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This article gives a probabilistic overview of the widely used method of default probability estima-
tion proposed by K. Pluto and D. Tasche. There are listed detailed assumptions and derivation of the
iequality where the probability of default is involved under the influence of systematic factor. The
author anticipates adding more clarity, especially for early career analysts or scholars, regarding the
assumption of borrowers’ independence, conditional independence, and interaction between the probabi-
lity distributions such as binomaal, beta, normal, and others. There is also shown the relation between
the probability of default and the joint distribution of \/oX — /1 — oY, where X, including but not
ltmiting, s the standard normal, Y admits, including but not limiting, the beta-normal distribution and

X, Y are independent.

Key Words: probability of default, binomial distribution, beta-normal distribution, Vasicek distri-

bution, Pluto-Tasche method.
1 Introduction

The probability of default p is actually the most
important metric in credit Tisk management.
Roughly, this probability provides the likelihood
for a certain obligor not to follow the taken fi-
nancial commitments properly within a certain pe-
riod of time, typically one year. The number of
defaulted borrowers divided by the number of total
borrowers within a certain portfolio is known as
the observed default rate, while the predicted one
p is called the expected default rate. Any model
tasked to predict p, should ensure the alignment
between the observed and expected default rates.
However, in some instances, such as low default
portfolios, there is not possible to have any robust
observations for the observed default rate. In such
instances, the famous work [T}l suggests applying
the Bernoulli trials to estimate the experiment’s
success probability p. This article is a survey of
two models: (a) the estimation of p when obligors
i the portfolio are treated independently of each
other and there is no side influence for such a
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portfolio, (b) the estimation of p when obligors in
the portfolio are treated conditionally independent
of each other when each obligor is influenced by
some systematic factor. We aim to reflect on the
detailed steps and assumptions used in deriving the
two mentioned models and add some insights about
the involved probability distributions.

Let us recall several well-known random va-
riables.

o We say that the random wvariable X 1is bi-
nomial distributed with parameters n € N
and p € (0, 1) (denoted X ~ Bin(n, p)) if
the probability mass function is

P(X =k)
= (Z)pk(]' —p)n_k’ k = 0? ]'7 ] n7
where
n\ n!
k) El(n — k)
We denote the cumulative distribution
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function of the binomial random variable by

Bing, (k) :=P(X < k)
k n . .
=0

o We say that the random wvariable X 1is beta
distributed with parameters o > 0 and > 0
(denoted X ~ B(a, B)) if its probability

density function is

(1 — )8
ba,,@(fﬂ) = M’ €T € (0, 1),
where
Bla. 5 — L)L)
T T(a+ B)

and the gamma function for the complex
number s € C s

I'(s) = / t5te~tdt, Rs > 0.
0

denote cumulative  distribution

We the
function of the beta random variable by

Baple) = | “bos(y)dy. z € (0, 1)

2 Binomial and mixture binomial distri-
butions for the probability of default
estimation

In this section, in the subsections and
respectively, we review the deriwation of two
methods used to estimate the probability of default
p. As mentioned in Introduction[], the first method
1s just the Bernoulli trials assuming the obligors’
independence, while the second method provides
the estimation of p under the assumption of obli-
gors’ conditional independence of each other under
the influence of a certain systematic factor.

2.1 Binomial distribution

Let X1, Xo, ..., X, be independent copies of
Bernoulli random wvariable X which distribu-
tion is P(X = 1) = p = 1 - PX =

0). In risk management, the random wvariables
X1, Xo, ..., X, are treated as independent obli-
gors and the attained value X; =1,1=1,2, ..., n
means that the i’th obligor defaults within some
observation period (typically one year), while X; =
0,i=1, 2, ..., n means that the i’th obligor does
not default within the same observation period.
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and its inverse by B;lﬂ(a:), z € (0,1).

e We say that the random wariable X is
normally distributed with parameters p € R
and 0% > 0 (denoted by X ~ N(u, 0?)) if
its probability density function is

1

oV 2m

Ppuor(@) = e CH g R

We denote the cumulative distribution
function of the normal distribution by

Bl = [

and its inverse by ([3;102 (x). We recall the

symmetry ®, ,2(x) = 1 — @, s2(—x + 2pu)

and write o(z), ®(z) and ®~(x) respecti-
1),

vely if X ~ N

SDM,JQ(y)dya r€eR

),
(

The other distributions met in this paper, are
introduced in the proper places where they are used.

Then, the sum Y = X1 + X9 + ... + X,, may

attain any value from the set {0, 1, ..., n} with
probability

P(Y = k)

(T K n—k _

= <k>p 1-p)" " k=0,1,....,n. (1)

The probability mass function of the binomial
distribution means the probability to default k
out of total n obligors in the portfolio, while the
distribution function

Bing, p(k) = P(Y < k)

_ g <Z?>pi(1—p)"—i, k=0,1,...,n (2)

is the probability to default no more than k obligors
out of total n. Obviously,

Bing p(n) =P(Y < n)

= g (?)pi(l —p)" ' =p+1-p"=1

for any p € (0,1).

In many examples, e.g., tossing a coin or a
die, the experiment’s success probability p is known
beforehand. However, in real-life problems, such as
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default probability estimation, the probability p is
desired to know. In order to get p out of or
we need an expert judgment first. Let us suppose
that the probability of the amount of defaulted obli-
gors does not exceed k € {0, 1, ..., n— 1} out of
n 1s at least 1 —~. Then,

k
. ny n—i
Bing,, (k) =P(Y < k) = ; <Z>p (1-p)
2(1_7)7k€{0717"‘7n_1} (3)
and, in view of Proposition [I], the upper bound of
default probability p is

(4)

where B;—lk,k-s-l(') is an inverse of beta distribu-
tion function. In particular, if k = 0, i.e., we
are certain with probability 1 — ~ that there be no
defaulted obligors at all, then

p<l— B;ik,kJrl(l =),

p<1—(1—y)tm

The probability 1 — ~ can be introduced as
the probability of type I error, also known as
the false positive instance classification, which in
our contert means that the actual probability of
default does mot belong to the predicted interval
0<p<1- B;ik7k+1(1 —7); see [4]. Moreover,
the confidence interval of the binomial distribution
is known as the Clopper-Pearson interval; see [5],

[3/.

2.2 Mixture of Binomial and Normal
distributions

Let r be an annual return rate and (1+7/n)", n €
N the increment of the invested amount when the
return rate is compounded n times per year. It is
well known that (1 + r/n)" — € when n — oc.
Thus,

Vi = Vie"

assuming the continuously compounded return,
where Vi > 0 denotes the final value and Vi > 0
the initial one. Based on the previous thoughts, we
define

Tlog i= 1nE =InVry —InVj.

o 6

The return derived in 1s called the logari-
thmic return or just log-return. We now assume
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the logarithmic return to be a random wvariable.
More precisely, we assume

Tlog = ﬁS—Fﬁ, (6)
where B € R, S ~ N(u1, U%), & ~ N(u2, U%);

the random wvariables S and & are independent
and both non-degenerate. Also, S is known as
systematic risk factor, while & as idiosyncratic; see
[9]. The origin of return’s definition (6) has simi-
larities with the capital asset pricing model which
states that every expected return Er; under certain
assumptions satisfies

E(r; —ry) = BilE(rar —7y),

where 1y 1s the risk-free return rate, rpy the return
of systemic portfolio M and B; = cov(ri, rar) /o3,
see, for example, [0] and observe that @ implies
IE:("“log —¢&) = BES.

Let us now standardize the log-return @ It
is easy to check that

rlog:BS—i—f =

Tlog — IErlog ,8

S —ES —E
os L% § f'

O-Tlog O-Tlog os O-Tlog 0‘5

Thus, it is equivalent to define rioq as

'Flog :\@S"i' \/ 1_957 (S [031]7

2 2 9

g B0

0= <5 > = 5
UTlog

= 2, 27
Brog +of

(7)

where

(8)

and S, §~ are independent standard normal random
variables. Indeed, 1159 ~ N (Bu1 + 2, B20% + 09)
is quivalent to Ty ~ N(0, 1).

We note that

gs

2 o 2
1= O'gl — ﬂ + 3
9 O-Tlog O-rlog

and the coefficient o in 1s called the asset
correlation (see [19]); it expresses the correlation
between Tioq and S':

corr(Tiog, 5) = cov(\@g + mg’ g) = /e
We now define the default event D by

o

1, if VoS + T — o€ < xp,

0, otherwise.
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Of course, D
and z, = ® Yp) since the random wvariable
\/@g + /T = o€ is standard normal. We now are
interested in that particular p which causes D =
1. Conditioning on S, assuming that the

systematic factor attains some particular value
x € R, for o # 1, we have

is  Bernoulli random wvariable

1.€.,

P(D:1|§=x)zp<§<q)

Q:v)

(P Hp) -
“I’< VI o

and
0|5 = z)
~'(p)
. (11)
(o)
The random variable

o (20— oS
Vi

where S ~ N(0, 1), is known as Vasicek distri-
bution, see [18].

Let D1, Do, ...,D, be the conditionally
independent copies of the random variable D when
the systematic factor S = x. Then, D := Dy +
Do +...+ D, is binomial random variable and the
conditional probability that D =i if S = x is

B0 =5 =) = () o (D VB
(s |

o '(p) - \/Ew)>"_
Vie )

where 1 = 0, 1, ..., n. Thus, being certain with

probability at least 1 — ~y, that there default up to

k€ {0,1,...,n— 1} obligors out of total n, by
the law of total probability we get

) ,p€(0,1),0€[0,1), (12)

(13)

P(ng):ﬂ»z(

+oo

N i()(( ))

o~ '(p) — o
1—-@ r>1—7. (14
(e (R )) a9
Notice that if kK = n, then the inequality 18
satisfied with any p € (0, 1) when v € [0, 1].
Also, o = 0 in implies the inequality (3)).
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Equally, the integral in 1s nothing but the
mixture of the binomial and Vasicek distributions:
it is the cumulative binomial distribution function
Bing, p(k), k =0, 1, ..., n when the parameter p
is Vasicek distributed (12)). See [12] for the mizture
distribution models.

According to Proposition [2], the upper bound

of p in 18
— 0 (VI=oFn,(1=) . (15)
where F

. k ki1, 0¥): ¥ € R is the inverse of the
cumulative distribution function

F,_ k, k+1, g(y) =

/Bn ke k41 ( <\/I<I>1(x) +y>) dx. (16)

It is not easy to get a more convenient
expression of the cumulative distribution function
Fo i k+1,0(y) in . Thus, we shall search for
the quantiles of the underlying distribution, descri-
bed by Fr_k k+1,0(y), numerically; see Section .
Of course, the function Fy,_i 11, ,(y) is defined in
view of Proposition |2| by replacing

in and there is equivalent to search for such

p € (0,1) that
o1 P
Fokkt1,0 (— H) >1—7
or

Fn—k, k+1, g(p) =

o L(p
1- Fn—k,k+1,g (_ ( )

Tr)<a

where Fy_g 111.0(p), p € (0,1) is the continuous
cumulative distribution function with respect to p.

Let us mention that the probability distributi-
on, described by its cumulative distribution functi-
on

BNa,ﬁ,u,GQ (:L') = Ba,ﬁ (¢‘u7o’2(l‘)) , T € R,

15 known as We write X ~
N (a, B, 1, 02) if X is the beta-normal random
variable and bng 5, ,2(7), * € R denotes its
density. See [1], [8], [10] and [15] for the beta-
normal distribution. Thus, F, g ,(y) in can

beta-normal.
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be easily described in terms of the beta-normal di-
stribution. See also [2] as the good initial source
on credit risk management and some other insi-
ghts deriving inequality . Equally, in view of
, we depict the probability density function

d Fa, B, Q(y)

7 ,YER, a>0,6>0,0<0<1
Yy

for some chosen parameters in Figure and
the cumulative distribution function F, g o(y)
correspondingly in Figure [2] below.

051
0375
025

0.125

-3 -2 -1 0 1 2 3
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

— =2 B=5,0=025 — a=5; =2 0=0.25 — a=pB=2; 0=0.25
— a=f=2;0=05 a=B=1, O=so<l — a=B=1/2; 0=0.25
Figure 3: The probability density function whose
cumulative distribution function is Fy,_, k41, 0(p),
pe(0,1).

— a=2, $=5;0=0.25 — a=5; B=2, 0=0.25 — a=B=2; 0=0.25

— a=p£=1 0=0.25 a=p=1; 0=0.75

Figure 1: The probability density function whose
cumulative distribution function is Fy, g ,(y), v €

-

I L L L
-3 -2 -1 0 1 2 3

—— a=B=1 0=0.25 a=B=1; 0=0.75

Figure 2: The cumulative distribution function
Fo8,0(y), y €R.

The derivative of Fn,hml’g(p) m and
the cumulative distribution function Fn_k, k+1,0(D)
for some chosen parameters are depicted in Figure
and Figure [4] below respectively.

0.75

05

0.25

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8

a=2; =5, 0=0.25 — a=5; f=2 0=0.25 — a=p=2; 0=0.25

0.9 1

a=p=2; 0=05 a=p=1; 0<o<l — a=p=1/2 0=0.25

Figure 4: The cumulative distribution function

Fn—k, k+17g(p)7 pE (07 1)

a=2;, =5; 0=0.25 — a=5; B=2, 0=0.25 — a=p=2; 0=0.25

The depicted functions in Figures relate
the search of the upper bound of p with the quantile
function of 1 —~ under the underlying distribution.
According to Propositions [2] and [8, in Figures
[6] and [7] below we illustrate the search of the upper
bound of p relation with the partial volume of the
unit given by 1 —~ (the blue colored volume in Fi-
gures |§| and E[) under the joint density surface.
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Figure 5: The joint density ¢(z)bna, g, 0,1(y),
(z, y) € R? and the line \/oz — /T — oy = @~ (p),
whena =5, =2, 0=1/2and p = 1/10. The red
colored volume corresponds to \/or — /1 — gy <
®~Y(p), while the blue one is 1 — v = 0.869. In
other words, the inequality with 1—+ = 0.869,
k=1, n = 6 and o 1/2 is satisfied when
p € (0, 1/10].

2023, 2

Figure 6: The joint density 1-bng 5.0,1(y), 0 < z <
1, y € R and the curve ,/p@ '(z) — VT — oy =
®~1(p), when o = 5, 8 = 2, o = 1/2 and
p = 1/10. The red colored volume corresponds to
V0@ (z)—/T=py < ® !(p), while the blue one
is 1 — v = 0.869.
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Figure 7: The joint density 1- b, 5(y), 0 < z, y <
1, and the curve \/p® '(z) — VT =00 !(y) =
& 1(p), when a = 5, 8 = 2, ¢ 1/2 and
p = 1/10. The red colored volume corresponds to
Vo Hz) — vT=02 ' (y) < @ !(p), while the
blue one is 1 — v = 0.869.

To estimate the probability of default p
by or among the portfolio sub-classes
A1, Ag, ..., A, where Ay represents the lowest
risk borrowers and A; the highest respectively,
there was proposed a method of conservatism;
see [I4)]. The method of conservatism states the
following. Let ny, no, ..., ng, ki, ko, ..., k; and
P1, P2, ..., Py be the number of obligors, the
number of expected defaults and default probabi-
lities over the portfolio sub-classes Ay, As, ..., A;
respectively. Then ny +no...+n;=mn, k1 + ko +
...+ k; =k and the probability of defaults p1 shall
be estimated using the parameters (n, k) in or
, pe shall be estimated using (n —ny, k — k1),
p3 with (n —ny —ng, k— k1 — ka) and so on up to
p1 which shall be estimated using (ny, k).

Discussions and dissatisfaction among the
practitioners that the estimates @ or of the
probability of default are too conservative, force
some adjustments to estimate p conditionally (bi-
ased), see [16] and related papers.

3 Statements

In this section, we recall the connection between
the binomaial and beta distributions, provide several
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equivalent forms of inequality , and its
connection to the normal multivariate distributi-
on when there are no expected defaults, i.e. k = 0.

Proposition 1. Letn e N, k€ {0,1,...,n—1}
be fized andp € (0, 1). Then the cumulative distri-
bution function of binomial and beta random va-
riables are related as

1 = Bit1n—k(p) = Bu—pp+1(1 — p)
= Bingpp(k), p € (0, 1).

NOTE 1: Let us emphasize that the function
Bing, (k) in Proposition || is understood as the
function of p € (0, 1), when n and k are fized.

Proposition is often met in probabilistic
books; e.g., [4, p. 82].

Proposition 2. Letn e N, k€ {0,1,...,n—1}
be fizred and p € (0, 1). Then the inequality

admits the following equivalent representations:

[
qu@))) dr (18)

e
- o
B k,k+1< ( o JToo

1
Y -1
— | B, o, /-2 ol
/ m(( e

L ORARPN
VIi—o

21_’}/)

p(T) X

x —

(19)

where Bp_j k41(-) is the cumulative distribution
function of the beta random variable.

NOTE 2: The same way as Proposition [I]
relates the cumulative distribution functions of
binomial and beta distributions, Proposition
relates the cumulative distribution function P(D <
k), & € {0,1,...,n} from to the ones
in or when p € (0,1). Of course,
Bk k+1(+) in and can be easily replaced
by BN p—k k+1,0,1(-) due to the argument ®(-).

We denote U(0, 1) the uniform distribution
over the interval (0,1). Then, the following
proposition is correct.

Proposition 3. Let X ~ N (0, 1), Y ~ BN (n —
k,k+1,0,1), Z~U0,1), W ~B(n—k, k+1)
and suppose that the random wvariables in pairs
(X, Y), (Y, 2), (Z, W) are independent. Then
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the distribution function in or , when

€ (0, 1), equals to
P(®(yoX —yI—oY)>p) =
— QY) >0p

P <<I> <\/§<I>_1(Z) -
- \/ﬂ‘P’I(W)) > p

P (@ (yoo

NOTE 3: Of course, there can be given some
other joint distributions’ expressions than those

provided in , , .

Corollary 1. If k=0, n € N and X ~ N(0,1),
then the left hand-side of the inequality 18

- [Tewer (-2
=Pr (=2 '(p), ..., =2 (p)),

where ®r is the Gaussian copula with the correla-
tion matrix

(23)

> dx (24)
(25)

1 o 0
o 1 0
R=|" )
o o ... 1

nxn

On top of that, the multivariate density of ®r

m 18
i=1T z 2921<z<]<nx1xﬂ}

(1+(n—2)p
—2(1 0)(1+(n—1)o)

)1 = o) (1 + (n—1)o)
xn) € R™.

, (26)

(xh""

Corollary |1 and its proof (see Section m-
plies

. > (p)
E® ( 1-— QX * \/m)
= p (B (p), -, 271(0)),

where X ~ N(0, 1), and these moments of Vasi-
cek distribution are connected to the moments
of the probability distribution given by

(5) [ o (=)

vIi—o
> 1(p) —

gm)) dx,

— = (27)
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where n € N and i € {0,1,...,n}, see (13).
Indeed, due to the well-known moment-generating
function of the binomial distribution, the moment-

generating function M (t) of is
. <1>< o v <1>‘1(p)>
1—-o0 Vv1I—op

+<1><—\/EX+ %)a)n,teﬂ@,

where X ~ N(0, 1). Notice that M (logt) is the
probability-generating function of the underlying
distribution.

4 Proofs

This section provides the proofs for three
formulated statements in Section [3. The majori-
ty of the given proofs are commonly known among
researchers or scholars and it is difficult to give
any nitial source.

Proof of Proposition [I] Let us first show that

1= Biy1nk(p) = Bakrs1(1 —p).
Indeed,

fol_p u"_k_l(l — u)kdu B
Bn—k, k+1)
flp(l o .’L‘)n_k_llbkd;v fpl xk(l _ x)”_k_ldx
Bn—k, k+1) B(k+1,n—k)
_ Bk+1,n—k)— Tak (1 —a)
B(k+1,n—k)

=1- Bk+1,n—k(p)'

Bk k411 —p) =

We now aim to prove

1- ann,p(k) = Bn—k,k—i—l(l - p)7
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One may observe that f(0) =0, f(1) =1 and the
derivative

n—1\ 0
n 1_
Rl P VA p))
n! k —-1-k
S ————
Wi k=i 1P

is positive for all p € (0, 1). Thus, f(p) is the
cumulative distribution function over the interval
p € (0, 1) and its derivative is nothing but the
density of the beta distribution with parameters
(k+1,n—k), ie.,

d‘z;](?p) = bk+1,n—k(p)
F(n+1)

= Rt ot P e (0,

where Binpp(k) is considered as a function of  proof of Proposition Pl The integral in im-

p € (0,1) when k and n are fixed. Let us rewrite

f(p) :==1— Biny, p(k)

n

=y <?;>pi(1—p)n_i,k:(), 1,...,n—1

plies by Proposition while implies
by the change of variable ®(z) — x. O

Proof of Proposition [l The probability is
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implied by ((18) observing that because

[ et

/f

[
©(@)bnp—, k41,0,1(y) dr dy
)
- @X - V%)
=P (VoX —vI-o¥ > 07\ ())

:IP’<<I><\/§X— —QY)>p),

when X and Y are independent. The remaining

probabilities and are implied by the
integral in by the same arguments. O

bnn k k+1,0,1(y)dy | dx

:p(y<

Proof of Corollary [1, Let a, b € R. Assume the
random variables Y7, ..., Y, are independent and

identically distributed by N'(0, 1). If X ~ N(0, 1)

and Y7, ..., Y, are conditionally independent of
X, then
P(Yi<aX+b,...,Y, <aX +b) =
+oo
/ P(Yi1 <aX+b,...,Y, <aX +bX =1)
—o0
X p(z)dr

I

The equality follows by choosing

a= b= —
\/1—9

while the equality is implied observing that

P(,ﬂ —oVi —oX < —07Y(p), ...,

o(x)®"(ax + b) dx = E®"(aX + b).

o0

1— oV, —oX < -3~ (p ))
=P (-2 (p), ..., —2'(p),
where
L o 0
=]l
o 0 1
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corr(ﬂl@ —oX, \/HYJ — \/§X>

and

E(«/l—gifi—\/@X) —0,i=1,....n
The determinant of R is
(1-0™"'(1+(n—1)p)

and the inverse matrix of R admits the following
representation

1,i=7,
0,1 #]

|R| =

- 1
B i+ m-ne
1+ (n—2)p —0 —0
—0 1+ (n—2)e —0
*.Q *.Q 1+(ﬁ*2)9

Indeed, it is easy to check that RR™' = I, where
I is the identity matrix. Then, the multivariate
density is implied by the formula

exp{ (w1, ..., zn) R (2, ..., xn)T}
(2m)"|R| ’
(1, ..., xn) € R",

see, for example, [I1], [1], [17].

5 Examples

Example 1. Suppose there are up to 3 defaults
expected with probability 1 — ~v out of 800 obli-
gors which are split into three risk classes: A, B
and C, where A represents the lowest risk and C
the highest. Assume the numbers of obligors are
100, 400, 300 and the numbers of expected defaults
are up to 0,2,1 in risk classes A, B and C
respectively. We apply Propositions and the
method of conservatism introduced in [T]|] to esti-
mate the probabilities of default pa, pp and po in
risk classes A, B and C.

The method of conservatism (see [14] and the
description by end of Section states that pa
shall be estimated for the entire portfolio, i.e.,
n = 800 and k = 3 in the considered case. The
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the riskiest class C.

Using Proposition the wunderlying logic
stated in subsection and the method of
conservatism, we obtain Table [I]

v 05 | 075 | 09 | 095 | 0.99 | 0.999
1— Brgr ((1—7) | 0.46% | 0.64% | 0.83% | 0.97% | 1.25% | 1.62%
1— Bygr ((1—7) | 0.52% | 0.73% | 0.95% | 1.10% | 1.43% | 1.85%
1— By o(1—7) | 0.56% | 0.90% | 1.29% | 1.57% | 2.19% | 3.04%

Table 1: The upper bounds of p4, pp and pc.

Note that the numbers in Table [l are given
in [T4l] too and we replicate them for comparison
purposes, especially calculating the quantiles of the
underlying distribution given by F,_i k11, 0(y)-

in Ezample [II Then, using Proposition the
underlying logic stated in subsection the
method of conservatism, and the function "Find-
Root"in program [13] we obtain Table [2| and Table

Suppose the asset correlation o = 12% Bl
vy 0.5 [ 0.75 ] 0.9 | 095 0.99 | 0.999
F779%,4 012l =) | 261|234 ]209|194|1.67 | 1.36
F6_9%74 012(1—7) | 257 1229 | 2.04 | 1.90 | 1.62 | 1.31
F2_9572 012(1—7) | 255|225 ]198 | 182|152 1.19

Table 2: The quantiles of distribution which cumulative distribution function is Fy,_ k1, 0(¥)-

¥ 0.5 0.75 0.9 0.95 0.99 0.999
®(a) | 0.71% | 1.41% | 2.49% | 3.41% | 5.88% | 10.08%
®(b) | 0.80% | 1.58% | 2.76% | 3.77% | 6.43% | 10.91%
®(c) | 0.84% | 1.75% | 3.18% | 4.41% | 7.67% | 13.13%

Table 3: The upper bounds of p4, pp and po under the influence of systematic factor. Here a =
—/1— QF{Q%A’OM(l —7v),b=—/1—- QF(S_Q%A’(].H(l —7),c=—y/1— QF2_951972’0'12(1 — ) as provided

in Table

The provided numbers in Table |3| match the
corresponding ones in [1]|] except few cases caused
by rounding errors in the fourth decimal place.

Example 2. Suppose there are up to 7 defaults
expected with probability 1 — v out of 1500 obli-
gors which are split in four risk classes: A, B,
C and D where A represents the lowest risk and
D the highest. Assume the numbers of obligors
are 400, 700, 250, 150 and the numbers of expected
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defaults are up to 2, 1, 3, 1 in risk classes A, B,
C and D respectively. We apply Propositions
and the method of conservatism introduced in [17)]
to estimate the probabilities of default pa, pp pPc
and pp in risk classes A, B, C' and D.

Using Proposition the wunderlying logic
stated in subsection and the method of
conservatism, we obtain Table [4
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ol 0.5 0.75 0.9 0.95 0.99 0.999
Biiss(1—7) | 0.51% | 0.65% | 0.78% | 0.87% | 1.06% | 1.30%
Bioos.s(1— ) | 0.52% | 0.67% | 0.84% | 0.95% | 1.19% | 1.49%
By s(1—7) | 1.17% | 1.56% | 1.99% | 2.27% | 2.87% | 3.65%
Bioo(1—7) | 1.12% [ 1.78% | 2.57% | 3.12% | 4.34% | 5.99%

Table 4: The upper bounds of pa, pg, pc and pp.

Notice that 83191(3,5(1/2) > 81?972(1/2) in Table
El and, as stated in [T}, Footnote 6/, ”... this is not
a desirable effect, a possible work-around could be
to increment the number of defaults in grade D
up to the point where pp would take on a greater
value than po ...”.

Suppose the asset correlation o = 12%
in Ezample 2l Then, using Proposition the
underlying logic stated in subsection the
method of conservatism, and the function "Find-
Root"in program [13] we obtain Table |5| and Table
0l.

v 05 [0.75] 0.9 [0.95]0.99 [ 0.999
Fiis.s.012(1—7) | 257 [ 2.31[2.07 | 1.93 | 1.67 | 1.37
Fiobs.6.012(1 —7) | 257 [ 2.30 [ 2.06 | 1.92 | 1.65 | 1.35
Fig6.5.010(1 =) [ 227200 [ 1.75 [ 1.61 | 1.33 [ 1.02
Fig.0.012(1—7) [230[1.98[1.71 [ 1.54 [ 1.24 | 0.91

Table 5: The quantiles of distribution which cumulative distribution function is Fy,_ k1, 0(¥)-

5 05 | 075 | 09 | 095 | 099 | 0.999
®(a) | 0.79% | 1.51% | 2.59% | 3.49% | 5.58% | 9.90%
o(b) | 0.79% | 1.53% | 2.64% | 3.58% | 6.06% | 10.23%
d(c) | 1.64% | 3.04% | 5.01% | 6.60% | 10.61% | 16.87%
&(d) | 1.56% | 3.13% | 5.45% | 7.36% | 12.21% | 19.76%

Table 6: The upper bounds of pa, pp, pc and pp under the influence of systematic factor. Here

a=—y1- QFﬂé&s,o.lz(l —9),b=—/1— QFf()éE),ﬁ,o.m(l =), c=—/1— QF?I)};,5,0.12(1 -7),d=

—/1— QFI:L}),ZO.H(]' — ) as provided in Table

Notice that Figq 5 0.15(1/2) > Figg 5 012(1/2)
i Table and consequently the corresponding
upper bounds of pc and pp in Table [6] maintain
the upper bound reversal.

6 Concluding remarks

As stated, this survey article gives a detailed
probabilistic overview of two methods for the
upper bound of default probability. The provi-
ded insights reveal the important role played by
the beta-normal distribution. However, the beta-
normal distribution appears to be little studied,
compared to the wvoluminous literature for the
separate normal or beta distributions. It would be
of interest to get any closed-form of the inverse

of Fu,p,o(p) (see (16)) in terms of a superposi-
tion of @;7102(-) and B;lﬁ(-), which  possibly
would include studying the cumulative distribution
function @, ;2 (a(I)il&Q (x) +b) when a, b € R
and x € (0, 1).
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