Title A temporally and spatially explicit, data-driven estimation of airborne ragweed pollen concentrations across Europe /
Authors Makra, László ; Matyasovszky, István ; Tusnády, Gábor ; Ziska, Lewis H ; Hess, Jeremy J ; Nyúl, László G ; Chapman, Daniel S ; Coviello, Luca ; Gobbi, Andrea ; Jurman, Giuseppe ; Furlanello, Cesare ; Brunato, Mauro ; Damialis, Athanasios ; Charalampopoulos, Athanasios ; Müller-Schärer, Heinz ; Schneider, Norbert ; Szabó, Bence ; Sümeghy, Zoltán ; Páldy, Anna ; Magyar, Donát ; Bergmann, Karl-Christian ; Deák, Áron József ; Mikó, Edit ; Thibaudon, Michel ; Oliver, Gilles ; Albertini, Roberto ; Bonini, Maira ; Šikoparija, Branko ; Radišić, Predrag ; Josipović, Mirjana Mitrović ; Gehrig, Regula ; Severova, Elena ; Shalaboda, Valentina ; Stjepanović, Barbara ; Ianovici, Nicoleta ; Berger, Uwe ; Seliger, Andreja Kofol ; Rybníček, Ondřej ; Myszkowska, Dorota ; Dąbrowska-Zapart, Katarzyna ; Majkowska-Wojciechowska, Barbara ; Weryszko-Chmielewska, Elzbieta ; Grewling, Łukasz ; Rapiejko, Piotr ; Malkiewicz, Malgorzata ; Šaulienė, Ingrida ; Prykhodo, Olexander ; Maleeva, Anna ; Rodinkova, Victoria ; Palamarchuk, Olena ; Ščevková, Jana ; Bullock, James M
DOI 10.1016/j.scitotenv.2023.167095
Full Text Download
Is Part of Science of the total environment.. Amsterdam : Elsevier B.V.. 2023, vol. 905, art. no. 167095, p. [1-18].. ISSN 0048-9697. eISSN 1879-1026
Keywords [eng] Aerobiology ; Ambrosia ; Artificial intelligence ; Climate change ; Data reconstruction ; Flowering phenology ; Health risk ; Invasive species
Abstract [eng] Ongoing and future climate change driven expansion of aeroallergen-producing plant species comprise a major human health problem across Europe and elsewhere. There is an urgent need to produce accurate, temporally dynamic maps at the continental level, especially in the context of climate uncertainty. This study aimed to restore missing daily ragweed pollen data sets for Europe, to produce phenological maps of ragweed pollen, resulting in the most complete and detailed high-resolution ragweed pollen concentration maps to date. To achieve this, we have developed two statistical procedures, a Gaussian method (GM) and deep learning (DL) for restoring missing daily ragweed pollen data sets, based on the plant's reproductive and growth (phenological, pollen production and frost-related) characteristics. DL model performances were consistently better for estimating seasonal pollen integrals than those of the GM approach. These are the first published modelled maps using altitude correction and flowering phenology to recover missing pollen information. We created a web page (http://euragweedpollen.gmf.u-szeged.hu/), including daily ragweed pollen concentration data sets of the stations examined and their restored daily data, allowing one to upload newly measured or recovered daily data. Generation of these maps provides a means to track pollen impacts in the context of climatic shifts, identify geographical regions with high pollen exposure, determine areas of future vulnerability, apply spatially-explicit mitigation measures and prioritize management interventions.
Published Amsterdam : Elsevier B.V
Type Journal article
Language English
Publication date 2023
CC license CC license description