
Citation: Ghodousi, M.; Pousson, J.E.;

Bernhofs, V.; Griškova-Bulanova, I.

Assessment of Different Feature

Extraction Methods for

Discriminating Expressed Emotions

during Music Performance towards

BCMI Application. Sensors 2023, 23,

2252. https://doi.org/10.3390/

s23042252

Academic Editors: Nilanjan Sarkar

and Zhi Zheng

Received: 28 December 2022

Revised: 7 February 2023

Accepted: 15 February 2023

Published: 17 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Assessment of Different Feature Extraction Methods for
Discriminating Expressed Emotions during Music Performance
towards BCMI Application
Mahrad Ghodousi 1 , Jachin Edward Pousson 2 , Valdis Bernhofs 2 and Inga Griškova-Bulanova 1,*

1 Department of Neurobiology and Biophysics, Vilnius University, 10257 Vilnius, Lithuania
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Abstract: A Brain-Computer Music Interface (BCMI) system may be designed to harness electroen-
cephalography (EEG) signals for control over musical outputs in the context of emotionally expressive
performance. To develop a real-time BCMI system, accurate and computationally efficient emotional
biomarkers should first be identified. In the current study, we evaluated the ability of various features
to discriminate between emotions expressed during music performance with the aim of developing a
BCMI system. EEG data was recorded while subjects performed simple piano music with contrasting
emotional cues and rated their success in communicating the intended emotion. Power spectra
and connectivity features (Magnitude Square Coherence (MSC) and Granger Causality (GC)) were
extracted from the signals. Two different approaches of feature selection were used to assess the
contribution of neutral baselines in detection accuracies; 1- utilizing the baselines to normalize the
features, 2- not taking them into account (non-normalized features). Finally, the Support Vector
Machine (SVM) has been used to evaluate and compare the capability of various features for emotion
detection. Best detection accuracies were obtained from the non-normalized MSC-based features
equal to 85.57 ± 2.34, 84.93 ± 1.67, and 87.16 ± 0.55 for arousal, valence, and emotional conditions
respectively, while the power-based features had the lowest accuracies. Both connectivity features
show acceptable accuracy while requiring short processing time and thus are potential candidates for
the development of a real-time BCMI system.

Keywords: music; emotion; EEG; connectivity; MSC; GC; brain-computer music interface; BCMI

1. Introduction

A Brain-Computer Interface (BCI) enables users to control a computer or any other
external device using their brain activity, and the electroencephalography (EEG) technique
has been effective in these types of applications due to its high temporal resolution and
relatively low cost. BCI can be beneficial in a broad spectrum of clinical and non-clinical
applications such as in the rehabilitation of people with various mental and physical
disabilities, as well as for gaming, augmented reality applications, and more [1,2]. Likewise,
BCI can be used to enhance environmental experiences; for example, a Brain-Computer
Music Interface (BCMI) may transform the brain signals into musical parameters.

The first attempt to connect the brain to music was made by Adrian and Matthew as
they found a correlation between Posterior Dominant Rhythm (PDR) and reproduced brain
signals played over a loudspeaker [3]; this was followed by the creation of the first brain-
controlled percussion instrument in 1965 that worked based on PDR signals [4,5]. Similar
to the case of BCI, the BCMI applications are advantageous in various fields spanning the
entertainment industry and healthcare, such as in music therapy. Several studies have
addressed the effectiveness of BCMI applications in music therapy by modulating the
affective state of their users based on precise indices related to subjects’ affective state,
and by composing pieces of music that directly target the listener’s mood [5–7]. However,
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wider application is limited by the selection of sensitive brain activity markers reflecting
emotions that can be assessed accurately and fast, while keeping the system agile to adapt
to new users.

Numerous studies have focused on spectral power measurements as a tool to re-
veal the brain activity behind emotional experiences elicited by listening to music. Power
changes in different frequency bands and over multiple brain areas have been reported to be
related to changes in arousal and valence corresponding to different emotional states [8–12].
However, a large information flow between different cortical areas occurs during emotional
music processing [13], and this should be considered when comparing emotions at a neuro-
physiological level. Two approaches can be taken—evaluations of functional and effective
connectivity. While functional connectivity reports on statistical relationships between the
signals recorded from two areas in the brain and has no information about the direction
of the information flow or the causal influence of the regions on each other [14], effective
connectivity defines the influence that a neural system exerts over other neural systems for
performing motor, cognitive, and perceptual functions [15] by examining the complicated
causal interactions between brain regions and uni- or bi-directional information pathways.

Connectivity and network analysis were utilized to investigate the co-active and
connected areas during different emotions while listening to music. Wu et al. demon-
strated an increase in the phase coherence index during music perception [10]. Shahabi and
Moghimi used support vector machines on features based on directed transfer function
connectivity and reported that the perceived valence of music was positively correlated
with the frontal inter-hemispheric flow, and negatively correlated with parietal bilateral
connectivity [16]. Varroto et al. demonstrated an increase in brain network connections
in healthy subjects while listening to pleasant music compared to unpleasant or silent
conditions [17]. Maggioni et al. used Granger causality to show that, in people with Parkin-
son’s disease, music has the capability of facilitating inter-hemispheric communication and
partially normalizes brain networks [18]. Marimpis et al. [19] reported high accuracies in
the Arousal–Valence classification using functional connectivity features within the DEAP
dataset [20]. Mahmood et al. reported that even a short duration of listening to music can
change the functional connectivity in the brain, proportional to the genre of music [21].

Although a vast number of studies have focused on recognition of emotions evoked
by music-listening, there is limited number of studies that address the associations between
the neural activities of performers and their intentionally expressed emotions while they
are performing a piece [22,23]. It has been shown that brain activity during the perception
of emotions induced by music-listening differs from that involved in the creative expression
of emotion through music performance [24]; moreover, it is possible that music performers
experience different emotions than what they are trying to express through the perfor-
mance [25]. In our previous works [11,12], we demonstrated that both power and effective
connectivity patterns differ when professional musicians are instructed to play distressed,
excited, depressed, relaxed, or neutrally labeled music pieces.

In the current study, we aim to evaluate the utility of different methods of feature
extraction to discriminate between expressed emotions during music performance [11,12]
for the development of a real-time BCMI system. Specifically, we (1) focus on power as
well as functional and effective connectivity measures—Magnitude Square Coherence and
Granger Causality—due to the simplicity of implementation, short computation time, and
processing requirements that make the measures suitable candidates for developing real-
time systems, and (2) utilize the Support Vector Machine (SVM) to evaluate and compare
the performance of the extracted features, as it is one of the most powerful models for multi-
class regression and classification while being fast enough for real-time applications [26].

2. Materials and Methods
2.1. Participants

Ten musicians (2 males, 8 females; age 19–40 years) experienced in piano playing and
with at least 5 years of academic training participated in the experiment. The experiment
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took place over four sessions that were scheduled on different days. Rı̄ga Stradin, š Univer-
sity Research Ethics Committee approved the study (Nr.6-1/01/59), and all participants
provided their written consent.

2.2. Experimental Design and Procedure

Participants received a simple-to-learn short (30 s) musical score produced by the
authors [11] and were tasked with making expressive variations upon the material. The
detailed description of the procedure is provided in [11]. The music was presented on two
pages and used an extended pentatonic scale to circumvent Western functional harmony
bias. The first page was to be performed mechanically, in tempo, neutral in expression, and
without emotion. The music on the second page was a duplicate of the first page, but the
participants were encouraged to alter their manner of play freely in order to express one of
five emotions based on a 2D Valence–Arousal model of affective space (distressed, excited,
depressed, relaxed, and neutral) (Figure 1).
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Figure 1. Emotion descriptors used for performance instructions.

The protocol was controlled with the Psychopy stimulus presentation software [27].
The Psychopy stimulus presentation software randomized the order of the five emotions
during each recording session and displayed the instructions for each trial. Each participant
had a total of 200 trials recorded over the course of 4 days. A scheme of a single experimental
trial is depicted schematically in Figure 2.
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Before the first recording session, each participant received a thorough explanation
of what to expect. Subjects had enough time during the first session to become familiar
with the recording sequence and emotional descriptors. Participants were instructed to
stay seated at the piano and follow instructions displayed on an eye-level laptop screen.

First, for 20 s, one of five emotion descriptors was shown. Second, during the 15 s of
resting state recording, a fixation cross was shown. A countdown notification of the upcom-
ing emotional playing condition that was displayed for 3 s at the end of resting state period,
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followed by the appearance of the music score. The first page of the music score, instructed
to be played in a neutral way, was displayed for 30 s. It was followed by displaying the
second page for 30 s while the participants were instructed to perform it while expressing
one of the target emotions. After this, on a scale from 1 to 9, the participants rated their
performance on the dimensions of valence (from negative to positive) and arousal (from
low to high), with 5 serving as neutral on both scales. Participants were asked to submit
their scores according to how effectively they believed their performance portrayed the
desired feeling rather than on the actual emotions they had experienced. Participants were
informed that the audio from the performance could be reviewed by listeners in subsequent
steps to make the setting more realistic. After completing 5 consecutive trials, participants
were given a short rest period before continuing.

2.3. EEG Acquisition

EEG signals were acquired using an Enobio 32 device, with a 32-electrode cap arranged
according to the International 10–20 system. Common Mode Sense (CMS) and Driven
Right Leg (DRL) electrodes were connected to the right earlobe to provide the electrical
grounding. Signals were monitored and recorded at a sampling frequency of 500 HZ using
the hardware’s native signal acquisition software Neuroelectric Instrument Controller
v.2.0.11.1 (NIC), and a notch filter was applied by the software to remove power line noises.

2.4. EEG Preprocessing

EEG data was preprocessed automatically in MATLAB using EEGLAB toolbox [28].
First the Automated Artifact Rejection function in EEGLAB was used, and parts of the raw
EEG data with poor quality were removed, which also resulted in removing some of the
channels. Then data was filtered using a zero-phase bandpass FIR filter between 0.5 to
45 Hz and re-referenced to the mean of T7 & T8 channels. Further, the retained artifacts
such as eye blinks and muscle and heart electrical activity, as well as any other activity
not originating from the brain, were removed by applying an Independent Component
Analysis (ICA) and ICLabel plugin in EEGLAB.

In every single trial, the signals recorded during 30 s of neutral baseline performance
and 30 s of emotional performance (distressed, excited, depressed, relaxed, and neutral)
were extracted resulting in two separate matrices of 2000 EEG segments (data from 10 par-
ticipants across 4 days and 50 piano-playing excerpts per session) for emotional playing
(400 observations per each emotion) and 2000 EEG segments for the corresponding neutral
baseline, and both matrices were treated similarly in the next steps.

Ten regions of interest (ROI) were created according to Figure 3; electrodes within
each ROI were averaged, and segments lacking information on at least one ROI (i.e., if all of
the channels within that ROI have been removed during the artifact removal process) were
excluded from the analysis, resulting in 314 segments retained for each emotional condition
(5 × 314 segments in total). From the 30 s segments, eight 3 s non-overlapping windows
were created (from 3 to 27 s) for each of the 10 ROIs. The dimensions of the final matrices
were equal to 1570× 10× 1500 arrays. Finally, by filtering the separate rows of the matrices
into different frequency bands for 1–4 Hz (delta), 4–8 Hz (theta), 8–12 Hz (alpha), 12–30 Hz
(beta), and 30–45 Hz (gamma), five sub-band matrices (called observation matrices) were
obtained for each emotional playing condition and corresponding neutral baseline.

2.5. Feature Extraction

Several features were extracted to be subjected to classification in order to discriminate
between emotional performance conditions.

2.5.1. Power Spectra

Spectral power features were calculated from each of the sub-band observation ma-
trices using a Fast Fourier Transform (FFT) and by applying a Hanning tapering window.
Five absolute values were computed corresponding to 5 sub-frequency bands of the delta,
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theta, alpha, beta, and gamma sub-bands, by averaging the power within these bands. Fur-
ther, five more features were obtained as relative power within sub-bands by dividing the
absolute values by the average power spectra of the entire band (1–45 Hz). Ten computed
features for 10 ROIs (absolute and relative powers per five sub-bands) were placed in a row
sequentially, producing a matrix containing 100 features per observation with the size of
1570 × 100 (one for emotional playing and one for their corresponding neutral baselines).
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fronto-central (9) and central parieto-occipital (10).

2.5.2. Magnitude Square Coherence

Magnitude Square Coherence (MSC) was used to evaluate functional connectivity.
MSC is a linear synchronization approach with values from 0 to 1 indicating the degree
of correspondence between x and y at a given frequency of f ; values closer to 1 indicate
stronger linear dependency between two signals. The MSC is formulated as follows:

γxy( f ) =

∣∣〈Sxy( f )
〉∣∣2

|〈Sxx( f )〉|
∣∣〈Syy( f )

〉∣∣ (1)

where Sxy( f ) is cross power spectral density, and Sxx( f ) and Syy( f ) are the power spectral
density of the two different signals named x, y [14,15]. For all observations, the MSC
was computed between each pair of ROIs, and the 10 × 10 connectivity matrices (CM)
were created, where the array (i,j) illustrated the connection between regions numbered
i and j; since the CM resulted from MSC was symmetrical relative to the diagonal line
(array(i,j) = array(j,i)), the connectivity matrices were further turned into a 45-element row
by placing their 10 × 9/2 arrays on the top or bottom of the diagonal line sequentially next
to each other resulting in the observation matrices of 1570 × 45 (one matrix for emotional
playing and one matrix for their corresponding neutral baselines per each of 5 sub-bands).

2.5.3. Granger Causality

Granger Causality (GC) was used to calculate the effective connectivity. According
to Granger Causality, if signal X “Granger-causes” signal Y, then using past values of X to
predict Y should have less estimation error than using past values of Y alone to predict
it [29]. GC is described as follows:

Assume the y(t) and x(t) be stationary time series and consider the ε(t) as the prediction
error of y(t) calculated with lagged values of y(t) using the following autoregression model:

y(t) = ε(t) +
∞

∑
i=1

a(i)× y(t− i) (2)
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Following this, the model is recalculated as follows by including lagged values of x(t),
and ε̃(t) prediction error is calculated by considering the effect of lagged values of x(t) too:

y(t) = ε̃(t) +
∞

∑
i=1

a(i)× y(t− i) +
∞

∑
j=1

b(i)× x(t− j) (3)

a(i) and b(j) are regressive coefficients.
If the variance of ε̃(t) is smaller than that variance of ε(t), then the GC will be 1 and

x(t) ‘’Granger-causes” y(t); if the variance of ε̃(t) is larger than that variance of ε(t) then GC
value will be 0 and x(t) does not ‘’Granger-cause” y(t).

Similar to what has been done for MSC, the 10 × 10 CM was created for all of the
observations by calculating the GC between each pair of regions. Then due to the unsym-
metrical nature of CM resulting from GC, the connectivity matrices were turned into a
100-element row by placing all of their 10 × 10 elements sequentially next to each other,
and the observation matrices of 1570 × 100 arrays were created (one matrix for emotional
playing and one matrix for their corresponding neutral baselines for each of 5 sub-bands).

2.6. Feature Selection

Neutral baseline playing before emotional performance was included in the exper-
iment in order to provide a baseline for emotional performances [30] and to reduce the
dependence of the results on the mood of the subjects at any instant, as well as to eliminate
inter-subject variability [11]. However, as the inclusion of neutral parts substantially ex-
tends the time required for experiment, and can also be boring for the performers, the real
benefit of its inclusion needs to be evaluated. In this study, at the feature selection stage,
we tested two approaches which are: (1) taking the neutral baseline into account while
selecting features for classification further referred to as Normalized features, and (2) not
taking the neutral baseline into account while selecting features for classification which
will be referred to as Non-normalized features.

2.6.1. Normalized Features

The feature selection process for the outcomes of power, MSC and GC, when neutral
baseline playing was taken into account, involved two distinct phases. During the first
phase, a two-sided Student’s t-test was applied to the data of each column in the feature
matrix belonging to the emotional category and the same column in the baseline matrix to
eliminate features that were not distinguishing between the baseline and emotional parts.
The null hypothesis (both datasets are drawn from the same distribution) was rejected with
p-values < 0.05. This step was ignored for 314 observations of neutral playing because no
significant differences between the neutral baseline EEGs and the EEGs recorded during the
expression of neutral emotions were expected. This step resulted in new feature matrices
created from retained features meeting two criteria: (1) the ability to discriminate between
the neutral baseline and the emotional playing and (2) being shared across conditions.
During the second phase, to identify the features that were able to discriminate between
at least two pairs of emotional conditions, a one-sided ANOVA was performed on the
resulting feature matrices from the first step, and the features with a p-value < 0.01 were
chosen as a set of final features.

2.6.2. Non-Normalized Features

In this approach, the normalization using a Student’s t-test was omitted and only the
one-sided ANOVA was performed on the outcomes of power, MSC, and GC analyses. The
features that were able to distinguish between at least two pairs of emotional conditions
(with a p-value < 0.01) were chosen to create the feature matrices.
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2.7. Classification

A Support Vector Machine (SVM) was used for classification of the features selected.
SVM is a supervised machine learning model that uses separating hyperplanes for dis-
criminating classes. In this study, we used the “one-against-one” strategy which trains one
SVM classifier for each pair of classes (C(5,2) = 10), then the new data is assigned to one
of the classes with the majority of votes [31,32]. In terms of selecting the SVM kernel, the
Radial Basis Function (RBF) kernel was chosen because it has been shown to be a better
choice for practical applications that require real-time processing, in addition to its higher
performance on data with higher dimensional space [33].

Three classifiers (5-fold cross validation, for Arousal aspect, Valence aspect, and
emotional condition separately) were trained on each group of the features (power and
features from MSC and GC) by labeling the data based on the instructions provided to
the subjects [11] in Arousal, Valence, and emotional condition dimensions (including
Distressed, Depressed, Neutral, Excited, and Relaxed, which are combinations of different
Arousal/Valence levels). The utility of classifier was decided based on two major criteria:
(1) the classifier is well-trained (not over-fitted nor under-fitted), (2) the classifier reaches
the generalization based on all of the available data. When these criteria are met, the
reported accuracies and precisions are considered reliable and repeatable. The first criterion
was met when the training and test accuracies were fairly close to each other. For the
second criterion, 5-fold cross-validation was used to evaluate the outcomes of the classifier.
For this purpose, the 1570 observations in each of the feature matrices were first shuffled
to combine the data of different subjects; then matrices were divided into 5 equal-sized
non-overlapping sub-data with 314 observations. One of these sub-data (1 × 314) was used
as the test data and the remaining (4 × 314) was used as the training data. This procedure
was repeated 5 times, each time with new test data, and finally, the result is the average of
all 5 accuracies.

The results of the non-binary classification were evaluated using confusion matrices
where each column resembles the predicted category and each row indicates the actual
category. The confusion matrices were created by subjecting the test data to the trained
SVM classifier, then extracting the number of correct and wrong predictions.

3. Results

The outcomes of the behavioral assessement are presented in details in [11]. The
outcomes of power, MSC, and GC analyses are reported in Supplementary Material, where
power plots for each ROI, and MSC/GC connectivity maps are plotted (Figures S1–S3).
The number of features selected for classification for power, MSC, and GC analyses on all
frequency bands and both feature extraction approaches (Normalized and Non-normalized
features) is presented in Table 1.

The accuracies of the classification performed for Arousal, Valence, and emotional
conditions separately using two sets of features (Normalized and Non-normalized) are
presented in Table 2. Both training and test accuracies were relatively close to each other,
indicating that the models have achieved a good generalization with respect to the input
data. The accuracies obtained from Non-normalized features were higher than the accu-
racies resulting from the usage of Normalized features. Moreover, MSC-based features
showed the best discrimination accuracies for both Arousal and Valence dimensions, and
for emotional conditions (85.57 ± 2.34, 84.93 ± 1.67, and 87.16 ± 0.55, respectively). In both
sets of features, better classification results were obtained for Arousal compared to Valence
dimension (for example: 76.98 ± 0.42 vs. 71.02 ± 2.04 for Normalized MSC, 85.57 ± 2.34 vs.
84.93 ± 1.67 for Non-normalized MSC).
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Table 1. Number of retained features after feature selection.

Delta Theta Alpha Beta Gamma Total

Power
Normalized

t-Test 12 15 14 19 20 80

ANOVA 9 15 12 16 20 72

Non-normalized ANOVA 14 17 17 18 20 86

MSC
Normalized

t-Test 27 22 24 14 25 112

ANOVA 26 22 23 8 25 104

Non-normalized ANOVA 39 37 36 33 40 185

GC
Normalized

t-Test 10 11 10 41 43 115

ANOVA 8 10 7 35 38 98

Non-normalized ANOVA 22 30 30 68 76 226

Table 2. Accuracies (%) of SVM classifiers for Arousal, Valence and Emotional condition.

Arousal Valence Emotional Conditions

Normalized
Features

Power
Train 74.87 ± 0.79 69.28 ± 1.62 68.85 ± 1.32

Test 70.64 ± 1.88 64.93 ± 2.56 61.74 ± 2.03

MSC
Train 81.51 ± 1.90 76.93 ± 0.83 83.20 ± 0.60

Test 76.98 ± 0.42 71.02 ± 2.04 79.29 ± 2.96

GC
Train 79.61 ± 0.71 77.63 ± 0.71 76.65 ± 0.28

Test 75.06 ± 1.26 71.08 ± 1.26 71.54 ± 1.34

Non-normalized
Features

Power
Train 77.26 ± 0.55 72.00 ± 0.72 72.00 ± 1.68

Test 72.43 ± 1.94 69.03 ± 0.39 65.93 ± 1.06

MSC
Train 91.21 ± 0.45 90.05 ± 0.28 93.11 ± 0.13

Test 85.57 ± 2.34 84.93 ± 1.67 87.16 ± 0.55

GC
Train 88.68 ± 0.47 84.53 ± 0.87 85.63 ± 0.41

Test 83.65 ± 1.28 78.46 ± 2.20 80.00 ± 1.51

The confusion matrices illustrating the outcomes of classification sensitivity separately
for Normalized and Non-normalized features are depicted in Figures 4 and 5. MSC-based
features showed best outcomes for feature labeling of Arousal, Valence, and emotional con-
ditions (for example using the Non-normalized features, 84.84% of actual Depressed data
was classified as Depressed, while only 4.19%, 1.61%, 5.16%, and 4.19% were falsely classi-
fied as Distressed, Excited, Relaxed, and Neutral, respectively). Usage of Non-normalized
features consistently lead to better discrimination compared to Normalized features. It was
especially true for the MSC- and GC-based features, where the normalization greatly re-
duced the ability of classifiers to detect Neutral condition in Arousal and Valence classifications.
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Figure 4. Confusion Matrices resulting from SVM classifiers applied on Normalized Power, MSC, 
and GC features and based on 3 different labelings. The X and Y axes represent the categories, the 
rows correspond to the actual class and the columns correspond to the predicted class. 
Dep—depressed, Dis—distressed, Exc—excited, Rel—relaxed, Neu—neutral. The predicted values 
are written inside the squares and are also color-coded according to the color bars provided. 

  

Figure 4. Confusion Matrices resulting from SVM classifiers applied on Normalized Power, MSC, and
GC features and based on 3 different labelings. The X and Y axes represent the categories, the rows
correspond to the actual class and the columns correspond to the predicted class. Dep—depressed,
Dis—distressed, Exc—excited, Rel—relaxed, Neu—neutral. The predicted values are written inside
the squares and are also color-coded according to the color bars provided.
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Figure 5. Confusion Matrices resulting from SVM classifiers applied on Non-normalized Power, 
MSC, and GC features and based on 3 different labelings. The X and Y axes represent the catego-
ries, the rows correspond to the actual class and the columns correspond to the predicted class. 
Dep—depressed, Dis—distressed, Exc—excited, Rel—relaxed, Neu—neutral. The predicted values 
are written inside the squares and are also color-coded according to the color bars provided. 
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Figure 5. Confusion Matrices resulting from SVM classifiers applied on Non-normalized Power,
MSC, and GC features and based on 3 different labelings. The X and Y axes represent the categories,
the rows correspond to the actual class and the columns correspond to the predicted class. Dep—
depressed, Dis—distressed, Exc—excited, Rel—relaxed, Neu—neutral. The predicted values are
written inside the squares and are also color-coded according to the color bars provided.

4. Discussion

We aimed to evaluate the utility of different EEG-based methods of feature extraction
to discriminate between emotional conditions during active music playing. The measure
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of functional connectivity—MSC, and the measure of effective connectivity—GC—were
of particular interest due to the low processing requirements and potential to be easily
utilized for the development of a real-time BCMI system. The number of features was
reduced utilizing two approaches of feature selection (normalizing by Neutral condition
and without this normalization) and the SVM classifier was utilized to estimate the potential
of the selected features to discriminate the emotional playing conditions.

We extracted features based on power and connectivity calculations, as these mea-
sures in our previous investigations showed some differences between emotional playing
conditions [11,12], and were physiologically relevant. In this paper, we utilized two fea-
ture extraction approaches. First, we used neutral baseline playing to normalize the data.
Although we expected the step of normalization to reduce individual variability and the
impact of movement execution processes while performing, the normalization resulted
in lower accuracies when classifying (Table 2). As the inclusion of the neutral baseline
playing substantially increases the time of the experiment and has a negative impact on
classification quality, we suggest that this step can be omitted in future studies.

All the achieved accuracies of classification were higher than chance level (1/3 ≈
0.33 × 100 = 33% for Arousal and Valence, and 1/5 = 0.2 × 100 = 20% for emotional
conditions) [34]. Importantly, the corresponding training and test accuracies were relatively
close to each other, meaning that overfitting did not occur [35]. The best classification
results were achieved using MSC-based features. MSC reflects functional connectivity
with the assumption that when two things happen together, they might be related to each
other [36]. The classification accuracies achieved with MSC-based features in the current
study were comparable to those obtained for emotion classification while listening to music
or observing emotional images in a study by Khosrowabadi et al. [36], who applied a
Self-organizing map on MSC-based features. However, Shahabi et al. [16] reported slightly
higher accuracies in comparison to this report when classifying responses to joyful, neutral,
and melancholic music using DTF features; nonetheless, it should be stressed that DTF is
not computationally efficient for BCMI development. Finally, Liu et al. [37] achieved lower
accuracy levels in Arousal and Valence recognition with similar MSC-based features and a
“K-nearest neighbor” classifier using responses to music from the DEAP dataset.

As can be seen from Table 1, the number of MSC-based features included in the clas-
sification was relatively equally distributed between the EEG sub-bands, pointing to the
importance of the assessment of functional connectivity within a wide frequency range,
and not limiting it only to certain ranges [38]. It contrasts the outcomes of GC results in
the current study and earlier reports where brain entropy/signal complexity [39]/Granger
Causality [12] within beta and gamma bands showed the most effects during impro-
vised/emotional playing. Importantly, the classification of GC-based features while per-
forming music resulted in accuracies very similar to those reported by Liu et al. while
classifying music-induced emotions [40], and Guo et al. while detecting induced emotions
in the data from the DEAP and SEED datasets using neural networks on GC features [41].
The summary of accuracies obtained in the above mentioned works is presented as Supple-
mentary Material, Table S1.

For all features extracted, classification of the Arousal dimension and discrete emo-
tional conditions showed better accuracy levels than classification of the Valence dimension.
On the one hand, it is surprising, as previously Galvao et al. [38] and Bazgir et al. [42]
showed very comparable classification outcomes for Arousal and Valence dimensions. On
the other hand, our result confirms the fact that the arousal aspect (reflecting the degree
of activation or intensity [43]) is important for emotional expressions—not only when
listening to music, but also when performing.

However, it should be noted that classification outcomes for signals recorded while
performing music and listening to music should not necessarily be comparable: as men-
tioned in the introduction, music performers do not necessarily experience the emotion
that they need to communicate, thus brain activity can differ [25]. Nevertheless, the results
mentioned above suggest that the balance between the physiological relevance of the fea-
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tures extracted and the computational efficiency of the classification methods should be
considered when developing BCMI systems. The efficient online classification of musically
expressed emotions for BCMI application would bridge major gaps between the fields of
neuroscience, human-computer interaction, music computing, and the arts. More inter-
disciplinary work at this intersection is needed to target persistent challenges in the field,
particularly a lack of application-specific tools for online feature detection and mapping for
control which may be explored comprehensively within frameworks of music interaction.

5. Conclusions

In the present study, we assessed how well the power spectrum and two connectivity
features—MSC and GC—could help to recognize emotional aspect of the musical per-
formance. The connectivity-based features demonstrated acceptably high accuracies. In
contrast, power-based features performed less accurately. Both MSC and GC are compu-
tationally efficient, and thus may be utilized to develop or improve the accuracy of a real
time BCMI system.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23042252/s1, Supplementary Material: Power Spectra, MSC
and GC analysis outcomes; a summary of outcomes of previous reports mentioned in the Discussion.
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