
mate ruin probabilities of the bi-risk model and multi-risk model with three
inhomogeneous claim amounts were obtained.

• The recursive relations for calculation of the exact values of the finite-time
and ultimate ruin probabilities of the three-seasonal risk model were ob-
tained.

• Numerical values of all obtained recursive relations were calculated using
software and presented in this thesis.
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