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Simple Summary: Prognosis of patients after surgical resection for hepatocellular carcinoma (HCC)
is often obscured by the variable impact of the tumor and remaining liver properties. We applied
a convolutional neural network and hexagonal grid analytics to extract prognostic indicators from
collagen microarchitecture within the tumor and adjacent liver tissue. By associating the extracted
features from two distinct fiber types with clinical outcomes, we have developed two computational
models to predict the overall survival of the patients. We report the independent prognostic roles
for reticulin in HCC and fibrillary collagen in the peritumoral liver, highlighting the significance
of assessing region-specific and type-specific fiber features. Our study provides evidence that the
predictive power of prognostic models of HCC can be enhanced by artificial intelligence solutions
generating computational image-based biomarkers.

Abstract: Despite advances in diagnostic and treatment technologies, predicting outcomes of patients
with hepatocellular carcinoma (HCC) remains a challenge. Prognostic models are further obscured
by the variable impact of the tumor properties and the remaining liver parenchyma, often affected by
cirrhosis or non-alcoholic fatty liver disease that tend to precede HCC. This study investigated the
prognostic value of reticulin and collagen microarchitecture in liver resection samples. We analyzed
105 scanned tissue sections that were stained using a Gordon and Sweet’s silver impregnation
protocol combined with Picric Acid–Sirius Red. A convolutional neural network was utilized to
segment the red-staining collagen and black linear reticulin strands, generating a detailed map of the
fiber structure within the HCC and adjacent liver tissue. Subsequent hexagonal grid subsampling
coupled with automated epithelial edge detection and computational fiber morphometry provided
the foundation for region-specific tissue analysis. Two penalized Cox regression models using LASSO
achieved a concordance index (C-index) greater than 0.7. These models incorporated variables such as
patient age, tumor multifocality, and fiber-derived features from the epithelial edge in both the tumor
and liver compartments. The prognostic value at the tumor edge was derived from the reticulin
structure, while collagen characteristics were significant at the epithelial edge of peritumoral liver.
The prognostic performance of these models was superior to models solely reliant on conventional
clinicopathologic parameters, highlighting the utility of AI-extracted microarchitectural features for
the management of HCC.

Keywords: hepatocellular carcinoma; liver; hexagonal grid; artificial intelligence; CNN; prognostic
modelling; digital pathology; overall survival
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1. Introduction

Hepatocellular carcinomas (HCC) constitute up to 80% of all primary liver cancers [1].
Liver cirrhosis—often induced by viral hepatitis B and C, alcohol consumption, chemical
toxins, or metabolic liver diseases—precedes HCC in at least 80% of cases [2]. Furthermore,
the global rise of obesity and type 2 diabetes leads to the increased incidence of non-
alcoholic fatty liver disease (NAFLD), a primary cause of HCC in the absence of cirrhosis [3].
In recent decades, the impact of HCC has grown significantly, now ranking as the third
leading cause of cancer-related mortality worldwide [4]. From 1990 to 2019, there was
a staggering 70% increase in HCC incidence, resulting in 480,000 attributable deaths,
exacerbated by late diagnoses and advanced disease stages [1,5]. While early detection
leads to a five-year survival rate of over 70%, the rate plummets to a mere 18% in later
stages [4,6]. These trends highlight the necessity for research into surgical techniques,
pharmaceutical options, and prognostic factors to meet the challenge posed by HCC.

Unlike many other cancers, post-resection clinical outcomes of HCC patients do not
rely solely on tumor properties and success of its therapy. An important additional deter-
minant is the pathology and functional capacity of the residual liver tissue, underscoring
the need for comprehensive assessment of both tumor and non-tumor components [7].
This aspect was taken into account by the Barcelona Clinic Liver Cancer (BCLC) staging
and treatment strategy. BLCL points to the limitations of scoring systems for liver failure,
like the Child–Pugh system and the model for end-stage liver disease (MELD), which
fail to accurately predict the loss of liver function specifically in the context of HCC [8].
To address this, BCLC staging incorporates multiple parameters of tumor burden, liver
function, and cancer-related symptoms, as well as alpha-fetoprotein (AFP) levels and the
albumin–bilirubin score for liver function assessment [9].

Surgical liver resection provides samples containing HCC and liver parenchyma, as
well as their interface. This opens multiple opportunities of tissue pathology methods to
assess cellular, molecular, and architectural properties of the disease in the spatial context
of the tissue microenvironment. A particular aspect that unifies both tumor and non-tumor
tissues is represented by properties of the extracellular matrix (ECM), which has been
shown to provide rich and quantifiable data of clinical significance. Tumor associated
collagen signatures (TACS) have been conceptualized as computational biomarkers to
reflect changes in the organization, alignment, and composition of fibers in the stroma that
surround and interact with cancer cells [10]. Originally proposed and demonstrated to have
prognostic significance in breast cancer tissue by Keely et al., collagen-derived features
were subsequently refined and described in oral, gastric, salivary gland, skin neoplasms
and benign fibrous lesions [11–14]. On the other hand, microarchitectural transformations
of liver tissue represent progression of chronic liver disease.

At the molecular level, the ECM is represented by co-polymers comprising various
types of collagen, non-collagenous glycoproteins, proteoglycans, and other molecules.
These composite biological materials have distinct characteristics, and thus bear similarities
with metal alloys, as noted by Bruckner [15]. Arranged into fibrillary structures of the
interstitial matrix and the basement membrane—the main components of the ECM—they
provide a structural foundation for the liver parenchyma [10]. The molecular complexity
of ECM became evident in the 1970s with the discovery that normal liver tissue primarily
contains three types of collagen: Type I, Type III, and basement membrane collagens.
Type III collagen is the main constituent of reticulin fibers [16]. However, persistent liver
injury leads to significant alterations of the composition, orientation, and quantity of
all collagen types [17]. As fibrosis progresses, Type I collagen accumulates, eventually
becoming predominant in the cirrhotic liver [18]. Despite well-established association
between cirrhosis and hepatocarcinogenesis, the exact role of Type I collagen remains
unclear: some studies associate it with HCC progression [19], whereas others propose
that Type I collagen accumulation may have a beneficial effect by mechanically restraining
tumor spread [20]. Conversely, the role of Type III collagen is more established, given that
the progressive distortion and dissolution of reticulin framework are histopathological
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hallmarks of HCC [21]. Therefore, a comprehensive analysis of Type I and Type III (reticulin)
collagen properties could provide insights for clinical assessment of patients with HCC.

Currently, histochemical or immunohistochemical methods are used to highlight the
different types of collagen [22]. Assessment of the fiber microarchitecture can be performed
by visual inspection of the patterns; however, rapid development of computational methods
in digital pathology brings novel opportunities for high-capacity quantification of the
structural patterns [23]. It has been shown that AI solutions are capable of extracting
subvisual features with prognostic relevance from liver tissue [24]. Recently, Patil et al.
developed a deep learning model for quantifying reticulin (represented by black, silver-
impregnated fibers) in HCC tissue after liver resection [25]. They found that a decreased
reticulin proportionate area (RPA) was an independent predictor of metastasis, shorter
disease-free survival, and worse overall survival in this study. Similarly, Taylor-Weiner et al.
demonstrated the utility of a convolutional neural network (CNN) for Ishak and NASH
Clinical Research Network fibrosis scoring in trichrome-stained slides [26]. A recent study
suggests that liver pathologists are eager for further development of digital pathology and
AI integration [27].

Morkunas et al. proposed a more detailed method for extracting collagen-derived
prognostic features; they used a CNN to segment collagen from images of tissue microar-
rays (TMA) containing Picrosirius Red stained samples of ductal breast carcinoma [28].
From 37 features of fiber morphometry, density, orientation, texture, and fractal characteris-
tics, they found an independent prognostic value of observed heterogeneity of distances
between collagen fibers, fiber straightness, and variance of fiber orientation angles to pre-
dict patient survival, even though their method was limited to samples of small amount
of tumor tissue (TMA cores). On the other hand, full-face surgical resection samples con-
tain large amount of data that are also affected by intratissue heterogeneity, including the
malignant and non-malignant components and their interfaces. Therefore, it is essential to
properly assess the spatial aspects of pathology features extracted. To tackle this complexity,
Plancoulaine et al. proposed a hexagonal tiling approach that allowed quantification of in-
tratumoral heterogeneity of biomarker expression in breast cancer [29]. Building upon this
method, a tool for automatic detection of the tumor-stroma interface was further developed
by Rasmusson et al. [30].

In this study, we explored the predictive value of linear reticulin and thick septal
collagen fibers in both HCC and adjacent liver. Utilizing AI for fiber segmentation and
tissue classification, followed by hexagonal grid subsampling of the data, we extracted
fiber-specific features in the spatial context of the tissue components and their interfaces.
Our findings indicate the potential utility of these features to predict overall survival of
patients undergoing liver resection for HCC.

2. Materials and Methods
2.1. Study Design

An overview of the study design is presented in Figure 1. Archived formalin-fixed
paraffin-embedded (FFPE) samples from 105 patients were used in this retrospective study.
Patients met the following inclusion criteria: (1) they underwent surgical liver resection
due to HCC at the Vilnius University hospital Santaros Clinics (Vilnius, Lithuania) with the
specimens tested at the National Center of Pathology, an affiliate of the Vilnius University
Hospital Santaros Clinics (Vilnius, Lithuania) between 2007 and 2020; and (2) they had at
least one archived FFPE block containing both non-necrotic HCC and peritumoral liver
tissues. Overall survival (OS) data were obtained with a median OS duration of 938 days
and 60% of the individuals deceased as of 2022. The study was approved by the Vilnius
Regional Biomedical Research Ethics Committee (permit number 2021/6-1354-843), who
waived the requirement of individual informed consent.
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croarchitecture of the fibers within each hexagon; (I) data from individual hexagons are aggregated 
across predetermined tissue regions to provide case-level features for prognostic modeling. 

Clinicopathologic parameters were retrospectively collected from the medical rec-
ords and are presented in Table 1. Briefly, in this cohort of 105 individuals with a median 
age of 65 years, there is a predominance of male patients (77.1%) and grade 2 HCC (74.3%), 
while the extent of the primary tumor is mostly pT2 (56.2%) and pT1 (36.2%). 

Table 1. Patient and tumor characteristics of the study cohort. 

Characteristic Value (Range or Percent) 
Patients 105 (100%) 
Age, years  

Mean (range) 63.7 (13–82) 
Median 65 
≥55 years 88 (83.8) 

Gender  
Male 81 (77.1%) 
Female 24 (22.9%) 

Metavir fibrosis stage  
F0 (no fibrosis) 12 (11.4%) 
F1 (portal fibrosis without septa) 5 (4.8%) 
F2 (portal fibrosis with rare septa) 11 (10.4%) 
F3 (numerous septa without cirrhosis) 16 (15.3%) 
F4 (cirrhosis) 61 (58.1%) 

Largest tumor dimension, cm  

Figure 1. Study design: (A) surgical liver resection due to HCC at the Vilnius University hospital
Santaros Klinikos (Vilnius, Lithuania); (B) specimens tested at the National Center of Pathology
(Vilnius, Lithuania); (C) samples stained using a modified Gordon and Sweet’s silver impregnation
protocol, combined with Picric Acid–Sirius Red; (D) slides scanned at 20× magnification (0.5 µm per
pixel) using an Aperio® AT2 DX scanner; (E) tissue segmentation using HALO® AI on the manual
annotations; (F) epithelial edge detection and ranking of the hexagonal grid tiles according to tissue
class proportions; (G) segmentation of reticulin and collagen fibers using a pretrained convolutional
neural network, producing an image of red and green fibers against the black background for
viewing and analysis; (H) calculating pixel-level, fiber-level, and image-level features describing the
microarchitecture of the fibers within each hexagon; (I) data from individual hexagons are aggregated
across predetermined tissue regions to provide case-level features for prognostic modeling.

Clinicopathologic parameters were retrospectively collected from the medical records
and are presented in Table 1. Briefly, in this cohort of 105 individuals with a median age of
65 years, there is a predominance of male patients (77.1%) and grade 2 HCC (74.3%), while
the extent of the primary tumor is mostly pT2 (56.2%) and pT1 (36.2%).

Table 1. Patient and tumor characteristics of the study cohort.

Characteristic Value (Range or Percent)

Patients 105 (100%)
Age, years

Mean (range) 63.7 (13–82)
Median 65
≥55 years 88 (83.8)

Gender
Male 81 (77.1%)
Female 24 (22.9%)

Metavir fibrosis stage
F0 (no fibrosis) 12 (11.4%)
F1 (portal fibrosis without septa) 5 (4.8%)
F2 (portal fibrosis with rare septa) 11 (10.4%)
F3 (numerous septa without cirrhosis) 16 (15.3%)
F4 (cirrhosis) 61 (58.1%)

Largest tumor dimension, cm
Mean (range) 4.76 (0.8–19.0)
Median 40

Tumor multinodularity
Single HCC nodule 74 (70.5%)
Multiple HCC nodules 31 (29.5%)
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Table 1. Cont.

Characteristic Value (Range or Percent)

HCC grade
G1 8 (7.6%)
G2 78 (74.3%)
G3 19 (18.1%)

pT stage
T1 38 (36.2%)
T2 59 (56.2%)
T3 7 (6.7%)
T4 1 (0.9%)

Intravascular invasion
Present 52 (49.5%)
Absent 53 (50.5%)

Lymph nodes present
Yes 19 (18.1%)
No 86 (81.9%)
Lymph nodes per patient if present, mean

(median) 2.7 (2)

Metastatic spread confirmed 1/19 (5.3%)
Resection margin

R0 85 (80.9%)
R1 20 (19.1%)

History of viral infection
HBV 9 (8.6%)
HCV 52 (49.5%)
None or unknown 44 (41.9%)

Other treatment prior to current resection
Yes 13 (12.4%)
No 92 (87.6%)

HCC recurrence after resection
Yes 56 (53.3%)
No 49 (46.7%)

OS time, days
Mean (range) 1108.7 (20–3160)
Median 938

2.2. Sample Preparation and Segmentation

A pathologist (RS) reviewed all archived slides to identify the most representative
formalin-fixed paraffin-embedded (FFPE) block. The selected block includes non-necrotic
HCC tissue, and, whenever possible (in 103 samples, accounting for 98.1% of the cases), the
surrounding peritumoral liver parenchyma. The 3 µm sections were stained using a modi-
fied Gordon and Sweet’s silver impregnation protocol combined with Picric Acid–Sirius
Red, referred to as GSPS (see Figure 2E–H, supplementary Table S1). This method is stan-
dard for liver and bone marrow samples at the National Center of Pathology. Throughout
this paper, we define the red-staining fibers in the thick fibrous septae as ‘collagen’, and the
delicate black linear strands mostly located in the epithelial areas as ‘reticulin’.

All slides were subsequently digitized at 20× magnification (0.5 µm per pixel) using an
Aperio® AT2 DX scanner (Leica Aperio Technologies, Vista, CA, USA). A pathologist (RS)
reviewed the images to mark the malignant (HCC) and non-malignant (peritumoral liver)
areas on each slide by placing manual annotations (see Figure 3A,D). A HALO® AI (Indica
Labs, Albuquerque, NM, USA) classifier was used to categorize the tissue into hepatocytes
(indiscriminately malignant and non-malignant), stroma, and background classes.
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Figure 2. Staining and segmentation: (A–D) hematoxylin–eosin (H&E) staining is inferior to GSPS in
the frame of this study due to its limited capacity to highlight the fibrous structures, such as the tumor
capsule and septation of cirrhotic liver parenchyma; (E–H) a modified Gordon and Sweet’s silver
impregnation protocol combined with Picric Acid–Sirius Red (GSPS). The nodularity of the cirrhotic
liver and the encapsulation of the tumor are highlighted by red-stained bands of collagen (F); note the
regular black linear reticulin network of the liver (G) in contrast to the loss of reticulin in HCC (H);
(I–L) the CNN-generated pixel-precise mask of red (collagen) and green (reticulin) fibers set against a
contrasting black background, optimized for viewing and morphometric feature extraction.

2.3. CNN-Based Fiber Framework Extraction

We used a modified version of a U-Net model architecture proposed by Morkunas et al.
in 2021 [28] to analyze the images of GSPS-stained samples. The model was designed to
produce three output channels, representing collagen (red), reticulin (green), and an empty
channel (black). This produces an RGB image, which is easy to view and analyze (see
Figure 2I–L).

To produce the ground truth for model training, we selected 85 large (2048 × 2048 pixel-
sized) regions of interest (ROIs) in 31 whole slide images (WSIs). We manually annotated
fibrous structures of both collagen and reticulin in all ROIs by freeform annotation to
produce RGB annotation masks of the fibers. Each region of interest (ROI) and its cor-
responding mask was then partitioned into 256 × 256-pixel image patches to match the
model’s input size, resulting in a total of 5440 patches (N = 85 × (2048/256)2). To increase
the training set, we augmented the dataset with 90◦ rotations, vertical and horizontal
flips, blurring, zooming, and annotation erosion or dilation. Examples of annotated image
patches are shown in Supplementary Figure S1. The final augmented dataset contained
54,400 image patches. The dataset was randomly divided into an 80% training subset and a
20% validation subset for model training.
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Figure 3. Hexagonal tiling, ranking, and zones of interest: (A) HALO® AI (Indica Labs, Albuquerque,
NM, USA) classifier result on the manually placed HCC annotation; (B) ranking of the hexagonal
tiles according to their shortest distance from the tumor edge (rank 0 hexagon); (C) regions of interest
within the HCC annotation; (D) classifier result for the manually annotated non-malignant liver
parenchyma; (E) ranking of the hexagons on the sides of non-malignant epithelial edge; (F) regions of
interest within the peritumoral liver annotation.

During inference, the target WSI is divided into overlapping patches of size
256 × 256 pixels, with a step-size of 128 pixels in both vertical and horizontal directions on
the image plane. Pixels in both red and green layers of the predicted fiber mask undergo
separate thresholding processes. A pixel in the predicted collagen mask is assigned a
value of 1.0 if the probability of collagen detection in that pixel exceeds 0.5; otherwise, it is
assigned a value of 0.0. No rules were implemented to prevent a single target pixel from
being attributed to more than one output layer. This lack of constraint allows for model
uncertainty, manifesting as yellow pixels in the predicted RGB images where red and green
fibers overlap, despite the absence of overlapping red and green fiber annotations in the
ground truth.

The model was trained with adaptive moment estimation optimizer (using default
parameters provided in the original method [31]) minimizing the binary cross-entropy loss
function. We trained the model on single patch batches. Model weights were saved after
each improvement in validation loss. The training phase was terminated after validation
loss did not improve for 20 consecutive epochs. We used a suite of software tools including
h5py (2013, Collete A., Boulder, CO, USA), numpy (version 1.20.0), and tensorflow with
tensorboard (version 2.7.0).

2.4. Hexagonal Grid Tiling

Grid subsampling was utilized to sample the whole slide images (WSI) into hexagonal
tiles (in this study having a long diagonal of 780 pixels) and rank them according to the
distance to the automatically detected edge between the epithelium and stroma tissue
classes, as described previously [30], see Figure 3. The tiling offers a number of advantages
over processing the entire slide at once, with two of them being crucial. First, tiles allow
a localized analysis of the tumor features, thus helping us identify the gradual changes
and heterogeneity within different regions of the tissue, which might be overlooked in a
whole-image analysis. Secondly, the spatially ranked tiles enable the extraction of specific
regions of interest within the tumor, thereby providing more targeted insights. Briefly,
during the ranking step, the hexagons at the stroma–epithelium (either benign hepatocytes
or neoplastic HCC cells) boundary are identified and assigned a rank 0. Subsequently, the
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epithelial-side hexagons are attributed a positive rank, and stromal hexagons a negative
rank, according to their shortest distance from the edge (rank 0 hexagon).

2.5. Calculation of Fiber Texture Descriptors

Morkunas et al. [28] originally proposed a set of 37 pixel-level, fiber-level, and image-
level features to describe the CNN-derived fibrous matrix of breast cancer tissue. Drawing
on past experience, we have reduced the number of features by removing the ones that were
previously found to be the most correlated, dependent upon tissue placement on the glass
slide, or difficult to interpret. In this study, for each tissue type marked by a pathologist,
we calculated 11 features (see Table 2) including fiber orientation, morphometrics, fractal
characteristics, and Haralick’s texture descriptors. Since these features are calculated
per channel, separate descriptor sets were obtained for the green (reticulin) and the red
(collagen) fibers, and the final number of calculated tissue characteristics is 22. Features
were extracted for each hexagon, thus enabling analysis of fiber features according to
hexagonal rank.

Table 2. List of features used to characterize the fibrous matrix, calculated twice per each hexagon:
for the green (reticulin or Type 3 collagen) and the red (Type 1 collagen) fibers separately.

Feature Description

Orientation:
Circular standard deviation (CSD) Dispersion of circular angles of the individual fibers
Magnitude, mean (mMag) Average strength or intensity of vectors (e.g., gradients) in the fiber mask

Morphometry:
Fiber length, mean (mFL) Average Euclidean distance between the endpoints of each skeletonized fiber
Fiber path, mean (mFP) Average pixel length of a line dividing a fiber into two equal parts along its longer axis
Fiber straightness, mean (mFS) A ratio of fiber length over fiber path

Density:
Fiber density (FD) Number of pixels in the mask
Endpoints (nENDP) Number of fiber endpoints in the hexagon mask

Texture (Haralick’s):

Homogeneity (hom) The closeness of the distribution of elements in the gray-level co-occurrence matrix to
the matrix diagonal

Entropy (ent) Amount of information or randomness in the texture
Correlation (cor) Linear dependency of gray levels on those of neighboring pixels
Fractal:

Lacunarity (lac) A measure of both gaps and heterogeneity: the variation in space around objects in the
image and their irregular distribution

2.6. Statistical Analysis

The main goal of this study was to determine the impact of reticulin and collagen
patterns in the tumor microenvironment on overall survival. Both the HCC and the peritu-
moral liver areas (as determined by a pathologist’s annotation), were further subdivided
into three regions of interest each (see Figure 3): the three hexagon-wide ‘interface zone’
(IZ3), consisting of ranks [−1, 0, 1]; the epithelial ‘core’, incorporating ranks [≥2]; and the
‘stroma’, with the remaining ranks [≤(−2)]. For survival analysis, the data from individual
hexagons across each of the six regions had to be aggregated on a per-case basis. During
this aggregation, the mean and standard deviation of every feature measurement (across
all hexagons, in each region of interest) are calculated for every case. The compiled case-
level dataset contains 264 potential fiber-derived predictors, representing 2 annotations
× 3 regions per annotation × 2 summary metrics (mean and standard deviation) × 2 types
of fibers (green and red) × 11 fiber features. Twelve clinicopathological variables such as
patient age, gender, tumor grade, size, stage, intravascular invasion, etc. were added to
the set.

The data were analyzed using SAS software (version 9.4; SAS Institute Inc., Cary, NC,
USA) and Python libraries (Pandas version 1.3.4, Scikit-learn version 1.0.2 and Lifelines
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version 0.27.0). Descriptive statistics were computed to summarize the main features of the
data, with means, medians and ranges reported for continuous variables, and frequencies
and percentages for categorical variables. Min–max scaling (or min–max normalization)
was used to transform the metrics of the features to be on a similar scale in a fixed range
between 0 and 1. Univariate Cox regression analysis with LASSO (least absolute shrinkage
and selection operator) regularization was used to assess the performance of individual
variables. Features with a p < 0.1 were used to construct the survival prediction models
that underwent further evaluation using multivariate LASSO Cox analysis. After running
LASSO Cox regression, only the models where all variables had p < 0.05 were retained.
The C-index on the five-fold cross-validation test set was used to measure performance
and rank the models accordingly. The individual features included in these models were
ranked based on the frequency of their combined occurrence across all the models. Given
the extensive list of significant predictors, we used the factor analysis as an additional step
to identify underlying relationships among the variables, aiding interpretation.

3. Results
3.1. Descriptive Statistics

A total of 162,435 hexagonal tiles comprised the complete hexagon-level dataset. The
range of measurements of reticulin and collagen fiber features in the individual hexagons
prior to min–max scaling is presented in Table 3.

Table 3. Range of the reticulin (green, prefix ‘g_’) and collagen (red, prefix ‘r_’) fiber features as
measured per individual hexagonal tiles prior to scaling.

Feature Min Max Mean Median

g_CSD 0.327599 1.551254 0.874630 0.872546
g_mMag 2.731371 25,599.785804 7410.622809 6869.993232
g_mFL 0.000000 1059.079906 61.729315 52.348669
g_mFP 2.500000 1246.933333 90.089874 78.200000
g_mFS 0.000000 0.956133 0.497333 0.507360
g_FD 1.000000 151,375.000000 34,755.695386 30,771.000000
g_nENDP 0.000000 1394.000000 322.604360 312.000000
g_hom 0.947687 0.999997 0.984834 0.985913
g_ent 0.000068 1.092885 0.380083 0.378187
g_cor −0.000008 0.944431 0.843028 0.851353
g_lac 0.000000 1.206979 0.589991 0.579632
r_CSD 0.282147 1.583950 0.842409 0.824565
r_mMag 2.630596 34,292.920449 6742.703072 3761.257993
r_mFL 0.000000 28,507.246022 132.393359 51.126263
r_mFP 2.500000 14,861.500000 133.552675 72.366667
r_mFS 0.000000 3.478550 0.470136 0.482461
r_FD 1.000000 386,398.000000 45,713.265522 19,491.000000
r_nENDP 0.000000 2221.000000 360.981139 206.000000
r_hom 0.929537 0.999998 0.986157 0.992241
r_ent 0.000044 1.315616 0.380543 0.259431
r_cor −0.000008 0.988216 0.839329 0.858877
r_lac 0.000000 1.295812 0.594719 0.602250

3.2. Univariate Predictors of Overall Survival

After scaling to standardize feature metrics, the impact of individual variables on
the overall survival (OS) was evaluated using univariate Cox regression with LASSO
regularization. Fifteen variables were determined to be statistically significant univariate
predictors of OS. Higher stage (pT2-4, p = 0.0026), older patient age at the time of diagnosis
(≥55 years, p = 0.0074), and the presence of intravascular invasion (p = 0.0089) were the
strongest predictors of shorter OS in this cohort. Twelve fiber-derived features, all derived
from the HCC ‘interface zone’ or ‘core’ regions, had p < 0.05, while showing either a positive
or negative effect on OS. For a more inclusive approach, allowing for a comprehensive
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assessment in the subsequent multivariate Cox regression analysis, 36 features with p < 0.1
were selected for further modelling (see Table 4). The expanded list included multiple
tumor nodules in the resected liver, alongside the addition of fiber-derived features from
the peritumoral stroma, and the non-neoplastic liver parenchyma.

Table 4. Univariate predictors of overall survival ranked by the p-value (Cox regression with
LASSO regularization).

Feature p-Value Hazard Ratio (HR)

Stage pT2-4 0.0026 2.3719
Age ≥ 55 years 0.0074 3.1990
Intravascular invasion 0.0089 1.9564
g_mn_mFL_HCC_IZ3 0.0095 0.0897
g_mn_mFP_HCC_IZ3 0.0095 0.1078
g_mn_cor_HCC_IZ3 0.0199 0.1114
g_sd_mFL_HCC_IZ3 0.0285 0.2203
g_mn_ent_HCC_IZ3 0.0294 0.2987
g_mn_FD_HCC_IZ3 0.0340 0.3049
g_mn_lac_HCC_IZ3 0.0343 4.1651
g_mn_mMag_HCC_IZ3 0.0356 0.3049
g_mn_hom_HCC_IZ3 0.0361 3.2656
g_mn_cor_HCC_CORE 0.0394 0.1385
g_sd_mFP_HCC_IZ3 0.0397 0.2500
g_mn_cor_HCC_STROMA 0.0482 0.1466
g_mn_mFS_HCC_IZ3 0.0514 0.1900
r_sd_mFS_LVR_IZ3 0.0532 0.0417
g_mn_nENDP_HCC_IZ3 0.0553 0.3200
g_mn_ent_HCC_CORE 0.0589 0.3644
g_sd_FD_HCC_STROMA 0.0595 0.3406
g_mn_mFP_HCC_STROMA 0.0702 0.1600
Multiple tumors 0.0717 1.6175
g_sd_mFS_HCC_STROMA 0.0733 2.6564
r_sd_FD_LVR_IZ3 0.0745 0.2762
g_mn_mFL_HCC_STROMA 0.0784 0.1616
r_mn_cor_LVR_IZ3 0.0858 0.2579
g_mn_FD_HCC_CORE 0.0865 0.3792
g_sd_mFS_HCC_IZ3 0.0902 3.0509
r_mn_mFS_HCC_IZ3 0.0935 4.2304
g_sd_ent_HCC_STROMA 0.0941 0.3704
g_sd_mMag_HCC_STROMA 0.0954 0.3911
g_sd_hom_HCC_STROMA 0.0963 0.3912
g_mn_hom_HCC_CORE 0.0986 2.5157
g_mn_mMag_HCC_CORE 0.0988 0.3972
g_mn_ent_HCC_STROMA 0.0995 0.2707
g_sd_lac_HCC_CORE 0.0995 3.1310

3.3. Multivariate Analysis

In adherence with the ‘rule of ten’ guideline, which suggests at least 10 events per vari-
able in constructing a regression model, and given the presence of 56 events in our dataset,
we systematically generated and listed all the possible regression models (N = 2,835,199)
containing 1, 2, 3, 4, 5 or 6 components from the previously defined set of features. After ap-
plying LASSO Cox regression, only those models (N = 139) in which all variables exhibited
a p-value of less than 0.05 were retained (the complete list is presented in the Supplementary
Table S2). The concordance index (C-index) on a five-fold cross-validation test set was
chosen as the metric of performance, and the models were ranked accordingly. A C-index
above 0.7 indicates good discriminative ability, and two similar models in our study have
shown values above this threshold (see Table 5). Both models include a demographic vari-
able (patient age), a pathological parameter (HCC multifocality), a reticulin-derived feature
at the tumor edge, and the collagen-derived feature at the epithelial edge of peritumoral
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liver. The Kaplan–Meier OS plots (the cutoff values for groups here are the median values)
for the individual components of these two models are presented in Figure 4.

Table 5. Cox regression models with a C-index above 0.7.

Features HR 95% CI p-Value

Model A, test set C-index 0.7094, AIC 359.3840
Age ≥ 55 years 4.05 1.67–9.80 0.00194
Multiple_tumors 1.92 1.11–3.31 0.01895
g_mn_lac_HCC_IZ3 6.36 1.69–23.87 0.00615
r_mn_cor_LVR_IZ3 0.21 0.05–0.92 0.03802

Model B, test set C-index 0.7061, AIC 359.2425
Age ≥ 55 years 4.33 1.73–10.81 0.0017
Multiple_tumors 2.24 1.30–3.83 0.0035
g_mn_lac_HCC_IZ3 5.58 1.48–21.06 0.0113
r_sd_mFS_LVR_IZ3 0.02 0.00–0.84 0.0396

The models in which every component had a p-value less than 0.05, were further
analyzed by counting the number of times each variable appeared. Of the 139 models
considered, all were composed of just 30 unique components in different combinations. The
variables (features) were ranked based on the number of occurrences, and are presented in
Table 6.

Table 6. List of the variables comprising statistically significant (p < 0.05) OS models ranked by the
number of occurrences in the models.

Feature Number of Occurrences

Age_55plus 57
r_mn_cor_LVR_IZ3 39
r_sd_mFS_LVR_IZ3 28
LVI 27
r_sd_FD_LVR_IZ3 23
Multiple_tumors 23
g_mn_lac_HCC_IZ3 16
g_sd_lac_HCC_CORE 13
pT2-3 12
g_mn_cor_HCC_IZ3 11
g_mn_mMag_HCC_IZ3 10
g_mn_hom_HCC_IZ3 10
g_mn_ent_HCC_IZ3 8
g_mn_FD_HCC_IZ3 7
g_mn_cor_HCC_STROMA 7
g_mn_mFL_HCC_IZ3 7
g_mn_ent_HCC_CORE 6
g_mn_mFP_HCC_IZ3 6
g_mn_hom_HCC_CORE 6
g_mn_mMag_HCC_CORE 6
g_mn_nENDP_HCC_IZ3 6
g_sd_mFS_HCC_STROMA 5
g_sd_mFL_HCC_IZ3 3
g_mn_mFS_HCC_IZ3 2
g_mn_FD_HCC_CORE 2
r_mn_mFS_HCC_IZ3 2
g_mn_cor_HCC_CORE 2
g_sd_mFP_HCC_IZ3 2
g_sd_mMag_HCC_STROMA 1
g_sd_hom_HCC_STROMA 1
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3.4. Factor Analysis

We have further applied a factor analysis to investigate the underlying relationships
of the fiber-derived features (N = 26) after removing the conventional clinicopathologic
variables from the list of significant predictors. Six factors explaining 85.12% of the variance
in the data were kept, using an eigenvalue of 1 as the criterion. Orthogonal varimax rotation
was used to maximize the variance of the loadings within factors (the results are presented
in Figure 5).
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Factor 1 explains 53.73% of data variance and is characterized by the irregularity of
reticulin fibers within the tumor–stroma interface and, to the lesser extent, the tumor core.
Factor 1 has high loadings for variables like density, entropy, magnitude, and the number
of endpoints of the reticulin fibers. Conversely, it displays negative loadings for parameters
such as lacunarity and homogeneity. Factor 2 covers 11.08% of variance and highlights
the heterogeneity of the reticulin fiber measurements, also within the same tumor–stroma
interface. It is primarily influenced by variables corresponding to reticulin fiber length
and fiber path, with emphasis on both mean values and standard deviations (SD) at the
tumor edge. Factor 3 (6.56% of variance) captures the irregularity of the collagen network
within the peritumoral liver–stroma interface, representing fibrosis around the functioning
hepatocytes. It is mostly associated with the standard deviation of red pixel density per
hexagon, and mean texture correlation of the collagen fibers.

Each of the other three factors covers less than 5% of the data variance. Factor 4
represents the heterogeneity of reticulin fibers in the peritumoral stroma, particularly in
the standard deviation of homogeneity and magnitude. The pronounced straightness of
reticulin fibers in the tumor–stroma interface forms the most of Factor 5. Lastly, Factor 6
emphasizes the correlation of reticulin fibers in all of the HCC tissue, represented by both
the tumor–stroma interface, and the tumor core.
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The first five factors exhibited cutoff values that divided the cohort into groups with
statistically significant differences in overall survival duration, as indicated by a p-value of
less than 0.05 in univariate analysis. However, after applying the LASSO Cox regression,
none of these factors were found to be significant in the models, and therefore, they did not
outperform the individual features.

4. Discussion

This study demonstrates the prognostic value of convolutional neural network-based
mapping of reticulin and collagen fiber architecture in the HCC microenvironment. The
integration of computational features describing the reticulin and collagen texture with the
clinical parameters resulted in two multivariate overall survival models with a test cohort
C-index > 0.7 after penalized LASSO Cox regression. Both models reveal the independent
prognostic impact of patient age, tumor multifocality and fiber-derived features at the
interfaces of HCC and the remaining functional hepatocytes with the surrounding stroma.
Also, the reticulin structure provided the prognostic value at the tumor edge, while at the
border of liver parenchyma, the collagen structure was relevant. Meanwhile, none of the
models consisting of conventional clinicopathologic metrics only were able to surpass the
0.7 C-index threshold.

We have discovered that among the HCC-derived features in our cohort, the mean
lacunarity of the reticulin framework at the tumor margin was the best-performing metric.
Following closely, as indicated by its recurrent appearances in the models (Table 6), is the
variance (SD) of the reticulin lacunarity at the core of the tumor. This observation aligns
with the established significance of reticulin which is a key element in the structure of a
normal liver, providing the framework of its lobular architecture. The alteration, disruption
or dissipation of reticulin fibers is a well-documented diagnostic sign of HCC, first reported
nearly 50 years ago [32]. Lacunarity is a fractal parameter that captures both gaps (Lat.
lacuna) and heterogeneity in a pattern. In the context of our study, higher lacunarity would
suggest the reduction and distortion of the reticulin framework, possibly indicating a
more aggressive tumor phenotype. The high variance of lacunarity at the central part
of the tumor—the core—might suggest the existence of areas with different degrees of
aggressiveness. This insight finds parallels with a recent study by Patil A. et al., which
confirmed a reduction in the AI-identified reticulin proportionate area (RPA) in HCC as a
strong predictor of adverse patient outcomes [25]. However, our work revealed a potential
superiority of spatial variations in the reticulin framework, as captured by lacunarity. The
underperformance of the mean fiber density (FD, derived from the number of pixels in
the mask and comparable to RPA) in our study, in contrast to lacunarity, suggests that the
spatial heterogeneity in reticulin arrangement may provide more insight than merely the
proportion of reticulin in the HCC tissue.

In cancer diagnostics, the non-neoplastic component of the tissue often receives some-
what lesser attention. However, our findings also underscore the independent prognostic
significance of the peritumoral liver parenchyma. The extent of fibrosis, a well-documented
predictor of chronic liver disease outcomes, can be assessed using a variety of invasive or
non-invasive methods [33,34]. We have demonstrated that collagen in the peritumoral liver
serves as a significant source of prognostic information, in contrast to the role of reticulin
in HCC, as previously discussed. This aligns with the known role of Type I collagen as
the primary component of fibrous tissue that accumulates during persistent liver damage.
In our study, two features associated with peritumoral liver collagen were included in
the most predictive models of overall survival (Table 5): the mean texture correlation of
collagen fibers, and the high variance of collagen fiber straightness. Additionally, the
high variance in fiber density emerged as the third collagen-derived feature, listed among
the ten most recurrent components in the prognostic models (Table 6). Importantly, all
these indicators were measured at the interface between remaining functional hepatocytes
and the fibrous tissue (hexagon ranks −1, 0, 1). The standard deviation of individual
measurements serves as an indicator of variability or heterogeneity between hexagons.
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In this case, it can highlight regions of dense, compact fibrosis in contrast to areas of the
liver that remain somewhat intact, characterized by sparsely deposited and less organized
collagen fibers. On the other hand, a more consistent overall tissue structure (reflected
by the high mean correlation), might indicate a less advanced liver disease with higher
residual functional capacity. Combined, the high variability of collagen deposition in the
individual hexagons and the maintenance of general parenchymal integrity might indicate
the presence of ongoing successful tissue repair. As sufficient residual liver function is
crucial for the survival of patients [35], its assessment alongside tumor parameters on the
same tissue slide offers a streamlined and practical approach in HCC resection samples.

A factor analysis was used to investigate the inherent relations between the 26 fiber-
derived features that, when combined in certain ways (see Supplementary Table S2),
showed statistically significant predictive power (p < 0.05) in regression models. Six factors
were identified, capturing the majority of the information in the original data. The heatmap
in Figure 5 highlights the strong negative association between the mean reticulin lacunarity
at the tumor edge (g_mn_lac_HCC_IZ3) and the dominant Factor 1, positioning it as a key
determinant. Notably, this variable also exhibits the most negative loadings for both Fac-
tor 2 and Factor 5, and ranks second to last in terms of negative loadings for Factor 4. These
consistent negative loadings across four of the six factors suggest that g_mn_lac_HCC_IZ3
captures multidimensional information about the reticulin framework at the tumor edge,
making it the most prominent HCC-derived feature. Furthermore, the predominant fea-
tures defining peritumoral liver-derived Factor 3 reflect the consistency in collagen fiber
orientation (r_mn_cor_LVR_IZ3), variability in density (r_sd_FD_LVR_IZ3), and variability
in fiber straightness (r_sd_mFS_LVR_IZ3). Consequently, the pairing of a tumor-based
g_mn_lac_HCC_IZ3 indicator with either r_mn_cor_LVR_IZ3 or r_sd_mFS_LVR_IZ3, both
liver-based features, collectively covers Factors 1–5, which represent 81.04% of the variance.
This unique combination demonstrates remarkable performance in Cox regression models
and outperforms the factor values, emphasizing the synergistic role of tumor and liver
characteristics in HCC prognostication.

Our study contains some limitations. The lack of complete data on HBV and HCV
infections restricts a thorough examination of their potential impact on the overall survival
in our HCC patients. Secondly, the lack of the information on the cause of death limits our
options for predicting disease-specific survival, which would be relevant for our focus on
impact of malignant and non-malignant components. Thirdly, the cohort of 105 patients is
rather limited and serves as a proof-of-concept study. Validation studies on independent
cohorts would be needed to assess generalizability of our findings.

5. Conclusions

We have focused on using a convolutional neural network to segment the two types
of fibers from the histopathology images containing HCC and the adjacent liver tissue,
which were then used to calculate the predictive biomarkers of overall survival. These
biomarkers are based on the structure of reticulin and collagen fibers both in the tumor
microenvironment and the adjacent residual non-neoplastic liver tissue. We underscore
the critical importance of precise tissue zoning due to the concentration of prognostic
information at the edges of both benign and malignant epithelial tissue. The dual-type
fiber extraction method allowed us to confirm the central role of reticulin in HCC, while
collagen emerged as a more predictive component in the peritumoral liver. Moreover, our
findings show that fiber-derived features provide independent prognostic value, augment-
ing conventional clinicopathologic parameters such as patient age, tumor multifocality,
intravascular invasion, and pT stage.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers16010106/s1, Table S1: GSPS staining protocol; Table S2:
Models (N = 139) in which all variables exhibited a p-value of less than 0.05; Figure S1: Applied
augmentations: rotation, flipping, blurring, zooming, and different amounts of annotation erosion
and dilation applied to one image patch.

https://www.mdpi.com/article/10.3390/cancers16010106/s1
https://www.mdpi.com/article/10.3390/cancers16010106/s1


Cancers 2024, 16, 106 16 of 18

Author Contributions: Conceptualization, R.S., M.M., A.R., K.S. and A.L.; methodology, R.S., M.M.,
A.R., J.D. and A.L.; software, R.S., M.M., A.R. and R.A.; validation, J.D.; formal analysis, R.S., J.D.
and R.A.; investigation, R.S., A.G. and M.M.; resources, R.S., A.G. and K.S.; data curation, R.S. and
J.D.; writing—original draft preparation, R.S.; writing—review and editing, A.L., A.R., M.M., J.D.,
R.A., A.G. and K.S.; visualization, R.S. and M.M.; supervision, A.L.; project administration, R.S.;
funding acquisition, A.L. and R.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was in part funded by the European Social Fund resources allocated to the
project “Development of Doctoral Studies ” implemented by the Research Council of Lithuania,
project No. 09.3.3-ESFA-V-711-01-0001, under the specific objective to “Strengthen the Skills and
Capacities of Public Sector Researchers for Engaging in High Level R & D Activities” of Priority
Axis 9, “Educating the Society and Strengthening the Potential of Human Resources”, within the
framework of the Operational Program for the European Union Funds’ Investments in 2014–2020.

Institutional Review Board Statement: The Lithuanian Bioethics Committee approved (permit
number 2021/6-1354-843, issued 29 June 2021) the study design.

Informed Consent Statement: Patient consent was waived by the Vilnius Regional Biomedical
Research Ethics Committee according to the International Ethical Guidelines for Health-related
Research Involving Humans [36].

Data Availability Statement: The datasets generated during the study are not publicly available due
to permit restrictions. However, they can be made available for collaborative work upon reasonable
request, subject to the approval of our team regarding the intended use of the data. Interested parties
should reach out with specific collaboration proposals for consideration.

Acknowledgments: The authors would like to thank their colleagues from the National Center of
Pathology for their diagnostic work on the cases and the production of required material, IT support,
and significantly contributions to other technical tasks that enabled the publication of these results.
We would like to extend our gratitude to the entire team at the Center of Abdominal Surgery, Vilnius
University Hospital Santaros Klinikos, for their work with HCC patients. Their efforts are central to
our research and our main goal: better patient care. Finally, we would like to thank Vilnius University
for their continuous commitment to advancing scientific research, and for providing the necessary
foundation and support for our initiatives.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Toh, M.R.; Wong, E.Y.T.; Wong, S.H.; Ng, A.W.T.; Loo, L.H.; Chow, P.K.H.; Ngeow, J. Global Epidemiology and Genetics of

Hepatocellular Carcinoma. Gastroenterology 2023, 164, 766–782. [CrossRef] [PubMed]
2. Eswaran, S.L.; Reau, N.S. Hepatocellular Carcinoma: 5 Things to Know. Available online: https://www.medscape.com/

viewarticle/925146?form=fpf (accessed on 15 September 2023).
3. Chrysavgis, L.; Giannakodimos, I.; Diamantopoulou, P.; Cholongitas, E. Non-alcoholic fatty liver disease and hepatocellular

carcinoma: Clinical challenges of an intriguing link. World J. Gastroenterol. 2022, 28, 310–331. [CrossRef] [PubMed]
4. Vogel, A.; Meyer, T.; Sapisochin, G.; Salem, R.; Saborowski, A. Hepatocellular carcinoma. Lancet 2022, 400, 1345–1362. [CrossRef]

[PubMed]
5. Younossi, Z.M.; Wong, G.; Anstee, Q.M.; Henry, L. The Global Burden of Liver Disease. Clin. Gastroenterol. Hepatol. 2023, 21,

1978–1991. [CrossRef] [PubMed]
6. Calderon-Martinez, E.; Landazuri-Navas, S.; Vilchez, E.; Cantu-Hernandez, R.; Mosquera-Moscoso, J.; Encalada, S.; Zevallos-

Delgado, C.; Cinicola, J. Prognostic Scores and Survival Rates by Etiology of Hepatocellular Carcinoma: A Review. J. Clin. Med.
Res. 2023, 15, 200–207. [CrossRef] [PubMed]

7. Eilard, M.S.; Naredi, P.; Helmersson, M.; Hemmingsson, O.; Isaksson, B.; Lindell, G.; Sandström, P.; Strömberg, C.; Rizell, M.
Survival and prognostic factors after transplantation, resection and ablation in a national cohort of early hepatocellular carcinoma.
HPB 2021, 23, 394–403. [CrossRef] [PubMed]

8. Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.;
Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76,
681–693. [CrossRef]

9. Mauro, E.; Forner, A. Barcelona Clinic Liver Cancer 2022 update: Linking prognosis prediction and evidence-based treatment
recommendation with multidisciplinary clinical decision-making. Liver Int. 2022, 42, 488–491. [CrossRef]

https://doi.org/10.1053/j.gastro.2023.01.033
https://www.ncbi.nlm.nih.gov/pubmed/36738977
https://www.medscape.com/viewarticle/925146?form=fpf
https://www.medscape.com/viewarticle/925146?form=fpf
https://doi.org/10.3748/wjg.v28.i3.310
https://www.ncbi.nlm.nih.gov/pubmed/35110952
https://doi.org/10.1016/S0140-6736(22)01200-4
https://www.ncbi.nlm.nih.gov/pubmed/36084663
https://doi.org/10.1016/j.cgh.2023.04.015
https://www.ncbi.nlm.nih.gov/pubmed/37121527
https://doi.org/10.14740/jocmr4902
https://www.ncbi.nlm.nih.gov/pubmed/37187717
https://doi.org/10.1016/j.hpb.2020.07.010
https://www.ncbi.nlm.nih.gov/pubmed/32792306
https://doi.org/10.1016/j.jhep.2021.11.018
https://doi.org/10.1111/liv.15180


Cancers 2024, 16, 106 17 of 18

10. Karsdal, M.A.; Daniels, S.J.; Holm Nielsen, S.; Bager, C.; Rasmussen, D.G.K.; Loomba, R.; Surabattula, R.; Villesen, I.F.; Luo, Y.;
Shevell, D.; et al. Collagen biology and non-invasive biomarkers of liver fibrosis. Liver Int. 2020, 40, 736–750. [CrossRef]

11. Chen, D.; Liu, Z.; Liu, W.; Fu, M.; Jiang, W.; Xu, S.; Wang, G.; Chen, F.; Lu, J.; Chen, H.; et al. Predicting postoperative peritoneal
metastasis in gastric cancer with serosal invasion using a collagen nomogram. Nat. Commun. 2021, 12, 179. [CrossRef]

12. Brett, E.A.; Sauter, M.A.; Machens, H.G.; Duscher, D. Tumor-associated collagen signatures: Pushing tumor boundaries. Cancer
Metab. 2020, 8, 4. [CrossRef] [PubMed]

13. Pavithra, V.; Sowmya, S.V.; Rao, R.S.; Patil, S.; Augustine, D.; Haragannavar, V.C.; Nambiar, S. Tumor-associated collagen
signatures: An insight. World J. Dent. 2017, 8, 224–230. [CrossRef]

14. Xi, G.; Guo, W.; Kang, D.; Ma, J.; Fu, F.; Qiu, L.; Zheng, L.; He, J.; Fang, N.; Chen, J.; et al. Large-scale tumor-associated collagen
signatures identify high-risk breast cancer patients. Theranostics 2021, 11, 3229–3243. [CrossRef] [PubMed]

15. Bruckner, P. Suprastructures of extracellular matrices: Paradigms of functions controlled by aggregates rather than molecules.
Cell Tissue Res. 2010, 339, 7–18. [CrossRef] [PubMed]

16. Rojkind, M.; Giambrone, M.A.; Biempica, L. Collagen Types in Normal and Cirrhotic Liver. Gastroenterology 1979, 76, 710–719.
[CrossRef] [PubMed]

17. Karsdal, M.A.; Nielsen, S.H.; Leeming, D.J.; Langholm, L.L.; Nielsen, M.J.; Manon-Jensen, T.; Siebuhr, A.; Gudmann, N.S.;
Rønnow, S.; Sand, J.M.; et al. The good and the bad collagens of fibrosis—Their role in signaling and organ function. Adv. Drug
Deliv. Rev. 2017, 121, 43–56. [CrossRef] [PubMed]

18. Abrutyn, S.; Mueller, A.S. The role of CAFs and fibrosis in liver cancer. Annu. Rev. Pathol. 2015, 79, 211–227.
19. Zhang, R.; Ma, M.; Lin, X.H.; Liu, H.H.; Chen, J.; Chen, J.; Gao, D.M.; Cui, J.F.; Ren, Z.G.; Chen, R.X. Extracellular matrix collagen

i promotes the tumor progression of residual hepatocellular carcinoma after heat treatment. BMC Cancer 2018, 18, 901. [CrossRef]
20. Bhattacharjee, S.; Hamberger, F.; Ravichandra, A.; Miller, M.; Nair, A.; Affo, S.; Filliol, A.; Chin, L.; Savage, T.M.; Yin, D.; et al.

Tumor restriction by type I collagen opposes tumor-promoting effects of cancer-associated fibroblasts. J. Clin. Investig. 2021,
131, e146987. [CrossRef]

21. Burt, A.D.; Portmann, B.; Ferrell, L.D. MacSween’s Pathology of the Liver, 6th ed.; Churchill Livingstone/Elsevier: Edinburgh,
Scotland, 2012; 784p.

22. Hall, A.; Cotoi, C.; Luong, T.V.; Watkins, J.; Bhathal, P.; Quaglia, A. Collagen and elastic fibres in acute and chronic liver injury. Sci.
Rep. 2021, 11, 14569. [CrossRef]

23. Allaume, P.; Turlin, B.; Bardou-Jacquet, E.; Lor, O.; Calderaro, J.; Khene, Z.e.; Acosta, O.; De Crevoisier, R.; Rioux-Leclercq, N.;
Pecot, T. Artificial Intelligence-Based Opportunities in Liver Pathology—A Systematic Review. Diagnostics 2023, 13, 1799.
[CrossRef]

24. Burt, A.D. Augmented liver pathology: Artificial intelligence and the assessment of hepatocellular neoplasms. Histopathology
2023, 83, 509–511. [CrossRef] [PubMed]

25. Patil, A.; Salvatori, R.; Smith, L.; Jenkins, S.M.; Cannon, A.; Hartley, C.P.; Graham, R.P.; Moreira, R.K. Artificial intelligence-based
reticulin proportionate area—A novel histological outcome predictor in hepatocellular carcinoma. Histopathology 2023, 83, 512–525.
[CrossRef] [PubMed]

26. Taylor-Weiner, A.; Pokkalla, H.; Han, L.; Jia, C.; Huss, R.; Chung, C.; Elliott, H.; Glass, B.; Pethia, K.; Carrasco-Zevallos, O.; et al. A
Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH. Hepatology
2021, 74, 133–147. [CrossRef] [PubMed]

27. McGenity, C.; Randell, R.; Bellamy, C.; Burt, A.; Cratchley, A.; Goldin, R.; Hubscher, S.G.; Neil, D.A.; Quaglia, A.; Tiniakos, D.; et al.
Survey of liver pathologists to assess attitudes towards digital pathology and artificial intelligence. J. Clin. Pathol. 2023, 77, 27–33.
[CrossRef] [PubMed]

28. Morkunas, M.; Zilenaite, D.; Laurinaviciene, A.; Treigys, P.; Laurinavicius, A. Tumor collagen framework from bright-field
histology images predicts overall survival of breast carcinoma patients. Sci. Rep. 2021, 11, 15474. [CrossRef] [PubMed]

29. Plancoulaine, B.; Laurinaviciene, A.; Herlin, P.; Besusparis, J.; Meskauskas, R.; Baltrusaityte, I.; Iqbal, Y.; Laurinavicius, A. A
methodology for comprehensive breast cancer Ki67 labeling index with intra-tumor heterogeneity appraisal based on hexagonal
tiling of digital image analysis data. Virchows Arch. 2015, 467, 711–722. [CrossRef]

30. Rasmusson, A.; Zilenaite, D.; Nestarenkaite, A.; Augulis, R.; Laurinaviciene, A.; Ostapenko, V.; Poskus, T.; Laurinavicius, A.
Immunogradient Indicators for Antitumor Response Assessment by Automated Tumor-Stroma Interface Zone Detection. Am. J.
Pathol. 2020, 190, 1309–1322. [CrossRef]

31. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. Available online: https://arxiv.org/
abs/1412.6980 (accessed on 31 October 2023).

32. Nørredam, K. Primary Carcinoma of the Liver: Histological Study of 27 Cases of Primary Carcinoma of the Liver from Malawi.
Acta Pathol. Microbiol. Scand. A 1977, 85, 461–469. [CrossRef]

33. Mózes, F.E.; Lee, J.A.; Vali, Y.; Alzoubi, O.; Staufer, K.; Trauner, M.; Paternostro, R.; Stauber, R.E.; Holleboom, A.G.;
van Dijk, A.M.; et al. Performance of non-invasive tests and histology for the prediction of clinical outcomes in patients with
non-alcoholic fatty liver disease: An individual participant data meta-analysis. Lancet Gastroenterol. Hepatol. 2023, 8, 704–713.
[CrossRef] [PubMed]

https://doi.org/10.1111/liv.14390
https://doi.org/10.1038/s41467-020-20429-0
https://doi.org/10.1186/s40170-020-00221-w
https://www.ncbi.nlm.nih.gov/pubmed/32637098
https://doi.org/10.5005/jp-journals-10015-1442
https://doi.org/10.7150/thno.55921
https://www.ncbi.nlm.nih.gov/pubmed/33537084
https://doi.org/10.1007/s00441-009-0864-0
https://www.ncbi.nlm.nih.gov/pubmed/19756756
https://doi.org/10.1016/S0016-5085(79)80170-5
https://www.ncbi.nlm.nih.gov/pubmed/421999
https://doi.org/10.1016/j.addr.2017.07.014
https://www.ncbi.nlm.nih.gov/pubmed/28736303
https://doi.org/10.1186/s12885-018-4820-9
https://doi.org/10.1172/JCI146987
https://doi.org/10.1038/s41598-021-93566-1
https://doi.org/10.3390/diagnostics13101799
https://doi.org/10.1111/his.15020
https://www.ncbi.nlm.nih.gov/pubmed/37698049
https://doi.org/10.1111/his.15001
https://www.ncbi.nlm.nih.gov/pubmed/37387193
https://doi.org/10.1002/hep.31750
https://www.ncbi.nlm.nih.gov/pubmed/33570776
https://doi.org/10.1136/jcp-2022-208614
https://www.ncbi.nlm.nih.gov/pubmed/36599660
https://doi.org/10.1038/s41598-021-94862-6
https://www.ncbi.nlm.nih.gov/pubmed/34326378
https://doi.org/10.1007/s00428-015-1865-x
https://doi.org/10.1016/j.ajpath.2020.01.018
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1111/j.1699-0463.1977.tb03877.x
https://doi.org/10.1016/S2468-1253(23)00141-3
https://www.ncbi.nlm.nih.gov/pubmed/37290471


Cancers 2024, 16, 106 18 of 18

34. Abeysekera, K.W.M.; Srivastava, A.; Rowe, I.; Jarvis, H.; Ryder, S.D.; Yeoman, A.; Dillon, J.F.; Rosenberg, W. Exploring changing
attitudes to non-invasive liver fibrosis tests in secondary care pathways: Comparison of two national surveys. Frontline
Gastroenterol. 2023, 14, 483–490. [CrossRef] [PubMed]

35. Johnson, P.J.; Berhane, S.; Kagebayashi, C.; Satomura, S.; Teng, M.; Reeves, H.L.; O’Beirne, J.; Fox, R.; Skowronska, A.;
Palmer, D.; et al. Assessment of liver function in patients with hepatocellular carcinoma: A new evidence-based approach—The
ALBI grade. J. Clin. Oncol. 2015, 33, 550–558. [CrossRef] [PubMed]

36. Council for International Organizations of Medical Sciences (CIOMS) in Collaboration with the World Health Organization (WHO).
International Ethical Guidelines for Health-Related Research Involving Humans, 4th ed.; Biomedical Research: Geneva, Switzerland,
2016; pp. 1921–1931. Available online: https://cioms.ch/wp-content/uploads/2017/01/WEB-CIOMS-EthicalGuidelines.pdf
(accessed on 31 October 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1136/flgastro-2023-102415
https://www.ncbi.nlm.nih.gov/pubmed/37854785
https://doi.org/10.1200/JCO.2014.57.9151
https://www.ncbi.nlm.nih.gov/pubmed/25512453
https://cioms.ch/wp-content/uploads/2017/01/WEB-CIOMS-EthicalGuidelines.pdf

	Introduction 
	Materials and Methods 
	Study Design 
	Sample Preparation and Segmentation 
	CNN-Based Fiber Framework Extraction 
	Hexagonal Grid Tiling 
	Calculation of Fiber Texture Descriptors 
	Statistical Analysis 

	Results 
	Descriptive Statistics 
	Univariate Predictors of Overall Survival 
	Multivariate Analysis 
	Factor Analysis 

	Discussion 
	Conclusions 
	References

