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ABSTRACT End-to-end autonomous driving often relies on the concept of learning to imitate from expert
demonstrations. Since those demonstrations cannot cover all possible variations in data, there always
are situations where the trained agents encounter unseen conditions, which results in a shift in the data
distribution. One of the most common causes of this shift is changes in weather and lighting conditions.
In this study, we suggest using a pre-training based on the visual place recognition (VPR) method, in order
to mitigate this effect. We compare the corresponding navigation agent to a baseline agent which relies
on the commonly used ImageNet pre-training by evaluating as per the Leaderboard driving benchmark
in CARLA environment. According to our experiments, pre-training on the VPR task shows higher
resistance to unseen weather conditions. The findings calculated in our study are evaluated over multiple
seeds to show statistical consistency. The accompanying open-source code repository can be accessed via
https://github.com/Shubhamcl/vpr_pretrained_agent/.

INDEX TERMS Imitation learning, autonomous driving, agents, self-driving cars, deep learning,
pre-training.

I. INTRODUCTION
Autonomous driving research is being approached in two
different forms of methods. One being the modular method,
where the functionality of driving is broken down into
multiple sub-tasks, and each sub-task is carried out by a
designatedmodule [1].While the secondmethod uses end-to-
end learning where driving is learned as a skill directly from
expert demonstrations. As the former method requires high
amount of engineering effort, research on end-to-end learning
is progressively gaining traction [2], [3].

End-to-end learning methods learn behaviours out of data,
and this learning relies upon the concept of imitation learning
[4].While imitation learning promises capabilities of learning
behaviours, it suffers from the problem of shifts in data
distribution between training data and testing data. This
problem is also commonly known as co-variate shift [2].
Several methods [5], [6], [7] attempt to mitigate co-variate
shift by integrating corrective demonstrations to the training
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data corpus, yet in the unseen environments the resulting
agents fail to perform as correctly as they perform in the seen
ones.

Depending on the area of application of imitation learning
methods, the causes of co-variate shifts can vary. One of the
causes of the shift in the data distribution in autonomous
driving is when the trained agent encounters unseen weather
and lighting conditions. As these changes can have a drastic
impact on the inputs provided to the agent, the agent’s
decisions can also be affected, making its performance frail
and unpredictable.

The concept of pre-training has revealed to be remarkably
promising in the most recent works [8], [9]. The overall idea
of pre-training refers to first training a neural network on
a large and diverse dataset aimed to solve some task (e.g.,
classification [10]), expecting that the trained network will be
able to produce a sufficient amount of general features useful
for other tasks of interest (e.g., autonomous driving). This
concept aims to take advantage of available datasets, which
may not be directly related to the main task to be solved,
but hold some common properties. Pre-training may be very
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useful for problems that are not sample efficient and there
may not be enough data to use. The trend of pre-training
is very prominent in language models which are pre-trained
over enormous text data corpus and in visual perception
models for tasks such as recognition and detection where
pre-training is commonly carried out over data from the
ImageNet [11] dataset. Various authors [9], [12] have pointed
out that pre-training on a task related to the target task rather
than the ImageNet classification task can be beneficial for
learning.

In this study, we hypothesise that autonomous driving may
be highly dependent on specific visual features, which may
not be detected by the neural network during commonly
used ImageNet-based pre-training, as image classification is
highly unrelated to the task of our interest. We investigate
this hypothesis by analysing how pre-training an encoder
of an end-to-end driving agent over the task of visual place
recognition (VPR) can help adapt better to unseen weather
and lighting conditions.

The main contributions of this paper are:

1) Using the offline Leaderboard benchmark [13], [14] on
CARLA 0.9.11 we provide an empirical demonstration
that the SegVPR-pretrained image encoder [15] is
more efficient, compared to its ImageNet-pretrained
counterpart, in an end-to-end trained driving agent.

2) We also demonstrate that our findings are (statistically)
consistent across multiple evaluations, both under seen
and unseen simulator environments.

The rest of the paper is organised in the following
way. Section II covers related work on imitation learning
for autonomous driving, pre-training in imitation learning.
Section III describes the approach proposed in the paper,
section IV elaborates how the experiments are carried out
to show that results conform to the hypothesis. Finally,
section V concludes the paper.

II. RELATED WORK
ALVINN [16] was one of the earliest methods which showed
the ability to learn the skill of driving in an end-to-end
manner using imitation learning. With the use of modern
forms of neural networks, PilotNet [17] improved upon
what was previously done with much simpler learning
methods. A line of research also came into existence pointing
out the co-variate shift problem in imitation learning and
approaching to solve it with gradually advancing data
aggregation (DAgger) methods [5], [6], [7]. Meanwhile,
the practice of applying DAgger (or one of its newer
variants) has remained prominent in most newly proposed
methods. Another method that has become a standard in more
recent research is conditional imitation learning. Conditional
imitation learning with ResNet (CILRS) [18], [19] conditions
the neural network by the high-level action and uses a
deeper neural network architecture. This has become a
framework architecture for many of the research works that
have followed.

Recent works explore various aspects of the problem
of learning to drive. One area of exploration is leverag-
ing temporal information. The spatio-temporal perception,
prediction, and planning (ST-P3) [20] method shows how
glancing at multiple input time steps can enable better
planning and prediction by preserving geometric information
and taking into account past motion variations. Meanwhile,
trajectory-guided control prediction [21] is another method
that shows predicting multiple action steps and a trajectory,
given input state, shows improved action predictions. Another
area of exploration has been the use of multiple modalities.
Transfuser [22] is a method that integrates image and
LiDAR representations. It uses a self-attention mechanism
which leverages the use of transformer neural networks
with some modifications. Model-based imitation learning
[14], another recent method, explores learning the world
model and a policy simultaneously. Whereas, planning-
oriented autonomous driving [23] integrates the process of
planning along with it’s sub-tasks into the same neural
network. Another important aspect is explored by Roach
[13], which investigates how the quality of demonstrations
used in training can be enhanced by using a reinforcement
learning agent as a coach to generate better demonstrations
for training, and shows a clear improvement in driving
performance compared to the default autopilot. Most of the
above-mentioned works use ImageNet initialised pre-trained
weights, or they use randomly initialised weights in the
selected neural network architecture of the driving agent.

ImageNet pre-trained architectures have been used to
transfer learning to various vision tasks (object detection
[24], image segmentation [25], etc.) with different datasets.
This has been done under an implicit assumption that,
architectures pre-trained with ImageNet transfer better which
has been later studied [9], and the findings say that this
assumptionmay not always hold true. The study indicates that
ImageNet learned features do not transfer well to fine-grained
tasks and such pre-training would provide up to minimal
benefits. Another study that goes into the taxonomy of the
transfer learning task [12] shows good ability of learning
between tasks that are related and are in a similar domain.
The ImageNet dataset may have many similarities to object
detection datasets such as the COCO dataset [26] but is very
distant from driving datasets. This brings up the need for
specialised pre-training for specific tasks.

Pre-training of models for imitation-learning-based
autonomous driving methods is relatively a new subarea
of research. Video pre-training (VPT) [27] is a method
that performs pre-training for behaviour cloning on a video
game environment. It uses in-the-wild available data. As this
data is unlabelled, prior to pre-training, pseudo-labels are
formed using an inverse dynamics model (IDM) that is
trained on a labelled dataset. Another method that uses an
IDM to its advantage is action-conditioned contrastive pre-
training (ACO) [28], which pre-trains on real-world driving
videos from Youtube. Instead of pre-training with behaviour
cloning, ACO chooses the task of contrastive representation
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learning. While IDM can easily incorporate noisy data
into the pre-training data, self-supervised learning can be a
better alternative to IDM. Policy pre-training via geometric
modelling (PPGeo) [29] uses self-supervised learning to
pre-train on tasks of pose, depth, and future ego-motion
prediction, followed by training on the task of interest, that is
driving.

ACO points out that the agent should remain weather and
lighting invariant because such factors can interfere with the
process of driving, where the agent which may be seen as
biased, will perceive unseen conditions as noisy inputs. The
same is valid from the perspective of co-variate shift, as it
is highly unlikely that the agent will only be operating in
previously seen conditions. To reduce the dependency on
many iterations of data aggregation techniques, the trained
agent needs to hold a good amount of invariance against
changes in data distribution. To achieve such invariance,
we look at theVPR taskwhich learns retrieval of place images
while incorporating exposure to various weather and lighting
conditions. Prior to learning the task of driving, we perform
pre-training over the task of VPR.

III. METHOD
Generally, to train an end-to-end driving agent with imitation
learning, training is performed over a dataset of demon-
strations and then data aggregation is performed to refine
the dataset further and prepare an agent to improve upon
in the next iteration of training. For research and better
reproducibility, the dataset is formed utilising the CARLA
simulator [30]. Most methods incorporate an encoder for
vision into the neural network, which is pre-trained on
the ImageNet [11] dataset over the image recognition task.
We propose pre-training an image encoder over the VPR
task and further training the same encoder for learning the
task of driving with imitation learning. The explanation of
how we pre-train is described in section III-A and how is the
pre-trained network used in the driving agent is described in
section III-B.

A. VISUAL PLACE RECOGNITION PRE-TRAINING
The classical problem of VPR which aims to enable the
retrieval of places, largely suffers from mislabelling places
when weather and lighting conditions change. In order to
overcome this, the datasets for VPR contain data points
from each location with varying conditions, resulting in
approaching weather and lighting invariance. To inherit this
ability, we utilise SegVPR [15], which is a neural network
architecture consisting of a ResNet [10] encoder and a
separate decoder with multiple modules.

SegVPR aims to take away attention from varying
weather and lighting conditions in order to focus on other
aspects of scene for place recognition. To achieve this,
it incorporates multiple branches with interlinking in its
decoder module, which follows an ImageNet pre-trained
encoder. By branching in the decoder, SegVPR blends in a
semantic segmentation decoder for an auxiliary task that is

guided by multi-scale attention. The overall loss function is a
sum of VPR loss and semantic segmentation loss [15]:

LVPR−SemSeg = LVPR + α · LSemSeg, (1)

where α > 0 is a scalar weight for semantic segmentation
loss. TheVPR lossLVPR is a weakly supervised triplet margin
loss given by,

LVPR = h(d(Fq,Fp)+ m− d(Fq,Fn)), (2)

where h is the hinge loss h(x) = max(x, 0), d is the Euclidean
distance, m > 0 is a fixed margin, and Fq, Fp, and Fn
represent query, positive, and negative samples respectively.
The semantic segmentation loss LSemSeg is given by formula,

LSemSeg = −
1
|I|

∑
i∈I

yi · log p
yi
i ((M

i
· f id )), (3)

which is equal to a cross-entropy loss that is computed for
each class yi at pixel i from the image I, where Mi is
an attention map related to the feature f id coming from the
segmentation decoder module and pi denotes the probability
of class yi.

The dataset used for training SegVPR contains VPR data
that is captured in the CARLA simulator. It consists of 40,000
images collected from two different towns (Town 3 and
Town 10), under weather conditions that are also present in
the training dataset for policy learning, as per the offline
Leaderboard benchmark [13]. Pre-training over this dataset is
highly advantageous for our approach as it keeps the domain
of the data common between the pre-training phase and the
later phase where we train over the task of interest, as both
phases use the CARLA simulator.

B. TRAINING AGENT WITH A PRE-TRAINED ENCODER
To benefit from the pre-training over varying conditions we
extract the image encoder from the SegVPR architecture and
use it as the image encoder in our agent’s neural network
architecture.

We base the rest of the agent upon CILRS [19], where we
train by conditioning inputs as per the high-level commands
along with the input data. The high-level commands are
provided by a planner and are in accordance with selected
destinations to reach. These commands are of discrete form,
consisting of instructions such as turn left, follow lane,
change lane, etc. For initial data collection of demonstrations,
we use the work presented in Roach [13]. The reinforcement
learning trained agent Roach operates from the bird’s eye
viewpoint and hence has better visibility of the world to
make informed driving decisions. While the trained Roach
agent operates the vehicle, data from the front view camera
is collected for the initial dataset of demonstrations. This
automates the data collection process rather than requiring
human control of the vehicle, and also enables reliable and
longer data collection. This step is then followed by the
training of our proposed agent with the pre-trained weights.
After an agent is trained on the initial dataset to perform the

VOLUME 11, 2023 128423



S. Juneja et al.: VPR Pre-Training for End-to-End Trained Autonomous Driving Agent

FIGURE 1. The figure illustrates the overall block diagram of the visual place recognition (VPR) pre-trained method, where at first, an image
encoder is pre-trained on the VPR task (left) followed by weight transfer to train for the task of end-to-end driving (right).

DAgger process, the trained agent is let to drive; meanwhile,
the Roach agent is supervising by proposing actions. When
there is no consensus between the Roach agent and our
trained agent, the data in such cases is aggregated in order to
make our agent learn from the action proposals of the Roach
agent. In our work, the way corrective demonstration data is
aggregated into the initial dataset of demonstration is based
on the methodology of the original DAgger [5] algorithm.

The agent’s architecture (as in Fig. 1) consists of
a measurements encoder that accepts current speed and
high-level command in the form of one hot encoding.
Parallel to this, the SegVPR encoder module encodes image
input. Both encodings are concatenated and downsized using
a join module which consists of fully connected layers.
The joint encoding is then fed to the action branches
module, where each branch is responsible for each discrete
high-level command (as used in CILRS and Roach). Given
the high-level command, the corresponding branch is chosen
for the low-level driving command. During training, non-
corresponding branches are zeroed out.

Let X ∈ R224×224×3 be an input image from the front
camera sensor. The agent maps X onto an action in R2 and
is represented by the following equation:

â(X , u|θ, ξ, φ, ψ) :=
n∑
i=0

ciφi(X , u|θ, ξ, φ, ψ), (4)

where φi(X , u|θ, ξ, φ, ψ) corresponds to the output of ith

action branch of fA(fJ (fE (X |θ ), fM (u|ξ )|φ)|ψ). Here X is the
input image, fE is the image encoder with parameters θ
pre-trained upon the VPR task (i.e., SegVPR encoder), u
is a vector holding measurements (current speed and high-
level command), fM is the measurements encoder network
with parameters ξ , fJ is another neural network module with
parameters φ that concatenates the image and measurements

encodings and downsizes it, fA is the actions branches module
with parameters ψ which calculates a low-level command
for each high-level command, and ci is the one-hot encoded
command which is indexed with i that zero outs the non-
command branches.

To simplify the comparison with a baseline, we use the
loss function as the sum of action loss and a speed prediction
regularisation,

LAgent (θ, ξ, φ, ψ) = LA(θ, ξ, φ, ψ)+ λS · LS , (5)

where the action loss LA is equal to L1 loss between expert
action â and predicted action a, given by

LA = ∥̂a(X , u|θ, ξ, φ, ψ)− a∥1 , (6)

and the speed prediction regularisationLS between measured
speed ŝ and predicted speed s is given by

LS =
∣∣ŝ−s∣∣. (7)

The regularisation effect is regulated with a scalar value λs.
The entire process of training our agent for driving is

also explained in Algorithm 1. The selection of conditions
(towns and weather) for training, evaluating, and testing are
described further in the following section IV, along with
training details.

IV. EXPERIMENTS
A. BENCHMARK AND EXPERIMENT SETTINGS
For evaluating the effectiveness of the suggested VPR-based
pre-training, we run our experiments using the offline
Leaderboard benchmark [13], [14] on CARLA 0.9.11.
The Leaderboard benchmark considers multiple towns with
challenging traffic situations consisting of roundabouts,
stop signs, freeways, and more. The benchmark also con-
sists of a set of weather conditions and traffic densities.
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Algorithm 1 The VPR Pre-Trained Navigation Agent
Input: Initial dataset D collected using the Roach agent,

trained SegVPR encoder fE .
Output: trained agent
1: for dagger iteration i = 0 to 5 do
2: Initialise agent agent i.
3: Initialise agent i’s image encoder with fE .
4: Train agent i on D.
5: Collect dataset Di = (X , u, π∗(X , u)), where X

and u are input image and measurements (speed
and high-level command), correspondingly, and π∗

is the supervising Roach agent’s output, measured in
situations when there is a disagreement between the
predictions of Roach and agent i.

6: Aggregate dataset: D← D ∪ Di.
7: end for
8: Return best agent i∗ as per scores on the Leaderboard

benchmark.

All experiments are run under the busy traffic density as
simpler traffic density conditions have previously been shown
to be obsolete [13].

Alongwith the VPR pre-trainedmethod, a baselinemethod
is also trained. The only difference between the two is that
the baseline method contains an ImageNet-trained ResNet
encoder. As per the Leaderboard benchmark’s specification,
both methods are trained on data from train towns and train
weather conditions and evaluated on the subset of training
settings (evaluation town & weather conditions) as well as
on test town and test weather conditions. The distribution
of training, evaluation, and test conditions is described in
tables 1 and 2. The example images from different weather
conditions are depicted in Fig. 2. Both methods are trained
for 5 iterations of DAgger and evaluated as per the benchmark
settings after every iteration. The reported results in the latter
section are obtained by running over 3 evaluation seeds.

Both models share the same architecture with a ResNet
image encoder fE , however with different initial weights:
VPR pre-trained model uses weights from the place recog-
nition task [15], and the baseline model relies on the
initialisation from ImageNet classification task [11]. The
measurement encoder fM is a stack of 2 fully connected layers
with output dimension set to 128 at each layer. The join
module fJ consists of 3 fully connected layers with the output
dimension set to 512, 512 and 256.Whereas each of the action
branches fA hold 3 fully connected layers with the output
dimensions set to 256, 256 and 2, respectively. All modules
consisting of fully connected layers use a rectified linear unit
activation, except the last layers in action branches.

B. IMPLEMENTATION DETAILS
All the conducted experiments are implemented using
PyTorch [31]. For evaluation, we use the already imple-
mented code provided by Roach study [13].

TABLE 1. Distribution of weather conditions for training, evaluation and
testing.

TABLE 2. Distribution of towns for training, evaluation and testing.

At first, agents of both methods (VPR pre-trained and
baseline) are trained on the same initial dataset collected with
the Roach agent, and then each of the two agents is trained
on the initial set of demonstration data and the DAgger data
generated by that particular agent. During each iteration, the
agents are trained with increased dataset size, but the rest
of the settings remain constant. In comparison to previously
published works [13], we train our agents on images with
a resolution down-scaled to 224 × 224 pixels instead of
the roughly 256×900

224×224 ≈ 4.6 times higher resolution [13].
This step allows us to train faster with the limited amount
of computational resources available, as our resolution of
choice operates with≈ 4.6 times less memory. However, this
restricts us from comparing our results with other methods,
according to their reported metrics.

C. TRAINING DETAILS
For every DAgger iteration of training for both methods, the
entire neural network architectures with all the parameters
are tuned against the loss function in equation (5). We carry
out training for 20 epochs with learning rate of 1e − 4 and
weight decay of 1e− 5. The learning rate is stepped down to
1/10th from epoch 15. We train in batches of 256 samples per
batch. The training is run on a RTX 3090 with the data stored
on a Gen4 NVME solid state drives for faster reading of
data. Training a single iteration takes around 20 to 35 hours.
The variability in time is mostly caused by the increments
in the size of the full dataset with every DAgger iteration as
previously mentioned in section IV-B.

D. EVALUATION METRICS
The performance in the evaluation is validated over two
metrics, namely route completion and distance comple-
tion. Route completion represents the percentage of routes
completed by the agent under combinations of town and
weather conditions from a given starting point to an endpoint.
Distance completion is the percentage of distance travelled
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FIGURE 2. The figure shows two weather conditions used for evaluation 2a and 2b, that are used as a part of evaluation set to test in known
conditions, followed by weather conditions 2c and 2d, that are unseen by the agent and used in testing.

TABLE 3. Route completion (%) of driving agents on training and new
(testing) conditions. Highest of all DAgger iterations reported.

TABLE 4. Distance completion (%) of driving agents on training and new
(testing) conditions. Highest of all DAgger iterations reported.

with respect to the actual route distance. Route completion
answers the question: What percentage of routes is the
agent able to complete on average? Whereas distance
completion answers the question: at what percentage of
distance completed does the agent fail on average?

E. RESULTS
We make a comparison between the effect of using a
pre-trained encoder which is trained to possess invariance
against changes in weather conditions, and an ImageNet
pre-trained encoder for the task of autonomous driving.
We run evaluations on the baseline and the VPR pre-trained
method where for each method we have 6 trained agents
(each representing one DAgger iteration). Each agent is
tested in familiar towns and weather conditions (train town
and weather), followed by unfamiliar towns and weather
conditions (test town and weather). Since the evaluations
are carried out in a simulator that contains multiple actors
that are placed randomly (e.g. pedestrians, other vehicles,
etc.), we perform the evaluation three times for every agent,
reporting its average performance.

Table 3 provides empirical confirmation of our hypothesis,
that VPR pre-training may be more efficient compared to the

general ImageNet-based pre-training (our baseline), as we see
that using VPR pre-training method results in an increase of
route completion by ≈ 17%.
When exposed to unseen town and weather conditions,

VPR pre-training shows ≈ 11% higher score of completed
routes than the baselinemethod. The use of a VPR pre-trained
method not only shows better route completion but also
shows faster convergence towards higher performance over
DAgger iterations than the baseline, as in Fig. 3. In addition
to successfully completing routes, we also compare distance
completion as in Fig. 4 and table 4. Our VPR pre-trained
method consistently drives longer distances than the baseline.
The baseline shows a substantial downfall in distances
travelled when exposed to unseen environmental conditions,
while our VPR pre-trained method shows relatively higher
resistance to changes in town and weather conditions. This
indicates that the VPR pre-trained method potentially holds
higher resistance to co-variate shift [5] than the baseline
as the performance is less affected by the change in data
distribution.

We hypothesise that the main reason for these effects may
be that the baseline method is pre-trained upon the task
of image classification, which has no direct relation with
the driving agent’s data distribution. Whereas our method is
pre-trained over a dataset which holds data from a potentially
similar distribution (i.e., coming from the same simulated
environments).

The VPR pre-trained method shows higher performance
without any reliance on noisy unlabelled data by learning
tasks that can be regarded as alternate tasks while the
actual goal is to drive. Other methods [27], [28], [29]
which use pre-training for the same goal, either directly or
indirectly involve training on the task of interest during pre-
training. We do not compare our results experimentally to
the aforementioned methods as they are not directly being
applied to autonomous driving or are tested over a benchmark
that does not cover sufficient variability in towns and
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FIGURE 3. Route completion (%) of agents over the offline Leaderboard benchmark on training conditions (left) and testing conditions
(right), evaluated three times over different seeds and plotted along with the average of performance.

FIGURE 4. Distance completion (%) of agents over the offline Leaderboard benchmark on training conditions (left) and testing conditions
(right), evaluated three times over different seeds and plotted along with the average of performance.

weather conditions. As the aforementioned results portray
that learning the alternate task of VPR can be beneficial to the
agent in learning to drive, it makes the potentially promising
idea of combining our proposed pre-training approach with
other recent works that leverage pre-training in different
contexts.

V. CONCLUSION
We propose VPR-based pre-training step for autonomous
driving agents trained with imitation learning, to overcome
co-variate shift in terms of weather and resulting lighting
changes. Our experiments show how pre-training with VPR
helps in upholding the performance when the trained agent
is exposed to unseen weather conditions in the Leaderboard
benchmark. Such performance is seen in the form of a trend
over multiple consecutive iterations of data aggregation and
reruns with different seeds.

In future work, we plan to combine such pre-training
with existing pre-training methods in the form of multi-
task learning. We also plan to conduct an investigation
of goal-directed visual navigation, using pre-trained road-
following controllers (e.g., [32]). As VPR helps to cope

with the changes in weather conditions, there can be
further uncertainties that can arise and shift data distribution
differently, therefore trying out more ways of pre-training
may be a valuable area of exploration.
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