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INTRODUCTION

The function of many biological molecular systems is closely tied to the pro-
cess of energy relaxation in their electronic and/or vibrational manifolds. Un-
derstanding the pathways and rates of energy relaxation induced by photoexci-
tation is relevant across a range of molecular spatial scales. From the smallest,
on the level of energy states of a single molecule1–4, to the intermediate-sized
molecular aggregates consisting of a few interacting molecules5–8, and to the
largest photosynthetic complexes found in Nature9–13, which involve physi-
cal processes of molecular energy relaxation, charge transfer, spatial energy
transfer and others in structures composed of tens or hundreds of molecules.
Analytical solution of all but the most primitive theoretical models of molec-

ular systems is intractable. For sufficiently complexmodels, due to a high num-
ber of interacting degrees of freedom involved, brute-force numerical simula-
tions of non-equilibrium dynamics in even the smallest systems are also chal-
lenging, because of the exponential numerical effort scaling.
The standard theoretical approach to proceed for molecular systems is to

treat it as an open quantum system14,15. In this description, only those molec-
ular electronic and vibrational degrees of freedom that participate in a relax-
ation process of interest, constitute the observable system, while less relevant
degrees of freedom are treated as part of a larger than system thermal reser-
voir (the bath), which is fully characterized by a continuous fluctuation spec-
tral density function16,17. Generally, separation into the system and the bath is
only formal as the interaction between the two remains.
The prominent mathematical tool to simulate the time evolution of open

quantum systems is the reduced density operator, i.e., an outer product of wave-
functions. If the system-bath interaction strength is small, relative to the intra-
system coupling strength, comparably straightforward perturbative approaches
of the Redfield theory18–21 can be used with great success. When the opposite
is true, i.e., the system-bath coupling is stronger than the intra-system cou-
pling, perturbative theories of the Förster22–24 become applicable. These meth-
ods solve coupled equations of motion of both the system and the bath with
an intent to average over the influence of the fluctuating bath on the system,
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reducing the full system-bath dynamics to only the relevant dynamics of the
system. The accuracy of these methods heavily relies on the clear separation
between the system-bath and the intra-system coupling strengths. If strengths
are of a similar magnitude, energy relaxation dynamics must be modelled non-
perturbatively since the timescales of the system and bath dynamics essentially
become inseparable. This regime is the most challenging to simulate, yet, a
range of formally exact approaches, though, numerically expensive, have been
developed such as hierarchical equations of motion25, density matrix renormal-
ization group26, chain-mapping approaches27–29, path integral formulations30.
These techniques are based on the reduced density operator description.

However, for the same purposes, one can also directly utilize the wave-
function itself using methods of, e.g., the multi-configuration time-dependent
Hartree31,32, surface hopping33, quantum jumping34, stochastic Schrödinger
equation35, hierarchy of pure states36, thermofield dynamics37,38. The princi-
pal idea behind most wavefunction approaches is to expand states of the entire
system-bath model in a chosen state basis. Such approaches are well suited
for the non-perturbative parameter regime as they explicitly and on an equal
footing treat both the system and bath degrees of freedom. The accuracy de-
pends on how well the chosen state basis can approximate eigenstates of the
system-bath model or, at least, the eigenstates that participate in the relaxation
process of interest the most.
The family of trial wavefunctions (ansätze) considered in this work is named

after Alexander Davydov. It is based on an innovative mechanism39,40 for
vibrational energy transport and localization in α-helix proteins proposed by
Davydov in 1973, where the energy carrier quasiparticle was termed the Davy-
dov’s soliton41,42. The main idea behind the Davydov’s ansätze43,44 is to ex-
pand the system-bath vibrational eigenstates in terms of the time-dependent
coherent states45–47 with Gaussian wavepackets in their phase space. Dur-
ing time evolution of the system-bath model, which propagate according to
the equations derived by applying the time-dependent variational principle to
an ansatz, coherent states continuously adjust to align with the most relevant
eigenstates at any given moment. This adaptation aims to minimize the dis-
crepancy between the ansatz and the solution of the Schrödinger’s equation.
The simplest variant and backbone of the family of Davydov’s ansätze is

called the D2 ansatz48–53. It assigns a single coherent state to each vibrational
degree of freedom of the model, independent of the electronic state the sys-
tem is in. Various alterations have been proposed49,54 to improve accuracy
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of the D2 ansatz. The D1 ansatz55–57 assigns a coherent state to each vibra-
tional degree of freedom per every electronic state. This expands the state
basis set in an attempt to uncouple movement of wavepackets in different elec-
tronic states. The D1.5 ansatz has an intermediate sophistication between the
two and is constructed for a specific case of initial conditions54. Alternatively,
instead of packing more coherent states, modifications to the coherent states
themselves have been proposed. Suggestions of applying squeeze operators47

to coherent states have been made in order to enhance the representation of
non-Gaussian eigenstates. It contracts Gaussian wavepackets along a direc-
tion in the coordinate-momentum phase space, while simultaneously expand-
ing wavepacket along the perpendicular direction. The resulting wavefunc-
tions are termed the squeezed-Davydov D2 and D1 ansätze58–62. While these
alterations broaden the range of representable states, they also increase the nu-
merical effort and may introduce numerical instabilities. These ansätze have
been used to model relaxation dynamics and compute spectroscopic signals of
molecules and their aggregates in perturbative regimeswith great success, how-
ever, they become insufficient in the non-perturbative parameter regime63,64,
especially at low temperatures.
The idea that leads to further progress was to consider the trial wave-

function as a superposition of D2 ansätze, termed the multiple-Davydov D2

ansatz63–65. In theory, by considering an infinite number of superposition
terms, the multiple-Davydov D2 ansatz is an exact expansion of any system-
bath model’s eigenstates. However, in practice, due to the complicated struc-
ture of the resulting equations of motion, the number of terms is limited by the
scaling of numerical cost with respect to the number of vibrational degrees of
freedom66,67. Still, due to the time-dependent adaptive basis set of themultiple-
Davydov D2 ansatz, the numerical effort scaling is reduced68,69 from exponen-
tial to polynomial with a power in the range of 2−3. Therefore, even when the
number of vibrational modes is large, it can match the results of other state-of-
the-art methods such as hierarchical equations of motion63,64,70, quasiadiabatic
path integral71, and multi-configuration time-dependent Hartree72,73,69.
While density operator approaches are able to account for the influence of an

infinitely-sized bath on the system by tracing over fluctuations of vibrational
modes, the variational approach is unable to do the same. Therefore, a finite-
sized bath has to be considered. Most often, the continuous spectral density
function of the bath is linearly or logarithmically70 discretized along the fre-
quency domain in hopes to accurately mimic effects of the continuous function.
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The resulting finite number of discretized frequencies and their correspond-
ing fluctuation magnitudes are then assigned to quantum harmonic oscillators,
which are modelled explicitly along the electronic states.
The wavefunction approach, involving a finite number of electronic states

and vibrational modes, is technically a closed quantum system rather than an
open one, in a sense that there is no external drain or source with which the
model could exchange energy and particles. To retain equivalence between the
open quantum systems of the reduced density operator and the closed quantum
systems of wavefunction-based methods, the discretized bath should behave as
a true thermostat, having a much larger heat capacity than the system. How-
ever, including enough quantum harmonic oscillators to represent a bath with
a sufficiently high heat capacity can be numerically expensive.
As the excitation energy relaxation takes place in the system-bath model,

the energy is primarily absorbed from the system by a few in-resonant bath
oscillators, leading to a divergence from the equilibrium. Therefore, the tem-
perature at which dynamics of the system-bath model occur no longer matches
the initial temperature, this process is called local heating74. The bath most of-
ten is modelled as a collection of independent harmonic oscillators, therefore it
lacks any direct energy exchange mechanism between oscillators. This means
that the only pathway for the hot bath to dissipate thermal energy is to transfer
it back to the system, which violates assumption of the constant temperature
thermostat and introduces unwanted feedback to dynamics of the system.
The theoretical problem of bath heating resembles a process in Nature called

molecular local heating75,76, where if a molecule quickly dissipates a large
amount of thermal energy to its immediate surroundings during, e.g., exciton-
exciton annihilation77–79 or ultrafast molecular internal conversion4,80, the
temperature of molecule’s nearest surrounding increases. Naturally, the sub-
sequent colling process81,82 – thermalization, occurs where the excess heat is
dissipated away from the molecule’s immediate surrounding into deeper layers
of the environment.
The issues of bath heating persist throughout the entire family of Davydov’s

ansätze. While, for non-multiple ansätze, it is possible to explicitly model hun-
dreds or even thousands of bath oscillators, such that each oscillator absorbs a
negligible amount of energy from the system, this approach is unfeasible for
multiple-type ansätze. A more sophisticated solution is required.
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Layout of the dissertation

The doctoral dissertation is based on 6 articles published in journals indexed
in the Clarivate Analytics Web of Science (CA WoS) database. The reader is
encouraged to read articles in full for more details, they are attached in Section
(3.2.3). The articles are listed in the order of their appearance in the disserta-
tion.

The main body of the dissertation is structured as follows:

Chapter (1) provides the theoretical background on the system-bath model,
discusses various Davydov’s ansätze and other necessary topics.

Chapter (2) presents an overview of the main results of Articles [A1], [A2],
[A3], [A4], which focuses on comparing Davydov’s ansätze by modelling en-
ergy relaxation processes and spectra.

Chapter (3) summarizes results from Articles [A5] and [A6], which intro-
duce the thermalization algorithm and showcase its capabilities.

List of articles

Articles included in doctoral dissertation

[A1] M. Jakučionis, I. Gaižiūnas, J. Šulskus, D. Abramavičius, Simulation
of Ab Initio Optical Absorption Spectrum of β-Carotene with Fully Re-
solved S0 and S2 Vibrational Normal Modes, The Journal of Physical
Chemistry A, 126, 180–189, 2022

[A2] M. Jakučionis, T. Mancal, D. Abramavičius, Modelling irreversible
molecular internal conversion using the time-dependent variational ap-
proach with sD2 ansatz, Physical Chemistry Chemical Physics, 22,
8952-8962, 2020

[A3] M. Jakučionis, A. Žukas, D. Abramavičius, Modelling
Molecular J and H Aggregates using Multiple-Davydov
D2 Ansatz, Physical Chemistry Chemical Physics, 24,
17665-17672, 2022

[A4] M. Jakučionis, A. Žukas, D. Abramavičius, Inspecting molecular ag-
gregate quadratic vibronic coupling effects using squeezed coherent
states, Physical Chemistry Chemical Physics, 25, 1705-1716, 2023
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[A5] M. Jakučionis, D. Abramavičius, Temperature-controlled open-
quantum-system dynamics using a time-dependent variational method,
Physical Review A, 103, 032202, 2021

[A6] M. Jakučionis, D. Abramavičius, Thermalization of open quantum sys-
tems using the multiple-Davydov-D2, Physical Review A, 107, 062205,
2023

Articles not included in doctoral dissertation

[A7] M. Jakučionis, V. Chorošajev, D. Abramavičius, Vibrational damping
effects on electronic energy relaxation in molecular aggregates, Chemi-
cal Physics, 515, 193-202, 2018

[A8] O. Rancova, M. Jakučionis, L. Valkūnas, D. Abramavičius, Origin of
non-Gaussian site energy disorder in molecular aggregates, Chemical
Physics Letters, 674, 120-124, 2017

Author’s contribution

The author has solely developed the numerical computation package Vari-
Davy83, formulated and performedmost† numerical simulations, derivedmost‡

equations of motion for the considered Davydov’s ansätze.

† Prof. Dr. Juozas Šulskus and Ignas Gaižiūnas performed quantum chem-
istry calculations of β-carotene, whose results were then used for the simulation
of absorption spectra in Section (2.1).

‡Agnius Žukas co-derived the equations ofmotion of the squeezed-Davydov
D2 ansatz in Section (1.3.2).

Goals of the dissertation

The goals of this research project are (1) to understand which Davydov’s
ansätze are suitable for different types of system-bathmodels and (2) to develop
theoretical and numerical methods for more efficient and accurate simulations
of relaxation dynamics and spectroscopic signals using Davydov’s ansätze.

To achieve the first (1) goal, the following tasks were set:

12



• Create a numerical computation package to simulate the time dynam-
ics and spectroscopic signals of system-bath models using the time-
dependent variational method with Davydov’s family of ansätze.

• Develop a theoretical description and investigate the applicability of the
D2 ansatz for modelling the dynamics of a system-bath model including
the mixing of normal modes of different electronic states.

• Investigate the applicability of representing excited states of quantum
harmonic oscillators with a superposition of coherent states.

• Examine the applicability and convergence of the multiple-Davydov D2

ansatz for simulating the absorption spectra of H and J-type molecular
aggregates.

• Compare the accuracy of the regular, squeezed and multiple-Davydov
D2 ansätze for simulating the absorption and fluorescence spectra of a
system-bath model with the frequency shift of the quantum harmonic
oscillators upon the electronic excitation of the system.

To realize the second (2) goal, the tasks were:

• Develop a theoretical description and a numerical method to deduce the
ensemble of thermal equilibrium states of excited system-bath model.

• Develop and investigate effects of the D2 ansatz thermalization algo-
rithm on the quantum harmonic oscillators and excitation relaxation dy-
namics.

• Extend the description of the D2 ansatz thermalization algorithm to be
used with the multiple-Davydov D2 ansatz.

• Examine the optimization and thermalization algorithms as the tools for
simulation of the spectroscopic signals.

Statements to be defended

1. The multiple-Davydov D2 ansatz is capable of accurately simulating ex-
citation relaxation dynamics and spectroscopic signals of molecular ag-
gregates, while the less sophisticated non-multiple ansätze can capture
only certain aspects of the aggregate’s model.
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2. To simulate the energy exchange between quantum harmonic oscillators
induced by the non-linear coordinate coupling term∝ xpx

2
q using Davy-

dov’s family ansätze, the eigenstates of quantum harmonic oscillator can
be represented by a superposition of coherent states.

3. The numerical thermalization algorithm for the regular and multiple D2

ansätze allow to reduce the required number of quantum harmonic oscil-
lators in the bath and, in turn, the numerical cost of simulations.

4. An ensemble of thermal steady states of the excited system-bath model
can be obtained using either the numerical optimization or thermalization
approach. The thermalization method is better suited for models with
many degrees of freedom.
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List of abbreviations
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TDVP Time-dependent variational principle

EOM Equations of motion

DOF Degrees of freedom

CS Coherent state

QHO Quantum harmonic oscillator

PES Potential energy surface
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1 THEORY

This chapter presents a theoretical description of the standard system-bath (SB)
model and outlines the prerequisites for using the time-dependent variational
principle (TDVP) with the ansätze of the Davydov’s family. It is useful to have
a specific physical model in mind when speaking about the theory. Therefore,
we will present the SB model within the context of molecular aggregates. As
we will see later, by appropriately renaming theoretical variables of the SB
model formulated for molecular aggregates, it can be used to describe other
physical systems as well.
In Section (1.1), the standard SBmodel Hamiltonian is formulated as well as

the non-linear SB coupling term. Then, Section (1.2) introduces the TDVP and
how it is used to derive equations of motion (EOM) of an ansatz. Section (1.3)
presents and discusses variousDavydov ansätze, which are used in this research
work, along with their respective EOMs. Section (1.4) discusses numerical
aspects of solving EOMs of Davydov’s ansätze. Then, Section (1.5) describe
how the temperature effects are included as well as the concept of the ensemble
of wavefunction trajectories. Lastly, Section (1.6.1) formulates the response
functions of absorption and fluorescence spectroscopic signals.

1.1 Hamiltonian of the system-bath model

The SBmodel consists of a collection of electrostatically interactingmolecules.
Each molecule can further be coupled to both: the vibrational modes origi-
nating from the molecules themselves (intramolecular), and vibrational modes
due to the motion in the surroundings of these molecules (intermolecular).
The intramolecular modes are typically high frequency, whereas intermolec-
ular modes are overdamped with low frequency and arise due to fluctuations in
the nearest environment of molecules, such as the motion of solvent molecules,
phonon modes of the molecular matrix, polymers.
The standard SB model Hamiltonian84,85,9,17

Ĥ = ĤS + ĤB + ĤS-B. (1.1.1)
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is made up of three terms: the system Hamiltonian ĤS, the bath Hamiltonian
ĤB and a linear SB interaction Hamiltonian ĤS-B.
In this model, we consider the system as N coupled molecules, where each

n-th molecule is modelled as a bosonic two-electronic-level system with a
ground state |0n⟩ and an excited state |1n⟩. We construct the global electronic
ground state as a product of each molecule ground state, given by

|0⟩ = ⊗N
n |0n⟩. (1.1.2)

We take the global electronic ground state energy EG as a reference point for
all energy values, hence we set EG = 0 cm−1.
Using the Heitler-London approach86,84, we construct the single electronic

excitation states as
|n⟩ = |1n⟩ ⊗N

m ̸=n |0m⟩, (1.1.3)

with ground-to-excited transition energy εn, where the n-th two-level system
is excited and all the rest of two-level systems are in their ground state. Tran-
sitions between the global ground state and excited system states are given by
action of bosonic creation â†n and annihilation ân operators:

â†n|0⟩ =|n⟩, (1.1.4)

ân|n⟩ =|0⟩. (1.1.5)

The Coulomb electrostatic interaction strength Jnm between the n-th andm-
th molecule can be expressed as an integral of interaction between respective
molecules’ transition charge distributions ρn (rn) given by

Jnm = ke

∫∫
dr′dr′′

ρn (r
′) ρm (r′′)

|r′ − r′′|
, (1.1.6)

where ke is the Coulomb constant.
If the distance between molecules’ center of massesRn is larger than charge

distributions, then the double integral can be evaluated numerically to the de-
sired precision using the multipole expansion series. In the case of molecules
with an overall non-zero charge or those involving charge transfer states, the
Eq. (1.1.6) can be sufficiently approximated by the dipole-dipole expansion
terms

Jnm = ke

(
qnqm

|Rn −Rm|
+
qn (µm ·R0)− qm (µn ·R0)

|Rn −Rm|2

)
, (1.1.7)

17



where qn is the total charge, µn is the transition dipole moment and R0 is
the unit vector. They account for the majority of the interaction strength; the
higher order expansion terms quickly decay with the distance and are of limited
importance. However, if the distance between molecules’ center of masses is
of similar order as the molecular size, then the multipole expansion is invalid
and Eq. (1.1.6) must be computed in full.
The system Hamiltonian can be expressed as

ĤS =
N∑
n

εnâ
†
nân +

n ̸=m∑
n,m

Jnmâ
†
nâm, (1.1.8)

and is called the Frenkel exciton Hamiltonian86.
When the electronic coupling betweenmolecules of the system is sufficiently

large, it is often convenient to analyze excitation dynamics of the SB model in
terms of the eigenstatesΦexc

n of the systemHamiltonian ĤS with corresponding
eigenenergies εexcn , which satisfy the time-independent Schrödinger equation

ĤSΦ
exc
n = Eexc

n Φexc
n . (1.1.9)

Quasiparticles of the system Hamiltonian are referred to as excitons84,9, and
they are system’s excitations delocalized over many molecules simultane-
ously50.
The vibrational normal modes of molecules and their surrounding medium

will be treated as a collection of quantum harmonic oscillators (QHO). Each
molecule is assigned its own collection of oscillators, to which we will refer as
local baths. The bath Hamiltonian is then given by

ĤB =
∑
k,q

ωg
kq b̂

†
kq b̂kq, (1.1.10)

where we have set the reduced Planck’s constant to h̄ = 1. Here ωg
kq is the

frequency of the q-th oscillator in a k-th local bath, b̂†kq and b̂kq are bosonicQHO
creation and annihilation operators, respectively. Note that we do not include
QHO zero-point energy in Eq. (1.1.10), as it would only shift the absolute
vibrational energy scale without affecting the dynamics of the SB model.
During an electronic transition from the ground to excited states of a sys-

tem, the potential energy surfaces (PES) of vibrational modes may change. To
account for these changes, we use the displaced oscillator model87, which as-
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sumes that the potentials of vibrational modes become displaced along their
coordinate axes when the system transitions into an excited state. Displaced
oscillators leads to the linear SB coupling Hamiltonian

ĤS-B = −
∑
n

â†nân
∑
q

ωe
nqgnq

(
b̂†nq + b̂nq

)
, (1.1.11)

which couples the excited electronic states of molecules to vibrational states
of local baths’ oscillators. Here gnq is the dimensionless coupling strength of
the q-th oscillators coupled to the n-th molecule. In addition to the term in Eq.
(1.1.11), the displaced oscillator model introduces a static energy shift, known
as the reorganization energy, given by

Λn =
∑
q

ωe
nqg

2
nq. (1.1.12)

We assume that all excited electronic states have the same coupling strengths
gnq, which causes all excited state energies to change by the same amount.
Therefore, for simplicity in our equations, we absorb the reorganization energy
shift into the definition of the ground-to-excited transition energy εn.
The linear SB coupling term ĤS-B effectively modulate excitation energies

εn by coordinates of oscillators

x̂kq =
1√
2

(
b̂†nq + b̂nq

)
. (1.1.13)

Molecular environment fluctuations are characterized by the spectral density
function16 given by

C ′′
n (ω) = π

∑
q

g2nq
(
ωe
nq

)2
(δ (ω − ωnq)− δ (ω + ωnq)) . (1.1.14)

In the SB model, fluctuations are modelled as the motion of bath oscillators
with the overall strength given by the reorganization energy in Eq. (1.1.12).
The function C ′′

n (ω) is generally obtained from experiments and is assumed to
be known.
In the ground state, both the ĤS and ĤS-B terms vanish; therefore, the ground

state Hamiltonian is simply equivalent to the bath Hamiltonian

ĤG = ĤB. (1.1.15)
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1.1.1 Non-linear displaced oscillator model

The higher order SB couplings are derived from the displaced oscillator model
if the potential energy surfaces of QHOs in the molecular excited states are not
only shifted with respect to those in the molecular ground state, but also differ
by their frequencies and/or shape60,88–93. In Section (2.4), we will investigate
effects of QHO frequency shifts during the ground-to-excited state transition.
This assumption leads to the quadratic SB coupling Hamiltonian term

ĤS-B2 =
1

4

∑
n

â†nân
∑
q

(
ωe
nq − ωg

nq

) (
b̂†nq + b̂nq

)2
, (1.1.16)

which must be included along the linear SB coupling term in Eq. (1.1.11). It
contributes only if the QHO frequencies in the electronic ground state ωg

nq are
different from those in the excited state ωe

nq.
The equations for computing time evolution of the SBmodel in Section (1.3)

will include terms, which result due to the quadratic SB coupling. However,
unless explicitly stated otherwise in the text, it will be assumed that oscillator
frequencies in both electronic manifolds are the same

ωe
nq = ωg

nq = ωnq, (1.1.17)

and the quadratic term does not contribute.

1.2 Time-dependent variational principle

Equations describing dynamics of the model are derived by applying the time-
dependent variational principle94,95. The principal idea of variational approach
is to vary a parametrized trial wavefunction |Ψ(ξ (t))⟩, such that the action
functional

S (t) =

∫ tf

ti

dtL [Ψ (ξ (t))] , (1.2.1)

is stationary and maintained at an extremum

δS (t) = δ

∫ tf

ti

dtL [Ψ (ξ (t))] = 0, (1.2.2)

where L is a Lagrangian, and δS (t) is a variation of action functional in terms
of wavefunction, obtained by varying parameters ξ (t). To achieve this, the
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parameters of the time-dependent wavefuction

ξ (t) = (ξ1 (t) , ξ2 (t) , . . . ξN ) , (1.2.3)

are propagated in time according to the Euler-Lagrange equations

d
dt

(
∂L (t)

∂ (∂tξ⋆i )

)
− ∂L (t)

∂ξ⋆i (t)
= 0, (1.2.4)

where ∂tξi is the time derivative of ξi, and the Lagrangian of the model is given
by

L (t) =
i
2
(⟨Ψ(t) |∂tΨ(t)⟩ − ⟨∂tΨ(t) |Ψ(t)⟩)− ⟨Ψ(t) |Ĥ|Ψ(t)⟩. (1.2.5)

This procedure results in a system of time-dependent equations for parametriza-
tion parameters ξ (t), which attempts to minimize the deviation of the ansatz
from the solution of the corresponding Schrödinger’s equation.
Time-dependent variational methods are intricately linked to the geometric

interpretation of quantum states within a Hilbert space. The family of states
spanned by theΨ(ξ (t)) can be viewed as amanifoldMwithin a Hilbert space.
Then the time evolution of ξ (t) is determined by projecting the variation of the
state δΨ(ξ (t)) onto the tangent space ofM. A comprehensive review of this
geometric view can be found in the Refs.96,97.

1.3 Davydov’s ansätze

In this chapter, we will present four ansätze from the Davydov’s family. The
first three are the most common and will be presented in an order of increasing
complexity and, presumably, accuracy, while the last ansatz is of an interme-
diate complexity. In Section (1.3.1) we will describe the simplest variant, and
the backbone of the family, the Davydov D2 ansatz41,42. In Section (1.3.2)
we will define the squeezed-Davydov D2 ansatz by maintaining the same D2

ansatz structure, but including an additional degree of freedom (DOF) to the
states basis set. In Section (1.3.3) we will formulate the numerically exact
ansatz of multiple-Davydov D2 by considering a superposition of D2 ansätze.
For each ansatz, we will derive the corresponding EOMs for the SB model
presented in Section (1.1). These are the principal Davydov ansätze, while
many more can be found in the literature, each tailored to the specific needs
of the model at hand and the physical processes that it is trying to capture.
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With that in mind, in Section (1.3.4) we will propose a modification of the
multiple-Davydov D2 for simulation of molecular internal conversion, termed
the superposition-Davydov D2.

1.3.1 Davydov D2 ansatz

The Davydov D2 ansatz is defined as

|ΨE
D2
⟩ =

N∑
n

αn (t) |n⟩ ⊗ |λ (t)⟩. (1.3.1)

For the system states, it considers a superposition of excited molecular states
|n⟩ with complex time-dependent amplitudes αn (t). Meanwhile, bath QHO
states are represented by the time-dependent multi-dimensional coherent state
(CS)47,98,99

|λ (t)⟩ = ⊗K,Q
k,q |λkq (t)⟩. (1.3.2)

A single-dimensional CS |λkq (t)⟩ is an eigenstate of QHO annihilation op-
erator

b̂kq|λkq (t)⟩ = λkq (t) |λkq (t)⟩, (1.3.3)

with complex eigenvalue λkq (t). It is generated by applying the translation
operator

D̂ (λkq (t)) = exp
(
λkq (t) b̂

†
kq − λ⋆kq (t) b̂kq

)
, (1.3.4)

to the vacuum, zero quanta, state of QHO

D̂ (λkq (t)) |0⟩kq = |λkq (t)⟩. (1.3.5)

Therefore, we will regard λkq (t) as a CS displacement parameter. By express-
ing it in the polar coordinate system

λkq (t) = |λkq (t)| eiφkq (1.3.6)

CS can be interpreted as being a Gaussian wavepacket displaced from the min-
ima of the QHO energy potential by |λkq (t)| and rotated counterclockwise by
an angle φ in the coordinate-momentum phase space of QHO.
By applying the TDVP to the Davydov D2 ansatz with the SB Hamiltonian,
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Figure 1.3.1: Diagram plot of a CS and a squeezed CS wavepackets in
coordinate-momentum (x, p) phase space.

given by Eq. (1.1.1), we derive EOM for the free parameters of the ansatz:

∂tαn (t) = −iαn

(
εn +

1

4

∑
q

∆ωnq

)
− i

n ̸=m∑
m

αmJnm

+ iαn

∑
q

(
2ωe

nqgnqReλnq −
1

ρ

∑
m

|αm| 2ωe
mqgmqReλmq

)

− iαn

∑
q

(
∆ωnq (Reλnq)2 −

1

ρ

∑
m

|αm| 2∆ωmq (Reλmq)
2

)
(1.3.7)

for each index n = 1, 2, . . . , N , and

∂tλkq (t) = −iωg
kqλkq +

i
ρ
|αk| 2ωe

kqgkq −
i
ρ
|αk| 2∆ωkqReλkq (1.3.8)

for all index combinations (k, q), where k = 1, 2, . . . ,K and q = 1, 2, . . . , Q.
We define the total wavefunction probability as ρ =

∑N
n |αn|2.

Equations (1.3.7), (1.3.8) constitute a system of explicitly coupled differen-
tial equations of sizeN +KQ. The terms on the right-hand side (RHS) of Eq.
(1.3.7) in the first line describe dynamics of an isolated system, while terms on
the second and third lines are due to the bath’s influence on the system resulting
from linear and quadratic SB couplings, respectively. Similarly, the first term
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on the RHS of Eq. (1.3.8) describes the dynamics of an isolated QHO, while
the remaining terms are due to the SB couplings.

1.3.2 Squeezed-Davydov D2 ansatz

To broaden the range of QHO states represented by the D2 ansatz, additional
degrees of freedom must be unlocked. One possibility is to apply the squeeze
operator

Ŝ (ζkq (t)) = exp
(
1

2

(
ζ∗kq (t) b̂kq b̂kq − ζkq (t) b̂

†
kq b̂

†
kq

))
, (1.3.9)

with the complex squeeze parameter ζkq(t), in addition to the translation op-
erator in Eq. (1.3.4). This operator contracts and expands the CS Gaussian
wavepacket along its coordinate and momentum axes. By applying the dis-
placement and squeeze operators to the QHO vacuum state

D̂ (λkq (t)) Ŝ (ζkq (t)) |0⟩kq = |λkq (t) , ζkq (t)⟩, (1.3.10)

the multi-dimensional time-dependent squeezed CS is generated, given by

|λ (t) , ζ (t)⟩ = ⊗K,Q
k,q |λkq (t) , ζkq (t)⟩. (1.3.11)

The complex squeeze parameter ζkq(t) can be expressed in the polar form
as

ζkq(t) = rkq(t)e
iθkq(t), (1.3.12)

where the real-valued squeeze amplitude is given by

rkq(t) = |ζkq(t)| , (1.3.13)

and the squeeze angle is denoted as θkq(t). The squeeze amplitude and an-
gle together describe how much, and along which direction, the wavepacket
become elongated, see Fig. (1.3.1)
The squeezed-Davydov D2 ansatz (sqD2) is defined as

|ΨE
sqD2

(t)⟩ =
N∑
n

αn (t) |n⟩ ⊗ |λ (t) , ζ (t)⟩. (1.3.14)

Applying the TDVP leads to a system of explicitly coupled differential equa-
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tions for the free parameters of the sqD2 ansatz:

∂tαn (t) = −iαn

(
εn +

1

4

∑
q

∆ωnq

)
− i

m ̸=n∑
m

αmJnm

+ iαn

∑
q

(
2ωe

nqgnqReλnq −
1

ρ

∑
m

|αm|2 ωe
mqgmqReλmq

)

− iαn

∑
q

(
∆ωnq (Reλnq)2 −

1

ρ

∑
m

|αm|2∆ωmq (Reλmq)
2

)

− i
4
αn

∑
q

∆ωnq (cosh (2rnq)− sinh (2rnq) cos (θnq))

+
i
2ρ
αn

∑
k,q

|αk|2∆ωkq sinh2 (rkq) (1− coth (2rkq) cos (θkq)) (1.3.15)

for each index n = 1, 2, . . . , N , and

∂tλkq = −iωg
kqλkq +

i
ρ
|αk|2 ωe

kqgkq −
i
ρ
|αk|2∆ωkqReλkq, (1.3.16)

∂trkq =
1

2ρ
|αk|2∆ωkq sin (θkq) , (1.3.17)

∂tθkq = −2ωg
kq −

1

ρ
|αk|2∆ωkq (1− coth (2rkq) cos (θkq)) (1.3.18)

for all index combinations (k, q), where k = 1, 2, . . . ,K and q = 1, 2, . . . , Q.
The number of equations is N + 3KQ.
It has been postulated that sqD2 ansatz better represents QHO states with

non-Gaussian wavepackets, which can be induced by the non-linear SB cou-
pling terms, e.g., the quadratic SB coupling of Eq. (1.1.16). Upon inspecting
differential equations of squeeze operator parameters rkq and θkq, we find that
if the frequency shift∆ωkq is equal to zero, differential Eqs. (1.3.17), (1.3.18)
simplify and have solutions:

∂trkq = 0 → rkq (t) = rkq (0) , (1.3.19)

∂tθkq = −2ωg
kq → θkq (t) = −2ωg

kqt+ θkq (0) . (1.3.20)
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Indeed, without quadratic SB coupling, squeeze amplitudes become time-
independent, while the squeeze angle changes at a constant rate. If the initial
CS is not squeezed (rkq (0) = 0), the Gaussian wavepacket is symmetric with
respect to the rotation angle θkq. Therefore, the non-squeezed CS will remain
non-squeezed indefinitely, i.e., it is the quadratic SB coupling that generates
squeezing of CS.

1.3.3 Multiple-Davydov D2 ansatz

The most general ansatz considered in this work is the multiple-Davydov D2

ansatz (mD2), which is given by63

|ΨE
mD2

(t)⟩ =
M∑
i

N∑
n

αi,n (t) |n⟩ ⊗ |λi (t)⟩, (1.3.21)

where the free parameters of i-th superposition terms (multiples) are complex
amplitudes αi,n (t) and multi-dimensional CS

|λi (t)⟩ = ⊗K,Q
k,q |λi,kq (t)⟩, (1.3.22)

with displacements λi,kq (t). Each i-th multiple corresponds to an excited state
associated with oscillator states.
By considering the mD2 ansatz with depthM – the number of superposition

terms, the complexity and accuracy of the mD2 ansatz increase. The mD2

ansatz reduces to the regular D2 ansatz when depth isM = 1.
To illustrate principal idea of the mD2 ansatz, in Fig. (1.3.2) we show an

example of vibrational mode coordinate probability density P (x), computed
using the D2 ansatz and the mD2 ansatz with depthM = 4. The wavepacket
of the D2 ansatz always remains Gaussian, while the mD2 ansatz represents
the wavepacket using a superposition of four Gaussians, resulting in a non-
Gaussian wavepacket. The importance of the circle to the overall representa-
tion of the ansatz is indicated by the color intensity of the circle.
Applying the TDVP to the mD2 ansatz yields a system of implicitly coupled

differential equations, given by:∑
j

(Sij∂tαj,n + αj,nSijKij) =

− i
∑
j,m

αj,mSijJnm − i
∑
j

αj,nSij (Aij +Bij,n + Cij,n) , (1.3.23)
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Figure 1.3.2: An example of the vibrational mode coordinate probability den-
sity P (x) for (a) the D2 ansatz, and (b) the mD2 ansatz with depth of M =
4. Circles represent CSs of i-th multiples’ projection to a vibrational mode
coordinate-momentum phase space (x, p). Color intensities of circles are pro-
portional to the multiples’ contribution to the mD2 wavefunction norm.
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for each pair of indices (i, n), and∑
j,n

(
α⋆
i,nSijλj,kq∂tαj,n +Gij,nn∂tλj,kq

)
=

− i
∑
j,n,m

Gij,nmλj,kqJnm − i
∑
j,n

Gij,nnλj,kq (Aij +Bij,n + Cij,n)

− i
∑
j,n

Gij,nnω
g
kqλj,kq + i

∑
j

Pij,kgkqω
e
kq − 2i

∑
j

Gij,kk∆ωkq

(
λ⋆i,kq + λj,kq

)
,

(1.3.24)

for all combinations of (i, k, q) indices. We additionaly defined the function

Kij =
∑
k,h

((
λ⋆i,kq −

1

2
λ⋆j,kq

)
∂tλj,kq −

1

2
λj,kq∂tλ

⋆
j,kq

)
, (1.3.25)

which contains time derivatives of CS displacements. Other definitions are

Gij,nm = α⋆
i,nαj,mSij , (1.3.26)

Aij =
∑
k,q

ωg
khλ

⋆
i,khλj,kh, (1.3.27)

Bij,n = −
∑
q

gnqω
e
nq

(
λ⋆i,nq + λj,nq

)
, (1.3.28)

Cij,n =
∑
q

∆ωnq

(
1 +

(
λ⋆i,nq + λj,nq

)2)
, (1.3.29)

and the overlap of two CS is

Sij = ⟨λi|λj⟩ = exp
N,Q∑
k,q

(
λ⋆i,kqλj,kq −

1

2

(
|λi,kq|2 + |λj,kq|2

))
(1.3.30)

1.3.4 Superposition-Davydov D2 ansatz

While the D2 ansatz is the simplest and the mD2 ansatz is the most sophisti-
cated, we have proposed an ansatz with intermediate complexity termed the
superposition-Davydov D2 (sD2) ansatz

|ΨE
sD2

(t)⟩ =
N∑
n

∫ xmax

xmin
dxΦn (x, t) |n,x⟩︸ ︷︷ ︸
system

⊗
M∑
α

θα (t) |λα (t)⟩︸ ︷︷ ︸
bath

, (1.3.31)

28



where
∫ xmax

xmin is a multi-dimensional integral over the coordinate space of in-
tramolecular vibrational modes. The sD2 ansatz is constructed as a product of
the system and the bath wavefunctions. The key conceptual difference from
the mD2 ansatz is that instead of considering amplitudes αi,n (t) of the com-
bined electron-vibrational states, the sD2 ansatz splits them into separate am-
plitudes for each sub-part: amplitudes for electron-vibrational states Φn (x, t)

and amplitudes for bath vibrational states θα (t), i.e., the sD2 ansatz applies the
Born-Oppenheimer approximation to the mD2 ansatz.
The electronic states of the system and the intramolecular vibrational DOFs

are treated numerically exactly using the coordinate basis set representation

x̂p|xp⟩ = xp|xp⟩, (1.3.32)

where x̂p is the p-th intramolecular vibrational mode coordinate operator.
These form system’s electron-vibrational states

|n,x⟩ = |n⟩ ⊗ |x1⟩ ⊗ |x2⟩ ⊗ . . . |xP ⟩, (1.3.33)

with complex time-dependent amplitudesΦn (x, t). The eigenstates of the bath
QHOs are expanded in the superposition of multi-dimensional CSs

|λα (t)⟩ = ⊗K,Q
k,q |λα,q (t)⟩, (1.3.34)

with complex time-dependent amplitudes θα (t).
This approach enables us to gradually improve the accuracy of the bath

wavefunction by adjusting the superposition depthM and to gauge bath repre-
sentation precision influence on the system dynamics, while keeping the system
wavefunction representation numerically exact and unchanged.
Because bath wavefunction is represented by a superposition of CSs, the re-

sulting EOMs of the sD2 ansatz again constitute a system of implicitly coupled
differential equations, which require two-step numerical approach. The result-
ing EOMs can be found in the supplementary information of Article [A2].

1.4 Solving implicit EOM of the mD2 ansatz

Equations of the D2 and sqD2 ansätze can be straightforwardly solved using
most numerical libraries intended for finding solutions of explicit differential
equations100. The Runge-Kutta method with appropriate accuracy parameters
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to ensure conservation of energy and the wavefunction norm, is a good choice.
It requires to know the initial state vector, made up of the free parameters of
the respective ansatz, defined as

x0 = {αn (0) , λkq (0) , . . . , θkq (0) , rkq (0)} , (1.4.1)

and the time derivative of the state vector

∂tx (t) = {∂tαn (t) , ∂tλkq (t) , . . . , ∂tθkq (t) , ∂trkq (t)} , (1.4.2)

which is constructed from the EOMs of ansätze. This is sufficient to propagate
the state vector x (t) in time.
For the implicit equations of the mD2 ansatz, the vector ∂tx (t) is not

straightforwardly accessible and require an additional step to find it. We solved
EOMs of the mD2 ansatz in terms of the real and imaginary parts of variables
αi,n (t), λi,kq (t), which were ordered in the column state vector

x (t) =
{
αR

i,n (t) ,α
I
i,n (t) ,λ

R
i,kq (t) ,λ

I
i,kq (t)

}
. (1.4.3)

Consideration of the real and imaginary parts, instead of the complex vari-
able form, removes consistency problems of having to treat derivatives of the
complex CS displacements ∂tλi,kq (t) and their conjugates ∂tλ⋆i,kq (t) as two
separate variables.
The time derivative of the state vector is found by writing Eqs. (1.3.23),

(1.3.24) in a matrix form

M (t) ∂tx (t) = f (t) , (1.4.4)

whereM (t) is a coefficient matrix of the time derivative terms, appropriately
formed from the left-hand sides (LHS) of Eqs. (1.3.23), (1.3.24), while the
column vector, f (t), is constructed from the RHSs.
We solved for ∂tx (t) using theGeneralizedMinimal ResidualMethod (GM-

RES) with the Lower–Upper decomposition as a lower preconditioner. Sug-
gestions to solve for ∂tx (t) using the numerically less costly methods of the
Moore-Penrose pseudo-inverse or the Lower–Upper decomposition, in con-
junction with a small random noise applied to free variables, has been made.
However, we found GMRES method to have a better numerical stability and,
although each solve of GMRES is numerically more expensive, the resulting
solution is more accurate, which, in turn, allows the numerical solver to take
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larger time steps, reducing the overall numerical cost.
Now that the ∂tx (t) vector is known, a variety of ordinary differential equa-

tion solvers can be used to propagate x (t). We found that the adaptive-order
adaptive-time Adams-Moulton method101 provide just as accurate solution as
a typical Runge–Kutta fourth-order method, but with less computational effort
when used along the GMRES method. It evaluates the numerically expensive
step of finding ∂tx (t) fever times than Runge-Kutta methods, thus, is well-
suited for simulations of large SB models.
Another numerical aspect to consider when solving EOMs of the mD2 ansatz

is the fact that CSs of different multiples are never orthogonal

⟨λi (t) |λj (t)⟩ ̸= 0, (1.4.5)

they constitute an overcomplete set of states. This can lead to a situation, where
two or more CSs approach each other during time evolution of the mD2 ansatz
and become highly overlapped. This results in an ill-conditioned coefficient
matrix M (t) with two or more equations becoming approximately linearly
dependent, and, therefore, Eq. (1.4.4) no longer have a consistent solution for
∂tx (t).
To address this issue, we use the programmed removal of overlapping multi-

ples67, which effectively connects two, or more, overlapping CS by imposing
condition

λi (t) = λj (t) +C, (1.4.6)

for t ⩾ t0, where C = λi (t0) − λj (t0) and t0 is the time when the distance
di,j between CSs become less than d0, see Eq. (1.6.11). We found the critical
distance of d0 = 0.05 to be ideal for avoiding both: the numerical instabilities
when di,j is too small, and the unnecessary removal of multiples when di,j is
too large.
While the CS displacements remain connected for the remaining time of

propagation t ⩾ t0, the amplitudes of corresponding multiples αi,n (t), αj,n (t)

are still independent, therefore, the overall dynamics are impacted minimally
by the connection of λi (t) and λj (t). The value of the critical distance d0 also
give hints for the appropriate placement of the initially unpopulated CSs during
the ground-to-excited state transition, as discussed in Section (1.6.1).
All numerical simulations presented in this dissertation were performed us-

ing a custom numerical package written during the project using the Julia pro-
gramming language. The package has been made public and is available on-
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line83.

1.5 Modelling thermal effects

Temperature of molecular aggregate is included by averaging over dynamical
trajectories with different initial conditions. Prior to excitation of molecular
aggregate via an external field, the aggregate is in its electronic ground state |0⟩,
while vibrational modes are thermally excited. Thermal properties of QHOs in
the ground state are straightforward. All oscillators are uncoupled from the
system and each other, therefore, QHOs obey statistics of canonical ensemble.
In representation of CSs, QHO canonical ensemble is described by a diagonal
density operator given by the Glauber-Sudarshan distribution45

P (λkq) = Z−1
kq exp

(
− |λkq|2

[
e

ωkq
kBT − 1

])
, (1.5.1)

where Zkq is the partition function, kB is the Boltzmann constant and T is
the temperature. It is a Gaussian function with mean equal to 0 and variance
(exp [ωkq/kBT ]− 1)−1 /2.
The ground state Hamiltonian of the SB model is equivalent to that of QHO,

as shown in Eq. (1.1.15). Therefore, it is adequate to use the D2 ansatz to
describe states of the SB model. We define the ground state variants of the D2

ansatz as

|ΨG
D2

(t)⟩ = θ0 (t) |0⟩ ⊗ |λ (t)⟩, (1.5.2)

where θ0 (t) is the ground state complex amplitude.
If the ground state of a system is obtained by considering the downward

electronic transitions, the resulting state may not necessarily be Gaussian, and
then representation may require a more accurate ansatz. Therefore, we define
the ground states of the sqD2 and mD2 ansätze as follows:

|ΨG
sqD2

(t)⟩ = θ0 (t) |0⟩ ⊗ |λ (t) , ζ (t)⟩, (1.5.3)

|ΨG
mD2

(t)⟩ =
M∑
i

θi,0 (t) |0⟩ ⊗ |λi (t)⟩. (1.5.4)

The approach to include temperature is the same for all considered ansätze.
The only difference lies in how the thermal initial condition, sampled from Eq.
(1.5.1), is represented by each ansatz.
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For the ΨG
D2

ansatz, we draw an independent sample for each QHO from
the P (λkq) distribution and set it as an initial CS displacement λkq (0), which
unambiguously characterizes thermal state of the model before electronic exci-
tation. The ground state amplitude is set to θ0 (0) = 1 for the wavefunction to
be normalized. For theΨG

sqD2
ansatz, we also sample theP (λkq) to deduce ini-

tial displacements λkq (0). Squeeze amplitudes and angles for all QHOs are set
to rkq = 1, θkq = 0, which correspond to non-squeezedGaussian wavepackets.
The ground state amplitude is again set to θ0 (0) = 1.

1.5.1 Observable of an operator

The observableX (t) of an operator X̂ is obtained by taking the average of the
ensemble of wavefunction trajectories

X (t) =
1

Γ

Γ∑
γ=1

⟨Ψ(t) |γX̂|Ψ(t)⟩γ =
〈
⟨Ψ(t) |X̂|Ψ(t)⟩

〉
, (1.5.5)

where each γ-th trajectory has an initial thermal condition Ψ(0) deduced in
the manner as described in Section (1.5). Γ is the number of trajectories in
an ensemble, which must be increased until the observable in Eq. (1.5.5) con-
verge. To explicitly indicate that the observable of an operators X̂ is ensemble-
averaged, we may surround the observable with brackets, ⟨X (t)⟩.

1.6 Simulating absorption and fluorescence spectra

1.6.1 Transitions between electronic manifolds

Molecular aggregates undergo transitions between their ground and excited
states due to interactions with the external electric field E (t). Within the
molecular dipole and the Frank-Condon approximations, molecules interact
with the electric field via their purely electronic transition dipole vectors µn.
Then the system-field coupling Hamiltonian is given by

ĤS-F (t) = µ̂ ·E (t) . (1.6.1)
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µ̂ = µ̂+ + µ̂− is the vector transition dipole operator, and

µ̂+ =

N∑
n

µnâ
†
n, (1.6.2)

µ̂− =

N∑
n

µnân, (1.6.3)

are the vector transition operators that increase µ̂+ and decrease µ̂− the number
of excitation quanta in the aggregate. In this work, we consider the electric field
in an impulsive limit

E (t) → E0δ (t− τ) , (1.6.4)

with the rotating wave approximation102, where τ is the time at which system-
field interaction occur. As a result, transitions between the aggregate’s elec-
tronic manifolds occur instantaneously.
In general, state of the aggregate is a superposition of the ground state wave-

function ΨG and the excited state wavefunction ΨE. However, in the current
perturbative treatment of interaction with the optical field, the electronic state
of the aggregate will always adhere to either the ground or excited state mani-
fold. Therefore, it is sufficient to consider the evolution of these wavefunctions
independently.
Molecular aggregate’s transitions between its ground and excited state man-

ifolds are manifested via the action of the scalar transition operators

µ̂± = e · µ̂±, (1.6.5)

on wavefunctions of the aggregate, such as

µ̂+|ΨG
D2

(t)⟩ = |ΨE
mD2

(t)⟩, (1.6.6)

µ̂−|ΨE
mD2

(t)⟩ = |ΨG
mD2

(t)⟩. (1.6.7)

e is the electric field polarization vector.
Free parameters of the initial state of the ansatz are known, whereas param-

eters of the final state of the ansatz must be computed and/or set appropriately.
We will present description for the transitions using the mD2 ansatz, however,
the same conceptial ideas apply to the D2, sqD2, sD2 ansätze.
For the ground-to-excited state transition in Eq. (1.6.6), as already men-

tioned in Section (1.5), it is sufficient to represent the initial ground state of
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the model by the D2 ansatz. Meanwhile, for the excited state the ΨE
mD2

ansatz
must be used. It can be equivalently represented by a single multiple out of
the i = 1, 2, . . . ,M multiples of the mD2 ansatz. For this reason, we choose
to populate the first (i = 1) multiple and label rest of the multiples (j ̸= i)
as the initially unpopulated. Then the newly created state ΨE

mD2
, given by Eq.

(1.3.21), has amplitudes:

α1,n (t) = (e · µn)ϑ0 (t) , (1.6.8)

α2...M,n (t) = 0, (1.6.9)

and CS displacements of the populated multiple are equivalent to displacement
in the ground state

λ1,kq (t) = λkq (t) . (1.6.10)

The unpopulated CS variables λ2...M,kq (t) do not initially contribute to the
model dynamics. Their values are, in principle, arbitrary, however, during
the following evolution of ΨE

mD2
(t), the unpopulated multiples can become

populated and begin to influence model dynamics. It is known that the initial
distance

di,j =

√∑
kq

|λi,kq (t)− λj,kq (t)|2, (1.6.11)

between the populated and the unpopulated CSs should not be too large. Oth-
erwise, they will not participate in the excited state dynamics, even at long
propagation times CSs will remain separated93. On the other hand, setting all
CS in a close proximity to each other λj ̸=1,kq (t) ≈ λ1,kq (t) lead to a highly
singular EOMs of the mD2 ansatz, which are difficult to solve46,67 and were
already discussed in Section (1.4).
Therefore, although the exact arrangement of the unpopulated CSs is not crit-

ical, we chose to set them in a layered hexagonal pattern around the populated
CS93, given by

λj=2,...,M,kq (t) = λ1,kq (t) +
∆

2
(1 + ⌊β (j)⌋) ei2π(β(j)+

1
12

⌊β(j)⌋), (1.6.12)

where∆ is the distance parameter, β (j) = (j − 2) /6 is the coordination func-
tion and ⌊x⌋ is the floor function of x. The distance parameter ∆ should be
chosen to be sufficiently large to prevent significant overlap among the distri-
bution of CSs, yet not so large as to eliminate overlap entirely. We have found
∆ = 0.5 to be reasonable value that gives numerically stable, consistent, and
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convergent results.
For the excited-to-ground state transition in Eq. (1.6.7), the resulting ground

state wavefunction is represented by the mD2 ansatz to preserve phase relations
betweenmultiples of excited state wavefunction. The newly created stateΨG

mD2

has amplitudes
ϑi,0 (t) =

∑
n

(e · µn)αi,n (t) , (1.6.13)

and CS displacements λi,kq (t) remain the same for all multiples.

1.6.2 Absorption and fluorescence response functions

Absorption and fluorescence spectra of a quantum system, in general, can be
written as a Fourier transforms

Ffl (ω) = Re
∫ ∞

0
dteiωtSfl (t) , (1.6.14)

Fabs (ω) = Re
∫ ∞

0
dteiωtSabs (t) , (1.6.15)

of a time-domain absorption Sabs (t) and fluorescence Sfl (t) response func-
tions102.
The absorption response function can be written as

Sabs (t) =
〈
⟨ΨG (0) |µ̂−V̂†

E (t) µ̂+V̂G (t) |ΨG (0)⟩
〉
, (1.6.16)

where V̂E and V̂G are the excited and the ground state propagators, respectively,
with the following properties:

V̂A (t1) |ΨA (t2)⟩ = |ΨA (t1 + t2)⟩, (1.6.17)(
V̂A (t1) |ΨA (t2)

)†
= ⟨ΨA (t2) |V̂†

A (t1) . (1.6.18)

The fluorescence response function is a special case of the time-resolved
fluorescence (TRF) response function102,103

STRF
(
τeq, t

)
= ⟨ΨG (0) |µ̂−V̂†

E
(
τeq + t

)
µ̂+V̂G (t) µ̂−V̂E

(
τeq
)
µ̂+|ΨG (0)⟩

(1.6.19)

It is a function of two times. During the equilibration time τeq, the system
evolves in its excited state and relaxes due to its interaction with the environ-
ment until it reaches a steady state. After equilibration, during the coherence
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time t, spontaneous emission occurs. We take the equilibration time τeq to be
a model parameter, sufficiently long for the system to fully relax. Then we
define the fluorescence response function as

Sfl (t) =
〈
⟨ΨE (τeq) |V̂†

E (t) µ̂+V̂G (t) µ̂−|ΨE (τeq)⟩〉 . (1.6.20)

For convenience, once the equilibrated state

|ΨE (τeq)⟩ = V̂E
(
τeq
)
µ̂+|ΨG (0)⟩, (1.6.21)

is obtained, we shift the time axis, such that the equilibrated state become the
starting point,

ΨE (τeq)→ ΨE (0) , (1.6.22)

as it represent the initial state from which emission takes place, therefore, we
rewrite Eq. (1.6.20) as

Sfl (t) =
〈
⟨ΨE (0) |V̂†

E (t) µ̂+V̂G (t) µ̂−|ΨE (0)⟩
〉
. (1.6.23)
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2 EXCITATION RELAXATION USING DAVYDOV’S
ANSATZE

One of the goals of both experimental and theoretical investigations is to un-
derstand electronic and vibrational energy relaxation in molecules and their
aggregates. The revealed excitation pathways might be harnessed for interpre-
tation of experimental measurements and their functional applications.
In this chapter, we will utilize the ansätze of the Davydov’s family to sim-

ulate excitation relaxation dynamics, as well as absorption and fluorescence
spectra of SBmodels. Section (2.1) presents findings of the Article [A1], which
explores the connection between sets of vibrational modes in different elec-
tronic states of β-carotene using the D2 ansatz.
Then, in Section (2.2) the results of the Article [A2] are discussed, which

investigate intramolecular energy relaxation dynamics induced by the internal
conversion process using the proposed sD2 ansatz. Section (2.3) covers the
essential results of the Article [A3], which is concerned with the application
and convergence of the mD2 ansatz for simulation of the absorption spectra of
H and J-type molecular aggregates. Lastly, in Section (2.4), the Article [A4] is
introduced, which compares the simulated absorption and fluorescence spectra
of molecular aggregates using the D2, sqD2 and mD2 ansätze.

2.1 Absorption spectrum of β-carotene with fully resolved vibrational
modes

Carotenoids form a unique class of pigments with a conjugated polyene chain,
responsible for light absorption in green-blue color region, over 700 carotenoid
molecules are found in Nature. In photosynthesis carotenoids are essen-
tial in solar energy harvesting and in photoprotection from oxygen damage.
Carotenoids demonstrate a complex structure of electronic excited states104,105

with at least three electronic states necessary to fully capture excitation long-
time dynamics. Direct optical excitation induces electronic S0 → S2 transition,
where S0 is the electronic ground state and S2 is the first optically accessible
bright electronic state, and the optically dark electronic state S1 lies between
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S0 and S2 in energy.
Experimental absorption spectra of carotenoids exhibit a high intensity106

shoulder on a to a higher energy side, which is attributed to strong electronic-
vibrational coupling. This feature is often associated with two vibrational
modes: C-C symmetric and asymmetric stretching vibrations, which are known
to be active in Raman spectra and their frequencies scale linearly with the con-
jugation length in carotenoids105. To explain empirical data, the effective 2-
modemodel has proposed107,108,3,109,110,4. It attempts to fit the absorption spec-
tra with two QHOs, however, the resulting model does not capture the tail of
the high energy vibrational wing and it is not clear whether two modes are suf-
ficient to describe the more complex ultrafast internal conversion and energy
transfer processes.
We explore the approach of simulating S0 → S2 transition absorption spec-

tra of β-carotene using all 282 vibrational normal modes of the molecule. The
absorption spectra are simulate using the D2 ansatz. The parameters of nor-
mal vibrational modes in the ground and excited states were obtained using the
Density functional theory with hybrid functional B3LYP with 6-311G(d,p) ba-
sis set. The GAMESS111 and Gaussian-16 codes112 were used. The resulting
sets of normal modes are different and not orthogonal, they are related by the
Duschinsky transformation, which relates two sets of normal modes of differ-
ent electronic states113–115.

2.1.1 Mixing of vibrational modes upon electronic excitation

The coordinates QS2
k of normal modes in the excited electronic state S2 are

expressed in terms of normal mode coordinates QS0
j in the electronic ground

state S0 as
QS2

k = akjQ
S0
j − dk. (2.1.1)

The expansion coefficient of the k-th mode in terms of the j-th normal modes is
akj , and dk is the QHO potential displacement in S2 with respect to its position
in the ground state S0.
To understand the extent of normal mode mixing during the S0 → S2 transi-

tion, we plot absolute values of expansion coefficients |akj | in Fig. (2.1.1). The
largest amplitude expansion coefficients lay close the main diagonal, implying
that the majority of normal modes are mixed with similar frequency modes.
However, certain regions indicate mixing between modes with vastly differ-
ent frequencies. E.g., modes in a frequency region of 2500 cm−1 are highly
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Figure 2.1.1: Absolute value of expansion coefficients |akj | of the β-carotene
normal modes. The k-th mode in the S2 state in expanded in terms of the mode
j-th in the state S0.

mixed with numerous modes in a frequency range of 1500− 2500 cm−1. The
strong mixing can also be clearly seen between modes in frequency regions of
0 − 250 cm−1, 400 − 750 cm−1, 1000 − 1500 cm−1. In addition, expansion
coefficients along the diagonal axis of Fig. (2.1.1) are not symmetric, not even
when their absolute values are compared |akj | ̸= |ajk|. This demonstrates that
there is no one-to-one correspondence between normal modes of β-carotene in
its electronic ground S0 and excited S2 state.

2.1.2 Absorption spectra of the β-carotene

The simulated absorption spectrum of β-carotene model with 282 normal
modes at different temperatures is shown in Fig. (2.1.2) along the experimental
β-carotene spectrum, measured in diethylamine at room temperature110. The
absorption spectra have been normalized to their maximum value, as well as
aligned on the 0-0 transition band for easier comparison. We find the 282-
mode model spectrum to qualitatively reproduce position and amplitudes of
the first two absorption peaks, however, it greatly overestimates the amplitude
of vibrational peak progression at 300 K temperature.
The absorption of the high frequency modes displays non-trivial dependence

on the temperature, which is an effect of normal mode mixing. For major-

40



0 1 2 3 4 5 6 7
Wavenumber (×103 cm 1)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ab
so

rp
tio

n
(a

rb
.u

ni
ts

)

282-mode (T = 300 K)
282-mode (T = 200 K)
282-mode (T = 100 K)

2-mode
Experiment

Figure 2.1.2: Absorption spectra of the β-carotene model at different temper-
atures. Experimental spectrum of β-carotene measured in diethylamine, as
well as the simulated spectrum of 2-mode model at room temperature are also
shown. All spectra are normalized to their maximum value and aligned on their
0-0 vibrational transition band.

ity of modes the average thermal energy is much smaller than the energy gap
between the vibrational mode energy levels kBT ≪ ω, thus, for non-mixed
modes, dependence of absorption spectrum on temperature would be negligi-
ble. However, in Fig. (2.1.2) we observe strong dependence of absorption on
temperature. Thermally excited low frequency vibrational modes translate to
the excitation of the high frequency modes via normal mode mixing, which
results in a high intensity absorption shoulder at high energies.
For comparison, we also simulated absorption spectrum of the empirical 2-

mode β-carotene model at 300 K temperature. It includes only the C=C and
C-C stretching vibrational modes with no mixing between them with frequen-
cies 1522 cm−1, 1157 cm−1 and displacements dC=C = 1.3, dC-C = 0.9, re-
spectively107. As shown in Fig. (2.1.2), the 2-mode model fits first two peaks
well, but underestimates absorption intensities at higher frequencies.
To further compare the 282-mode and the 2-mode models, we look at their

stick absorption spectrum in Fig. (2.1.3) simulated at 0 K temperature. The
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Figure 2.1.3: Stick absorption spectra at 0 K temperature of the 282-mode and
the 2-mode models. Purely electronic transition energies are set to 0 cm−1. To
have finite width sticks, each spectrum have been convoluted with the Gaussian
function of τ = 1 ps variance. The inset more closely shows low amplitude
sticks, they have been convoluted with τ = 5 ps variance Gaussian.

inset more closely shows low amplitude sticks. The 2-mode model stick spec-
trum has a straightforward peak progression, the spectrum is a sum of each of
the two mode peak progressions. The 282-mode model spectrum has a more
complex structure. Even though each of the 282 modes have a small absorption
peak, the combined spectrum produces frequency regions with noticeable ab-
sorption intensity. These regions show clear overlap with the absorption peaks
of the 2-mode model at 1522 cm−1 and 1157 cm−1, only this time, they are
due to the absorption of a large number of mixed normal modes.
Looking at smaller intensity peaks at higher energies in the inset of Fig.

(2.1.3), we find that the 282-mode model has absorption in the 3000 cm−1,
4500 cm−1, 6000 cm−1 frequency regions as well, and they account for the
high frequency absorption tail seen in experiments. The 2-mode model has
stick peaks at these frequencies as well, and they visually look more intense
than the 282-mode model peaks. And yet, due to the normal mode mixing
when nonzero temperature is included, the absorption peaks in Fig. (2.1.2) at
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high frequencies become more intense. The strong absorption is produced by
the summation of a large number of weak intensity absorption peaks. Two har-
monic modes simply cannot account for absorption over a such a wide range
of frequencies.

2.1.3 Main outcomes of the Article [A1]

We simulated and analysed the absorption spectra a β-carotene molecule, ex-
plicitly considering all its 282 vibrational modes. To compute the vibrational
frequencies and amplitudes of normal modes in both the ground S0 and excited
S2 states, we employed the Density functional theory with the hybrid functional
B3LYP and the 6-311G(d,p) basis set. Subsequently, we used the D2 ansatz to
simulate the absorption spectra at various temperatures.
We found that there is no one-to-one correspondence between the ground and

excited state vibrational modes. The normalmodes of different electronic states
are non-trivially mixed and should not be treated as being the same. Further-
more, we observed an strong dependence of the absorption intensity at higher
energies on model’s temperature, which can be explained by the mixing of nor-
mal modes.
Lastly, we observed that at 0 K temperature the strong absorption peaks of

the empirical 2-modemodel qualitatively matches frequencies of the 282-mode
model. However, in the case of the 282-mode model, these peaks are the re-
sult of numerous weak transitions that accumulate to form a strong absorption
feature. While the presented 282-mode model qualitatively matches the ex-
perimental data, it overestimate the high frequency region. Nevertheless, it
provides substance ground for the origin of the empirical 2-mode model.
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Figure 2.2.1: PESs of internal conversion model. Electron-vibrational
states |1, x⟩ are coupled to the Morse potential V11 (x) =

40
(
1− exp

(
− (x+1.35)

4
√
5

))2
, while |2, x⟩ states are coupled to harmonic

potential V22 (x) = 1
2 (x− 1.35)2. The coordinate space is discretized with

equidistant step-size of δx = 0.25 in the interval x ∈ [−10, 12]. Circular
and square markers denote the coordinate states |x⟩ of the intramolecular
vibration mode. The chosen width of coordinate space is sufficient to include
all significant electron-vibrational wavepacket amplitudes during excitation
relaxation dynamics. Periodic boundary conditions for PESs are used.

2.2 Molecular internal conversion

We examine the molecular internal conversion process, specifically the relax-
ation of excitation from the high lying excited electronic state to the lower
energy excited electronic state of a single molecule. During the internal con-
version, the majority of the energy from the relaxed excited electronic state
is converted into the energy of intramolecular vibrational modes. This energy
should then redistribute among all vibrational DOFs within the model, includ-
ing both the intramolecular and the intermolecular modes of the immediate
molecular surrounding. To thoroughly capture the entire excitation relaxation
process, from start to finish, it is important to sufficiently accurately model
all the necessary DOFs. In our approach, mixing of molecular electronic and
intramolecular vibrational states are responsible for the internal conversion dy-
namics, while the intermolecular vibrational modes of the environment primar-
ily serve to absorb the generated thermal energy from intramolecular modes.

44



2.2.1 Setup of the model

We consider a SB model, where each electronic state |n⟩ is coupled to P
intramolecular vibrational modes. The vibrational modes p = 1, 2, . . . , P

are described by their generalized P -dimensional PES V (x), where x =

(x1, x2, . . . , xP ) is a point in the P -dimensional coordinate space of in-
tramolecular vibrational modes. PESs can be different for each electronic state.
The surface associated with the state |n⟩ will be labelled as an diagonal term
Vnn (x), while the non-diagonal terms Vnm (x) represent the nonadiabatic cou-
pling between two electronic states |n⟩ and |m⟩. It is well established that
the PESs Vnn (x) of different molecular electronic states can get close to each
other in their energies (the avoided crossing region) or even cross each other
(the conical intersection)116, which permits non-radiative excitation relaxation
between different electronic states. Each intermolecular vibrational mode is
modelled as a QHO.
Internal conversion dynamics between two electron-vibrational states |1, x⟩,

|2, x⟩ with one-dimensional PES, as shown in Fig. (2.2.1) are investigated.
PESs of different electronic states are coupled by the linear nonadiabatic
electron-vibrational coupling V12 (x) = 1

10x. To facilitate vibrational energy
transfer from the intramolecular vibrational mode to the intermolecular modes,
we include the vibrational coupling Hamiltonian term

ĤV-V2 =
∑
n

â†nân
∑
p,q

knpqx̂px̂
2
q , (2.2.1)

where knpq is a coupling strength parameter in units of energy. It couples coor-
dinates x̂p of intramolecular vibrational mode to coordinates x̂2q of intermolec-
ular modes. It is the lowest order coupling term for energy transfer, since the
bi-linear vibrational coupling term ∝ x̂px̂q would only redistribute oscillation
strengths, which could be equivalently represented by a new set of uncoupled
normal modes.
The model states will be represented by the sD2 ansatz, which we formulated

in Section (1.3.4). The excitation of the system is assumed to occur vertically,
i.e., the electron-vibrational system wavepacket is transfered from the ground
state potential surface into the excited state potential without undergoing any
changes. The initial excited electron-vibrational state amplitudes are then equal
to Φ2 (x, 0) = 1√

2π
e−

x2

2 , Φ1 (x, 0) = 0. The bath is assumed to be at 0 K
temperature, therefore, the bath amplitudes are θ1 (0) = 1, θ2...M (0) = 0, and
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CS displacements are set to λi,kq (0) = 0.

2.2.2 Excitation energy relaxation dynamics

In order to track the processes of internal conversion and vibrational energy re-
distribution, we analyze dynamics of the total energy of electronic states εel (t),
the total energy of intramolecular vibrational modes εvibr (t) and the energy of
intermolecular modes of the bath εbath (t), which are shown in Fig. (2.2.2).
In the case of an isolated system, we observe sporadic reversible mixing of

electronic and intramolecular vibrational energy, resulting solely from the free
evolution and mixing of electron-vibrational wavepackets on the potential en-
ergy surfaces V11 (x) and V22. By including the bath and using the simplest CS
representation (M = 1), the energy mixing becomes harmonic, yet no energy
is transferred from the system to bath. The slight increase in the bath energy
is due to QHO reorganization in the excited states. When more superposition
terms are considered (M > 1), the internal conversion becomes irreversible,
i.e., the generated intramolecular vibrational mode energy is transferred to bath
QHOs without it being converted back into electronic energy. The dynamics
become converged whenM = 5 terms are included.
When only a single CS is considered (M = 1), the total lack of energy ex-

change between the intramolecular and bath QHOs indicates that the necessary
eigenstates of QHOs are not able to be represented by the sD2 ansatz. We want
to highlight the fact that the energy of CS is not limited in any way and is
simply proportional to the displacement ∝ |λ|2. Therefore, the lack of energy
transfer is imposed strictly by the insufficient representation of the necessary
eigenstates. When the eigenstates become present, by considering state repre-
sentation by the superposition of several CS, energy absorption by the bath is
observed.

2.2.3 Wavepacket evolution

To investigate how representation of QHO states changes as the ansatz depth
increases, in Fig. (2.2.3) we display dynamics of a single QHO coordinate
and momentum variances, as well as their arithmetic average. In the case of
M = 1, both variances are expectedly equal to 0.5 and remain constant in time,
since the wavepacket is strictly Gaussian. ForM > 1, we observe asymmetric
oscillations between the coordinate and momentum variances, and the average
variance surpasses that of the Gaussian. This suggests that the wavepacket
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Figure 2.2.2: Time dependence of the system electronic energy εel, intramolec-
ular vibrational mode energy εvibr, and the total energy of the bath εbath. The
nonadiabatic coupling Vnm (x) energy is included in the definition of εvibr (t).
Zero-point energy of bath QHO are excluded. The black line represents dynam-
ics of an isolated system, computed by excluding bath modes from the model.
M is the number of superposition terms considered in the definition of the sD2

ansatz.
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Figure 2.2.3: Time dependence of frequencyω = 0.5QHO’S coordinate σ2χ (t)
momentum σ2ρ (t) variances and their arithmetic average σ2χ,ρ (t), computed
with the sD2 ansatz of depthM .

broadens and is slightly squeezed along the momentum axis.

2.2.4 Main outcomes of the Article [A2]

We employed the sD2 ansatz to simulate the molecular internal conversion pro-
cess. Specifically, we focused on the relaxation of excitation from the high ly-
ing excited electronic state to the lower energy excited electronic state. In our
model, the internal conversion dynamics are induced by the mixing of molec-
ular electronic states and intramolecular vibrations, while the intermolecular
vibrational modes of the environment primarily serve to absorb thermal energy
from intramolecular modes.
By examining the time evolution of the electronic, intramolecular and in-

termolecular vibrational energies, we found that the proposed model captures
internal conversion relaxation process. The energy exchange, induced by the
non-linear coupling term Eq. (2.2.1), between vibrational modes occur if the
eigenstates of the intermolecular modes are represented in terms of CS super-
position. The resulting wavepacket of intermolecular modes becomes broader
and asymmetrically squeezed compared to a Gaussian wavepacket.
The observed wavepacket features are impossible to represent using a single

CS, therefore, the most basic representation using the D2 ansatz is not suffi-
cient, a more sophisticated ansatz, such as the proposed sD2 ansatz, is required,
otherwise, direct energy transfer from intramolecular to intermolecular vibra-
tional modes is suppressed.
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2.3 Excitation relaxation in molecular aggregates

Absorption spectrum and excitation relaxation dynamics of a linear molecular
aggregate are key quantities that may serve for establishing relation between
parameters of theoretical models and experiments. Molecular aggregate elec-
tronic properties significantly depend on the transition dipoles, whether the
dipoles are in the head-to-tail configuration, which are called J-type aggre-
gates, or in the side-to-side configuration, termed H-type aggregate117–121,17.
In a J aggregate, excitation by an external electric field excites the lowest en-
ergy excitonic state, therefore, energy relaxation dynamics are minimal and the
absorption spectrum is dominated by the exchange narrowing effect122–124. It
effectively reduces electron-vibrational coupling strength and the shape of the
spectrum become similar to that of a single molecule. Meanwhile, in an H ag-
gregate, external fields excite the highest energy excitonic state, thus, various
available electron-vibrational energy relaxation pathways make H aggregate
spectra more complicated than that of the J aggregate with non-trivial spectral
line shape122,124.
To simulate absorption spectra of H and J-type molecular aggregates, we use

the mD2 ansatz presented in Section (1.3.3). The ability of ansatz to represent
complicated electron-vibrational eigenstates of molecular aggregates depends
on its depth M . When M = 1, the mD2 ansatz reduces to the D2 ansatz,
which has EOM that are considerably easier to solve. Therefore, it is crucial
to determine if the D2 ansatz is sufficient to simulate molecular aggregates and
in what regimes of model parameters. If not, then it is necessary to understand
the appropriate minimal depth of the mD2 ansatz.

2.3.1 Absorption spectra convergence using the mD2 ansatz

We consider an aggregate composed of N = 10 identical molecules. The
nearest neighbour coupling between them is Jn,n+1 = J = ±500 cm−1,
and the aggregate is in an open chain configuration with boundary conditions
JN,1 = J1,N = 0 cm−1. A positive sign of J coupling result in an H-type
aggregate, while a negative sign yields an J-type aggregate.
Each molecule is coupled to one intramolecular vibrational mode with a fre-

quency ωkq = ω = 500 cm−1 and Huang-Rhys (HR) factor S = g21,1 = 1,
which defines the electron-vibrational coupling strength. The electronic transi-
tion dipole moment vectors of molecules are identical and set toµn = (1, 0, 0).
The initial thermal energy of vibrational modes is kBT = ωkq/2, which corre-
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Figure 2.3.1: Absorption spectra of theH and J-typemodel aggregate simulated
using the mD2 ansatz with depth M = 1 . . . 7. Purelly excitonic spectra are
obtained by excluding the bath. The spectra consists of a main absorption peak
at an energy ≈ 2J and N − 1 additional peaks with lower amplitudes, which
are result of the aggregate being in an open chain configuration.

sponds to a temperature of T = 360 K.
The simulated absorption spectra for the H and J-type aggregates, including

their excitonic spectra, are presented in Fig. (2.3.1). We observe that absorption
spectra of both aggregate types converge with a depth ofM = 7 when using
the mD2 ansatz. Spectra obtained with a higher depth, up toM = 11, yielded
quantitatively identical results. The vibrational side-peaks on the higher energy
side of excitonic peaks arise from the combined electron-vibrational transitions
from vibrational states of QHOs with 0 quanta to states with n > 0 quanta. On
the lower energy side of excitonic peaks, absorption intensities due to transi-
tion from the n to m < n quanta are present, which are populated due to the
nonzero temperature of the model. The absorption peak widths result from de-
phasing between electron-vibrational states induced by the coupling to the bath
fluctuations.
For the H-type aggregate, the spectrum of theM = 1 depth has absorption

peaks at frequencies similar to the converged spectrum (M = 5), however,
peak intensities are incorrect, and some are even negative. By increasing the
depth, already at M = 3, absorption peak intensities become strictly posi-
tive, and the overall absorption line shape qualitatively matches that of the
converged spectrum. For the J-type aggregate, by increasing the depth, the
whole absorption spectrum shifts to the lower energy side, while qualitatively
retaining the main peak shape and intensity. Changes of absorption peaks due
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Figure 2.3.2: The discrepancy metric D (M) as a function of the mD2 ansatz
depthM of the H-type molecular aggregate model for a range of dimensionless
parameters J/ω, kBT/ω.

to transitions to the higher energy excitonic are more pronounced. In addition,
unlike for the H-type aggregate spectrum, all absorption peaks are positive,
even whenM = 1.

2.3.2 The mD2 ansatz depth dependence on model parameters

Next we want to answer the question of whether the required depth of the mD2

ansatz, to obtain convergent absorption spectra, is dependent on the parameters
of the model. Although the absorption line shape is affected by all model pa-
rameters, we focus on investigating the influence of the nearest neighbour cou-
pling J , the thermal energy kBT , and the vibrational mode frequency ω. To do
so, we considered the dimensionless frequency-normalized coupling J/ω and
the thermal energy kBT/ω. We did not account for the influence of the HR
factor of vibrational modes, but we keep it set to a high value of S = 1, to have
a challenging molecular aggregate model.
In order to quantify the convergence of absorption spectra, we use the dis-

crepancy metric, defined as

D (M) =
1

N

∫
dω
√(

A (ω,M)−A (ω)
)2
, (2.3.1)

whereA (ω,M) is the absorption spectrum obtained using the mD2 ansatz with
depthM andA (ω) = A (ω,M = 11) is the converged reference spectrum. N
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is the normalization factor, which ensures that 0 ≤ D ≤ 1.
We focus on the convergence of absorption spectra of the H-type molecular

aggregate because its peak frequencies remain mostly unchanged, allowing the
discrepancy metric to accurately capture intensity variations. Fig. (2.3.2) dis-
plays D (M) for a range of depths. We find that the discrepancy significantly
depends on the model parameters for a given depth. WhenM = 1, the discrep-
ancy is always high regardless of the model parameters. WhenM = 2 . . . 5,
high-discrepancy regions are observed at low temperatures, irrespective of the
coupling strength, as well as at high temperatures with weak coupling.
The high discrepancy at high temperatures can be attributed to the fact that

more CS are needed to represent QHO eigenstates with n > 0 vibrational
quanta, which are excited by thermal energy. In the case of low temperatures,
equilibrium coordinates of vibrational modes become significantly displaced in
the excited state. The high displacement causes the wavepacket of an excited
aggregate to relax via a complicated energy surfaces of electron-vibrational
states. This results in changes to the wavepacket and/or splitting between
electron-vibrational surfaces, which require many CS to be represented accu-
rately. It is difficult to pinpoint a single reason for the increased discrepancy
in any specific case of model parameter because many aspects of eigenstate
representation are intertwined.

2.3.3 Main outcomes of the Article [A3]

We used the numerically exact mD2 ansatz to simulate absorption spectra of H
and J-type molecular aggregate made up of 10 identical monomers in order to
examine convergence of the ansatz over a wide range of temperatures and the
nearest neighbour coupling strengths.
We found that it is necessary to use the mD2 ansatz with at least 7 superpo-

sition terms. The D2 ansatz, which reduces from the mD2 ansatz with 1 super-
positon term, but has less complex EOMs, is insufficient across all considered
model parameter regimes. Specifically, for H-type aggregates, it is necessary to
use the multiple-type ansatz to achieve a positive absorption line shape and ac-
curate peak intensities. For J-type aggregates, increasing the depth of the mD2

ansatz predominantly results in a redshift of the absorption spectrum, while the
overall line shape remains qualitatively unchanged.
It is difficult to pinpoint a single reason for the necessity to use the mD2

ansatz, however, it can be attributed to having to represent QHO eigenstates
with high quantum number at high temperatures, as well as to allow for decou-
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pled time evolution of excitation wavepacket on different electron-vibrational
states.
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2.4 Vibrational frequency shift

The standard SB model, introduced in Section (1.1), assumes that frequencies
of vibrational modes in the aggregate’s excited state are identical to those in the
ground state. However, experimental studies, as well as theoretical modelling,
suggest that these frequencies differ. In this section, we will explore effects and
modelling of the quadratic SB coupling term of Eq. (1.1.16), which emerges
as a result of assuming that QHO frequencies in the excited state ωe

kq become
shifted with respect to frequencies ωg

kq in the the ground state.
We will examine the impact of frequency shift on both absorption and fluo-

rescence spectra of molecular aggregates. While we have described the fluo-
rescence response function for simulating fluorescence spectra in Eq. (1.6.23),
the initial state of the excited molecular aggregateΨE (0) from which emission
takes place, has not yet been defined. Therefore, in the next Section (2.4.1),
we propose an approach to generate thermal equilibrium states by solving a
numerical optimization problem. The results of this approach will be analysed
in Section (2.4.2).

2.4.1 Numerical optimization approach for simulating fluorescence
spectra

The energy of the SB model in a state ΨE (0) is given by

EE (0) = ⟨ΨE (0) |Ĥ|ΨE (0)⟩. (2.4.1)

In the case of temperature T = 0 K, vibrational mode thermal fluctuations
are absent. Therefore, fluorescence occurs from the lowest energy equilibrium
state of the aggregate

ΨE
E0

= ΨE (0) |T=0K, (2.4.2)

energy of which we denote as

E0 = EE (0) |T=0K. (2.4.3)

Then, following from Eq. (1.6.23), the fluorescence response function at T =

0 K can be rewritten as

Sfl (t) |T=0 K = ⟨ΨE
E0
|V̂†

E (t) µ̂+V̂G (t) µ̂−|ΨE
E0
⟩. (2.4.4)
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Notice that Eq. (2.4.4) no longer averages over the ensemble of wavefunction
trajectories. This is because theΨE

E0
state is exclusively a function of the model

Hamiltonian and the free parameters of the ansatz, without any dependence on
statistical sampling of initial thermal state parameters.
The lowest energy stateΨE

E0
is deduced by solving the numerical problem of

minimizing the energy, given by Eq. (2.4.1), of the excited aggregate in terms
of the chosen ansatz free parameters. We found the heuristic adaptive particle
swarm optimization algorithm125,126 to be well-suited for the problem.
In the case of a nonzero temperature (T > 0 K), thermal fluctuations of

vibrational modes must be accounted for. Thus, by allowing molecular aggre-
gate to relax during the equilibration time τeq, see Eq. (1.6.19), the model will
eventually relax into one γ-th of many available equilibrium thermal states

ΨE
ET ,γ = ΨE

γ (0) |T>0 K, (2.4.5)

with energies
ET,γ = EE

γ (0) |T>0 K. (2.4.6)

The average energy ⟨ET ⟩ of the ensemble of equilibrium thermal states ET,γ

is larger than E0 because of thermal fluctuation energy.
The fluorescence response function at a nonzero temperature (T > 0 K),

following from Eq. (2.4.4), can be expressed as

Sfl (t) |T>0 K =
〈
⟨ΨE

ET
|V̂†

E (t) µ̂+V̂G (t) µ̂−|ΨE
ET

⟩
〉
, (2.4.7)

and is obtained by averaging over an ensemble of equilibrium thermal states of
Eq. (2.4.5).
In order to generate ΨE

ET ,γ states, we impose energy fluctuations of vibra-
tional modes to the equilibrium state ΨE

E0
. Energy fluctuations are introduced

by applying perturbations δλkq to CS displacements of the ΨE
E0

state, while
keeping all other ansatz parameters fixed. Our objective is to find statesΨE

ET ,γ ,
which have energies equal to

ET,γ ≃ E0 + δEγ , (2.4.8)

where the perturbation energy in terms of CS displacements is

δEγ =
∑
k,q

ωkq |δλkq|2 . (2.4.9)
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Necessary CS displacements are obtained by repeatedly sampling the Glauber-
Sudarshan distribution of Eq. (1.5.1) until the energy equality of Eq. (2.4.8)
is satisfied within precision of 0.1 cm−1. If the QHO frequency shift is as-
sumed, as discussed in Section (1.1.1), the frequencies in Eq. (2.4.9) should be
substituted with frequencies in the excited state ωkq → ωe

kq.

2.4.2 Absorption and fluorescence spectra with frequency shifts

In this section we will investigate the ability of three ansätze with increasing
sophistication, namely the D2, sqD2 and mD2, to account for the effects of
vibrational mode frequency shift upon excitation of a molecular aggregate.
Consider a single molecule (monomer) with an intramolecular vibrational

mode of frequency ωg = 1000 cm−1 in the ground state. In the excited state,
frequency becomes ωe = ωg + ∆ω and HR factor S = 1. In Figs. (2.4.1a,
b) we present the simulated absorption spectra using the D2, sqD2 and mD2

ansätze with frequency shifts∆ω equal to −250 cm−1 and 0 cm−1.
When ∆ω = 0, all three ansatze produce identical spectra. However, when

∆ω = −250 cm−1, spectra simulated using the D2, sqD2 ansätze have neg-
ative intensities at frequencies of ≈ 2250 cm−1, indicating their inability to
fully capture the effects induced by the frequency shift. In contrast, the mD2

ansatz produce a strictly positive spectrum. By examining the absorption peak
progression intensities in Fig. (2.4.1a), we find that frequency shift changes ab-
sorption peak frequencies (direction of change are indicated by arrows), which
effectively decreases the vibrational mode HR factor when ∆ω < 0 and in-
creases it when∆ω > 0 (not shown).
In Figs. (2.4.1c, d) we plot absorption spectra of a dimer consisting of two

monomers with an electronic coupling J12 = −500 cm−1 between them.
When the frequency shift is ∆ω = 0, we find a mismatch between spectra
simulated using the D2, sqD2 ansätze and the mD2 ansatz. This indicates that
the former two ansätze are unable to accurately represent electron-vibrational
states induced solely by the electronic coupling. The mD2 spectrum has an
absorption line shape dominated by the exchange narrowing effect121, which
reduces HR factor compared to the monomer in Fig. (2.4.1b). The D2, sqD2

ansätze spectra reproduce the exchange narrowing effect, but have additional
secondary peaks not present in the mD2 spectrum. Simillar observations can be
drawn by examining spectra with ∆ω = −250 cm−1. However, in this case,
the D2 and sqD2 ansätze produce spectra without negative intensities.
Now, in Figs. (2.4.1e, f) we present fluorescence spectra of the dimer. When
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Figure 2.4.1: Absorption spectra of (a, b) a monomer, as well as (c, d) ab-
sorption and (e, f) fluorescence spectra of the dimer with frequency shifts ∆ω
simulated using the D2, sqD2 and mD2 ansätze. For the mD2 ansatz, the depth
isM = 5. Arrows indicate the direction of the peak frequency shift compared
to the case where∆ω = 0.
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Table 2.1: Energy E0 of the equilibrium state ΨE
E0

of the dimer model de-
duced using the numerical minimization approach with the D2, sqD2 and mD2

ansätze. The depth of the mD2 isM = 5. The values are in units of cm−1.

∆ω D2 sqD2 mD2

−250 -956.3 -959.9 -1119.2
0 -1125.0 -1125.0 -1284.7

∆ω = 0, the D2 and sqD2 ansätze yield identical spectra, but differ from the
spectrum obtainedwith themD2 ansatz in both the fluorescence peak intensities
and frequencies. We have already seen that the D2 and sqD2 ansätze are un-
able to reproduce spectral features of absorption spectra of both the electronic
coupling and the quadratic electron-vibrational coupling. Additional discrep-
ancies are revealed by examining the lowest energy equilibrium state energy,
E0, given in Table (2.1), as described in Section (2.4.1).
When frequency shifts are absent (∆ω = 0), the D2 and sqD2 ansätze can

represent the equilibrium state with an energy of −1125.0 cm−1, while the
mD2 ansatz represent a state with energy equal to −1284.7 cm−1. This equi-
librium state energy difference explains the observed shift in energies between
peaks simulated using the three ansätze in both the absorption and fluorescence
spectra. When ∆ω = −250 cm−1, the sqD2 ansatz manages to represent a
slightly lower energy equilibrium state, compared to the D2 ansatz, showing
that additional DOFs provided by squeezing of CSs can capture some aspects
of the quadratic electron-vibrational coupling. However, it still is unable to
adequately account for the electronic coupling between molecules.

2.4.3 Fluorescence spectra temperature dependence

In the previous section, we examined the effects of frequency shift on high
frequency intramolecular modes. In this section, we investigate its effects on
an overdamped phonon mode bath, which is described by the Drude spectral
density function, C”

n (ω) = ω3/
(
ω2 + γ2

)
with the damping constant γ =

100 cm−1. The electronic molecular coupling is J12 = −50 cm−1. Each
local bath QHO frequencies ωg

nq span from the 0.1 cm−1 to 490.1 cm−1 with
a step-size of 10 cm−1. Reorganization energies are Λn = 100 cm−1. We
will compare the simulated absorption and fluorescence spectra in two cases:
when the QHO frequencies in the molecular excited state remain unchanged
(ωe

nq = ωg
nq) and when frequencies are reduced by 5% (ωe

nq = 0.95 · ωg
nq).

58



Figure 2.4.2: The simulated absorption and fluorescence spectra of a J-type
dimer coupled to the overdamped phonon bath with frequencies of vibrational
modes in molecular excited states, ωe

nq, being equal to (a, c) 0.95 · ω
g
nq and (b,

d) ωg
nq. Spectra with various bath temperatures are shown. The mD2 ansatz is

used with depth ofM = 5.
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As shown in the Article [A4], the simulated spectra of this model are qual-
itatively equivalent regardless of the ansatz used. This holds true for both the
absorption and fluorescence spectra. Therefore, we examine the absorption
and fluorescence spectra simulated only using the mD2 ansatz shown in Fig.
(2.4.2). Spectra are simulated for both frequency shift cases and at various
temperatures. We observe effects of spectral broadening with increasing tem-
perature, as well as two types of spectral shifts when ωe

nq = 0.95 ·ωg
nq: a static

shift which affects the whole spectrum by shifting it to lower energies, and a
temperature-dependent fluorescence peak shift. In addition to these, the fluo-
rescence peak also drifts to lower energies with increasing temperature, even
when the frequency shift is excluded (ωe

nq = ωg
nq).

2.4.4 Main outcomes of the Article [A4]

We proposed a numerical optimization-based approach to determine equilib-
rium states of excited molecular systems, which are necessary for simulating
fluorescence spectra. Using the D2, sqD2 and the mD2 ansätze, we simulated
the absorption and fluorescence spectra of a J-type molecular dimer.
We found that neither the D2 ansatz nor the sqD2 ansatz can accurately repro-

duce the absorption and fluorescence spectra of the dimer with high frequency
intramolecular vibrational modes, not even when vibrational frequencies are
the same in the ground and excited states. For a J-type dimer coupled to an
overdamped phonon bath, the simulated absorption and fluorescence spectra
are qualitatively equivalent regardless of the ansatz used.
The energy gap observed between the peaks in the spectra simulated using

the D2, sqD2 and the mD2 can be explained by the ability of the mD2 ansatz
to represent the lowest energy equilibrium state of the model. While the sqD2

ansatz captures some changes in the equilibrium state induced by the quadratic
electron-vibrational coupling, both the sqD2 and D2 fail to account for changes
due to the electronic coupling between molecules.
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3 THERMALIZATION OF SYSTEM-BATHMODEL

An important aspect of modelling a constant temperature thermostat as a collec-
tion of QHOs is its heat capacity. Ideally, the energy required to significantly
raise the temperature of the bath QHOs, which are in resonant with the system
states, should be much greater than the energy of the electronic and thermal ex-
citations in the system. Otherwise, the in-resonant QHOs can become highly
excited127, which changes its temperature74. This, in turn, can result in ar-
tificially broadened spectra, changes to excitation relaxation rates and other
associated effects. This is particularly important for simulations at low tem-
perature because it takes relatively small amount of energy to rapidly increase
temperature of QHOs74. In Nature, the thermal energy from hot vibrational
modes redistributes among all DOFs of the physical system. However, in ma-
jority of SB models, QHOs of the bath are considered as independent normal
modes. Consequently, no direct energy exchange between vibrational modes
of the bath is possible. In most cases, the bath heating effects are undesirable
as the bath is supposed to represent a constant temperature thermostat.
Therefore, in this chapter we propose a numerical thermalization algorithm,

which address this shortcomings in Section (3.1), we formulate a thermaliza-
tion algorithm for the D2 ansatz. Then in Section (3.1.1) we examine its abil-
ity to dynamically control the temperature of a single QHO, while in Section
(3.1.2) we apply it to a molecular trimer model and investigate thermalization
effects on excitonic relaxation dynamics. The thermalization algorithm for the
D2 ansatz is not straightforwardly applicable to the more accurate mD2, there-
fore, in Section (3.2) we extend the thermalization algorithm to be used with
the mD2 ansatz. Thermalization effects on excitonic relaxation dynamics using
the mD2 ansatz is examined in Section (3.2.1). Lastly, in Section (3.2.2) we
demonstrate how the presented thermalization algorithms can be used to gener-
ate the equilibrium states of excited molecular aggregates, which are necessary
for simulation of fluorescence spectra.
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3.1 Thermalization algorithm for the D2 ansatz

To thermalize the bath, we extend the standard SB model by introducing a sec-
ondary bath. Wewill refer to local baths as being primary baths. The secondary
bath is treated implicitly, meaning that its effective heat capacity is infinite,
therefore it maintains a constant temperature T∞, which can be different from
the initial temperature of the primary bath. The primary baths interact with the
secondary bath through stochastic scattering events, or quantum jumps128,129,
which changes kinetic energies of vibrational modes of the primary baths.
The scattering statistics follows a Poisson distribution

Pkq (θ, τsc) =
1

θ!
(τscνkq)

θ e−τscνkq , (3.1.1)

which describe the probability of observing θ scattering events per time interval
τsc with the individual scattering rate νmq. Numerically, Poisson statistics are
realised by simulating Bernoulli processes130,131 in the limit of τsc → 0, while
maintaining condition that νmqτsc ≪ 1. To simulate the scattering events, we
divide wavefunction propagation into equal time length τsc intervals

ti = (iτsc, (i+ 1) τsc] , i = 0, 1, . . . . (3.1.2)

At the end of each interval, for every mode in the primary bath, we flip a biased
coin with the probability νmqτ of landing heads. If the coin lands heads, we
change the momentum of the vibrational mode. Otherwise, no changes are
made.
The CS displacement can be defined in terms of the QHO’s average coordi-

nate xkq and momentum pkq as

λkq (t) =
1√
2
(xkq (t) + ipkq (t)) . (3.1.3)

Therefore, if the coin lands heads, we change momentum of the scattered mode
in Eq. (3.1.3) with

pkq (t) = ⟨λPkq|p̂kq|λPkq⟩ =
√
2Im

(
λPkq (t)

)
, (3.1.4)

where |λPkq⟩ is a CS sampled from the Glauber-Sudarshan distribution of Eq.
(1.5.1), and

p̂kq =
i√
2

(
b̂†kq − b̂kq

)
, (3.1.5)
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is the momentum operator. Sampling the Glauber-Sudarshan distribution for a
vibrational mode state in the excited electronic state is an approximation since
the vibrational modes in the excited state are not independent. The actual ther-
mal equilibrium distribution should also take into account the coupling between
the system and the bath.
The converged thermalization statistics are obtained by applying the ther-

malization algorithm to every trajectory of the thermal ensemble. To prepare
for the simulation, a list of scattering times, at which the numerical simulation
must be paused to perform scatterings, can be precomputed prior to starting the
simulation by drawing probabilities for all time intervals ti.

3.1.1 Time evolution of the thermalized primary bath

To understand how the proposed thermalization algorithm changes the tem-
perature of the primary bath over time, we will first apply thermalization to
a monomer coupled to the bath. This will allow us to study dynamics of the
primary bath without complications resulting from excitation relaxation, which
will be examined in the next Section (3.1.2).
The primary bath consists of Q = 750 vibrational modes with frequen-

cies, ωkq = 0.01 + (q − 1)∆ω, where step-size ∆ω = 1 cm−1. The ini-
tial primary bath temperature is T (0) = 300 K and, demonstration purposes,
we set the constant temperature of the secondary bath below the temperature
of the primary bath, at T∞ = 200 K. To characterize the bath fluctuations,
the super-Ohmic spectral density function C” (ω) = ω2/ωc exp (−ω/ωc) with
ωc = 100 cm−1 is used. The reorganization energy is Λk = 100 cm−1. We
consider scattering rates of all modes to be equal νmq → ν and set the scattering
step-size to τsc = 0.01 ps−1.
The transient temperature of the primary bath can be estimated74 by com-

puting the average kinetic energy of QHOs, given by

⟨Kkq (t, ϵ)⟩ =
1

ϵ

∫ ϵ

0
ds
ωkq

2

〈
⟨Ψ(t+ s) |p̂2kq|Ψ(t+ s)⟩

〉
, (3.1.6)

over some time resolution interval, ϵ, where p̂kq is the momentum operator of
Eq. (3.1.5). The transient temperature of the primary bath is then equal to

Tk (t) =
1

kBQ

Q∑
q

ωkq ln−1

(
1 +

ωkq

2 ⟨Kkq (t, ϵ)⟩

)
. (3.1.7)
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Figure 3.1.1: (a) The average trajectory in the coordinate-momentum phase
space of QHO with a frequency of ω = 100 cm−1 and (b) the primary bath
temperature T (t) with various scattering rates ν. The scattering step-size is
τsc = 0.01 ps, the transient temperature resolution is ϵ = 50 fs. The thermal
ensemble consisted of 5000 trajectories.
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In Fig. (3.1.1), we show the time evolution of the average trajectory of the
QHO with frequency ω = 100 cm−1 in its coordinate-momentum phase space,
given by

(x (t) , p (t)) =
√
2 (⟨Reλ (t)⟩ , ⟨Imλ (t)⟩) , (3.1.8)

as well as the average temperature of the entire primary bath T (t). These
bath properties were simulated with various scattering rates, ν. We find that
in the absence of thermalization, the QHO evolves along a closed trajectory
around the shifted potential minimum point, xmin ≈ 0.09, and the temperature
of the primary bath remains unchanged. Once the thermalization algorithm is
applied, we find that the trajectory of QHO tends towards the stationary point in
the coordinate-momentum space. The average coordinate evolves towards the
potential minimum point, while the average momentum approaches zero. The
rate of relaxation can be adjusted by changing the scattering rate. The loss of
QHO’s kinetic energy is reflected in the decay of the primary bath temperature.
It gradually tends towards the temperature of the secondary bath T∞ = 200 K.

3.1.2 Thermalized excitation relaxation using the D2 ansatz

Let us now examine the impact of the thermalization on electronic excitation
relaxation dynamics. We will consider the linear trimer model, which consists
of three coupled molecules with excited state energies ε1...3 equal to 0, 250 and
500 cm−1 and the nearest neighbour couplings set to J1,2 = J2,3 = 100 cm−1

with the boundary condition J3,1 = 0. This setup results in an energy fun-
nel configuration of excited electronic states. The molecular electronic dipole
moment vectors in the Cartesian coordinate system are µn = (1, 0, 0), which
classifies the trimer as an H-type molecular aggregate121.
Each molecule interact with its own primary bath, described by the same

parameters as previous in the Section (3.1.1); the only difference is the bath
discretization step size ∆ω. We consider three bath models: the dense bath
model, where the spectral density function C ′′ (ω) is discretized into Q = 75

oscillators per primary bath with step size of ∆ω = 10 cm−1; the sparse bath
model, where the number of modes is reduced to just Q = 15 per bath with
∆ω = 50 cm−1; and the sparse bath with thermalization model, where the
C ′′ (ω) is discretized according to the sparse bath model, and thermalization is
used. The initial temperature of the primary baths now is Tk (0) = 77 K.
In the absence of the bath, the system has three single-excitation station-

ary excitonic states with energies: εexc1 ≈ −37.23 cm−1, εexc2 = 250 cm−1,
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εexc3 ≈ 537.23 cm−1. We denote the probability of finding aggregate in its n-th
excitonic state as ρexcn (t) , also known as the population. In terms of the D2

ansatz free parameters, the excitonic state populations are given by

ρexcn (t) =
∑
k,l

(Φexc
k )⋆n ⟨α

⋆
k (t)αl (t)⟩ (Φexc

l )n , (3.1.9)

where Φexc
k are the excitonic eigenstates, see Eq. (1.1.9). The initial exci-

tonic state populations correspond to the optically excited highest energy state:
ρexc3 (0) = 1, ρexc1,2 (0) = 0.
Fig. (3.1.2) shows population dynamics of excitonic state and temperatures

of primary baths in the trimer consideredwith the three different bath models.
The fluctuations of QHOs in the primary baths induces dephasing between ex-
citonic states, which causes population relaxation to be irreversible102,84. Con-
sequently, exciton populations sequentially relax to lower energy exciton states
until reaching the lowest energy state132–134. Most of the excitation energy is
transferred to vibrational modes of primary baths.
In the case of the dense bath model, the excitation almost entirely relaxes

into the lowest energy excitonic state. Whereas, in the case of the sparse bath
model, the final population distribution is significantly different from that of
the dense bath model. The origin of this discrepancy is two-fold. Firstly, the
bath recursion time135 trec = 2π/∆ω for the sparse bath model is shorter than
the considered propagation time trec < 2 ps. At the time of trec QHOs of the
primary bath artificially synchronize into the initial state of the bath, which
negatively affect system dynamics. Secondly, the temperature of the primary
baths in the sparse bath model increases significantly more because heat ca-
pacity of the sparse bath is lower. The initial rapid rise in temperature can be
attributed to QHOs’ reorganization in the excited states of the trimer, while the
subsequent slow rise is caused by the energy transfer from the system to the
primary baths. Both of these problems are addressed in the model of the sparse
bath with thermalization of scattering rate νkq = 1 ps−1.
By looking at Fig. (3.1.2E), we find that population dynamics of the ex-

citonic states and the population distribution of the equilibrium state at long
times become quantitatively comparable to the population distribution of the
dense bath model. Due to the stochastic nature of the QHOs dynamics when
thermalization is applied, the bath recursion time effectively becomes infinite
if the scattering rate is sufficiently high. Furthermore, the initial rise in bath
temperatures is now lower and continuously reduces.
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Figure 3.1.2: The trimer model exciton state populations ρexcn (t) and tempera-
tures Tk (t) of the primary baths of (a, b) the dense bath model, (c, d) the sparse
bath model and of (e, f) the sparse bath model with thermalization.
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3.1.3 Main outcomes of the Article [A5]

We proposed a thermalization algorithm to be used in conjunction with the
D2 ansatz. It performs stochastic scattering events during the time evolution
of the ansatz, which changes its free parameters. This approach enables us to
control the temperature of themodel by dynamically steering vibrational modes
towards their canonical thermal equilibrium of the desired temperature.
We applied thermalization to the simulation of the excitation relaxation dy-

namics of the molecular trimer and demonstrated that we are able to signifi-
cantly reduce the required number of vibrational modes in the bath and resolve
the associated problems stemming from the usage of low number of vibrational
modes.
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3.2 Thermalization algorithm for the mD2 ansatz

In our thermalization approach, we sample the new state of a scattered mode
from the Glauber-Sudarshan distribution in Eq. (1.5.1). The sampled states
have Gaussian wavepackets and can be exactly represented by a single CS. The
fact that the D2 ansatz is only able to represent Gaussian wavepackets makes
changing states of QHOs straightforward.
Meanwhile, wavepackets of the mD2 ansatz are not limited to Gaussians.

Therefore, it becomes almost impossible to represent the newly sampled Gaus-
sian state of the scattered mode without simultaneously altering the properties
of all the non-scattered modes. This is because any property of vibrational
mode is a complex function of all free parameters of the mD2 ansatz, e.g., see
Eqs. (3.2.5), (3.2.6) for the average coordinate and momentum of a QHO. To
adapt the thermalization algorithm of the D2 ansatz for the mD2 ansatz, several
modifications are required.
Whenever a scatterings event occurs, we project the mD2 ansatz into the

D2 ansatz form and only then modify the states of the scattered modes. This
follows the concept of decoherence136, where the macroscopic environment
interacts with the quantum system and causes the wavefunction to collapse into
a set of preferred states. In our case, the prefered states are defined by the D2

ansatz. Afterwards, the wavefunction is projected back into the mD2 ansatz
form, and the time evolution of the model is continued.
The projection operation is defined as follows. Let us assume that the state of

the SB model at the time of a scattering event is given by the mD2 ansatz with
amplitudes αi,n (t) and CS |λi (t)⟩. The target projected D2 ansatz is defined
as

|ψ (t)⟩ =
N∑
n

βn (t) |n⟩ ⊗ |λ̃ (t)⟩, (3.2.1)

where βn are the projected complex amplitudes and |λ̃ (t)⟩ is the projected
multi-dimensional CS.
The projected complex amplitudes are equal to

βn (t) =

M∑
i

αi,n (t) ⟨λ̃ (t) |λi (t)⟩, (3.2.2)
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and the projected multi-dimensional CS is defined as

|λ̃ (t)⟩ = exp
N,Q∑
k,q

(
λ̃kq (t) b̂

†
kq − λ̃⋆kq (t) b̂kq

)
|0⟩vib. (3.2.3)

It is expressed in terms of complex CS displacements

λ̃kq (t) =
1√
2
(xkq (t) + ipkq (t)) , (3.2.4)

where xkq (t) and pkq (t) are the coordinate and momentum averages of QHO:

xkq =
1√
2

M,M,N∑
i,j,n

α⋆
i,nαj,n⟨λi|λj⟩

N,Q∑
k,q

(
λ⋆i,kq + λj,kq

)
, (3.2.5)

pkq =
i√
2

M,M,N∑
i,j,n

α⋆
i,nαj,n⟨λi|λj⟩

N,Q∑
k,q

(
λ⋆i,kq − λj,kq

)
. (3.2.6)

⟨λi|λj⟩ is the overlap of two CS and is given by Eq. (1.3.30).
Once the projected state ψ (t) is determined, we modify the scattered QHOs

by setting their momenta in Eq. (3.2.4) to

pkq (t) =
√
2Im

(
λ̃Pkq

)
, (3.2.7)

where |λ̃Pkq⟩ is a CS sampled from the Glauber-Sudarshan distribution of Eq.
(1.5.1). The coordinates xkq of both the scattered and non-scattered modes
remain unchanged.
Now, we project the D2 ansatz back into the mD2 ansatz form, given by

Eq. (1.3.21). We do it by setting amplitudes and CS displacements of the first
(i = 1) populated multiple as:

α1,n (t) = βn (t) , (3.2.8)

λ1,kq (t) = λ̃kq (t) , (3.2.9)

while amplitudes of the unpopulated multiples are set to

αj=2,...,M,n (t) = 0. (3.2.10)

The CS displacements of the unpopulated multiples (j = 2, . . . ,M ) are posi-
tioned in a layered hexagonal pattern around the CS displacements of the pop-
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ulated multiple, given by Eq. (1.6.12). Once the mD2 ansatz is computed, the
scattering event is concluded, and the time evolution of the ansatz is continued
until the next scattering event.
A few comments are in order. The projection operation should not occur too

frequently because it takes time for the mD2 ansatz, after the scattering event,
to become once again correlated between its many multiples. If the projection
is performed too frequently, the initially unpopulated multiples (j = 2, . . . ,M )
will not have enough time to contribute to the dynamics of the model. In such
case, the mD2 ansatz would essentially behave like the D2 ansatz, just with a
more complex definition. The average interval between projection operations
depends on the scattering rate, see Eq. (3.1.1).
To reduce the rate of projections in the thermalization algorithm of the mD2

ansatz, we adopt a coarse scattering approximation. Instead of considering the
scattering probabilities of individual oscillators νkq as was the case for the D2

ansatz, we now consider events where all QHOs of certain local baths are scat-
tered simultaneously. In other words, the scattering events become vibrational
mode independent, and the scattering rates now are νkq → νk. This coarser
approach requires a single projection operation to scatter multiple oscillators
at once, enabling us to consider lower scattering rates and increase the time
to the next scattering even of the model. As we will see, this approximation
allows the mD2 ansatz to continue utilizing all its multiples to maintain the su-
perior accuracy over the D2 ansatz, while simultaneously to benefit from the
thermalization process.
While the projection from the mD2 ansatz into the D2 ansatz may be con-

sidered crude, resulting in an oversimplified wavefunction, it is important to
note that this projection exactly preserves the values of average coordinates
and momenta of the QHOs, while affecting only the variance and higher-order
moments of canonical variables. However, the majority of SB models rely pri-
marily on the linear coupling between the system and the average coordinates
of QHOs, which are maintained exactly during the projection. As a result, the
expected discrepancy introduced by the infrequent projection on the dynamics
of the model should minimal. The higher-order couplings become necessary
when anharmonic vibrational modes or changes to their frequencies upon ex-
citation60,62.
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3.2.1 Thermalized excitation relaxation using the mD2 ansatz

In this section, we will repeat examination of the thermalization algorithm
effects on the excitation dynamics of the trimer model presented in Section
(3.1.2). This time the mD2 ansatz with a depth ofM = 5 will be used.
In Fig. (3.2.1), we present the exciton state populations ρexcn (t) of the trimer

model along the average temperatures Tk (t) of the primary baths simulated for
all three bath models. The exciton state populations are expressed in terms of
the mD2 ansatz free parameters as

ρexcn (t) =
∑
k,l,i,j

(Φexc
k )⋆n

〈
α⋆
i,k (t)αj,l (t)Si,j (t)

〉
th (Φ

exc
l )n , (3.2.11)

where Φexc
k are the excitonic eigenstates, see Eq. (1.1.9). The population dy-

namics of the dense bath model exhibit sequential relaxation, starting from the
highest energy excitonic state and progressing towards the the lowest energy
state via the intermediate energy state. Eventually, the population dynamics
reach an equilibrium state.
When comparing the population dynamics obtained using the D2 ansatz

(shown in Fig. (3.1.2)), we find that the more precise mD2 ansatz yields faster
excitation relaxation. By examining the population and temperature dynamics
of the sparse bath model, we again find the same insufficiencies as we did with
the D2 ansatz when compared to the dynamics of the dense bath model. Specif-
ically, the population equilibrium at long propagation times become skewed,
and the temperatures of the primary baths increases noticeably more. Note, that
these shortcomings of the sparse bath model were not expected to be improved
by using the mD2 ansatz because the mentioned problems are induced by the
insufficiently dense discretization of the bath spectral density function.
When the thermalization algorithm is applied to the simulation of the sparse

bath model with the scattering rate of νk = 1.25 ps−1, the population dynamics
are restored and qualitatively match those of the dense model. Although the
initial rise in temperatures of the primary baths surpasses those of the dense
bathmodel, the thermalization algorithm gradually steers temperatures towards
the initial values.
Simulating dynamics using the sparse bath model with thermalization offers

a significant speed advantage when compared to the dense bath model. On av-
erage, it took 166minutes to simulate population dynamics using the dense bath
model, whereas only 1.3 minutes were required using the sparse bath model,
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Figure 3.2.1: The exciton state populations ρexcn (t) and the average tempera-
tures Tk (t) of local baths of the trimer with (a, b) the dense bath model, (c, d)
the sparse bath model and (e, f) the sparse bath model with thermalization.
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and 2 minutes using the sparse bath model with thermalization. Although we
see that there is a computational overhead associated with using thermaliza-
tion algorithm, it is small compared to the overall reduction in simulation time
when switching from the dense bath to the sparse bath model.
These significant simulation speed gains are the result of the sparse bath

model taking into account 5 times fewer QHOs in each primary bath compared
to the dense bath model. The reduction in the number of simulated QHOs is
even more critical for the mD2 ansatz due to the rapid scaling of the numerical
cost with the increasing number of QHOs. This is because EOMs of the mD2

ansatz constitute an implicit system of differential equations that require a more
involved and expensive two-step numerical approach to find a solution66,67, as
discussed in Section (1.4).

3.2.2 Thermalized fluorescence spectra

In this section we will use the thermalization algorithm to find the initial ther-
mal states ΨE (0) of the excited SB model, which are required to simulate the
fluorescence spectrum. Additionally, we will compare the obtained fluores-
cence spectra with those simulated using the numerical optimization approach,
presented in Section (2.4.1).
As a reminder, the fluorescence response function Sfl (t) is a special case of

a more general time-resolved fluorescence response function STRF
(
τeq, t

)
. It

is a function of two times: the equilibration time τeq and the coherence time t.
During the equilibration time, the system evolves in its excited state and, due
to the SB interaction, relaxes to an equilibrium state. Afterward, during the
coherence time, spontaneous emission occurs.
We will apply the thermalization during the equilibration time to encourage

excitation relaxation into the lowest energy equilibrium state by removing the
excess thermal energy from primary baths. We use ĜE,γ to denote the excited
state propagator with thermalization, while V̂E is still the propagator without
thermalization, seen in Section (1.6.2). Following from the definition of the
TRF response function in Eq. (1.6.19), we define the thermalized TRF (TTRF)
response function as

S̃TRF
(
τeq, t

)
=

1

Γ

Γ∑
γ=1

⟨ΨG (0) |γµ̂−Ĝ†
E,γ
(
τeq
)
V̂†
G (t) µ̂+

× V̂G (t) µ̂−ĜE,γ
(
τeq
)
µ̂+|ΨG (0)⟩γ . (3.2.12)

74



By assuming that the equilibration time τeq is sufficiently long to reach the
equilibrium state of the SBmodel, we define the fluorescence response function
as

Sfl (t) = lim
τeq→∞

STRF
(
τeq, t

)
, (3.2.13)

and the thermalized fluorescence (TF) response function as

S̃fl (t) = lim
τeq→∞

S̃TRF
(
τeq, t

)
. (3.2.14)

Note that this formulation of fluorescence and TF response functions is ap-
plicable to both the thermalization algorithms of the D2 and mD2 ansätze, as it
does not differentiate between the actual implementation of the thermalization.
To determine the necessary equilibration time interval for numerical simula-
tions, we incrementally increase τeq until the resulting fluorescence spectrum
converge.
In Fig. (3.2.2) we compare the TRF and TTRF spectra with increasing equi-

libration times τeq and scattering rate νk = 0.1 ps−1. When τeq = 0, both the
TRF and TTRF spectra are equivalent and exactly match the absorption spec-
trum, which consists of three peaks due to transition involving the combined
excitonic-vibrational states and cannot be regarded as purely excitonic. For
reference, the vertical dotted lines indicate energies Eexc of excitonic states.
These do not match the three peak energies exactly due to the system being
coupled to the environment.
By allowing equilibration to occur (τeq > 0), both the TRF and TTRF spectra

exhibit a shift in peak intensity towards lower energies as the excitation relaxes
towards the equilibrium state. After equilibrating for τeq = 2 ps, we find that
both spectra have converged and do not meaningfully change by considering
longer τeq. Therefore, the TRF and TTRF spectra with τeq = 2 ps can be
considered as the fluorescence and TF spectra of the trimer model, as defined
in Eqs. (3.2.13) and (3.2.14).
Both spectra exhibit the highest fluorescence intensities at the energies of

the lowest excitonic-vibrational states. However, the fluorescence spectrum
also shows significant intensities at energies corresponding to the intermediate
and highest excitonic-vibrational states. Surprisingly, the higher energy peak is
more intense than the intermediate peak, which indicat presence of excitation
trapping effects. Meanwhile, the TF spectrum intensities at these energies are
negligible, suggesting that thermalization allows the trimer to reach a lower
energy equilibrium state, which is no longer hindered by the excess thermal
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Figure 3.2.2: (a) The TRF and (b) TTRF spectra of the trimer with the dense
bath model, simulated with an increasing equilibration time τeq. The absorp-
tion spectrum is also shown. Vertical dashed lines show energies Eexc of the
excitonic states.
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Figure 3.2.3: The fluorescence spectra comparison of the trimer with the dense
bath model obtained with and without thermalization, and using the optimiza-
tion approach. The absorption spectrum is also shown. Vertical dashed lines
show energies Eexc of the excitonic states.

energy accumulation in the QHOs of primary baths.
In Fig. (3.2.3) we compare the fluorescence and TF spectra with the fluores-

cence spectrum simulated using a previously proposed numerical optimization
approach, described in Section (2.4.1). We find that all three methods produce
a similar lowest energy excitonic-vibrational peak. However, the TF spectrum
has a higher intensity tail towards the low energy side, wtih almost no intensi-
ties present at energies of the intermediate and the highest excitonic-vibrational
states. Meanwhile, the fluorescence spectrum simulated using the optimization
approach show a small intensity at the energy of the intermediate excitonic-
vibrational states. The spectrum with the optimization approach more closely
resembles that of the TF rather than the fluorescence spectrum.
Regarding numerical efficiency of the approaches. It took an average of 79

minutes to compute a single trajectory of the TTRF response function in Eq.
(3.2.12) with an equilibration time of τeq = 2 ps. The numerical optimiza-
tion method does not require explicit propagation of the model wavefunction
during equilibration time and the optimization must be performed only once.
However, it took 193 minutes to perform. Besides the fluorescence spectra dif-
ferences, we found that computation of TTRF is more reliable and numerically
stable. The optimization approach struggles to consistently find the lowest en-
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ergy excitonic state of the model due to its heuristic nature. It requires many
attempts at finding the solution and eventually having to choose the one with
the lowest energy. Numerical optimization becomes particularly difficult when
a wide range of QHO frequencies are considered.
For SB models without Hamiltonian parameter disorder, the optimization

approach can serve as a useful starting point for fluorescence spectra simula-
tion. However, a more accurate spectra most likely will always be obtained
using the TTRF approach. On the other hand, for models with Hamiltonian
disorder, such as excitation energy disorder137–139, the optimization approach
would require finding the lowest energy excitonic state of the model for each
realization of the Hamiltonian. This would negate any advantage provided by
the numerical optimization approach.

3.2.3 Main outcomes of the Article [A6]

We extended the thermalization algorithm, originally developed for the D2

ansatz, to be used with the mD2 ansatz. The improved algorithm relies on the
preferred state and the coarse scattering approximations. They allow the mD2

ansatz to maintain its superior accuracy over the D2 ansatz, while benefiting
from the thermalization process. The numerical cost of the mD2 ansatz rapidly
scales with the number of vibrational modes.
Therefore, we used thermalization to simulate the excitation relaxation dy-

namics of the molecular trimer model. We demonstrated that thermalization
permits to reduce the required number of vibrational modes, which signifi-
cantly lowers numerical cost of the simulation. This development openss pos-
sibilities to investigate larger SB models than was previously feasible using the
mD2 ansatz.
Furthermore, we demonstrated how the thermalization algorithm can be ap-

plied to generate equilibrium states of excited SB models, which are necessary
for simulating fluorescence spectra. Compared to the numerical optimization
approach, thermalization approach offers lower computation cost, improved
numerical stability and accuracy.
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SANTRAUKA

Įvadas

Daugelio biologinių molekulinių sistemų veikimas yra glaudžiai susijęs su
energijos vyksmais jų elektroninėse ir (arba) virpesinėse būsenose. Svarbu
suprasti išorinės spinduliuotės indukuotos energijos relaksacijos spartas ir ke-
lius įvairiose molekulių dydžių skalėse – nuo pačių mažiausių, susidedančių
iš vienos molekulės energetinių lygmenų1–4, iki vidutinio dydžio molekulinių
agregatų, sudarytų iš kelių sąveikaujančių molekulių5–8 ir didžiausių gam-
toje randamų fotosintezės kompleksų9–13, kuriuose be energijos relaksacijos,
taip pat vyksta erdvinė krūvio ir energijos pernašą, ir jie gali būti sudaryti iš
dešimčių ar net šimtų molekulių.
Teoriniai modeliai, išskyrus pačių primityviausių molekulinių sistemų, ne-

turi analitinių sprendinių. Net sąlyginai mažoms molekulinėms sistemoms,
dėl didelio sąveikaujančių laisvės laipsnių skaičiaus, primityvūs skaitmeniniai
metodai nėra pajėgūs išspręsti energijos relaksacijos uždavinio. Standarti-
nis teorinis būdas spręsti šią problemą yra traktuoti molekulinę sistemą kaip
atvirą kvantinę sistemą14,15. Šiame aprašyme tik tie molekulių elektroniniai ir
virpesiniai laisvės laipsniai, kurie dalyvauja dominančiame relaksavimo pro-
cese, sudaro stebimą sistemą, o mažiau svarbūs laisvės laipsniai yra laikomi,
didesnio nei sistema, termostato dalimi – aplinka. Aplinkos fliuktuacijų inten-
syvumą nusako tolydi spektrinio tankio funkcija16,17. Dažniausiai toks laisvės
laipsnių išskyrimas į sistemą ir aplinką yra tik formalus, kadangi šios dvi dalys
sąveikauja tarpusavyje.
Jei sąveikos stipris tarp sistemos ir aplinkos yra mažas, lyginant su sąveika

pačioje sistemoje, tuomet galima naudoti palyginti nesudėtingus, trikdžių
teorija besiremiančius, Redfildo metodus18–21. Esant atvirkščiai situaci-
jai, kai sistemos ir aplinkos sąveika yra stipri, galima taikyti Försterio22–24

trikdžių teorijos metodus. Šie metodai sprendžia jungtines sistemos ir aplinkos
judėjimo lygtis, galiausiai siekiant suvidurkinti aplinkos fliuktuacijų poveikį
sistemai. Taip gaunamos redukuotos, tik mus dominančios sistemos, dinam-
inės lygtys. Šių metodų patikimumas priklauso nuo aiškios sąveikos stiprių
atskirties. Jei minėtieji sąveikos stipriai yra panašaus dydžio, sistemos ir
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aplinkos laikinė evoliucija nebegali būti skaičiuojama trikdžių teorijos meto-
dais, nes energijos relaksacijos sistemoje ir energijos mainų su aplinka procesų
laiko skalės tampa tapačios. Nors šį sąveikos režimą modeliuoti yra sudėtinga,
buvo sukurta formaliai tikslių, tačiau skaitmeniškai brangių, metodų, pvz.,
taikant hierarchines judėjimo lygtis25, tankio matricos renormalizavimo gru-
pes26, grandininį aplinkos vaizdavimą27–29, trajektorijų integralo formulu-
otes30.
Šie metodai naudoja redukuoto tankio operatoriaus aprašymą, tačiau tam

pačiam tikslui galima tiesiogiai naudoti ir pačią banginę funkciją, pvz., taikant
kelių konfigūracijų nuo laiko priklausomą Hartree31,32, paviršių šuoliavimo33,
kvantinių šuolių34, stochastinių Schrödingerio lygčių35, grynųjų būsenų hi-
erarchijų36, termolauko dinamikos37,38 ir kt. metodus. Pagrindinė daugelio
bangine funkcija besiremiančių metodų idėja yra išskleisti sistemos ir aplinkos
modelio būsenas pasirinktoje būsenų bazėje. Tokie metodai puikiai tinka
sąveikų stiprių rėžimams, kai nebegalioja trikdžiu teorija, kadangi banginė
funkcija išreikštai ir lygiaverčiai aprašo tiek sistemos, tiek aplinkos laisvės
laipsnių būsenas. Šiuo atveju, metodo tikslumas priklauso nuo to, kaip tiksliai
pasirinkta būsenų bazė gali atvaizduoti tikrines sistemos ir aplinkos modelio
būsenas, arba bent jau tas būsenas, kurios labiausiai dalyvauja mus dominanči-
ame fizikiniame procese.
Šiame darbe nagrinėjama bandomųjų banginių funkcijų (anzacų) šeima,

pavadinta Aleksandro Davydovo garbei. Ji remiasi 1973 m. Davydavo pasiū-
lytu aprašymu39,40 virpesinės energijos pernašai ir lokalizacijai α spiralės bal-
tymuose, kuriame energiją pernešanti kvazidalelė pavadinta Davydovo soli-
tonu41,42. Davydovo anzacų43,44 idėja yra išskleisti sistemos ir aplinkos vir-
pesinių laisvės laipsnių tikrines būsenas nuo laiko priklausančiomis koher-
entinėmis būsenomis45–47, kurios fazinėje erdvėje turi Gauso paketo formą.
Taikant judėjimo lygtis, gautas pasinaudojus nuo laiko priklausančiu variaciniu
principu, koherentinės būsenos nuolatos keičia savo poziciją fazinėje erdvėje,
siekdamos, jog kuo tiksliau atvaizduotų tuo momentu svarbias tikrines mod-
elio būsenas. Taip siekiama sumažinti neatitikimą tarp banginės funkcijos ir
Schrödingerio lygties sprendinio.
Paprasčiausias ir pagrindinis Davydovo šeimos anzacas yra D2 bang-

inė funkcija48–53. Ji kiekvieną modelio virpesinį laisvės laipsnį vaizduoja
viena koherentine būsena, nepriklausomai nuo sistemos elektroninės būsenos.
Siekiant pagerinti D2 anzaco tikslumą, buvo pasiūlyti įvairūs pakeitimai49,54.
Pvz., D1 anzacas55–57 kiekvienam virpesiniam laisvės laipsniui kiekvienoje
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elektroninėje būsenoje priskiria nuosavą koherentinę būseną, o tai išplečia gal-
imų atvaizduoti virpesinių būsenų spektrą, dalinai atsiejant banginių paketų
judėjimą skirtingose elektroninėse būsenose. D1.5 anzacas, kurio struktūra yra
tarpinis variantas tarp ankščiau minėtųjų, buvo pasiūlytas specifiniam siste-
mos ir aplinkos modelio pradinių sąlygų atvejui54. Kaip alternatyva, vietoje
bandymo naudoti vis daugiau koherentinių būsenų, buvo sugalvota modifikuoti
pačias koherentines būsenas. Taikant suspaudimo operatorius47, yra siekiama
pagerinti ne Gauso tikrinių būsenų vaizdavimą. Suspaudimo operatorius viena
kryptimi suspaudžia Gauso bangų paketą fazinėje erdvėje, tuo pačiu metu iš-
plečiant jį statmena kryptimi. Tokios banginės funkcijos vadinamos suspaus-
tais DavydavoD2 ir D1 anzacais58–62. Nors šie pakeitimai išplečia galimų vaiz-
duoti būsenų diapazoną, jie taip pat padidina skaitmeninio skaičiavimo kaštus
ir gali sukelti skaitmeninius nestabilumus.
Šie anzacai buvo sėkmingai naudojami skaičiuojant sužadinimų relaksaci-

jos dinamikas ir spektroskopinius molekulių ir jų agregatų signalus trikdžių
teorijos režimuose, tačiau jie nėra pakankami už jų ribų63,64, ypač esant žemai
temperatūrai. Idėja, kuri paskatino tolesnę šio metodo pažangą, buvo užrašyti
bandomąją banginę funkciją kaip D2 anzacų superpozicija, vadinama multi-
pletiniu Davydovo D2 anzacu63–65. Teoriškai, įtraukus begalinį superpozicijos
narių skaičių, multipletinis Davydovo D2 anzacas yra tikslus bet kurio sistemos
ir aplinkos modelio tikrinių būsenų vaizdinys. Tačiau praktikoje, dėl sudėtin-
gos judėjimo lygčių struktūros, narių skaičių riboja spartus skaitinių kaštų augi-
mas, įtraukiant didelį virpesių laisvės laipsnių skaičių66,67. Nepaisant to, dėl
laike kintančių koherentinių būsenų bazės, multipletinis Davydovo D2 anzacas
gali atkartoti kitų skaitmeniškai tikslių metodų rezultatus, pvz., hierarchinių
judėjimo lygčių63,64,70, kvazidiabatinių trajektorijų integralų71 ir nuo kelių
konfigūracijų priklausomo Hartree72,73, net kai įtraukiamas didelis skaičius
virpesinių laisvės laipsnių.
Tankio operatoriumi besiremiantys metodai gali atsižvelgti į begalinio dy-

džio termostato įtaką sistemai, išbraukdami virpesinių laisves laipsnių kin-
tamuosius iš judėjimo lygčių, variacinis metodas to padaryti negali, todėl
reikia apsiriboti baigtinio dydžio aplinka. Dažniausiai tolydi aplinkos spek-
trinio tankio funkcija yra tiesiškai arba logaritmiškai70 diskretizuojama dažnių
ašyje, siekiant pakankamai tiksliai imituoti tolydinės funkcijos poveikį. Baig-
tinis skaičius diskretizuotų dažnių ir jas atitinkančių svyravimų amplitudės yra
priskiriami kvantiniams harmoniniams osciliatoriams, kurie yra išreikštai mod-
eliuojami kartu su elektroninėmis būsenomis.
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Kadangi banginių funkcijų metodai apima ribotą skaičių elektroninių ir vir-
pesinių būsenų, techniškai tai sudaro uždarą kvantinė sistemą, o ne atvirą. Kad
būtų išlaikytas lygiavertiškumas tarp redukuoto tankio operatoriaus atviroms
kvantinėms sistemoms ir banginėmis funkcijomis pagrįstų uždarų kvantinių
sistemų, diskretizuota aplinka turi funkcionuoti kaip tikras termostatas – turėti
didesnę šiluminę talpą nei sistema. Tačiau įtraukti pakankamai daug kvantinių
harmoninių osciliatorių, kad aplinka turėtų pakankamai didelę šiluminę tamplą,
reikalauja didelių skaitmeninių kaštų.
Vykstant sužadinimo relaksacijai, energija iš sistemos pirmiausia yra sug-

eriama kelių aplinkos osciliatorių, esančių rezonanse su sistemos būsenomis.
Šie osciliatoriai stipriai nukrypsta nuo pusiausvyros, o to pasekoje, temper-
atūra, kurioje vyksta sistemos ir aplinkos modelio dinamika, nebeatitinka prad-
inės temperatūros, šis procesas vadinamas lokaliu aplinkos kaitimu74. Kadangi
aplinka dažniausiai modeliuojama kaip nepriklausomų harmoninių osciliatorių
rinkinys, nevyksta tiesioginiai energijos mainai tarp osciliatorių. Tai lemia,
jog vienintelis kelias įkaitusiai aplinkai atsikratyti pertekline šilumine energija
yra grąžinti ją atgal į sistemą, o tai paneigia pastovios temperatūros termostato
prielaidą ir turi nepageidaujamą grįžtamąjį ryšį sistemos dinamikai.
Ši teorinė aplinkos šilimo problema primena procesą gamtoje, vadi-

namą molekuliniu lokaliu kaitymu75,76, kuomet, molekulei staiga išsklaidžius
didelį kiekį šiluminės energijos į aplinką, pvz., eksitonų anihiliacijos pro-
ceso metu77–79 arba vykstant itin sparčiai molekulinei vidinei konversijai4,80,
pakyla molekulės aplinkos temperatūra. Natūralu, jog toliau vykstant artimiau-
sios aplinkos vėsimui81,82 – termalizacijai, šiluminės energijos perteklius yra
išsklaidomas iš artimiausios molekulės aplinkos į tolimesnius aplinkos sluok-
snius.
Teorinės aplinkos šilimo problemos yra aktualios visiems Davydovo šeimos

anzacams. Naudojant ne multipletinius anzacus, galima išreikštai modeliuoti
šimtus ar net tūkstančius aplinkos osciliatorių, kad kiekvienas osciliatorius iš
sistemos sugertų tik po nedidelį kiekį energijos, taip minimaliai pakeičiant
jo pradinę temperatūrą. Tačiau šis tiesmukas metodas, dėl reikalingų didelių
skaitmeninių resursų, nėra pritaikomas multipletiniams anzacams, kurie nau-
dojami siekiant didžiausio tikslumo. Reikalingas naujas pažangus šios proble-
mos sprendimas.
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Disertacijos tikslai ir užduotys

Šio tiriamojo darbo tikslai yra (1) išsiaiškinti, kurie Davydovo anzacai yra
taikytini įvairiems sistemos ir aplinkos modeliams, ir (2) plėtoti teorinius ir
skaitmeninius metodus našesniems ir tikslesniems sužadinimo relaksacijos ir
spektroskopijos signalų skaičiavimams, taikant Davydovo anzacus.

Norint įgyvendinti pirmąjį (1) tikslą, buvo iškeltos šios užduotys:

• Sukurti skaitmeninių skaičiavimų paketą, kuris leistų skaičiuoti sistemos
ir aplinkos modelių laikinę evoliuciją ir spektroskopijos signalus, naudo-
jant nuo laiko priklausantį variacinį metodą su Davydovo anzacais.

• Teoriškai aprašyti ir ištirti D2 anzaco taikymą, skaičiuojant sistemos
ir aplinkos modelių laikinę dinamiką su normaliųjų virpesinių modų
maišymusi skirtingose elektroninėse būsenose.

• Ištirti sužadintų kvantinių harmoninių osciliatorių būsenų vaizdavimą,
naudojant koherentinių būsenų superpoziciją.

• Išnagrinėti multipletinio D2 anzaco taikymą ir konvergavimą H ir J tipo
molekulinių agregatų sugerties spektrų skaičiavimams.

• Palyginti įprasto, suspausto ir multipletinio D2 anzacų tikslumą, modeli-
uojant sistemos ir aplinkos modelio sugerties ir fluorescencijos spektrus,
kai sistemos sužadinimo metu pasikeičia virpesinių modų dažniai.

Norint įgyvendinti antrąjį (2) tikslą, užduotys buvo šios:

• Sukurti teorinį aprašymą ir skaitmeninį metodą, leidžiantį nustatyti
sužadinto sistemos ir aplinkos modelio šiluminių pusiausvyros būsenų
ansamblį.

• Sukurti ir ištirti D2 anzaco termalizacijos algoritmo poveikį kvantiniams
harmoniniams osciliatoriams bei sistemos sužadinimo relaksacijai.

• Išplėsti D2 anzaco termalizacijos algoritmo aprašymą multipletiniam D2

anzacui.

• Išplėtoti skaitmeninius algoritmus spektroskopijos signalų skaičiavi-
mam.

83



Ginamieji teiginiai

1. Multipletinis D2 anzacas leidžia tiksliai skaičiuoti molekulinių agregatų
sužadinimo relaksacijos dinamiką ir spektroskopijos signalus, tuo tarpu
mažiau sofistikuoti nemultipletiniai anzacai atkuria tik specifinius agre-
gatų modelio aspektus.

2. Norint modeliuoti netiesinio koordinačių sąveikos nario ∝ xpx
2
q sukel-

tus energijos mainus tarp kvantinių harmoninių osciliatorių, naudojant
Davydavo anzacus, jų tikrinės būsenos turėtų būti vaizduojamos koher-
entinių būsenų superpozicija.

3. Skaitmeninis termalizacijos algoritmas įprastam ir multipletiniamD2 an-
zacui leidžia sumažinti reikalingą aplinkos kvantinių harmoninių oscil-
iatorių skaičių, ko pasekoje, sumažėja skaičiavimų kaštai.

4. Sužadintos sistemos ir aplinkos modelio nuostoviųjų būsenų šilumį
ansamblį galima rasti, naudojant tiek skaitmeninio optimizavimo, tiek
termalizacijos metodus. Termalizacijos metodas yra labiau tinkamas
modeliams su daug virpesinių laisvės laipsnių.

Pagrindinių rezultatų apžvalga

Straipsnio [A1] rezultatai

Modeliuoti ir lyginti β-karoteno suskaičiuoti ir eksperimentiniai spektrai, į
teorinį aprašymą įtraukus visas 282 normaliąsias virpesines modas. Normalių
modų dažniai ir amplitudes tiek pagrindinėje S0, tiek sužadintoje S2 elektron-
inėje būsenoje buvo skaičiuoti, naudojant tankio funkcionalo teoriją su B3LYP
hibridiniu funkcionalu ir 6-311G(d,p) bazinių funkcijų rinkiniu. Vaizduojantβ-
karoteno būsenas D2 anzacu ir remiantis nustatytais normaliųjų modų parame-
trais, buvo suskaičiuoti sugerties spektrai esant įvairioms aplinkos temper-
atūroms.
Nustatyta, jog virpesinės normalinės modos elektroninėje pagrindinėje S0 ir

sužadintoje S2 būsenoje nėra tapačios. Priklausomybė tarp virpesinių modų
skirtingose elektroninėse būsenose yra netriviali, todėl jos neturėtų būti trak-
tuojamos, kaip vienodos modos. Toks modų maišymasis paaiškina ir pastebėtą
stiprią sugerties spektro intensyvumo aukštose energijose priklausomybę nuo
temperatūros, kuri nėra paaiškinta empirinio 2 modų modelio.

84



Taip pat pademonstruota, jog esant 0K temperatūrai, 2modųmodelio didelio
intensyvumo sugerties smailės kokybiškai atitinka 282 modų modelio dažnius.
Tačiau, 282 modų modelio atveju, šios smailės atsiranda dėl daugybės silpnų
S0 → S2 sugerties šuolių, kurių intensyvumai sumuojasi ir sudaro stiprią suger-
ties smailę. Pateiktas 282 modų modelis kokybiškai atitinka eksperimentinius
duomenis ir paaiškinimą empirinio 2 modų modelio smailių prigimtį, tačiau
pervertina aukšto dažnio sugerties intensyvumą.

Straipsnio [A2] rezultatai

Taikant pasiūlytą sD2 anzacą, skaičiuota vidinės konversijos molekulėje pro-
ceso dinamika. Dėmesys skirtas sužadinimo relaksavimimo procesui iš aukš-
tos energijos sužadintos elektroninės būsenos į mažesnės energijos sužadintą
elektroninę būseną.
Modelyje vidinės konversija sukelia molekulinių elektroninių būsenų ir vi-

dinių virpesių būsenų maišymasis. Virpesinės modos aplinkoje pirmiausia
yra skirtos sugerti šiluminę energiją iš molekulės virpesinių modų, jau įvykus
vidinei konversijai.
Nagrinėtos molekulės elektroninės ir virpesinės energijos, bei aplinkos vir-

pesinės energijos, laikinės priklausomybės. Nustatyta, jog pateiktas teorinis
aprašymas leidžia vykti vidinei konversijai. Energijos mainai tarp molekulės
ir aplinkos virpesinių modų, kuriuos sukelia netiesinis sąveikos narys lygtyje
(2.2.1), vyksta, jei aplinkos osciliatorių būsenos yra vaizduojamos koheren-
tinių būsenų superpozicija. Šių modų banginės funkcijos paketas yra platesnis
ir asimetriškai suspaustas, lyginant su su Gausiniu bangų paketu.
Šių banginės funkcijos sąvybių neįmanoma atvaizduoti naudojant vieną ko-

herentinę būseną, todėl nepakanka taikyti vaizdavimo D2 anzacu, o reikalingas
sudėtingesnis vaizdavimas, pvz., siūlomu sD2 anzacu. Kitu atveju, tiesioginis
energijos perdavimas iš molekulės į aplinkos virpesines modas yra draudžia-
mas.

Straipsnio [A3] rezultatai

Taikytas formaliai tikslusmD2 anzacą skaičiuojant H ir J tipomolekulinių agre-
gatų, sudarytų iš 10 identiškų molekulių, sugerties spektrus. Siekta nustatyti,
kaip priklauso mD2 anzaco konvergavimas nuo modelio temperatūros ir tarp-
molekulinės sąveikos stiprio.
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Nustatyta, jog šiems molekuliniams agregatams pakanka naudoti mD2 an-
szacą sudarytą iš 7 superpozicijos narių. D2 anzacas, kuris atitinka mD2 an-
zacą su 1 superpozicijos nariu, bet kurio laikinė evoliucija yra paprastesnėmis
judėjimo lygtimis, yra netinkamas visuose nagrinėtuose modelio parametrų
režimuose. Konkrečiai, H tipo agregatams reikia naudoti multipletinį anzacą,
kad būtų užtikrintas sugerties spektro teigiamumas ir tikslūs sugerties smailių
intensyvumai. mD2 anzaco naudojimas J tipo agregatams sukelia sugerties
spektro poslinkį į žemesnių energijų pusę, o bendra sugerties linijos forma
išlieka kokybiškai nepakitusi.
Reikalingumas molekulinių agregatų modelio būsenas vaizduoti mD2 an-

zacu yra siejamas su tuo, jog aukštoje temperatūroje dalyvauja sužadintos
kvantinių harmoninių osciliatorių tikrinės būsenos. mD2 anzacas taip pat lei-
džia atsieti banginių paketų laikinę evoliuciją skirtinguose elektroninių ir vir-
pesinių būsenų energetiniuose paviršiuose.

Straipsnio [A4] rezultatai

Pasiūlytas skaitmenins optimizavimo metodas, skirtas rasti sužadintų
molekulinių sistemų terminės nuostoviosioms būsenoms, kurios yra reikalin-
gos fluorescencijos spektrams skaičiuoti. Šis metodas taikytas D2, sqD2

ir mD2 anzacams, skaičiuojant J tipo molekulinio dimero sugerties ir flu-
orescencijos spektrus, atsižvelgiant į molekulinių virpesių dažnių pokyčius
sužadintoje būsenoje.
Nustatyta, kad nei D2, nei sqD2 anzacas negali tiksliai atkurti dimero, su

aukšto dažnio virpesinėmis modomis, sugerties ir fluorescencijos spektrų, net
jei virpesiniai dažniai pagrindinėje ir sužadintoje būsenoje yra vienodi. Tačiau
J tipo dimerui, sąveikaujančiam su žemo dažnio fononais, suskaičiuoti sug-
erties ir fluorescencijos spektrai su D2, sqD2 ir mD2 anzacais yra kokybiškai
lygiaverčiai.
Stebėti energijos skirtumai tarp smailių spektruose, taikant skirtingus anza-

cus, gali būti paaiškinti mD2 anzaco gebėjimo atvaizduoti mažiausios energi-
jos terminės nuostoviąsias būsenas. Nors sqD2 anzacas sugeba atvaizduoti kai
kuriuos nuostoviųjių būsenų pokyčius, atsiradusius dėl kvadratinės sąveikos
nario tarp elektroninių ir virpesinių laisvės laipsnių, tiek sqD2, tiek D2 anzacas
neatkuria spektrinių pokyčių dėl tarpmolekulinės sąveikos.
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Straipsnio [A5] rezultatai

Pasiūlytas skaitmeninis termalizacijos algoritmas, skirtą naudoti kartu su D2

anzacu. Jis postuluoja antrinio termostato egzistavimą, kuris nėra modeliuo-
jamas išreikštai, o atsižvelgiama tik į jo termodinamines sąvybes. Antrinis
termostatas sąveikauja su sistemos ir aplinkos modeliu stochastiniais sklai-
dos įvykiais, kurie modeliuojami diskretaus laiko Bernulio procesais su sklai-
dos tikimybėmis aprašytomis Puasono skirstiniu. Sklaidos metu stochastiškai
pasikeičia aplinkos osciliatorių judėsio kiekio momentai, kurių skirstinį nusako
Glauberio ir Sudaršano funkcija, žr. (1.5.1) lygtį.
Šis termalizacijos metodas leidžia valdyti aplinkos temperatūrą, kvantinius

harmoninius osciliatorius dinamiškai vedant į siekiamos temperatūros šilu-
minės pusiausvyros būsenas. Galimybė kontroliuoti aplinkos temperatūrą lei-
džia užkirsti kelią nepageidaujamam aplinkos kaitimo efektui. Skaičiuojant
molekulinio trimero sužadinimo relaksacijos dinamiką su D2 anzacu, parodyta,
kad didelio skaičiaus aplinkos osciliatorių poveikį sistemai galima lygiaverčiai
modeliuoti mažesniu osciliatorių skaičiumi, kartu taikant termalizacijos algo-
ritmą.

Straipsnio [A6] rezultatai

Išplėstas D2 anzacui skirtas termalizacijos algoritmas, jį pritaikant mD2 an-
zacui, pasinaudojant pageidaujamų būsenų ir grubios sklaidos aproksimacijas.
Tai leidžia mD2 anzacui išlaikyti geresnį tikslumą, lyginant su D2 anzacu, ir
tuo pačiu naudotis termalizacijos suteikiamais privalumais.
Skaičiuojant molekulinio trimero sužadinimo relaksacijos dinamiką su mD2

anzacu, parodyta, jog išplėstas termalizacijos algoritmas leidžia sumažinti
reikiamą aplinkos osciliatorių skaičių, kokybiškai nepakeičiant dinamikos
sąvybių. Tai ženkliai sumažina skaičiavimo kaštus. mD2 anzacui skirtas ter-
malizacijos algoritmas atveria galimybes skaitmeniškai tirti didelių sistemos ir
aplinkos modelių dinamiką ir spektrus.
Taip pat pademonstruota, kaip termalizacija gali būti pritaikyta ieškant

sužadintos sistemos ir aplinkos modelio terminių nuostoviųjų būsenų. Lygi-
nant su ankščiau pasiulytu skaitmeninio optimizavimo metodu, termalizacijos
metodas reikalauja mažesnių skaičiavimo kaštų, turi geresnį skaitmeninį sta-
bilumą ir tikslumą, ypač modeliams su daug laisvės laipsnių.
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ABSTRACT: The electronic absorption spectrum of β-carotene (β-Car)
is studied using quantum chemistry and quantum dynamics simulations.
Vibrational normal modes were computed in optimized geometries of the
electronic ground state S0 and the optically bright excited S2 state using
the time-dependent density functional theory. By expressing the S2-state
normal modes in terms of the ground-state modes, we find that no one-to-
one correspondence between the ground- and excited-state vibrational
modes exists. Using the ab initio results, we simulated the β-Car
absorption spectrum with all 282 vibrational modes in a model solvent at
300 K using the time-dependent Dirac−Frenkel variational principle and
are able to qualitatively reproduce the full absorption line shape. By
comparing the 282-mode model with the prominent 2-mode model,
widely used to interpret carotenoid experiments, we find that the full 282-
mode model better describes the high-frequency progression of
carotenoid absorption spectra; hence, vibrational modes become highly mixed during the S0 → S2 optical excitation. The obtained
results suggest that electronic energy dissipation is mediated by numerous vibrational modes.

■ INTRODUCTION
Pigment molecules in nature form the basis of life on earth by
enabling organisms to utilize the solar energy. Carotenoids
form a unique class of pigments with a conjugated polyene
chain, responsible for light absorption in a green-blue color
region. Over 700 carotenoid molecules are found in nature.
They primarily play a role as coloring materials, which underlie
a vital and complex signaling process.1,2 In photosynthesis,
carotenoids are essential in solar energy harvesting and in
photoprotection from oxygen damage. The latter emerge on
the microscopic level, when light illumination is high, by the
formation of energy trapping states.3,4 This trapping has been
related to quenching of the chlorophyll excited states by the
carotenoid singlet state5,6 or by the excitonic interaction
between chlorophyll and the carotenoid, which is controlled by
carotenoid conformations.7,8 Carotenoids become thus re-
sponsible for the regulation of excitation energy fluxes in
photosynthesis in volatile conditions of daylight irradiation.
One of the possible mechanisms of such behavior involves a
limited conformational rearrangement of the protein scaffold
that could act as a molecular switch to activate or deactivate
the quenching mechanism.9 A strong correlation between
carotenoid and local environment deformations is necessary
for such mechanism to exist.
However, the primary deformations leading to carotenoid

flexibility are the molecular vibrations. They are usually
induced during photon absorption (and emission) and
following excitation relaxation processes. Probing excitation

and vibration-mediated relaxation processes in carotenoids,
necessary for understanding the fundamental physical
processes involved in their functioning, is possible by
performing time-resolved optical spectroscopy experiments. It
is well established that carotenoids demonstrate a complex
structure of electronic excited states10,11 with at least three
electronic states necessary to fully capture the excitation
longtime dynamics. Direct optical excitation induces electronic
S0 → S2 transition, where S0 is the electronic ground state and
S2 is the first optically accessible (bright) electronic state, and
the optically dark electronic state S1 lies between S0 and S2.
Additional intramolecular charge-transfer (CT) states have
been proposed in peridinin in agreement with the experimental
results.12,13 Quantum chemical calculations using the time-
dependent density functional theory with the TammDancoff
approximation14−16 demonstrate the presence of the CT state
in the same energy range. The energy of the CT state has been
shown to decrease dramatically in solvents of increasing
polarity, while the energy of the dark S1 state remains
comparatively constant.17 Several other types of electronic
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excited states have been suggested; however, their existence
and involvement in the relaxation process are still debatable.18

Specific spectral features have been assigned to S1 and CT
states, and these may play an important role in de-excitation
processes.9,13,19

Vibrational heating and cooling are involved in the
relaxation process via electronic-vibrational (vibronic) cou-
pling.20 Indeed, strong vibronic coupling is rooted in broad
electronic absorption spectra, more specifically, in a strong
vibronic shoulder for a range of different carotenoids as
observed experimentally.21 This feature is often associated with
two vibrational modes: C−C symmetric and asymmetric
stretching vibrations with the cumulative Huang−Rhys factor
larger than 1. These modes are known to be active in Raman
spectra, and their frequencies scale linearly with the
conjugation length in carotenoids.11 While molecular vibra-
tions affect the symmetry properties of the molecules, they do
not affect the oscillator strength of the dark state.22 Such
empirical effective 2-mode model has been extensively used for
spectroscopy simulations.20,23−27 However, the two vibrational
modes do not capture the high-energy vibrational wing, and it
is not clear whether the two modes are sufficient to accurately
describe the more complex ultrafast internal conversion and
energy-transfer processes.
In this paper, we present quantum chemistry and quantum

dynamics description of vibrational manifold of β-Car in its
electronic states S0 and S2. We find that numerous vibrational
modes become highly mixed during the S0 → S2 optical
excitation, resulting in a complex S2 state wave packet. We are
able to reveal the full absorption spectrum, including the high-
energy vibrational shoulder. Simulations thus suggest that
pathways responsible for the ultrafast electronic excitation
relaxation and internal conversion are mediated by numerous
vibrational modes, resulting in a rapid and efficient electronic
energy dissipation.

■ THEORETICAL METHODS

Quantum chemical analysis starts from the complete molecular
Hamiltonian including both electronic and vibrational degrees
of freedom (DOFs).28,29 Using the Born−Oppenheimer
approximation, the full Schrödinger equation is split into
separate equations for electronic and nuclear DOFs. The
stationary Schrödinger equation for electrons then parametri-
cally depends on the nuclear coordinates

H ER R R R( ) ( ) ( ) ( )m m mel
̂ Φ = Φ (1)

where Ĥel includes the electron kinetic energy, electronic
interaction with nuclei, electron−electron interactions, and
internuclear interaction energy, R ≡ R1, R2,... labels nuclei
coordinates. The eigenvalues Em(R) and the corresponding
eigenstates Φm(R), which parametrically depend on nuclei
configuration, characterize the electronic system.
Electronic energy minimum of the electronic ground state

denotes the reference pointthe equilibrium molecular
structure. If the nuclear configuration deviates from the
minimum, the electronic energy is increased; hence, the
electronic energy can be treated as the potential energy for
nuclei DOFs. For small deviations from the energy minimum,
we use the harmonic approximation, where the potential
energy operator is expanded up to quadratic terms. Therefore,
the potential energy for nuclei displacements in the electronic

state n can be written as (using Einstein summation
convention for repeating indices)

U u u u( )
1
2n ij

n
i j

( )≈
(2)

where we introduce mass-weighted Cartesian coordinates

u M R R( )i i i i
n

0
( )= − , as the shifts of nuclei from their

equilibrium positions, and

M M
E R
R R

1 ( )
ij
n

i j

n

i j

( )
2

min

=
∂
∂ ∂

(3)

is the Hessian matrix with derivatives taken at the global
minimum of the state n. The Schrödinger equation for the
nuclear wave functions with respect to the specific electronic
state n is

T U u u u( ( )) ( ) ( )n n n nχ ε χ̂ + ̂ =α α α (4)

where α is the vibrational quantum-state index with energy εnα
and wave function χαn. The vibrational Schrödinger equation
splits into an independent set of equations in the normal
coordinate representation; we denote these coordinates by Qk.
Normal modes are obtained by diagonalizing the Hessian
matrix for each electronic state n. Solving the eigenstate
equation

L Lij
n

jk
n

nk ik
n( ) ( ) 2 ( )ω= (5)

yields normal mode frequencies ωnk, where k labels normal
modes. The Hessian eigenvectors Lik

(n) relate the normal modes
k and nuclei displacements ui. Placing eigenvectors in columns,
we form the matrix L(n), whose rank is M = 3N − 6 (six of the
modes are physically irrelevant as three of them correspond to
the uniform translation of the whole molecule along the
Cartesian axes, while the other three are uniform rotations
about these axes, they are excluded), and it is used to transform
mass-weighted Cartesian internal coordinates ui into normal
coordinates Qk

(n) = (L(n))kl
−1ul.

Complete description of the vibronic molecular states, when
the electronic and vibrational states are known, is given by the
state vectors |nαn⟩, where αn ≡ (αn1, αn2, ..., αnK) is the M-
dimensional vector denoting the vibrational states of all
vibrational modes in the electronic state n. As the normal
modes are harmonic, the vibrational Hamiltonian in the
electronic state n is given by

H P Q n n
1
2

(( ) ( ) )n

k
k

n
nk k

n( ) ( ) 2 2 ( ) 2∑ ω̂ = ̂ + ̂ | ⟩⟨ |
(6)

The absorption spectrum of a vibronic system involves all
possible optical transitions from the vibronic ground state |gβ⟩
to the excited states |eα⟩. Starting from the linear response
theory, the absorption spectrum is given by the Fourier
transform of the linear response function

S
nc

t F t( ) Re d e ( )i t

0
∫ω ω= ω

∞

(7)

where n is the refraction index and c is the speed of light,28,30

and

F t g gP P( ) e eiH t iH tg eα α= ⟨ | ̂ ̂ | ⟩̂ − ̂
(8)

is the dipole operator correlation function. In the Born
approximation, the polarization operator P̂ acts only on
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electronic DOFs; hence, P̂ = μeg
(el)(|e⟩⟨g| + |g⟩⟨e|) and μeg

(el) is
the electronic transition dipole. The matrix elements of the
polarization operator are given by

e g dP u u u( ) ( )N

j k
e geg

(el)

,
j k

∫ ∏β μα χ χ⟨ | ̂ | ⟩ = *
α β

(9)

The multi-dimensional integral corresponds to the vibra-
tional overlaps between the vibrational wave function in
different electronic states. The integral computation is not
trivial because the sets of normal modes in different electronic
states are not orthogonal, and transformation of one set of
normal modes into another is necessary.31−33

Differences of the set of normal modes in different electronic
states are characterized as follows. In the electronic state n, the
deviation of atomic Cartesian coordinates Ri from the
equilibrium position Ri0

(n) may be expressed via the normal
modes via the relation

M R R L Q( )i i i
n

ij
n

j
n

0
( ) ( ) ( )− = (10)

and allows us to relate the relative mass-weighted atom shifts

D M R R( )i
mn

i i
m

i
n( )

0
( )

0
( )≡ − between the equilibrium positions

in electronic states m and n as

D L Q L Qi
mn

ij
n

j
n

ij
m

j
m( ) ( ) ( ) ( ) ( )= − (11)

then the normal mode coordinates in state m can be expressed
in terms of state n normal mode coordinates as

Q a Q di
m

ij
mn

j
n

i
mn( ) ( ) ( ) ( )= − (12)

where the expansion coefficient of the ith normal mode in the
mth state in terms of jth mode in the nth state is

a L L( )ij
mn m

ik kj
n( ) ( ) 1 ( )≡ −

(13)

and the ith normal mode potential displacement in the mth
state, with respect to the position in the nth state, is

d L D( )i
mn m

ik k
mn( ) ( ) 1 ( )≡ −

(14)

These are the two quantities that relate the normal modes in
different electronic states. Likewise, the normal mode
momentum is also expanded in terms of the akj

(eg) coefficients
(and zero displacement)

P a Pi
m

ij
mn

j
n( ) ( ) ( )≡ (15)

Further on, we consider two electronic states: the ground
state |g⟩ and the electronic excited state |e⟩. Instead of
evaluating propagators in eq 8 by computing the multi-
dimensional vibrational overlaps in eq 9, we choose to specify a
vibronic state basis using the coherent-state representation and
propagate it following the time-dependent Dirac−Frenkel
variational principle.
We begin with writing dimensionless Hamiltonian by

introducing the dimensionless momentum pk
n( )̂ ≡ Pnk k

n1 ( )ω ̂−

and coordinate q Qk
n

nk k
n( ) ( )ω̂ ≡ ̂ operators for states n = g, e.

After inserting them in eq 6, the electronic ground-state
Hamiltonian is

H p x g g
2

(( ) ( ) )g

k

gk
k

g
k

g( ) ( ) 2 ( ) 2∑
ω

̂ = ̂ + ̂ | ⟩⟨ |
(16)

and the electronic excited-state |e⟩ Hamiltonian is

H p x e

d x e e e

2
(( ) ( ) )

,

e

k

ek
k

e
k

e

k
ek k

eg
k

e

( )
e e

vib ( ) 2 ( ) 2

( ) ( )

i

k
jjjjjj

y

{
zzzzzz∑

∑

ε
ω

ω

̂ = + Λ + ̂ + ̂ | ⟩

− ̃ ̂ | ⟩⟨ | ⟨ |
(17)

where d dk
eg

ek k
eg( ) ( )ω̃ ≡ is the dimensionless displacement and

d( )e k ek k
egvib 1

2
( ) 2ωΛ ≡ ∑ ̃ is the total vibrational reorganization

energy. The resulting operators in eqs 16 and 17 read

x a qk
n

nk j kj
ng

j
g( )

,
( ) ( )β̂ ≡ ̂ (18)

p a pk
n

nk j kj
ng

j
g( )

,
1 ( ) ( )β̂ ≡ ̂−

(19)

where /nk j nk gj,β ω ω≡ . Equations 18 and 19 describe the

dimensionless coordinate and momentum of the kth normal
mode about its equilibrium point in the nth electronic state.
Terms βnk,j appear due to the normal mode mixing and
different vibrational frequencies in states g and e. We also add
εe as the purely electronic excitation energy and set εg = 0
cm−1. The total system Hamiltonian is the sum over all
electronic state terms ĤS = Ĥ(g) + Ĥ(e).
Solvent effects will be simulated by considering energy

fluctuations of the molecular environment. Thermal fluctua-
tions are induced by a set of quantum harmonic oscillators of a
given temperature, and we will refer to this subsystem as the
phonon bath. The phonon bath Hamiltonian is

H
w

2
( )

p

p
p pB

2 2∑ ρ χ̂ = ̂ + ̂
(20)

where wp is the frequency of the pth phonon mode, while ρ̂p
and χ̂p are the momentum and the coordinate operators,
respectively. The interaction between the system electronic
states and the phonon bath is included using the displaced
oscillator model,29 with the system−bath interaction Hamil-
tonian

H w f e e
p

p pS B ep∑ χ̂ = − ̂ | ⟩⟨ |‐
(21)

where fep is the electron−phonon coupling strength of the pth
phonon mode to the electronic state e. The electronic ground
state is taken as the reference point, so it is not affected by bath
fluctuations fgp = 0. Notice that the system−bath coupling has
the same form as the last term in eq 17. The electronic state
energy modulation by the intramolecular and intermolecular
vibrations is treated equivalently. Likewise, we get additional
contribution to the reorganization energy w fe p p

ph 1
2 ep

2Λ = ∑ .

Usually, all excited electronic states are described as having the
same coupling strength to the bath, thus changing all states’
energies by the same amount. For simplicity, we absorb Λe

ph

into the definition of the excited-state energy εe; however, Λe
ph

is still used to define the electron−phonon coupling strengths
fep. The full model Hamiltonian is the sum of terms

H H H HS B S B
̂ = ̂ + ̂ + ̂ ‐ (22)

The fluctuation characteristics of the phonon bath can be
represented by the spectral density function
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C f w w w( )
2

( ) ( )e
p

ep p p
2 2

p∑ω π δ ω δ ω″ = [ − − + ]
(23)

where δ(ω) is the Dirac delta function. Integration of eq 23
over the complete frequency range defines the phonon bath
reorganization energy in the nth electronic state

C w
w

w w f
1 ( )

d
1
2

e

p
p epe

ph

0

2∫ ∑
π

Λ =
″

=
∞

(24)

Many theories have been proposed to evaluate the linear
response function and the necessary polarization operator
matrix elements (eqs 8 and 9), notably, the foundational
theory by Yan and Mukamel,34 Franck−Condon ap-
proaches,35−37 and the theories that include non-Condon
effects.38−41

We chose to compute the linear response function by
propagating the Davydov D2 trial wave function originating
from the molecular chain soliton theory.42,43 For N electronic
states, we can write an arbitrary state of the system as a
superpositionthe Davydov D2 wave function is

t t n t t t

t t t

( ) ( ) ( ), ( ), ..., ( )

( ), ( ), ..., ( )

n
n K

P

1 2
molecule state

1 2
solvent phonon state

∑ α λ λ λ

λ λ λ

|Ψ ⟩ = | ⟩ × | ̃ ̃ ̃ ⟩

× | ⟩

´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ

´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ
(25)

It utilizes the coherent-state representation for all vibrational
modes. For the shifted harmonic oscillator model, the coherent
states result in an exact dynamics.44 αn(t) is the amplitude of
electronic state |n⟩, in our case n = g, e. Vibrational and phonon
bath modes are represented using coherent states |λ(t)⟩ =
exp(λ(t)b̂† − λ*(t)b̂)|0⟩, defined with respect to the electronic
ground-state vibrational modes, where λ(t) is the coherent-
state parameter and |0⟩ is the vacuum state of a quantum
harmonic oscillator. b̂i

† and b̂i are the corresponding bosonic
creation and annihilation operators. Only the electronic
ground-state normal modes are represented by the coherent
states, and modes of the excited state are expanded in terms of
the ground-state coherent states. Davydov-type wave functions
have been extensively used to model a single molecule, as well
as their aggregate dynamics,45−49 linear and nonlinear
spectra.50−54

Time evolution of the Davydov D2 wave function is obtained
by applying the Euler−Lagrange equation
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to each of the time-dependent parameter ηi = αn,λ̃k,λp, where
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is the Lagrangian of the model given in terms of the
Hamiltonian Ĥ. For convenience, we omit explicitly writing
time dependence. The Euler−Lagrange equation yields a
system of coupled differential equations for the αn, λ̃k, and λp
parameters of the Davydov D2 wave function, see the
Supporting Information for the full derivation. Equations
describing model dynamics while the system is in the excited
state |e⟩ are
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the expectation values of operators in eqs 18 and 19. The
resulting system of equations for the ground state |g⟩ dynamics

can be solved analytically: ( )t t( ) (0)expg g
i

k gk2
α α ω= − ∑ ,

λ̃k(t) = λ̃k(0)exp(−iωgkt), λq(t) = λq(0)exp(−iwqt). Separation
of equations into the ground- and excited-state manifold is
convenient for the computation of the optical observables
using the response function theory. Terms due to the mixing of
normal modes remain present in eqs 28 and 29. In the latter,
evolution of the kth mode is influenced by the motion of all
other jth modes. Equations 28−30 were solved numerically
using the adaptive step size Runge−Kutta algorithm.
The temperature of the normal vibrational modes, as well as

the phonon modes, is included by performing the Monte Carlo
simulation to generate the thermal ensemble of the Davydov
D2 wave function trajectories. At the zero time, before optical
excitation, in each trajectory, the initial coherent-state
displacements λ̃q(0) and λp(0) are sampled from the
Glauber−Sudarshan distribution55

( ) exp( (e 1))k T1 2 / Bλ λ= −| | −ω−
(31)

where is the partition function of a single coherent state |λ⟩
with the corresponding frequency ω, kB is the Boltzmann
constant, and T is the model temperature. Observables
averaged over the thermal ensemble will be denotes as ⟨...⟩.
We found 500 trajectories to be sufficient to obtain the
converged ensemble for the model of β-Car as described in the
next section.

■ SIMULATION RESULTS
Normal Modes of β-Car in S0 and S2 Electronic States.

We consider a model of β-Car in thermal equilibrium with a
solvent at 300 K. For the photon absorption process, β-Car is
described by the electronic ground state |S0⟩ ≡ |g⟩ and the
excited state |S2⟩ ≡ |e⟩. The optically dark excited state |S1⟩
does not directly participate in the electronic absorption
process and is excluded.
The electronic Schrödinger equation of the β-Car molecule

was solved using the density functional theory (DFT) method
for the ground electronic state S0, and the time-dependent
DFT (TD-DFT) method for the electronic excited state S2,
from which atom equilibrium positions R0

g , R0
e are acquired.

The GAMESS56 and Gaussian-16 codes57 were used.
The calculation methods were based on the experience from

previous calculations of resonance RAMAN spectra of
carotenoids, investigation of dependence between the position
of the S0 → S2 transition and the frequency of the ν1 Raman
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band.58,59 The most RAMAN intense band, ν1, located at
around 1500 cm−1, arises from the stretching of the C=C
bonds. Previous calculations of the ν1 Raman bands in the
ground electronic state S0 were performed for another
carotenoid, lycopene, using the DFT method with B3LYP/6-
31G, B3LYP/TZVP, B3LYP/6-31G(2df,p), BP86/6-31G(d),
BPW91/6-31G(d), B3P86/6-31G(d), B3PW91/6-31G(d),
and SVWN/6-31G(d) potentials.60 It was shown that all
methods based on DFT are able to perform calculation of
vibrational frequencies with an overall root-mean-square error
of 34−48 cm−1.61 Also, it was shown that the dependence of
the Raman peak frequency shift, compared between that
computed under vacuum and experimental, is linear over the
whole spectra,58 using the B3LYP/6-311G(d,p) method, and a
scaling factor of 0.9613 has to be used.58,61 On the other hand,
the energy of β-Car corresponding to the first optically allowed
transition in the gas phase was reported to be between 2.85
and 2.93 eV.59 This value is 0.62 eV higher than the excitation
energy calculated using TD-DFT at the B3LYP/6-311G(d,p)
level (2.224 eV).58 Other methods give similar results:
Tamm−Dancoff approximation (TDA) blyp/6-31G(d)
2.15 eV, TD b3lyp/cc-pvdz2.19 eV, and TD b3lyp/cc-
pvtz2.21 eV.
Equilibrium structures of excited states, optimized using the

TDA62 and TD-DFT63,64 with the BLYP functional, and the
DZP basis set, in contrast to B3LYP, yields correct energetic
order of the two lowest β-Car excited states, and it has been
shown to reach an accuracy of 0.2 eV for the S1 excitation
energy in carotenoids.65 However, later this has been explained
by a fortuitous cancellation of errors caused by the neglect of
double excitations in the ground and excited states.66

We performed geometry optimization using various methods
with TD-SCF, TDA-SCF basis sets and b3lyp/6-311G(d,p),
blyp/6-31G(d), b3lyp/cc-pvdz, and b3lyp/cc-pvtz potentials.
The Car molecule equilibrium structure and enumeration of
atoms are shown in Figure 1, and the changes of the C−C
bond lengths along the Car polyene chain in both electronic
states calculated using the TD-SCF B3LYP/6-311G(d,p)
method are shown in Figure 2. All the tested methods give
similar alternation of the C−C bond lengths in the S0 state,
close to that shown in Figure 2. For the S2 state, the situation is
differentmethods using the TDA-SCF basis set give
alternation similar to the S0-state case. The largest alternation
of the S2 state polyene bond lengths was achieved using the
TDA blyp/6-31G(d) method. All TD-SCF calculations
provide almost 10 times smaller alternation of C−C bond
lengths in the middle of the polyene chain, as compared to the
TDA-DTF calculations, again, similar to the results shown in
Figure 2.

In order to evaluate the influence of the chosen method to
the vibrational mode frequencies and their bands, we
performed the calculation of vibrational spectra using TD-
SCF and TDA-SCF methods with different basis sets and
potentials (b3lyp/6-311G(d,p), blyp/6-31G(d), b3lyp/cc-
pvdz, and b3lyp/cc-pvtz). In the S0 state, the valence
vibrational frequencies of the C−C bonds of the polyene
chain scale equally and agree to within the range of 20 cm−1.
The same vibrational frequencies in the S2 state also scale
equally, with the exception of the TDA blyp/6-31G(d)
method, as shown in Figure 3. All the tested methods agree

on the C−C bond vibrational frequencies in the S2 state within
a range of 46 cm−1. Previous ν1 Raman band evaluation and
correlation with S0 → S2 excitation in the gas phase were
performed under vacuum using the TD-SCF B3LYP/6-
311G(d,p) method, and the results are in agreement with
the experimental observations.58,59 Based on this knowledge,
all further presented quantum chemistry calculations were
performed under vacuum using the B3LYP/6-311G(d,p)
method as in ref 59 and the scaling factor was not applied.

Figure 1. Structure and atom numeration of the C2v symmetry carotene.

Figure 2. Polyene chain C−C bond lengths in the electronic ground
state S0 and the excited state S2 calculated using the TD-SCF B3LYP/
6-311G(d,p) method.

Figure 3. Polyene backbone C−C valence vibrational mode
frequencies in the excited state S2 calculated using various quantum
chemistry methods.
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The changes in polyene chain geometry during S0 → S2
electronic excitation causes changes in molecular electronic
structure, normal mode frequencies, and vibrational mode
coordinates. The C−H valence bond vibrations in all β-Car
parts are in the region of 2970−3170 cm−1 for the ground state
and in the region of 2960−3168 cm−1 for the excited state. The
lower frequency region is characterized by the change of C=C
bond lengths in polyene chain. Here, the S0 normal mode
frequencies lay in the region of 1558−1674 cm−1 and the
corresponding region for the S2 state is 1533−1636 cm−1.
Transition S0 → S2 mainly induces differences in the polyene
chain bond lengths between carbon atoms in both electronic
states. As a consequence, the vibrational frequencies in the S2
state become lower by 40−50 cm−1.
Expressing normal mode coordinates in the electronic state

S2 by the normal coordinates of the ground electronic state S0,
according to eq 12, allows us to investigate normal mode
mixing upon S0 → S2 electronic transition. In Figure 4, we plot

the expansion coefficient absolute value |akj
(eg)|, that is, the kth

mode in the S2 state is expanded in terms of the mode jth in
the state S0. The largest expansion coefficients lay close to the
main diagonal, implying that the majority of normal modes are
non-negligibly mixed with similar frequency modes. However,
certain modes show mixing with modes that has vastly different
frequencies; for example, modes in a frequency region of
≈2500 cm−1 are highly mixed with modes in a frequency range
of 1500−2500 cm−1. Strong mixing can also be clearly seen
between modes in frequency regions of 0−250 cm−1, 400−750
cm−1, and 1000−1500 cm−1. Such a broad frequency mixing
range signifies a wide range of available vibrational relaxation
pathways. At a first glance, expansion coefficients along the ωei
= ωgi diagonal may look symmetric; however, they are not,
even when absolute values are considered |akj

(eg)| ≠ |ajk
(eg)|. This

demonstrates that there is no one-to-one correspondence
between the β-Car normal modes in the electronic S0 and S2
states.
Additionally, we found that during transitions between S0

and S2 electronic states, the transition dipole weakly depends
on the nuclear configuration. For transition S0 → S2, the
transition moment components are μ02 = (8.35,0.71,0.0) in a.u.

(21.28 Debye), while for the S2 → S0, it is equal to μ20 =
(9.45,0.57,0.0) in a.u. (24.06 Debye). The difference between
the two transitions is minimal; thus, the non-Condon effects
can be reasonably excluded from the calculations. The
transition dipole moment is oriented with the z component
being perpendicular to the plane of the polyene chain, while
the x component is directed along the polyene chain.

Absorption Spectrum of the β-Carotene Model. The
quantum chemistry results of the β-Car are now used to
compute the absorption spectrum given by eq 7. Fourier
transformation is performed on the linear response function
averaged over the thermal ensemble, ⟨F(t)⟩, and the single
trajectory of the ensemble linear response is defined in eq 8
and is equal to
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It is expressed in terms of the dynamical parameters αn(t),
λ̃k(t), and λp(t); therefore, it is enough to propagate the
excited-state dynamics.
For the solvent, the phonon bath modes are defined by

uniformly discretizing the spectral density function Ce″(ω) in
the frequency domain in the range [wmin = 0.1, wmax = 1250]
cm−1 with discretization step size Δw = 10 cm−1. Then, the
frequency of the pth bath mode is given by wp = wmin + (p −
1)Δw. Form of the spectral density function was chosen to be
the overdamped Brownian oscillator function Ce″(w) =
2Λe

phωγ/(ω2 + γ2). The damping parameter γ = 200 cm−1

(167 fs) has been chosen based on the previous modeling of
the β-Car67 spectra. The amplitude of the spectral density
function is set by normalizing the fep values according to the
reorganization energy definition by eq 24. The bath
reorganization energy of Λe

ph = 100 cm−1 has been chosen to
qualitatively match the line widths of the experimental data.
The simulated absorption spectrum of the β-Car model with

282 normal modes at different temperatures is shown in Figure
5 along the experimental β-Car spectrum in diethylamine
solvent at room temperature.27 The absorption spectra have
been normalized to their maximum value, as well as aligned on
the 0−0 transition band for easier comparison. We find the
282-mode model spectrum to qualitatively reproduce the
position and amplitudes of the first two absorption peaks;
however, it greatly overestimates the amplitude of vibrational
peak progression at 300 K temperature. Also, absorption of the
high-frequency modes displays non-trivial dependence on the
temperature. For majority of modes, the average thermal
energy is much smaller than the energy gap between the
vibrational mode energy levels, kBT ≪ ω; thus, for non-mixed
modes, dependence of absorption spectrum on temperature
would be negligible. However, in Figure 5, we observe strong
dependence of absorption on temperature due to the mode
mixing; that is, thermally excited low-frequency vibrational
modes contribute to the excitation of the high-frequency
modes, which result in a wide high-frequency absorption
shoulder.

Figure 4. Expansion coefficient absolute value |akj
(eg)| of the β-Car

normal modes. The kth mode in the S2 state is expanded in terms of
the mode jth in the state S0 calculated using the TD-SCF B3LYP/6-
311G(d,p) method.
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For comparison, we also computed the absorption spectrum
of a widely used empirical two-mode β-Car model at 300 K
temperature, which includes only the CC and C−C
stretching vibrational modes with no mixing between them.
Typical model frequencies ωe,CC = 1522 cm−1 and ωe,C−C =
1157 cm−1 and displacements dCC

(eg) = 1.3 and dC−C
(eg) = 0.9 are

taken from ref 23. To have correct line widths, the bath
reorganization energy is now set to a much larger Λe

ph = 800
cm−1 to account for the lack of the rest β-Car modes. As shown
in Figure 5, the two-mode model fits the first two peaks well
but underestimates the amplitude of the higher frequency
progression.
To further compare the 282-mode and the 2-mode models,

we look at their stick absorption spectrum in Figure 6. The
purely electronic transition energy is set to 0 cm−1 for both
spectra. For visibility, the spectra have been convoluted with
the τ = 1 ps variance Gaussian function, and τ = 5 ps is used for
the spectra in the inset. The 2-mode model stick spectrum has
a straightforward peak progression; that is, the spectrum is a
sum of each of the two-mode peak progressions. The 282-
mode model spectrum has a more complex structure. Even
though each of the 282 modes has a small absorption peak, the
combined spectrum produces frequency regions with non-
negligible absorption intensity. These regions show a clear
overlap with the absorption peaks of the two-mode model. The
two-mode spectrum has peaks at 1522 and 1157 cm−1

frequencies, produced by the CC and C−C stretching
vibrational modes. The 282-mode spectrum has similar
frequency regions, only this time, they are due to the
absorption of a large number of mixed normal modes. These
modes are responsible for the first two peaks seen in the Figure
5 spectra.
Looking further on in Figure 6, the 282-mode model has

absorption in the 3000, 4500, and 6000 cm−1 frequency
regions. These account for the high-frequency absorption tail
seen in experiments. Due to the CC and C−C mode

progression, the two-mode model has a peak at these
frequencies as well; however, even though visually they look
more intense than the 282-mode model peaks, Figure 5
simulations show it being the opposite. Again, the strong
absorption is produced by the summation of a large number of
weak intensity absorption peaks. Two harmonic modes simply
cannot accurately describe absorption over such a wide range
of frequencies; therefore, the high-frequency absorption of the
two-mode model is lacking.

■ DISCUSSION
The vibrational modes of carotenoids have been extensively
studied by Raman spectroscopy.68,69 The frequency of the
most Raman-active vibration in the S0 state is 1642.3 cm−1,
which changes to a week Raman vibration of frequency
1584.08 cm−1 in the S2 state. The C−C valence bond
frequencies in the S0 state lay in the region of 1018−1353
cm−1, while it is in the region of 1156−1370 cm−1 for the S2
state. These frequencies are strongly mixed with the polyene
chain C−H bond in-plane vibrations and the C−C valence
vibrations of peripheral rings. The strongest Raman-active
vibration in this region, for the S0 state, is 1187.22 cm

−1, while
the mode with the most similar vibrational form in the S2 state
has a frequency of 1219 cm−1. The vibrations of lower
frequencies are associated with the C−H vibrations outside of
the polyene chain, deformations of the peripheral rings,
changes of the polyene chain valence angles, dihedral angles,
and the deformations of the whole molecule by twisting and
waving. The frequencies of these vibrations change by no more
than 10 cm−1 after the S0 → S2 transition. The differences in
the vibrational forms are not as strong for these modes as were
in the case of the polyene chain C−C and CC valence bond
vibrations.
Recently, Balevicǐus Jr. and co-workers20 have presented an

in-depth excitation energy relaxation model in carotenoids by
considering four relaxation processes. Simply put, the event of

Figure 5. Absorption spectra of the β-Car model, based on the
B3LYP/6-311G(d,p) method, at different temperatures along the
experimental β-Car spectrum in diethylamine solvent at room
temperature (shown as contoured green). The widely used two-
mode model at 300 K temperature is also shown for comparison, and
the model parameters are taken from ref 23. All spectra are
normalized to their maximum value and aligned on their 0−0
transition band.

Figure 6. Stick absorption spectrum of the 282-mode model,
computed using the B3LYP/6-311G(d,p) method, and the empirical
2-mode model. Purely electronic transition energy is set to 0 cm−1 for
both spectra. For visibility, each spectrum has been convoluted with
the τ = 1 ps variance Gaussian function. The inset more closely shows
low-amplitude sticks, and these have been convoluted with the τ = 5
ps variance Gaussian function.
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photoexcitation instantaneously promotes the carotenoid
molecules to a non-equilibrium state and launches the internal
vibrational redistribution (IVR) cascade within the high-
frequency optically active modes, resulting into a transient
thermally “hot” state. Generally, it is assumed that the
thermally hot carotenoid subsequently transfers the vibrational
energy to the solvent molecules; that is, vibrational cooling
(VC) takes place. The authors demonstrated how modeling
the IVR and VC concurrently, and not subsequently, naturally
explains the presence of the highly discussed transient
absorption S* signal70 in terms of the vibrationally hot
ground-state S0. The two-mode model was used; that is, only
the C−C and CC intramolecular modes were coupled to the
thermal baththeir coupling strength remains speculative.
Both the IVC and VC relaxation were modeled implicitly by
prescribing process timescales. We have shown that the two-
mode (not mixed) model is not sufficient in describing the
photon absorption spectrum. In fact, upon photoexcitation,
many vibrational modes become excited. No two distinctive
modes could be isolated in the relevant frequency region. We
observe grouping of vibrational modes in the 1000 and 1500
cm−1 frequency regions, as shown in Figure 6. The two-mode
model yields progression of peaks with few strong features at
2700 and 4000−6000 cm−1 frequencies. Meanwhile, the 282-
mode model has a large number of weak absorption features at
these frequencies; however, it is the cumulative effect that
combines them into the observed “progression”. This entropic
factor actually simplifies the overall electronic excitation
relaxation picture since each mode is weakly coupled to the
electronic transition; therefore, the weak coupling regime
could be used in the theoretical models of relaxation dynamics.
Consequently, the two- or multiple-quanta vibrational
excitations become improbable. Hence, only the entropic
factor as a cumulative effect of all modes would have decisive
impact on both the IVR and VC process timescales.
In nature, carotenoids participate in the energy conversion

process together with other types of pigments. Carotenoids
play an important role in light-harvesting complexes by
transferring their excitation to chlorophylls on a femtosecond
timescale. It is especially evident in the peridinin−chlor-
ophyll−protein, in which the dominant energy transfer occurs
from the peridinin S2 to chlorophyll Qy state via an ultrafast
coherent mechanism. The coherent superposition of the two
states functions in a way as to drive the population to the final
acceptor state,71 providing an important piece of evidence in
the quest of connecting coherent phenomena and biological
functions.72 This process is highly sensitive to structural
perturbations of the peridinin polyene backbone, which has a
profound effect on the overall lifetime of the complex.73 We
have found that β-Car also undergoes polyene backbone
changes, mainly in its C−C bond lengths.
Also, it has been suggested that the ultrafast population

transfer from the carotenoid state S2 to the bacteriochlorophyll
(BChl) state Qx occurs due to the vibronic coupling of the
carotenoid electron-vibrational DOFs to the BChl.74 The
energy flow pathway opened up by the resonance of the energy
gap between the carotenoid vibrational levels, and the BChl |
g⟩BChl → |Qx⟩ transition is the primary reason for its ultrafast
nature. We, hence, suggest that by going beyond the two-mode
model and taking into account more carotenoid vibrational
modes, in turn, more vibrational levels, the probability of
resonance between the carotenoid and BChl would greatly
increase, changing the overall population-transfer rate.

In conclusion, we have presented a β-Car model with a fully
explicit treatment of all its 282 vibrational normal modes,
which were computed using the quantum chemical methods.
Additionally, we described how to treat the β-Car excited-state
dynamics when in contact with solvent at finite temperature.
We found β-Car to change the bond lengths between the
polyene chain atoms during the S0 → S2 electronic transition
and that there is no one-to-one correspondence between the
ground- and excited-state vibrational modes; that is, modes on
different electronic states are highly mixed and should not be
treated as being the same. The model absorption spectrum
qualitatively matches the experimental data, and it better
describes the high-frequency progression of the carotenoid
spectrum than the typical two-mode carotenoid model.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpca.1c06115.

Derivation of the Davydov D2 ansatz equations of
motion for the β-carotene model using the Dirac−
Frenkel variational method (PDF)

■ AUTHOR INFORMATION
Corresponding Author
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Modeling irreversible molecular internal
conversion using the time-dependent variational
approach with sD2 ansatz†

Mantas Jakučionis, a Tomas Mancalb and Darius Abramavičius *a

Effects of non-linear coupling between the system and the bath vibrational modes on the system

internal conversion dynamics are investigated using the Dirac–Frenkel variational approach with a newly

defined sD2 ansatz. It explicitly accounts for the entangled system electron-vibrational states, while the

bath quantum harmonic oscillator states are expanded in a superposition of quantum coherent states. Using

a non-adiabatically coupled three-level model, we show that efficient irreversible internal conversion due to

quadratic vibrational-bath coupling occurs when the initially populated system vibrational levels are in reso-

nance with the vibrational levels of a lower energy electronic state, also, a non-Gaussian bath wavepacket

representation is required. The quadratic system-bath couplings result in broadened and asymmetrically

squeezed bath quantum harmonic oscillator wavepackets in the coordinate-momentum phase space.

I. Introduction

Function of many biological molecular systems is tightly connected
to the process of energy relaxation in their electronic or vibrational
(or both) manifolds. The problem of unraveling photo-excitation
energy relaxation pathways is relevant on a wide range of molecular
spatial scales: from the smallest molecular aggregates, consisting of
just a couple of molecules,1–4 to photosynthetic complexes involving
tens or hundreds of pigments.5–7 Generally, due to a high number
of degrees of freedom (DOF) involved, brute-force numerical
simulations of non-equilibrium dynamics in even the smallest
systems are challenging. The standard approach to overcome
this challenge is to apply the reduced (density operator) description
within the theory of open quantum systems.8–10 In this description
the most relevant electronic and vibrational DOFs of the problem
constitute the observable system, while all the rest of the DOFs are
treated as a part of the fluctuating thermal reservoir – the bath.
When such a distinction is associated with a small parameter
characterizing the interaction strength between the system and
the bath, relatively simple perturbative approaches are sufficient
to describe energy relaxation phenomena. In a more general case,
division into the system and its bath is only formal, as electronic
states may be strongly coupled to both the vibrational states of the
system and those of the bath. As a result, excitation energy exchange

mechanisms between different states have to be modeled non-
perturbatively since the system and the bath become essentially
inseparable.

Dynamics of open quantum systems can be obtained using a
broad range of techniques. In recent years, a formally exact, but
relatively expensive, approach of the Hierarchical equations of
motion11–14 has gained popularity. Among the perturbative
methods, various forms of the Redfield theory15,16 of the weak
system-bath coupling, and the Förster type of methods17–20 for
the weak resonance coupling limit, still play an essential role in
understanding biologically relevant energy transfer and relaxation
processes. Among the phenomenological approaches, the Lindblad
equations10,21 with their convenient formal properties provide the
basis for cheap and reliable modelling. All the above-mentioned
techniques are based on the density operator description, however,
for the same purposes one can also directly treat the wavefunction
itself, i.e., to expand electronic and vibrational states of the model in
a chosen electron-vibrational state basis. One family of formally
exact wavefunction approaches is based on the multi-configuration
time-dependent Hartree method (MCTDH)22,23 and include its
multi-layer,24,25 Gaussian-based26,27 extensions. Additionally,
methods of coupled coherent states,28,29 its generalization to
non-adiabatic dynamics – multiconfigurational Ehrenfest,30,31

variational multiconfigurational Gaussians,32,33 and iterative
real-time path integral34,35 are also available.

A wavefunction technique utilizing the time-dependent Dirac–
Frenkel variational principle with a trial wavefunction (ansatz)
based on the Davydov D2 ansatz for the molecular chain soliton
theory36,37 is also being developed. It models dynamics of both
the system and the bath vibrational DOFs approximately by
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representing vibrational states using coherent states (CSs). Accuracy
of the technique has been shown to improve by considering variants
of the Davydov ansätze, i.e., the D1 ansatz38,39 or by using the
intermediately complex D1.5 ansatz.40 Still, the greatest improve-
ment came by considering a trial wavefunction made of a linear
superposition of the Davydov D2 ansatz (multi-D2) and its more
complex multi-D1 variant,41–43 where electronic and vibrational
DOFs become mixed beyond Born–Oppenheimer approximation
(BOA). Simulations of exciton and polaron dynamics and the
non-linear optical spectra of molecular aggregates,38,44 light
harvesting complexes,45 also, dynamics of a simplified pyrazine
excitation relaxation through conical intersection,46 have proven
the technique to be a potent and flexible tool for simulating open
quantum system excitation energy relaxation dynamics and both
the linear and non-linear spectra. However, laborious numerical
calculations are required since the approaches result in a huge
number of coupled nonlinear differential equations.

In the present work, we extend this approach by considering
non-linear system-bath coupling terms to allow for vibrational
energy exchange between the system and the bath vibrational
DOFs within the normal mode description, using the modified
multi-D2 ansatz within BOA. Entangled system electron-vibrational
states were included formally exactly using a coordinate repre-
sentation, while the bath vibrational states were represented by
a superposition of coherent states. We show that efficient
irreversible internal conversion can be achieved within BOA
and suggest resonance conditions between the electronic state
energy gap and system vibrational mode frequency, in addition
to the highly non-Gaussian bath wavepacket representation.

The rest of the paper is organized as follows: in Section II we
specify a general interacting system-bath model and give a brief
overview of the Dirac–Frenkel variational principle, while the deriva-
tions of the model equations of motion are presented in ESI.† In
Section III we present dynamics of a simulated excitation relaxation
between a non-adiabatically coupled three-level model with anhar-
monic potential energy surfaces (PESs) and non-linear vibrational-
bath coupling. Results, relevance and a general applicability of our
approach are also discussed. Conclusions are provided in Section
IV. In Appendix A we present investigation of the initially non-
degenerate CS representation on dynamics convergence.

II. Theory

We consider a simple quantum system consisting of electronic
and vibrational DOFs. Electronic states and specific internal
vibrational DOFs (e.g. anharmonic molecular vibrations) constitute
the observable system (a molecule). This vibronic system is coupled
to a fluctuating bath, composed of many external vibrational DOFs
of a molecular environment, e.g., vibrations of a polymeric matrix,
proteins, solvent molecules, etc. Here, and throughout the
paper, for the internal and external vibrational manifold we will
use dimensionless coordinates x, w and momenta p, r, respectively,
and set the reduced Planck constant equal to one (h� = 1).

The Hamiltonian operator Ĥ of the described quantum
system as usual can be written as a sum of the system operator

ĤS, the bath operator ĤB, electronic-bath interaction operator
ĤE–B and internal vibrational-bath interaction operator ĤV–B

Ĥ = ĤS + ĤB + ĤE–B + ĤV–B. (1)

The system consists of N electronic states |ni (n = 0,1,. . .,N), with en

representing the ground-excited state transition (|0i- |ni) energies.
Each electronic state |ni is attached to Q internal vibrational modes.
Vibrational modes q = 1,2,. . .,Q are characterized by the generalized
Q-dimensional PES V(x), where x = (x1,x2,. . .,xQ) is a Q-dimensional
space point. PESs attached to different electronic states may differ,
thus, the surface associated with the state |ni will be labelled as a
diagonal term Vnn(x).

To represent quantum states of a system vibrational mode q,
we use the coordinate representation for which the action of
coordinate operator x̂q on coordinate state |xqi has the eigenvalue
xq: x̂q|xqi = xq|xqi. For each mode q we consider coordinate states
with eigenvalues from the interval xq A [xmin

q , xmax
q ] with equidistant

spacing dxq between the states. States |xqi form a Q-dimensional
space states |xi � |x1i |x2i . . . |xQi with orthonormality condition
hxq|xq0i = dq,q0d(xq� xq0), where da,b and d(c) are Kronecker and Dirac
delta functions, respectively. We will refer to the generalized system
electronic-vibrational states

|n,xi � |ni|x1i|x2i. . .|xQi, (2)

as vibronic states.
It is well established that the PESs Vnn(x) of different molecular

electronic states can get close to each other in their energies (the
avoided crossing region) or even cross each other (the conical
intersection),47 allowing for non-radiative excitation relaxation
between different electronic states. Such a transition is called the
internal conversion. During the internal conversion, the molecule
traverses to the lower energy electronic state |ni- |m o ni with
the excess energy en � em 4 0 being converted into the molecular
vibrational energy (reverse transition is also possible). Such a
process is facilitated by the non-adiabatic interaction between
PESs of electronic state |ni and |mi, i.e., by Q-dimensional
off-diagonal PES term Vnm(x) = Vmn(x).

Therefore, the complete Hamiltonian of the system is defined
as

ĤS ¼
X
n

enjnihnj þ
X
q

oq

2
p̂q

2þ
X
n;m

V̂nm xð Þjnihmj; (3)

where p̂q ¼ �i
@

@xq
is the system-related momentum operator.

The Hamiltonian operator of the bath is simply that
of quantum harmonic oscillators (QHOs). In the unit-mass
representation we can write

ĤB ¼
X
p

wp

2
r̂p

2 þ ŵp
2

� �
: (4)

We assume that before an external excitation, the system is
in its electronic ground state |0i and both the system and bath
vibrational DOFs are in a state of thermodynamic equilibrium.
All system-bath coupling terms will be defined with respect to
this pre-excitation equilibrium state, therefore, the system in its
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ground state is stationary (i.e. it is effectively not influenced by
the bath DOFs in any way).

System-bath interactions will be modelled via two mechanisms.
First, the excited electronic state energies are to be modulated by
the bath fluctuations. This will be modeled using the shifted PES
model,18 i.e., surfaces Vnn(x) are shifted along the bath oscillator
reaction coordinates wp by snp, relative to the minimum of the
V00(x). For convenience, we choose displacements to be directed in
the positive wp axis. In the regime of linear electronic-bath inter-
action, the coupling is described by the Hamiltonian operator

ĤE�B ¼
X
n;p

wp
1

2
snp

2 � snpŵp

� �
jnihnj; (5)

where the first term represents a shift of the electronic state |ni
excitation energy, while the second term induces dynamical electro-
nic state |ni energy modulation via fluctuating bath coordinate wp.
This additional excitation energy shift of the |ni state is usually
termed the bath reorganization energy Lbath

n , and it is often merged
with the en. We keep them separate in this work. Second, to allow
vibrational energy relaxation in the system (vibrational energy
exchange between the system and the bath), we include interaction
terms between vibrational system coordinates and the bath modes
up to a second order. Then the corresponding vibrational-bath
interaction Hamiltonian reads as

ĤV�B ¼
X
n;q;p

k 1;1ð Þ
nqp x̂qŵp þ k 1;2ð Þ

nqp x̂qŵp
2 þ k 2;1ð Þ

nqp x̂q
2ŵp

� �
jnihnj; (6)

where matrices k(1,1)
nqp , k(1,2)

nqp , k(2,1)
nqp define interaction strengths between

vibrational mode q and p when the system is in the electronic state
|ni for different order coupling terms, indicated by the superscript.
The first term includes a single-quantum dissipative transitions,
while the last two terms allows the double-quanta emission events.

Statistical properties of the bath can be defined for a single
specific system-bath coupling term. For example, according to
eqn (5), the excited electronic state |ni energy modulation by
the bath fluctuations can be characterized by the spectral
density function Cn

00(w),8–10 which can be defined in terms of
Vnn(x) displacements snp as

Cn
0 0
vð Þ ¼ p

2

X
p

snp
2wp

2 d v� wp

� �
� d vþ wp

� �� �
: (7)

Here v is the parameter of the spectral density function �N o
v o N, while wp 4 0 denotes the frequency of the bath
oscillators. Note that this form leads to Cn

00(v) = �Cn
00(�v).

The corresponding bath reorganization energy is then given by

Lbath
n ¼

ð1
0

dv

p
Cn
0 0
vð Þ

v
� 1

2

X
p

snp
2wp: (8)

The constant p comes from normalization of the involved
Fourier transform. Combining eqn (7) and (8), the bath oscil-
lator displacement absolute values |snp| can be expressed as

snp
�� �� ¼ 1

wp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cn

0 0
wp

� �
dv

p

s
; (9)

where dv is the discretization step size.

To define other system-bath coupling matrices, we further
assume for simplicity that both electronic and vibrational DOFs
of the system interact with the same DOFs of the bath (the
same external vibrational modes), and the interaction strength
matrix k(b)

nqp elements, with b = {1,1},{1,2},{2,1}, will then be
expressed in terms of displacements snp (see ref. 48)

k bð Þ
nqp ¼ g bð Þwp snp

�� ��ffiffiffi
2
p ; (10)

for all q, where g(b) is a dimensionless vibrational-bath interaction
strength scaling factor. This implies that all intramolecular
vibrational modes will have the same capacity for relaxation.

Equations of the model dynamics are obtained by applying
the time-dependent Dirac–Frenkel variational method.49 The
main idea behind Dirac–Frenkel variational method is that a
parametrized trial wavefunction |C(n(t))i is varied so that the
model Lagrangian LðtÞ is maintained at an extremum. For this
purpose, the time evolution of every free parameter xi(t) is
deduced using the Euler–Lagrange equation50

d

dt

@L tð Þ
@ _xi? tð Þ

 !
� @L tð Þ
@x?i tð Þ ¼ 0; (11)

where _xi is the time derivative of xi and the Lagrangian LðtÞ of
the model is given by

LðtÞ ¼ i

2
ðhCðnðtÞÞj _CðnðtÞÞi � h _CðnðtÞÞjCðnðtÞÞiÞ

� hCðnðtÞÞjĤjCðnðtÞÞi:
(12)

The procedure results in a system of time-dependent equations
for parameters n(t), which minimize the deviation of |C(n(t))i
from the solution of the corresponding Schrödinger equation.

For this work, we define a Davydov D2 ansatz superposition
(sD2) wavefunction

jCsD2
ðtÞi ¼

XN
n

ðxmax

xmin

dxFnðx; tÞjn; xi �
XM
a

yaðtÞ
YP
p

jlapðtÞi:

(13)

The first product term of sD2 defines all possible vibronic states
of the system with complex amplitudes Fn(x,t). The sum over
index n represents a superposition of electronic states, while
the Q-dimensional integral represents the coordinate basis
states of internal vibrational modes. Representation of the
internal vibronic states spans the whole space of the system
states, and it can be used to calculate dynamics of the system to
an arbitrary precision. The second product term defines possible
states of the bath QHO modes. Each mode p of the bath is
represented by a superposition of M coherent states |lap(t)i (a =
1,2,. . .,M) with CS displacements lap(t), while each superposition
term a is parameterized by a complex amplitude ya(t). In general, a
single CS is an eigenstate of QHO annihilation operator â|l(t)i =
l(t)|l(t)i, whose displacement l(t) uniquely defines the properties
of the oscillator wavepacket.51 Interpretation of CS displacement is
especially straightforward in the coordinate and momentum
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(w, r) phase space with respective operator expectation values
being equal to

�wðtÞ ¼
ffiffiffi
2
p

Re lðtÞ; (14)

�rðtÞ ¼
ffiffiffi
2
p

Im lðtÞ: (15)

Per definition, the single CS wavepacket has the Gaussian shape
and is centred in the (�w(t),�r(t)) phase space point at time t, thus,
it follows trajectory defined solely by l(t). By considering the
superposition of CSs, we allow for the wavepacket of each mode
p to be composed of M interfering Gaussian wavepackets. As such,
the superposition can represent non-Gaussian wavefunctions of
the excited QHO states. For the superposition length of M = 1,
representation of the bath vibrational mode states by the sD2

wavefunction is reduced to the standard D2 ansatz – single CS
wavepacket representation. The sD2 parameter M allows to incre-
mentally increase the accuracy of the bath modeling. Alternatively,
combining the amplitudes of the system and the bath into a single
amplitude, Fn(x,t) � ya(t) - Una(x,t) would remove BOA, giving the
most general and, presumably, the most accurate ansatz at a cost
of significantly increased computational effort.41–43

With the superposition given by the sD2 wavefunction (13),
normalization of the wavefunction hCsD2(t)|CsD2(t)i = 1 imposesX

n

ð
dxFn

�ðx; tÞFnðx; tÞ ¼ 1; (16)

X
a;b

ya�ðtÞybðtÞSabðtÞ ¼ 1; (17)

conditions, where Sab tð Þ ¼
Q
k

hlak tð Þjlbk tð Þi is an overlap of a

and b CS product superposition terms.
Applying the Dirac–Frenkel variational method to sD2 wave-

function (13) with the Hamiltonian operator (1), we derived
model equations of motion in the form of a system of implicit
differential equations, see the ESI† for details.

III. Results and discussion

In this section, the approach described above is used to
investigate excitation energy relaxation dynamics between two
excited electronic states |1i, |2i attached to the PES with an
avoided crossing along a vibrational coordinate. The electronic
ground state |0i is included solely to account for the system
before an external excitation. The electronic states are attached
to a single internal vibrational mode Q = 1 (therefore, we drop
index q) with Morse PES V11(x) for |1i and harmonic PESs V00(x)
and V22(x) for |0i and |2i states, respectively

V00ðxÞ ¼
o
2
x2; (18)

V11ðxÞ ¼ D0 1� e
� x�d1ð Þffiffiffiffiffiffi

2D0

p
0
@

1
A2

; (19)

V22ðxÞ ¼
o
2
x� d2ð Þ2; (20)

with dissociation energy D0 and frequency o. The PES equilibrium
points are displaced by d1 =�1.35 and d2 = 1.35. Excited state PESs

are coupled by a linear non-adiabatic coupling V12ðxÞ ¼
o
10
x, often

referred to as a vibronic coupling. Throughout the paper we will
use dimensionless energy units by normalizing energies to o. On
this scale, we set electronic state energies to e1 = 0, e2 = 5, PES V00(x)
and V22(x) frequencies to o = 1, and dissociation energy to D0 = 40.
In the limit of D0 - N, V11(x) approaches harmonic PES shape
with frequency o = 1. The coordinate x space was discretized in the
interval from xmin = �10 to xmax = 12 with an equidistant step size
of dx = 0.25. The selected width of x space is large enough to
include all significant electron-vibrational wavepacket amplitudes
during its time evolution.

We base these parameters on the typical energy scales found
in organic pigments present in Nature. Setting internal mode
frequency to an approximate frequency of carbon CQC bond
vibration o = 1500 cm�1, the |2i - |1i internal conversion
transition energy gap is then De21 = e2 � e1 = 5o, which
corresponds to an optical gap. The internal conversion energy
gap varies widely between molecular pigments, e.g., the
chlorophyll-a Qx–Qy energy gap is 1.3o,52 while the S2–S1 energy
gap in carotenoids ranges from 1o to 5o depending on the
carotenoid length.53 The rest of the model parameters are kept
quite arbitrary, since concrete parametrization of both the
chlorophyll and the carotenoid PESs is lacking. Note that the
ground electronic state does not couple to excited state manifold
via vibronic coupling and, thus, will be left out of the analysis.
The resulting PES avoided crossing is shown in Fig. 1.

The statistical properties of the bath fluctuations are represented
by the Ohmic spectral density function

Cn
0 0 ðwÞ ¼ ws

ws�1
c

expð�w=wcÞ; (21)

with parameter s = 3, cut-off frequency wc = 0.1 and the bath
reorganization energy Lbath

n = 0.2 for each n. The frequency range of
the bath vibrational modes w A [0.05,2] was uniformly covered by

Fig. 1 Avoided crossing of the first and second excited electronic states
|1i, |2i attached to Morse V11(x) and harmonic V22(x) potential energy
surfaces, respectively. The ground state potential surface is not shown, it is
centred at zero. Circle and square markers indicate considered coordinate
states |xi of the intramolecular vibrations. Optical excitation from the
ground state |0i to electronic state |2i results in a Gaussian vibrational
wavepacket centred at x = 0.

Paper PCCP

Pu
bl

is
he

d 
on

 0
1 

A
pr

il 
20

20
. D

ow
nl

oa
de

d 
on

 5
/2

9/
20

20
 1

2:
09

:5
4 

PM
. 

View Article Online



8956 | Phys. Chem. Chem. Phys., 2020, 22, 8952--8962 This journal is©the Owner Societies 2020

40 modes with a discretization step size of dw = 0.05. This setup is
sufficiently dense to produce the convergent dynamics and the
interval of frequencies is wide enough to cover all relevant reso-
nances of the system-bath interactions.

The system and the bath interact via electronic-bath coupling
(eqn (5)) and one vibrational-bath coupling term k(1,2)

nqp x̂qŵp
2 (see

eqn (6)), i.e., for simplicity we set scaling factors to g(1,2) = 1 and
g(1,1) = g(2,1) = 0. Condition g(1,1) = 0 guarantees that the bath
vibrational modes are retained as the normal modes, while
g(2,1) = 0 implies that the double vibrational quanta absorption
by the system is not included.

The initial conditions of the system and the bath are taken to
correspond to the lowest energy states. Assuming that transition
|0i -|1i is either optically forbidden or is off-resonant, the
optical excitation by an external field is modeled using the
Franck–Condon ground |0i to excited |2i state electronic transition.
This corresponds to the projection of the system ground state
wavepacket into the 2nd excited state potential surface, thus,

setting F2ðx; 0Þ ¼
1ffiffiffiffiffiffi
2p
p e�

x2

2 and F1(x,0) = 0. Wavepackets of the

bath are Gaussian and they can be exactly represented by a
single CS. Correspondingly, we choose to set initial amplitudes
to y1(0) = 1, y2. . .M(0) = 0 and CS displacements to lap(0) = 0 for
every combination of a and p indices. At t = 0 there are M
degenerate CSs, while only the first a = 1 CS amplitude is non-
zero, and all QHO wavepackets are centred in their respective
coordinate-momentum phase space (wp = 0,rp = 0). Note that
when M 4 1, the lowest energy bath state preparation in terms of
CS amplitudes and displacements is not unique, see Appendix A.

A Following excitation energy and its dissipation

To track excitation energy relaxation within the system itself
and energy exchange between the system and the bath, we look
at dynamics of electronic, vibrational energies eel(t), evibr(t), and
of the bath vibrational energy ebath(t), defined as

eelðtÞ ¼
X
n

enPn tð Þ; (22)

evibrðtÞ ¼
X
n

ð
dxF?

nðx; tÞ VnnðxÞ �
o
2

@2

@x2

� �
Fnðx; tÞ

þ
Xnam

n;m

ð
dxF?

nðx; tÞVnmðxÞFmðx; tÞ
(23)

ebathðtÞ ¼
X
a;b;p

ya�ðtÞybðtÞlap�ðtÞlbpðtÞSabðtÞ; (24)

with PnðtÞ ¼
Ð
dxjFnðx; tÞj2 being the nth electronic state

population. For consistency with the system Hamiltonian
(eqn (3)), we include non-adiabatic coupling Vnm(x) energy in
the definition of evibr(t), also, for simplicity, we exclude QHO
zero-point energy from the bath energy ebath(t).

In Fig. 2 we present the time dependence of the system, bath
energies and initially occupied electronic state |2i population
P2 calculated with ansatz superposition length M = 1,. . .,6.
For reference we also plot a system energy dynamics of an

isolated system. Note that, because excitation energy of the
state |1i is e1 = 0, the total electronic energy is a function of just
|2i electronic state population, eel(t) = e2P2(t).

In the case of an isolated system, nontrivial oscillations
between the system electronic and vibrational energy are observed
(internal conversion due to non-adiabiatic PES coupling V12(x)),
however, only about 25% of the electronic state |2i population P2

transfers to the |1i state and a large amount of the transferred
population from the state |1i is then repeatedly transferred back to
the |2i state, i.e., internal conversion is reversible.

Now let us also include the bath and couple it to the system.
In the case of the bath wavefunction representation by M = 1
superposition terms, the character of the system energy oscillations
changes. It now displays harmonic, reversible behaviour with a
period of tIC E 15 (in the units of ot). Additionally, eel and evibr are
also modulated with a period of tIV E 1, yet, with a smaller
modulation amplitude. However, no appreciable vibrational energy
exchange between the system and bath modes is observed. The
slight increase in the bath energy is solely due to the electron-bath
coupling induced bath reorganization. By increasing superposition

Fig. 2 Time dependence of system electronic energy eel and electronic
state |2i population P2, system vibrational energy evibr and bath vibrational
energy ebath calculated with no bath and ansatz superposition length M =
1,. . .,6.
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length to M = 2, system electronic and vibrational energies no longer
simply oscillate, but some of the electronic energy is now
irreversibly converted into the system vibrational energy. Still,
no significant energy dissipation to the bath occurs. Taking
M = 3, non-negligible energy exchange between the system and
the bath vibrational modes finally takes place. Considering even
more superposition terms, irreversible internal conversion and
dissipation effects become further pronounced and converge at
M = 5. The convergent irreversible internal conversion occurs on
a time scale of tIC with 60% of the initially occupied |2i state
population relaxed to the |1i state, which is followed by the
system vibrational energy dissipation to the bath.

The drastic change in the behaviour of the eel and evibr

energies, when the system becomes coupled to the bath, is
induced by the bath vibrational mode action on the evolution of
the system electron-vibrational wavepacket due to the vibrational-
bath coupling term p k(1,2)

nqp x̂qŵp
2. For an isolated system, internal

conversion dynamics are decided solely by the free evolution and
mixing of the electron-vibration wavepackets on V11(x) and V22(x)
PES. By coupling the system to the bath, electron-vibrational
wavepacket evolution becomes influenced by the motion of the
bath vibrational modes. By looking at the visualization of the
electron-vibrational wavepacket evolution, presented in the ESI,†
we found that vibrational-bath coupling effectively reduces the
oscillation amplitude of the electron-vibrational wavepacket on
V22(x), making it harder to reach the avoided crossing area (x E 4)
between the V11(x) and V22(x), however, on each oscillation of the
V22(x) PES electron-vibrational wavepacket with a period of tIV, a
small amount of wavepacket is still transferred to V11(x). In the

case of M = 1, for the first
tIC
2

after excitation, we observe a

gradual population transfer from the |2i state to the |1i state with

the reversed process occurring for the following
tIC
2

time interval.

In the convergent case of M = 5, for roughly the full period of tIC,
we observe analogous population transfer from the |2i state to
|1i, however, now the generated system vibrational energy is
irreversibly dissipated to the bath, instead of being converted
back into the electronic |2i state energy.

The total lack of vibrational energy exchange between the
system and the bath vibrational modes at M = 1 suggests that
the simple D2 ansatz is incapable of representing any QHO
states necessary to absorb vibrational energy due to the quad-
ratic vibrational-bath coupling term p k(1,2)

nqp x̂qŵp
2. Meanwhile,

superposition of CSs allows for the formation of QHO non-zero
vibrational energy state wavepackets and for absorbing vibra-
tional energy from the system.

B Characteristics of the bath QHO wavepackets

To evaluate the characteristics of the bath wavepackets, we
have computed the coordinate, momentum variances and their
arithmetic average for a selected set of bath vibrational modes

swp
2ðtÞ ¼ wp2ðtÞ � wpðtÞ2; (25)

srp
2ðtÞ ¼ rp2ðtÞ � rpðtÞ2; (26)

swp ;rp
2

D E
ðtÞ ¼ 1

2
swp

2ðtÞ þ srp
2ðtÞ

� �
; (27)

whereOpðtÞ ¼ CsD2
ðx; tÞjÔpjCsD2

ðx; tÞ
D E

is an expectation value

of operator Ôp. We have chosen to look at two modes with

frequencies close to half of the electronic energy gap, wp �
o
2

,

as it is the frequency of the expected resonance band created by
the quadratic vibrational-bath coupling. Time dependence of
frequency wp = 0.5 and wp = 0.6 bath vibrational mode variances
calculated with M = 1,. . .,6 are shown in Fig. 3.

In the case of M = 1, both coordinate and momentum
variances are equal to 0.5 and, as expected, they do not change
in time, because the wavepacket of each mode remains strictly
Gaussian. Taking M = 2, the coordinate and momentum variances

Fig. 3 Time dependence of a frequency op = 0.5 (left column) and op =
0.6 (right column) bath vibrational mode coordinate sw

2(t), momentum
sr

2(t) variances and their arithmetic average sw,r
2(t) calculated with ansatz

superposition length M = 1,. . .,6.
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of the mode with wp = 0.5 oscillate almost harmonically, indicating
that the wavepacket remains almost Gaussian, but it is successively
squeezed along wp and rp axes (behaviour characteristics of the
squeezed coherent states), no significant variance change for
wp = 0.6 is observed. Considering M = 3, variance oscillations of
the mode with wp = 0.5 are no longer harmonic, i.e., oscillation
amplitude maximum of swp

2 exceeds that of srp

2, implying that
the Gaussian wavepacket is asymmetrically squeezed. Variance
oscillations of the mode with wp = 0.6 are now also observed. By
including more superposition terms, the pattern of the variance
oscillations continues to change, and, in accordance with
energy dynamics, superposition of M = 5 provides convergent
dynamics with both modes displaying anharmonic variance
oscillations.

Variance oscillation amplitudes of the wp = 0.6 mode are
about 5 times greater than that of the wp = 0.5 mode, suggesting
that the former mode must lie in an effective resonance band
for considered vibrational-bath coupling and it is responsible
for absorbing the major part of vibrational energy dissipated
from the system to the bath. The latter mode is off-resonant
and contributes less to the vibrational energy absorption, rest
of the bath modes are also off-resonant. Also, the variance
oscillation pattern of the wp = 0.6 mode closely resembles that
of ebath(t) in Fig. 2, further providing evidence that this mode is
the main absorber of the system vibrational energy.

Additionally, the variance averages hsw,r
2i of both modes are

not static and exceed variance average of the initially prepared
Gaussian wavepacket, implying that wavepackets broaden. This
is in accordance with the analytical solution of the uncoupled

QHO variance, which states that sw;r2

 �

¼ 1þ 2k

2
is linearly

proportional to QHO eigenstate occupation number k. In our
case, bath QHO high occupation number states are accessed by
absorbing vibrational energy from the system.

C Resonance conditions for the quadratic coupling induced
internal conversion

In the previous section we have investigated the internal conversion
dynamics of PESs in an avoided crossing region. To gain more
insight into the underlying excitation energy relaxation pathway,
now we will look at dynamics in the crossing PESs and large-gap
PES avoided crossings. Keeping the same model parameters as in
the previous Section IIIA, and setting ansatz superposition length to
M = 5, now we vary |2i- |1i transition energy gap De21 by changing
electronic state |2i excitation energy e2.

In Fig. 4 we present the time dependence of the electronic
state |2i population P2 calculated with various transition energy
gaps. Gaps of De21 o 5 represent crossing PESs (on the left), while
De21 4 5 produce a large-gap PES avoided crossings (on the
right). First looking at the crossing PESs, a clear distinction can
be made between two types of population dynamics: some of the
dynamics display an internal conversion with an oscillatory
behaviour dependent on the energy gap, while other dynamics
display only the small amplitude population oscillations about
an initial population value. Dynamics of the large-gap PES
avoided crossings display a similar tendency, however, internal

conversion now occurs on a much longer time scale as com-
pared to crossing PESs.

We conclude that the internal conversion is induced when
the initially populated ground vibrational level (with zero
vibrational quanta) energy of V22(x) PES is in resonance with
vibrational level energies of the V11(x) PES. In the case of our
model, with PESs of the same fundamental frequency o, we
expect the internal conversion to occur when the transition
energy gap De21 is equal to the integer multiple of the lower PES
(in our case V11(x)) fundamental frequency o, i.e., De21 = ko
with k being a positive integer number. Note that the prescribed
resonance conditions ought to have uncertainties as PES anharmo-
nicities displace PES vibrational level energies and the electronic-
bath coupling (eqn (5)) redistributes vibrational level populations.

To examine such a condition validity, in Fig. 5 we present
time dependence of the electronic state |2i population P2 calculated
with a slight variation in the electronic state |2i excitation
energy about the resonance conditions e2 = ko + de2 for k = 3,
4, 5 and |de2| { o. Looking at the k = 5 case first, we find e2 = 5o
to be the optimal energy gap for internal conversion and even a
slight shift in the excitation energy |de2| o 0.2o breaks the
resonance condition and, in turn, the internal conversion.
Meanwhile, in the cases of k = 4 and k = 3, the energy gaps of
e2 = 4o � 0.08o and e2 = 3o � 0.2o, respectively, are optimal.
Again, a slight variation in the optimal energy gaps |de2| o 0.2o
breaks the resonance condition. This shows that the resonance
condition De21 E ko, k = 1,2,. . . between the transition energy
gap De21 and the fundamental vibrational frequency o allows
qualitatively predicting the onset of the internal conversion due
to the quadratic vibrational-bath coupling term.

D Discussion

To model vibrational energy exchange between the system (q)
and the bath (p) vibrational modes, we have included quadratic
vibrational-bath coupling term ĤV–B p x̂qŵp

2. It is the simplest
coupling term that still maintains vibrational modes as normal

Fig. 4 Time dependence of the electronic state |2i population P2 calculated
with different |2i- |1i transition energy gaps De21, dynamics of the crossing
PESs and a large-gap PES avoided crossings are shown on the left and right,
respectively. The rest of the model parameters are kept the same as in Section
IIIA, the ansatz superposition length of M = 5 is used.
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modes. Bilinear coupling term ĤV–B p x̂qŵp would only redistribute
oscillation amplitudes among vibrational modes. Performing a
unitary transformation, we would again obtain uncoupled normal
modes. The linear term is still included in deriving the equations of
motion and could be used, however, the non-linear coupling term
leads to irreversible dynamics.

Effects of quadratic electronic-phonon coupling term
ĤE–B p ŵp

2 on time-resolved fluorescence of a single absorber
have been investigated by Chorošajev et al.54 They represented
bath QHO states by a single squeezed coherent state (SCS) and

were able to account for spectral signatures of absorption from
the hot ground state, and the breaking of the absorption and
relaxed fluorescence mirror symmetry, i.e., the effects lacking
in CS representation. The SCS approach was also applied to
model Morse vibrational modes and was shown to lead to
wavepacket reorganization due to PES anharmonicity.55 The
ability of a single SCS to represent QHO wavepackets is greater
than a single CS, as it allows modelling symmetric sw

2 and sr
2

variance oscillations, yet, it is still limited to just Gaussian-like
wavepackets. Our more general approach revealed that quad-
ratic vibrational-bath coupling not only induces asymmetric
QHO variance oscillations, but also broadens wavepacket in the
(wp,rp) phase space. Correct representation of both effects using
a single SCS is inherently impossible. We believe that these
effects would also be present in models with a quadratic
electronic-phonon coupling term. Interestingly, superposition
of M = 2 terms produced rather symmetric sw

2 and sr
2 variance

oscillations and could perhaps be an alternative to using SCS
for other applications. Additionally, we found that the solely
linear electron-bath coupling model does not induce bath
vibrational mode wavepacket variance changes, thus, the bath
state representation by a single CS within BOA is then essentially
sufficient (not shown).

Regarding the form of the wavefunction, the multi-D2 ansatz
does not use BOA and represents both system and bath vibrational
mode states using CSs. By increasing the superposition length of
multi-D2, representation accuracy (and numerical effort) of both
the system and the bath vibrational states increases equally.
Chen et al. have simulated pyrazine electron-vibrational wave-
packet relaxation through conical intersection using the multi-
D2 ansatz46 by considering a two-level system with 4 internal
vibrational modes, 20 bath modes were linearly coupled to
electronic states56 and found that dynamics obtained by includ-
ing more than 40 multi-D2 superposition terms agreed well with
those obtained using the state-of-the-art MCTDH method. It is
well known that modeling of internal conversion requires non-
BOA representation of the entangled system electron-vibrational
wavepacket, for which multi-D2 is well suited, however, question
remains of whether one can apply BOA to separate system and
bath wavefunctions, and have irreversible internal conversion,
and whether representation of the separated bath wavefunction
needs to be more complex than just of a single CS.

The newly defined sD2 ansatz is of BOA structure, however, the
most important DOFs for internal conversion, i.e., entangled system
electronic states and internal vibrational modes, are treated formally
exactly. Using the sD2 ansatz, we found that it is capable of
modeling irreversible internal conversion with an avoided crossing
along a vibrational coordinate and that internal conversion induced
dynamics of the system electron-vibrational wavepacket is highly
dependent on the complexity of the bath wavefunction representa-
tion. The simplest approach of the D2 ansatz with CS (M = 1), or
even SCS (similar to M = 2), is not sufficient, because of its limited
ability in representing the complex QHO wavepackets. To obtain
convergent dynamics we had to include the superposition of at least
M = 5 CS terms. Irreversibility is induced by the system vibrational
energy dissipation to the bath vibrational modes.

Fig. 5 Time dependence of the electronic state |2i population P2 calculated
with a slight variation in the electronic state |2i excitation energy about the
resonance conditions e2 = ko + de2 for k = 3, 4, 5 and |de2| { o, the rest of the
parameters are kept the same as in Section IIIA, ansatz superposition length of
M = 5 is used.
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The full ab initio model of pyrazine57 suggests an alternative
excitation relaxation pathway via conical intersection between
the optically dark Au(np*) state and the pyrazine ground state, PESs
of which require treatment of quadratic and higher order vibronic
coupling in the form investigated in this paper. We looked at the
effect of the quadratic vibronic coupling term, however, extension of
the presented model to the higher order terms is straightforward by
including them in the eqn (6) definition.

IV. Conclusion

In summary, the presented model allows investigating irreversible
molecular internal conversion dynamics with simultaneous system
thermal energy dissipation to a bath. We defined sD2 ansatz,
which represents the most essential states for internal conversion,
i.e., entangled electron-vibrational wavepacket states, formally
exactly, while bath quantum harmonic oscillator states were
expanded in a superposition of coherent states.

To have thermal energy dissipation to the bath, we included
quadratic coupling term ĤV–B p x̂qŵp

2 between the system and the
bath vibrational modes. Using a non-adiabatically coupled three-
site model, we showed that the irreversible internal conversion due
to quadratic vibrational-bath coupling occurs when the initially
populated system vibrational level is in resonance with an empty
vibrational level of a lower energy electronic state. Hence, specific
sharp resonances have to be met to observe fast and efficient
internal energy conversion processes. Also, a highly non-Gaussian
bath wavepacket representation is required. This results in
broadened and asymmetrically squeezed bath vibrational mode
wavepackets. We argue that these effects are, per definition, not
possible with the simple Davydov D2 ansatz, while squeezed
coherent state representation is insufficient.

Also, we found that a linear coupling term in terms of bath
vibrational mode coordinate Ĥ pŵp does not induce wavepacket
changes, thus, bath state representation by a single coherent state
is sufficient. Additionally, we compared model dynamics and
convergence with degenerate and non-degenerate initial coherent
states and found that the degenerate case provided the same
convergent results as the non-degenerate situation, however,
required less computational effort. The presented approach is
general in its formulation and could be used to model similar
non-linear system-bath coupling effects.
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Appendix A: lifting initial coherent state
degeneracy

Although the considered CSs are dynamical, i.e., CS displacements
lap(0) evolve in time, choosing more appropriate CSs could
perhaps better accommodate the QHO wavepacket at early times,
leading to faster convergence and less computational effort.

In Section IIIA the initial bath state, corresponding to the
lowest energy QHO state, was represented by degenerate CSs,
i.e., all vibrational mode p CS displacements were equivalent
lap(t = 0) = 0. However, because we choose to set only the
first superposition term amplitude to be non-zero y1(0) = 1,
y2,. . .,M(0) = 0 initial displacement laZ2,p(0) values can be chosen
arbitrarily without modifying the initial bath state. Therefore,
now we investigate the effects of setting laZ2,p(0) a la=1,p(0),
which will lift initial CS degeneracy, on the model dynamics
and convergence.

With our choice of the initial amplitudes ya(0), displacement
la=1,p(0) defines the pth vibrational mode Gaussian wavepacket
initial position in the coordinate-momentum phase space
(wp,rp), see eqn (14) and (15), while displacements laZ2,p(0)
define additional Gaussian wavepacket states of the pth vibra-
tional mode, though, they carry zero amplitudes initially.
Ideally, we would like to cover as much of phase space as
possible with additional states, yet, keep them close enough to
each other for their wavepackets to overlap, and centred around
the initially populated state a = 1. Therefore, we chose to
arrange initial CS displacements lap(0) in a cross-like pattern,
see Fig. 6, while keeping la = 1,p(0) = 0 centred in phase space.
The displacement pattern is reproduced by an expression

lap 0ð Þ ¼ dlffiffiffi
2
p 1þ a� 2

4

� 
� �
�1ð Þ

a
2b cþaþ1 þ i �1ð Þa

� �
; (A1)

where Ob c is a floor function of O, and the parameter dl
determines the separation between the nearest Gaussian wave-
packet states a, allowing controlling their overlap. Separation of
dl = 0 reproduces the initial bath state basis used in
Section IIIA.

In Fig. 7 we display the time dependence of the system
electronic energy eel(t) calculated with superposition length M =
1,. . .,6 and separation dl = 0,. . .,1. In the case of M = 2, state
separations in the range of dl = 0.25,. . .,0.75 provide identical
and already semi-convergent results, as compared to the M = 5
case, while the degenerate state dl = 0 case only slightly differs
from the M = 1 case. Large separation of dl = 1 performs the
worst and does not differ from the M = 1 case at all, suggesting,

Fig. 6 Scheme of CS displacement lap(t = 0) arrangement of a = 1,. . .,9
states for all p. Free parameter dl determines separation between the
nearest Gaussian wavepacket states a.
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that the CS wavepackets no longer sufficiently overlap to allow
the formation of necessary QHO state wavepackets. By further
increasing the number of superposition terms M, the dynamics
calculated with dl = 0.25,. . .,0.75 separations provide similar
results (with the same M), suggesting that a small initial state
separation does not drastically change long term dynamics.
Eventually, by considering M = 6 terms, dynamics with no dl = 0
and small dl = 0.25,. . .,0.75 separations provide identical con-
vergent results. On the other hand, if separation is too large
dl = 1, dynamics do not converge at all, independent of a
number of M terms considered.

We found that the small and medium separations dl =
0,. . .,0.75 between the nearest states provided semi-converged
dynamics at superposition of just M = 2 terms, however,
M = 5 terms were required to obtain a fully convergent result,
independent of the separation. Interestingly, if initial separation
is too large dl = 1. As for the computational effort, while keeping
the same M, zero separation case dl = 0 required the least
computational effort and increasing separation only slowed

down calculations (not shown). In other words, the initially
degenerate CSs used in Section III provide a convergent and
efficient basis for computation.
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Modeling molecular J and H aggregates using
multiple-Davydov D2 ansatz†

Mantas Jakučionis, Agnius Žukas and Darius Abramavičius *

The linear absorption spectrum of J and H molecular aggregates is studied using the time-dependent

Dirac–Frenkel variational principle (TDVP) with the multi-Davydov D2 (mD2) trial wavefunction (Ansatz).

Both the electronic and vibrational molecular degrees of freedom (DOF) are considered. By inspecting

and comparing the absorption spectrum of both open and closed chain aggregates over a range of

electrostatic nearest neighbor coupling and temperature values, we find that the mD2 Ansatz is

necessary for obtaining an accurate aggregate absorption spectrum in all parameter regimes considered,

while the regular Davydov D2 Ansatz is not sufficient. Establishing a relationship between the model

parameters and the depth of the mD2 Ansatz is the main focus of this study. Molecular aggregate

wavepacket dynamics, during excitation by an external field, is also studied. We find the wavepacket to

exhibit an out-of-phase oscillatory behavior along the coordinate and momentum axes and an overall

wavepacket broadening, implying the electron–vibrational (vibronic) eigenstates of an aggregate to

reside on non-parabolic energy surfaces.

I Introduction

Molecular aggregate excitation dynamics can be computed
using the wavefunction-based TDVP by postulating an Ansatz,
which ought to be complex enough to represent the necessary
vibronic states of the aggregate. The Davydov D2 Ansatz, which
was originally developed for the molecular chain soliton
theory,1,2 represents quantum states of molecular vibrational
modes using Gaussian wavepackets, also known as coherent
states (CS). It has been widely applied to study excitation
relaxation processes in both isolated molecules and molecular
aggregates,3–6 as well as to compute their linear and nonlinear
spectra.7–10

While the TDVP method is based on propagating pure
wavefunctions, its stochastic extension can be used to describe
non-zero temperature by averaging over the initial equilibrium
thermal state.11 However, it still does not properly account for
the energy dissipation effect in the vibronic system. This can be
achieved using the thermalization approach, by implicitly
modeling vibrational energy exchange with an extended
environment.12

The D2 Ansatz is not sufficient to allow for accurate modeling
of molecular aggregates.13 Accuracy can be greatly improved by
considering a superposition of multiple copies of the D2 Ansatz,

termed the multi-Davydov D2 Ansatz. The mD2 Ansatz and,
its more complex variant, mD1 Ansatz14 have been applied to
study polaron dynamics in Holstein molecular crystals,13 the
spin-boson models15 and for nonadiabatic dynamics of single
molecules,6,16 as well as to simulate nonlinear response function
of molecular aggregates7,13 and others.17–20 A more in-depth
overview of the various types of Davydov Ansatze and
their applications can be found in a recent review article by
Zhao et al.21

However, a well-defined strategy to determine the required
number of multiples in mD2 Ansatz (or the depth) needed to
obtain the converged result is lacking. The absorption spectrum
and excitation relaxation dynamics of a linear molecular aggre-
gate are key quantities that may serve for establishing the
relationship between model parameters and the parameters of
the Ansatz. Optical electronic properties significantly depend on
the transition dipoles, whether the dipoles are in the ‘‘head-to-tail’’
(J aggregate) or ‘‘side-to-side’’ (H aggregate) configurations.22–27 In a
J aggregate, excitation by an external electric field produces an
initially excited lowest energy excitonic state, therefore, the
energy relaxation effect is minimal and the absorption spec-
trum is dominated by the exchange narrowing effect.28–30 It
effectively reduces the electron–vibrational coupling strength
and the shape of the spectrum is similar to that of a single
molecule, rescaled due to exchange narrowing. Meanwhile, in
an H aggregate, external fields excite the highest energy exci-
tonic state, thus various available vibronic energy relaxation
pathways make the H aggregate spectra more complicated than
that of the J aggregate, with a non-trivial spectral lineshape.28,30
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The rest of the paper is organized in the following way. First,
in Section 2 we describe the vibronic molecular aggregate
model and the theory of linear absorption using the mD2

Ansatz. Secondly, in Section 3 we analyze a range of J and H
molecular aggregate absorption spectra and quantify their
convergence in terms of mD2 Ansatz depth. Lastly, in Section 4,
we discuss our findings, relate the mD2 Ansatz vibrational wave-
packet evolution to the previously proposed sD2 Ansatz and
present the conclusions.

II Theory and its
numerical implementation

We consider a vibronic molecular aggregate model, where both
the electronic and the vibrational DOF are included. Each
molecule (site) in the aggregate is modeled as a two
electronic-level system, where en is the nth site excited electronic
state energy. Electrostatic interaction between excited electronic
states of sites is given in terms of the resonant dipole–dipole
interaction with strengths Jnm. Intramolecular vibrational modes
of sites are modeled as harmonic vibrational modes. Mode q of
the kth site is characterized by a frequency wkq and the electron–
vibrational coupling strength fkq.

Vibronic aggregate model Hamiltonian Ĥ is given as a sum
of the following Hamiltonians.31–34 The electronic site Hamil-
tonian

ĤS ¼
X
n

enâynân þ
Xnam

n;m

Jnmâ
y
nâm; (1)

describes an electronic excitation delocalized over the whole

aggregate (exciton), where âyn (ân) are the nth site Paulionic
excitation creation (annihilation) operators. The intramolecular
vibrational mode Hamiltonian (with the reduced Planck’s
constant set to h� = 1) is that of quantum harmonic
oscillators (QHO)

ĤV ¼
X
k;q

wkqĉ
y
kqĉkq; (2)

with an excluded zero-quanta energy constant shift, where ĉ
y
kq

(ĉkq) are oscillator bosonic creation (annihilation) operators of
the qth intramolecular mode, coupled to the kth site, which
account for molecular vibrations. The electronic-vibrational
interaction is included using the shifted oscillator model, i.e.,
the vibrational mode potential becomes displaced along the
coordinate axis in the excited electronic state. The electron–
vibrational coupling Hamiltonian is then given by

ĤS�V ¼ �
X
n

âynân
X
q

wnq fnq ĉynq þ ĉnq

� �
: (3)

Molecular aggregate sites also interact with an external
electric field E(t) = eE(t)exp(�iofieldt), where e is the optical
polarization vector, E(t) is the time-dependent field envelope
and ofield is the field frequency. In the dipole and Frank–
Condon approximations, sites interact with the optical electric

field via their purely electronic transition dipole vectors ln, there-
fore, the site-field coupling Hamiltonian is given as ĤS–F(t) = l̂�E(t)
with l̂ = l̂+ + l̂� being the transition dipole operator and

m̂þ ¼
X
n

m̂nâ
y
n; (4)

m̂� ¼
X
n

m̂nân; (5)

are the transition operators that increase (decrease) the number of
excitation quanta in the aggregate. We consider an electric field
in an impulsive limit with rotating wave approximation,35

E(t) - E0d(t � t), where t is the interaction time, and therefore
transitions between aggregate states with a different number of
excitations occur instantaneously.

Using the Heitler–London approach,31,36 we construct the
electronic states of the aggregate as products of molecular
excitations: the molecular aggregate electronic ground state
j0i ¼ �n 0nj i (global ground state of all sites) is taken as a
reference state, thus, in the ground state, inter-site coupling
and electron–vibrational coupling are absent, and we also have
the electronic ground state energies equal to zero. Then the
aggregate ground state Hamiltonian is purely vibrational ĤG = ĤV.

Time propagation of various states is computed using TDVP
applied to the Davydov Ansatze.3,5,13 Since the ground electro-
nic state (g) corresponds to independent molecular vibrations,
it is sufficient to describe it by the simplest D2 Ansatz

CðgÞD2
ðtÞ

��� E
¼ WðtÞ 0j i � lðtÞj i; (6)

where W(t) is the ground state amplitude. The vibrational state
is represented in terms of the multi-dimensional CS,

lðtÞj i ¼ �k;q lkqðtÞ
�� �

. Single-dimensional CS |lkq(t)i is created

by applying a translation operator

D̂ lkqðtÞ
� �

¼ exp lkqðtÞĉykq � lkq�ðtÞĉkq
� �

; (7)

with complex displacement parameter lkq(t), to the QHO
vacuum state: D̂(lkq(t))|0ikq = |lkq(t)i. For the time propagation
of the aggregate’s electronic excited state (e), mD2 Ansatz will
be used,13 given by

jC eð Þ
mD2

tð Þi ¼
XM
i

X
n

ai;n tð Þjni � jli tð Þi; (8)

where nj i ¼ 1nj i �man 0mj i is an electronic state of amplitude
ai,n(t), which defines a singly excited nth site. The aggregate’s

vibrational state is now liðtÞj i ¼ �k;q li;kqðtÞ
�� �

. Each multiple i

corresponds to an excitonic state associated with an aggregate
vibrational state. By considering more multiples, the complex-

ity and, in principle, the accuracy of the CðeÞmD2
is increased.

The CðeÞmD2
Ansatz with M = 1 reduces to the regular Davydov CðeÞD2

Ansatz.
While, in general, the state of the aggregate is the super-

position of the ground CðgÞD2
and the excited CðeÞmD2

state wave-

functions, in the perturbative treatment of the interaction with
the optical field, the aggregate’s electronic state will always
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adhere to either CðgÞD2
or CðeÞmD2

, therefore it is sufficient to

consider evolution of these wavefunctions independently.
For the ground state, the TDVP procedure results in a system

of explicit differential equations of motion (EOM) for variables
W(t), lkq(t), which yield an analytical solution: W(t) = W(0), lkq (t) =
exp(� iwkqt), while for the electronic excited state, the resulting
EOM constitute a system of implicit differential equations for
ai,n (t), li,kq (t) variables, which can be solved numerically.
Details on the mD2 Ansatz EOM, their solution and numerical
implementation, can be found in Appendix 5.

Using the response function theory,31,35 the linear absorp-
tion spectrum is given by a half-Fourier transform,

AðoÞ ¼ Re

ð1
0

dteiot�gtSð1ÞðtÞ; (9)

of the linear response function S(1) (t), given by

Sð1ÞðtÞ ¼ CðgÞD2
ð0Þ

D ���m̂�eiĤtm̂þe
iĤGt CðgÞD2

ð0Þ
��� E

; (10)

where we defined a scalar dipole operator l̂� = e�l̂�. We also
include a phenomenological dephasing rate of g = 100 cm�1 to
account for the decay of optical coherence due to the environ-
mental fluctuations, explicitly unaccounted by our approach.

Numerical computation of S(1) (t) can be greatly streamlined
by deriving expressions that relate variables of the ground state
W (t), lkq (t) and the excited state ai,n (t), li,kq (t), when upward

transition operators m̂+ act on the ground state CðgÞD2
, such that

we can define

m̂þ CðgÞD2
ðtÞ

��� E
� CðeÞmD2

ðtÞ
��� E

; (11)

and, from eqn (4) and (5), it also follows that

CðgÞD2
ðtÞ

D ���m̂ � m̂þ CðgÞmD2
ðtÞ

��� E� �y
: (12)

Notice that, in general, even though at the time of inter-

action t, the initial state CðgÞD2
is normalized, and the resulting

excited state CðgÞmD2
is not necessarily normalized. This does not

introduce difficulties, since in the derivation of EOM, no
assumptions of Ansatze normalization have been made. Alter-
natively, the resulting wavefunctions from eqn (11) and (12) can
be manually normalized, however, this would require keeping
track of excitation amplitudes separately.

During the ground to the excited state transition in eqn (11),

the ground state wavefunction CðgÞD2
can be equivalently repre-

sented by an arbitrary single CS out of the i = 1,2,. . ., M

multiples of the CðeÞmD2
Ansatz. For this reason, we choose to

‘‘populate’’ the i = 1 multiple after excitation, and call the rest of
the multiples j a i as initially ‘‘unpopulated’’. Then the newly

created state CðeÞmD2
, given by eqn (11), has amplitudes ai=1,n (t) =

mnW (t), aj,n (t) = 0, where mn = e�ln, and CS displacements li=1,kq

(t) = lkq (t).
Unpopulated CS variables lj,kq (t) initially do not contribute

to the dynamics, therefore, their position, in principle, is
arbitrary. However, during the following excited state evolution,

unpopulated multiples become populated and begin to influence
model dynamics. It is known that the initial distance between the
populated and unpopulated CS d = |li=1,kq (t)� lj,kq (t)| should not
be too large, otherwise, they will not participate in the excited state
dynamics (even at large propagation times CS will remain
separated).6 On the other hand, setting all CS in close proximity
to each other lj,kq (t) E li=1,kq (t), leads to a highly singular
EOM.37,38 We chose to set unpopulated CS in a layered hexagonal
pattern around the populated CS given by the equation

lj;kqðtÞ ¼ li¼1;kqðtÞ þ D sin
p
m

� �
1þ bb cð Þe

i2p bþ
1

2m
bb c

� 	
(13)

where D is a distance parameter, b( j, m) = ( j � 2)/m is a
coordination function with m = 6 being the number of CS in each
layer and xb c is the floor function of x. D should be large enough
not to have significant overlap among the initial distribution of
CS; we found D = 0.5 to give numerically well behaved, consistent
and convergent results.

After independently propagating bra (L) and ket (R) states of
eqn (10), their overlap is given by

Sð1ÞðtÞ ¼ CðeÞmD2
ðtÞ

D ���
L
� CðeÞmD2

ðtÞ
��� E

R

¼
X
i;j

X
n

a�ðLÞi;n ðtÞa
ðRÞ
j;n ðtÞ liðtÞh jL� ljðtÞ

�� �
R
;

(14)

where the CS overlap is given by

liðtÞh jL� ljðtÞ
�� �

R
¼ exp

X
k;q

l�ðLÞi;kq ðtÞl
ðRÞ
j;kqðtÞ

� �

� exp
X
k;q

�1
2
l�ðLÞi;kq ðtÞ
��� ���2� 	

� exp
X
k;q

�1
2
l�ðRÞi;kq ðtÞ
��� ���2� 	

:

(15)

The temperature of the molecular aggregate is included by
implementing the Monte Carlo ensemble averaging scheme.
Before excitation of the molecular aggregate via an external
field, vibrational modes reside in the ground state and obey
the canonical ensemble statistics with density operator in the
P-representation given by the probability function4,11,39,40

P lkqð0Þ
� �

¼ Z�1kq exp � lkqð0Þ
�� ��2 e

okq

kBT � 1


 �� 	
; (16)

where Zkq is the partition function, kB is the Boltzmann
constant and T is the temperature. By sampling vibrational
mode initial conditions lkq (0) from eqn (16), and averaging
over the linear response functions S(1)(t), we obtain the ther-
mally averaged linear response function hS(1)(t)iT, which now
depends on the temperature. We found 360 samples to result in
the converged absorption spectrum presented in the next
section.
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III Results

We consider the absorption spectra of the H and J aggregates.
The model aggregate consists of N = 10 sites, each of which can
be resonantly excited by an external electric field, thus we set
single site excitation energies to en = ofield with the nearest
neighbor couplings Jn,n+1 = J = �500 cm�1 for H and J aggre-
gates, respectively. For each aggregate type, we consider two
types of boundary conditions: open chain (OC) with JN,1 = J1,N =
0 cm�1, and the closed chain (CC) with JN,1 = J1,N = J. The purely
excitonic absorption spectrum of this CC aggregate consists
of a single peak due to the super-radiant excitonic state with
en + 2J energy. The OC aggregate, besides having the main peak
at Een + 2J, also has many lower amplitude peaks.

Next, we include one intramolecular vibrational mode per
site with frequency okq = 500 cm�1 and Huang–Rhys (HR) factor
S = fkq

2 = 1, which defines the electron–vibrational coupling
strength. Site electronic transition dipole moment vectors are
identical and set to ln = (1,0,0). The vibrational mode initial
thermal energy is set to kBT = okq/2, which corresponds to the
temperature of T = 360 K. Note, that rescaling all energy
parameters by a constant would give exactly the same spectrum.

Absorption spectra of the model H aggregate, computed
with an increasing mD2 Ansatz depth M, both in OC and CC
arrangement, are shown in Fig. 1. In both cases, the absorption
spectrum converges with M = 7 multiples, and higher multiplicity
spectra have been computed and are identical up to M = 11.
Absorption of the M = 1 case, which is equivalent to using the
Davydov D2 Ansatz, has peaks in the same frequencies as the
converged spectrum, however, their intensities are incorrect, and
some are even negative. By increasing the number of multiples
considered, peak amplitudes become strictly positive. The 0–0
electronic peak can be clearly identified. Vibrational side-peaks to
the higher energy side are due to 0–n vibronic transitions, while
on the lower energy side reside the n–0 transition peaks, per-
mitted by the non-zero temperature. Finite vibronic peak widths
originate from vibrational dephasing, due to finite temperature
and aggregate environment fluctuations. Both the OC and CC
aggregates have similar line-shapes, and a slightly finer vibronic
structure can be observed in the CC system, due to the greater
amount of symmetry and, therefore, effectively lower broadening.

The absorption spectrum of the model J aggregate is shown
in Fig. 2. In the CC aggregate, the visible side-peak, on the
higher energy side of the strong 0–0 transition, is the first term
of vibrational progression. The effective HR factor is thus
significantly reduced (hence, the exchange narrowing) due to
intermolecular couplings. It is observed to be independent of
Ansatz depth considered in both OC and CC arrangements. By
increasing M, the absorption spectrum redshifts to lower energies,
while qualitatively maintaining the same shape, however, slight
differences emerge. For the OC aggregate, peak intensities change,
while for the CC aggregate, mostly only the main peak intensity
changes. Apparent energy splitting between electronic transitions
is considerably reduced, implying that vibronic states do not
maintain excitonic intraband gaps due to the strong intra-
molecular vibrational coupling. In contrast to the H aggregate,
all absorption peaks are positive, even with M = 1 multiplicity.

In order to quantify the convergence of the H aggregate
absorption spectrum with increasing mD2 Ansatz depth, we
calculate the normalized discrepancy41

DðMÞ ¼ 1

N

ð
do

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðo;MÞ � �AðoÞð Þ2

q
; (17)

where A (o, M) is the absorption spectrum with multiplicity M,
where Ā(o) = A (o, M = 11) is the converged reference
spectra and

N ¼ max
overM

ð
do

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðo;MÞ � �AðoÞð Þ2

q
; (18)

is the normalization factor. In Fig. 3 we show DðMÞ for the H
aggregate for various values of the nearest neighbor coupling J,
vibrational mode thermal energy kBT, and Ansatz depth
M = 1,. . .,8.

We observe that for CC and OC H aggregates, the discre-
pancy significantly depends on J and kBT, even at the same
depth M. We observe, that in the case of M = 1, independent of
model parameters and site arrangement, spectrum discrepancy
is always high. By increasing the depth to just M = 2, for some
parameters, the discrepancy is reduced significantly. By
inspecting higher depths (M = 2–4), a general observation can
be made. Mainly, the CC H aggregate requires a larger depth at
higher temperatures, while for the OC H aggregate, two

Fig. 1 Absorption spectrum of the model H aggregate in (A) OC and
(B) CC configurations, computed with mD2 Ansatz depth M. The purely
excitonic spectra are also shown.

Fig. 2 Absorption spectrum of the model J aggregate in (A) OC and
(B) CC configurations, computed with mD2 Ansatz depth M. The purely
excitonic spectra are also shown.

Paper PCCP

Pu
bl

is
he

d 
on

 1
0 

Ju
ne

 2
02

2.
 D

ow
nl

oa
de

d 
on

 1
/3

/2
02

3 
12

:1
9:

37
 P

M
. 

View Article Online



This journal is © the Owner Societies 2022 Phys. Chem. Chem. Phys., 2022, 24, 17665–17672 |  17669

parameter regions of high discrepancy can be discerned: at low
temperatures, independent of the coupling strength, and at
high temperatures at weak coupling. The high temperature
cases can be rationalized as needing more CS to represent
thermally excited QHO eigenstates with quantum numbers
n 4 0, which are more probable at higher temperatures. The
reasoning for the low temperature case is more subtle. Aggre-
gate excitation via an external field shifts oscillators away from
their equilibrium considerably (HR factor S = 1), then the
molecular wavepacket relaxes via vibronic state energy surfaces,
which induce wavepacket shape changes and/or wavepacket
splitting between vibronic surfaces. Either of these two effects
would necessitate the molecular aggregate wavepacket to be
represented by the mD2 Ansatz with depth M 4 1.

As seen in Fig. 2, by considering a larger depth, the J
aggregate absorption spectrum line-shape redshifts with minimal
changes to the overall shape of the spectrum, therefore, the use of
discrepancy estimate in eqn (17) is not necessary. By visually
inspecting the spectrum of the J aggregate with various nearest
neighbor couplings and temperatures (shown in the ESI†), we
find a depth of M = 7 to again give a well converged result.

IV Discussion

The total energy of a single QHO, represented by the D2 Ansatz,
is proportional to the CS displacement l from the origin,

E
ðoscÞ
D2
/ jlj2, and the wavepacket shape is that of the lowest

energy QHO eigenstate with quantum number n = 0, i.e., a
simple Gaussian. On the other hand, using the representation
of the mD2 Ansatz, the oscillator energy is proportional to the

sum of products of CS displacements, EðoscÞmD2
/
P
i;j

l�i lj , and the

wavepacket now is not necessarily a Gaussian due to the
interference of multiple CS. This allows mD2 Ansatz to repre-
sent more complicated QHO eigenstate wavepackets with quan-
tum numbers n 4 0. It should be noted, that CS can be used to
represent an arbitrary wavepacket using the unity operator
expression

Î ¼ p�1
ðð

dRel dImljlihlj; (19)

and consequently, mD2 Ansatz with an infinite depth would
allow for a complete and exact description of a quantum
system. It thus becomes important to obtain the lower limit
at which the vibronic dynamics is properly described for e.g.
absorption spectroscopy.

Using either of the D2 or mD2 representations, oscillators

can have an equal energy, EðoscÞD2
¼ E

ðoscÞ
mD2

, however, their wave-

packet shape must not be equivalent. It is therefore interesting
to look at the vibrational mode wavepacket transition from
being represented by the D2 to a more complex mD2 Ansatz.
This transition occurs naturally in eqn (10), for the computa-
tion of the linear response function, when an upward transition
dipole operator acts on the aggregate ground state, as given by
eqn (11). One way to track wavepacket changes is to consider its
coordinate and momentum variances, given by

sx
2 (t) = hx̂2 (t)i � hx̂ (t)i2, (20)

sp
2 (t) = hp̂2 (t)i � hp̂ (t)i2, (21)

where OðtÞh i ¼ CðeÞmD2
ðtÞ

D ���Ô CðeÞmD2
ðtÞ

��� E
is an expectation value of

operator Ô, and their average variance

sx;p2ðtÞ ¼
1

2
sx2ðtÞ þ sp2ðtÞ
� �

: (22)

For an independent QHO, the average variance is sx;p2 ¼

nþ 1

2
, where n is the QHO occupation number. In Fig. 4 we

display coordinate, momentum and their average variances of
vibrations coupled to the 1st and 6th sites of the J aggregate in
both OC and CC configurations with depth M = 10. In the OC
configuration, the 1st site is the outermost and the 6th site is in
the middle of the aggregate, while in the CC, these modes are
translationally invariant and represent two modes with the
largest separation.

In both configurations, we observe coordinate and momen-
tum variance oscillations in an out-of-phase manner, while at
the same time, the average variance also increases, slightly
more in a CC. Instead of considering the superposition of CS to
capture such oscillatory behavior, squeezed coherent states
(SCS) could be used,42–45 which are able to produce similar
variance oscillations intrinsically. The downside of using SCS

Fig. 3 Normalized discrepancy DðMÞ of the H aggregate in CC and OC
configurations for a range of J and kBT values, computed with mD2 Ansatz
depth M.
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would be the need to additionally propagate variables describ-
ing squeezing amplitude and phase for each vibrational mode.
In the Davydov D2 type Ansatz with SCS, the overall increase of
variance would not be captured, yet, for low temperatures, this
might serve as a sufficient approximation. For high tempera-
tures, multi-Davydov D2 type Ansatz with SCS would be
required.

In a CC configuration, due to the 10-fold symmetry of
the aggregate, no difference between variance changes of
vibrational modes is to be expected, while slight differences
are observed due to the finite size of the thermal ensemble
considered. Meanwhile, in the OC, the difference between
variances of the outer and inner modes can be seen. The outer
vibrational mode, again, shows increasing, but oscillatory
dynamics, while the inner mode coordinate and momentum
variance values differ, i.e., wavepacket becomes permanently
more stretched along the momentum axis as compared to the
coordinate axis.

We see that vibrational mode variance changes without any
explicit coupling term between the vibrational DOF. Previously
we have proposed a simplified version of the mD2 Ansatz,
termed sD2,6 by considering the multiplicity only of vibrational
mode states. We have observed that the energy transfer
between vibrational modes required the inclusion of quadratic
or higher order Hamiltonian coupling terms between oscilla-
tors, which deformed the initially quadratic oscillator potential
energy surfaces. Energy transfer between vibrational modes
manifested itself as an increase of vibrational mode variance.
In the presented case of the mD2 Ansatz, the vibrational mode
variance increased without introducing any explicit Hamilto-
nian coupling terms, implying that the multiplicity of the
vibronic states implicitly changes the parabolic potential energy
surfaces into non-parabolic. This can be understood by solving
for vibronic energy surfaces the eigenstates E (x1,. . ., xQ). E.g., for
a dimer aggregate, the vibronic aggregate Hamiltonian Ĥ

characteristic polynomial equation is equal to

0 ¼ e1 þ of 2 � x1of þ
o
2

x1
2 þ x2

2
� �

� E x1; x2ð Þ
� �

� e2 þ of 2 � x2of þ
o
2

x1
2 þ x2

2
� �

� E x1; x2ð Þ
� �

� J2;

(23)

the solution of which, E (x1,x2), is not a quadratic function of
vibrational mode coordinates x1 and x2.

In conclusion, by inspecting the absorption spectrum of a
wide range of J and H molecular aggregates, in both CC and OC
site configurations, with various nearest neighbor coupling
strength and temperature values, we find the mD2 Ansatz with
a depth of M = 7 to be required for accurate aggregate absorption
spectra simulation, while the regular Davydov D2 Ansatz is not
sufficient. For H aggregates, multiplicity is required to obtain
absorption lineshape positivity and correct peak intensities. For J
aggregates, increasing the number of mD2 Ansatz depth, mostly
redshifts the absorption spectrum, keeping the overall lineshape
qualitatively the same, especially in the CC aggregate. However,
the very exchange narrowing effect is captured by the simple
Davydov D2 Ansatz. Due to the vibronic energy level structure of
an aggregate, we find the molecular wavefunction to exhibit an
out-of-phase oscillatory behavior along the coordinate and
momentum axes and an overall broadening, which again is
not captured by the Davydov D2 Ansatz.
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Appendix A: Multi-Davydov D2

equations of motion and numerical
implementation

Following the TDVP procedure, we derived vibronic molecular
aggregate EOMs, given by

X
j

_aj;nSij þ aj;nSijKij

� �
¼ �iYi;n; (A1)

for each pair of indices {i, n}, and

X
j;n

a�i;n _aj;nSijlj;kh þ Pij;n
_lj;kh

� �
þ
X
j;n

Pij;nlj;khKij ¼ �iOi;kh; (A2)

for pair of {i, k, h} indices. These constitute a system of
equations needed to solve to propagate the mD2 Ansatz, shown
in eqn (8). Dot notation is used, where :x is the time derivative of x.

Fig. 4 Coordinate, momentum and their average variances of a 1st and
6th site vibrational mode of a J aggregate in ring and chain configurations
with multiplicity M = 11.
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The right-hand side terms of the given EOMs are

Yi;n¼
X
j;m

aj;mSijJnmþ
X
j

aj;nSij

X
h

Cij;nhþ
X
k

Aij;kh

 !
; (A3)

Oi;kh¼
X
j;n;m

Gij;nmlj;khJnmþ
X
j;n

Pij;nlj;kh
X
q

Cij;nqþ
X
f

Aij;fq

 !

þ
X
j

Pij;kfkhokh�i
X
j;n

Pij;nokhlj;kh;

(A4)

where auxiliary definitions are

Gij,nm = ai*,naj,mSij, (A5)

Pij,n = Gij,nn, (A6)

Aij,kh = okhli*,khlj,kh, (A7)

Cij,nh = �fnhonh(l*
i ,nh + lj,nh), (A8)

Kij ¼
X
m;h

_lj;mh l�i;mh �
1

2
l�j;mh

� 	
�
X
m;h

1

2
_l�j;mhlj;mh: (A9)

We solved the presented system of EOMs in terms of
variable ai,n, li,kh real and imaginary parts, which are ordered
in a column state vector, x = {aR

i,n,aI
i,n,kR

i,kh,kI
i,kh}. This doubles the

amount of variables, however, it removes consistency problems
regarding the treatment of complex variables _lj,mh, _lj,mh.

Numerical propagation of the mD2 Ansatz is a two-step
process. First, the time derivative of a state vector, :x, is found
by writing eqn (A1) and (A2) in a matrix form

M
:
x = f, (A10)

and solving for :
x using the Generalized Minimal Residual

Method (GMRES) with Lower–Upper (LU) decomposition as a
preconditioner. We found the GMRES method to provide a
more accurate and stable solution than using the Moore–
Penrose pseudo inverse or the solely LU decomposition
method. Second, the state vector now can be propagated using
a variety of ordinary differential equation solvers.46 We found
an adaptive-order adaptive-time Adams–Moulton method
(VCABM)47 to provide just as accurate solution as a typical
Runge–Kutta fourth-order method, however, with less compu-
tational effort.

During time evolution of the mD2 Ansatz, two or more
multiplicity wavepackets can approach each other and highly
overlap, which results in an ill-conditioned coefficient matrix,
M, with no consistent solution of eqn (A10). To remedy this, we
have implemented a programmed removal (apoptosis) of over-
lapping multiples of the mD2 Ansatz, with the minimal dis-
tance for apoptosis to occur d = 0.05, as defined in ref. 38.

Establishing the scaling factor of the numerical effort
required to propagate mD2 Ansatz with the increasing model
size is not straightforward. The total number of complex
variables, V, describing mD2 Ansatz is easy to find, V = M�(N + K�Q),
however, due to first having to compute the time derivative of a
state vector, :x, which involves non-linear and/or iterative meth-
ods, the actual numerical effort is difficult to quantify.

Empirical estimation, which would compare scaling factors of
several computation approaches, is an interesting future
research avenue.
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Inspecting molecular aggregate quadratic vibronic
coupling effects using squeezed coherent states

Mantas Jakučionis, Agnius Žukas and Darius Abramavičius *

We present a systematic comparison of three quantum mechanical approaches describing excitation

dynamics in molecular complexes using the time-dependent variational principle (TDVP) with increasing

sophistication trial wavefunctions (ansatze): Davydov D2, squeezed D2 (sqD2) and a numerically exact

multiple D2 (mD2) ansatz in order to characterize validity of the sqD2 ansatz. Numerical simulations of

molecular aggregate absorption and fluorescence spectra with intra- and intermolecular vibrational

modes, including quadratic electronic–vibrational (vibronic) coupling term, which is due to vibrational

frequency shift upon pigment excitation are presented. Simulated absorption and fluorescence spectra

of a J type molecular dimer with high frequency intramolecular vibrational modes obtained with D2 and

sqD2 ansatze match the spectra of mD2 ansatz only in the single pigment model without quadratic

vibronic coupling. In general, the use of mD2 ansatz is required to model an accurate dimer and larger

aggregate’s spectra. For a J dimer aggregate coupled to a low frequency intermolecular phonon bath,

absorption and fluorescence spectra are qualitatively similar using all three ansatze. The quadratic vibro-

nic coupling term in both absorption and fluorescence spectra manifests itself as a lineshape peak

amplitude redistribution, static frequency shift and an additional shift, which is temperature dependent.

Overall the squeezed D2 model does not result in a considerable improvement of the simulation results

compared to the simplest Davydov D2 approach.

I Introduction

A fundamental aspect of the physics of optically excited molecules
and their complexes is the transport of excitation energy.
Electronic and vibronic couplings are two aspects that are crucial
to this process.1 Complex quantum dynamics of electronic and
vibrational excitations are produced as a result of intermolecular
interactions right after optical excitation. Their interplay is essen-
tial for effective photosynthetic machinery in a natural setting
where energy transfer, relaxation, and charge transfer play a
crucial role in the initial stages of solar energy conversion.2,3

The wavefunction-based TDVP method can be used to
simulate molecular aggregate excitation dynamics as well as
their optical spectra with respect to an ansatz (or parameteriza-
tion form), which should be sufficiently sophisticated to
describe the aggregate’s essential vibronic features. One family
of wavefunctions is called Davydov’s ansatze,4–6 which utilize
Gaussian wavepackets, also known as coherent states (CS), to
represent vibronic states of molecular aggregates. It has been
extensively used to compute spectra of molecules as well as to
examine excitation relaxation dynamics in single molecules
and their molecular aggregates.7–14

The trial wavefunction’s selection greatly influences how
accurate the method is. It has been shown that in some cases
for precise modeling of molecular aggregates, the D2 ansatz
falls short,15 however, the accuracy of vibrational mode repre-
sentation can be improved by expanding the available para-
meter space. The most potent approach is to consider a
superposition of multiple D2 ansatze, known as the multi-
Davydov D2 ansatz. It considerably increases the accuracy,
making TDVP with mD2 a numerically exact method. Spin-
boson models,16 nonadiabatic molecular dynamics,10,17 and
linear and nonlinear spectra of molecular aggregates11,15,18

have all been investigated using TDVP with mD2.
Instead of considering the superposition of ansatze, which

is equivalent to complete quantum treatment, one can expand
the available state space of the D2 ansatz incrementally. One
approach is to replace the CS with squeezed coherent states
(sqCS), which have additional degrees of freeedom (DOFs)
which allow the wavepacket to contract and expand along the
coordinate and momentum axes in its phase space. Presumably
this should allow sqCS to better represent the complicated
structure of realistic vibrational mode wavepackets, which
become non-Gaussian due to both electronic18 and quadratic
vibronic10,13,19 couplings.

In this work, we aim to compare the accuracy of TDVP with
three increasing sophistication ansatze: the regular Davydov
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D2, sqD2 with sqCS and an exact mD2 ansatz by analysing the
simulated absorption and fluorescence spectra of a J-type dimer
couped to high frequency (intra-) and low freqency intermole-
cular vibrational modes. In addition, we also consider the
quadratic vibronic coupling term, which induces wavepacket
non-Gaussianity.

The rest of the paper is organized as follows: in Section II A
we describe the quadratic vibronic molecular aggregate model,
considered ansatze and shortly mention an approach to include
finite temperature into the model. In Section II B we present
theory of the absorption and fluorescence spectra using the
TDVP approach. In Section III we analyze and compare J
aggregate absorption and fluorescence spectra in three vibra-
tional mode regimes. Results are discussed and conclusions are
given in Section IV.

II Theory
A Electron-vibrational molecular aggregate model theory

The generic model system is a molecular aggregate made of N
chromophores with a resonant interaction between them. Each
chromophore corresponds to a single pigment molecule (site)
which is a two-level electronic quantum system with ground
and excited states. Moreover, each pigment is coupled to a set
of vibrational degrees of freedom (DOF) corresponding to either
intra- or intermolecular vibrational modes. Vibrations are
explicitly modeled by quantum harmonic oscillators (QHO).
The total system Hamiltonian can then be written as1,3,20,21

Ĥ = ĤS + ĤV + ĤS�V + ĤS�V2 (1)

where ĤS represents site Hamiltonian, ĤV is a vibrational
Hamiltonian, ĤS�V is a first-order interaction term between
sites and vibrational modes, and ĤS�V

2 is the quadratic site-
vibration coupling term. All of the above are explicitly
expressed as

ĤS ¼
X
n

enâynân þ
Xnam

n;m

Vnmâ
y
nâm; (2)

ĤV ¼
X
k;q

og
kqb̂
y
kqb̂kq; (3)

ĤS�V ¼ �
X
n

âynân
X
q

oe
nqfnq b̂

y
nq þ b̂nq

� �
; (4)

ĤS�V2 ¼ 1

4

X
n

âynân
X
q

oe
nq � og

nq

� �
b̂
y
nq þ b̂nq

� �2
; (5)

where en denotes the nth site electronic excitation energy,
which includes molecular reorganization energy, equal to
Ln ¼

P
q o

e
nqf

2
nq. Where summation index q runs over vibra-

tional modes. Vnm is the resonant coupling between the nth

and mth site, âyn ânð Þ are the creation (annihilation) operators

of chromophore electronic excitation, b̂
y
nq b̂nq

� �
are creation

(annihilation) operators of vibrational excitations. The linear

vibronic coupling strength is given by dimensionless amplitude

fnq. The quadratic vibronic coupling term, ĤS�V2, becomes
relevant once the vibrational mode frequencies in the electro-
nic ground state, og

nq, are different from the ones in the excited
state, oe

nq, otherwise this term does not contribute.10,13,22–26

To obtain linear absorption and fluorescence spectrum of
the presented vibronic model, we will be using the TDVP
method, which will be applied to three parameterized wave-
function ansatze with increasing sophistication. All of them are
based on the Davydov D2 ansatz. First, the least sophisticated
ansatz we will be testing is the Davydov D2 ansatz. It considers a
superposition of singly excited aggregate configurations
nj i ¼ 1j in

Q
man

0j i,1,27 with time-dependent amplitudes an(t),

while vibrational QHO states are expanded in terms of CS.
These are obtained by applying the translation operator

D̂ lkq tð Þ
� �

¼ exp lkq tð Þb̂ykq � h:c:
� �

(6)

with complex time-dependent displacement parameters, lkq, to
the QHO vacuum state denoted by 0j ikq. Then the D2 ansatz is

defined as

CD2
tð Þ

�� �
¼
X
n

an tð Þ nj i
Y
k;q

lkq tð Þ
�� �

: (7)

In order to increase the complexity of ansatz to better
represent complicated vibronic model states, in addition to
the translation operator, we can additionally apply the squeeze
operator

Ŝ zkq tð Þ
� �

¼ exp
1

2
z�kq tð Þb̂kq2 � h:c:
� �� 	

; (8)

with complex-valued squeeze parameter zkq(t), which squeezes
the Gaussian wavepacket and only then shifts the resulting
squeezed state along the coordinate and momentum axes. The
resulting state

D̂ lkq tð Þ
� �

Ŝ zkq tð Þ
� �

0j ikq¼ lkq tð Þ; zkq tð Þ
�� �

(9)

is called an sqCS. For convenience, we express complex squeeze
parameter zkq(t) in its polar form zkq(t) = rkq(t)eiykq(t) where
squeeze amplitude rkq(t) and squeeze angle ykq(t) are now real
time-dependent parameters. Then the squeezed sqD2 ansatz is
defined as

CsqD2
tð Þ

�� �
¼
X
n

an tð Þ nj i
Y
k;q

lkq tð Þ; zkq tð Þ
�� �

: (10)

An even more general approach for constructing the ansatz
is to consider a superposition of multiple copies of D2 ansatz.
It has been termed by the multiple Davydov D2, mD2 ansatz,
and is defined as

CmD2
tð Þ

�� �
¼
XM
i¼1

X
n

ai;n tð Þ nj i
Y
k;q

li;kq tð Þ
�� � !

; (11)

where each ith multiple corresponds to a superposition of
electronic state excitations accompanied by the vibrational
state of an aggregate. By increasing the number of multiples
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considered, M, the ansatz state space is expanded accordingly.
Note, that the mD2 ansatz with M = 1 simplifies to the D2

ansatz, while an arbitrary wavefunction can be expressed when
M - N, making the approach exact.

Time evolutions of the considered ansatze are obtained by
solving their respective equations of motion (EOM), which are
given in Appendix A. A more in-depth discussion of mD2 ansatz
EOM numerical implementation can be found in ref. 18 and 28.

The inclusion of additional statistical physics concepts is
required in order to simulate finite temperature of the model.
The thermal ensemble will be constructed by considering indepen-
dent wavefunction trajectories g, each with different initial condi-
tions, and thus energies. Note that the time propagation of the
wavefunction fully conserves the total energy of each trajectory.

Considering the excitation process, prior to molecular aggregate
excitation via an external field, the aggregate is in its electronic
ground state 0j i, while vibrational DOFs are thermally excited. Thus
QHO modes follow statistics of the canonical ensemble with
respect to the aggregate ground electronic state. Characterization
of the vibrational manifold is straightfoward because all oscillators
in the electronic ground state are uncoupled. The diagonal density
operator of a single QHO can be written on the basis of CS with
quasiprobability distribution function8,29–31

P g=eð Þ lð Þ ¼ Z�1 exp � lj j2 e
og=e

kBT � 1

� 	� 	
; (12)

where Z is the partition function of QHO, kB is the Boltzmann

constant and T is the temperature. By sampling the P gð Þ distribu-
tion, ground state vibrational mode initial displacements l(0) are
obtained. Then, by taking the average of observable A over ensem-
ble of trajectories g, one obtains thermally averaged observable.

In the case of D2 ansatz, distributions P gð Þ fully describe CS
initial displacements without ambiguity. For the sqD2 ansatz,

we again sample P gð Þ to deduce displacements lkq(0) and set the
squeeze parameters to rkq = 1, ykq = 0 (no squeezing). This is still
the complete description of the thermal equilibrium state due
to eqn (12). Finally, in the case of the mD2 ansatz, we have M
equivalent ways to set li,kq(0) values. Therefore, we chose to
initially populate the first multiple, i = 1, according to values

sampled from P gð Þ, and set the rest, i a 1, terms to lia1(0) = 0.18

B Absorption and fluorescence spectra theory using TDVP

Two spectroscopic signals, the linear absorption and fluores-
cence are the most widely employed spectroscopy tools used to
infer information on molecular systems. Assuming that the
lifetime of the excited state is longer than the excited state
thermal equilibration, it is well known1,32 that the absorption/
fluorescence spectrum can be obtained by taking Fourier trans-
form of the corresponding time domain response function

Aabs=flor oð Þ ¼ Re

ð1
0

dteiot�gdeptS
1ð Þ
abs=flor tð Þ: (13)

In the rotating wave and instantaneous aggregate-field inter-
action approximations,18,32 the absorption-related response

function is given by linear response

S
1ð Þ
abs tð Þ ¼ 1

G

XG
g¼1

C gð Þ 0ð Þ
D ��

g
m̂�e

iĤtm̂þe
�iĤGt C gð Þ 0ð Þ

�� E
g
; (14)

where the ground state Hamiltonian is equal to ĤG = ĤV.
Sum over g trajectories describes ensemble averaging over

the incoherent ensemble of electronic ground states C gð Þ 0ð Þ
�� �

g

(for all ansatze) before excitation via the external field, where
each trajectory has different initial bath conditions, as described
previously in Section (II A). G is the total number of trajectories
of thermal ensemble.

m̂þ ¼
X
n

e � mnð Þâyn; (15)

m̂� ¼
X
n

e � mnð Þân; (16)

are the aggregate excitation and deexcitation operators, e is
the external field polarization vector, mn is the nth molecule
electronic transition dipole vector. In eqn (13) we include the
phenomenological dephasing rate, gdep, to account for the decay
of coherence due to explicitly unaccounted dephasing effects.

To describe fluorescence response function S(1)
flor(t), a more

general, third-order, time-resolved fluorescence (TRF) response
function32,33

S
3ð Þ
trf t; tð Þ ¼ 1

G

XG
g¼1

C gð Þ 0ð Þ
D ��

g
m̂þe

�iĤ tþtð Þm̂�

� e�iĤGtm̂�e
�iĤtm̂þ C gð Þ 0ð Þ

�� E
g

(17)

must be used. Initially, first two aggregate-field interactions
create the nonequilibrium density matrix configuration among
electronic excited states. Then the aggregate evolves for waiting
time, t, after which, deexcitation transition takes place by
spontaneous emission from the excited to the ground electro-
nic state, defined by delay time interval, t.

We assume spontaneous emission to occur only from the
lowest energy excited aggregate vibronic state. After initial
excitation by an external field, due to non-radiative relaxation
processes and interaction with an environment, during the
sufficiently long waiting time, t - N, aggregate relaxes
towards the minimal energy E(e)

0 excited aggregate vibronic

state, C eð Þ
E0

tð Þ
��� E

. From the TRF response function in eqn (17)

now follows that the fluorescence response function can be
written as

S
1ð Þ
flor tð Þ ¼ C eð Þ

E0
0ð Þ

D ���e�iĤtm̂þe
�iĤGtm̂� C eð Þ

E0
0ð Þ

��� E
; (18)

where, for convenience, we set the long waiting time to t = 0.
Note, that eqn (18) does not contain summation over thermal
ensemble trajectories g, as the minimal energy E(e)

0 and initial

state C eð Þ
E0

0ð Þ
��� E

does not depend on initial vibrational condi-

tions (temperature), but is solely a function of Hamiltonian and
chosen ansatz.
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The lowest energy state C eð Þ
E0

0ð Þ
��� E

is obtained by numerical
optimization of the excited state energy. That is obtained using
heuristic adaptive particle swarm optimization algorithm34,35

by minimizing the total aggregate energy E = hC|Ĥ|Ci, as a
function of respective ansatz free parameters. For a given
model of interest, optimization has to be performed once and
can be reused afterwards.

At finite temperature T, due to thermal energy fluctuations,
the resulting thermal ensemble in the excited aggregate state
has larger average energy hE(e)

0 iT Z E(e)
0 . Therefore, after waiting

time t the aggregate can be in any one of the thermal ensemble
states. Now fluorescence response function S(1)

flor(t) is obtained
by averaging over an ensemble of thermal excited states

c eð Þ
ET

0ð Þ
��� E

g
, where g is a trajectory number.

In order to find c eð Þ
ET

0ð Þ
��� E

g
states, we cannot use the same

algorithm as for the electronic ground state since all vibrational
modes in the electronic excited state are now indirectly
coupled. Additionally, their frequencies are shifted if the quad-
ratic vibronic coupling contributes.

For each trajectory g, thermal excited states c eð Þ
ET

0ð Þ
��� E

g
is

obtained by perturbing c eð Þ
E0

0ð Þ
��� E

free parameters in such a way

as to increase its total energy by the energy fluctuation

dEg ¼
P

n;q o
eð Þ
nq

~l gð Þ
nq

��� ���2, where ~l(g)
nq are sampled from the excited

state P eð Þ distribution in eqn (12). In order to find free parameters
that correspond to energy Eg = E(e)

0 + dEg, we perturb CS displace-
ments lnq(t) for D2 and sqD2 ansatze and li,nq(t) for the mD2

ansatz, until the new state energy Efit
g ¼ C eð Þ

ET
0ð Þ

D ���
g
Ĥ C eð Þ

ET
0ð Þ

��� E
g

matches Eg with 0.1 cm�1 precision. The fluorescence response
function at finite temperature is then equal to

S
1ð Þ
flor tð Þ ¼

1

G

XG
g¼1
hC eð Þ

ET
0ð Þjge�iĤtm̂þe

�iĤGtm̂�jC
eð Þ
ET

0ð Þig: (19)

III Results
A Model parameters

In this section we investigate the effects of intermolecular
coupling and vibrational mode frequency shifts in eqn (5), on
absorption and fluorescence spectroscopy. We consider three
models. First model, M1, contains a single pigment coupled
to one high frequency intramolecular mode. Second, M2, is a
J-type dimer of two coupled chromophores, where excitations
are coupled to a single high frequency intramolecular
vibrational mode (one per pigment). Third, M3, is again a
two chromophore system, but here electronic excitations are
coupled to an overdamped phonon bath.

The J-type dimers in models M2 and M3 consist of two
pigments, each of which can be resonantly excited by an
external electric field, thus we assume that single pigment
excitation energies are resonant with the optical field, en =
ofield, where ofield is an external field frequency. Electronic
transition dipole moment vectors of the chromophores are

identical, mn = (1, 0, 0), in the Cartesian coordinate system.
For theM1 model, intramolecular vibrational mode frequency
in the electronic ground state is og

1,1 = 1000 cm�1 and Huang–
Rhys (HR) factor is S = f1,1

2 = 1. For the M2 model, the
resonance coupling is J12 = �500 cm�1, while vibrational mode
frequencies of the chromophores are og

1,1 = og
2,1 = 1000 cm�1

with HR factors S = f1,1
2 = f2,1

2 = 1. For the M3 model, the
resonance coupling is J12 = �50 cm�1 and vibrational phonon
mode frequencies og

n,q span from 0.1 cm�1 to 490.1 cm�1 with a
step-size of 10 cm�1 for each pigment n to represent an over-
damped phonon bath with a given spectral density. Here, the
fnq distribution is defined in terms of a discretized quasi-
continuos spectral density function

C00n oð Þ ¼ p
X
q

fnq
2oe

nqdðo� on;qÞ; (20)

where C00n oð Þ ¼ o= o2 þ g2
� �

is the Drude function with damping
g = 100 cm�1. Magnitudes of fnq are then normalized so that the
total reorganization energy Ln = 100 cm�1 for each pigment n.

ModelsM1 andM2 are typically found in synthetic pigment
aggregates,36–38 while theM3 model more closely corresponds
to chlorophyll aggregates found in nature.1,3

When plotting the simulated absorption and fluorescence
response functions according to eqn (13), we will include a
phenomenological dephasing rate of gdep = 50 fs for models
M1,M2 and a rate of gdep = 250 fs for modelM3. These are to
account for additional dephasing stemming from explicitly not
included phonons (for models M1, M2) and chromophore
vibrational modes (for model M3).

B Absorption spectra

In all models, we vary vibrational mode frequencies in the excited
state oe

nq by shifting them from frequencies in the ground state
og

nq, thus we define the difference of frequencies as Donq = oe
nq�

og
nq. First, we start by investigating the absorption spectrum of 1

model. In Fig. (1) we present the absorption spectrum of the
monomer at 300 K temperature with frequency shifts of Do1,1 �
Do = �250, 0, +250 cm�1.

When Do = 0, we observe the absorption spectrum with
vibrational peak progression representing jumps from the
ground to an arbitrary vibrational excited state. All three
ansatze produce identical spectra since there is no electronic
coupling and the nonlinear effects, due to quadratic vibronic
coupling, are also absent. Now, when vibrational mode fre-
quency in the excited state is higher than the ground state
(Do = 250 cm�1), nonlinear effects become evident together
with non-physical features in spectra of some ansatze. Absorp-
tion spectra of D2 and sqD2 ansatze have a negative peak at
E2000 cm�1 suggesting that they are unable to fully capture
the nonlinear effects, i.e., they are not exact solutions of the
Schrödinger equation. Meanwhile, the mD2 ansatz with M = 5
superposition terms produce strictly positive absorption
spectra and thus will be considered to be the reference spectra
for further comparisons. To check the validity of this claim, we
compared mD2 spectra simulated with M = 1–10 terms and
found M Z 5 spectra to be quantitatively exact (not shown).
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Besides the negative peaks, neither D2 nor sqD2 is able to
reproduce vibrational peak progression amplitudes of the
mD2 ansatz.

By comparing mD2 absorption spectra peak amplitude pro-
gression in all three Do cases, we find that progression peak
amplitudes either increase or are reduced as compared to the
Do = 0 spectrum, we will refer to these qualitative changes as
models having an increased or decreased effective HR factor.
Therefore, effective HR is reduced when Do is positive, and is
increased when Do is negative. In addition, Do also changes
progression peak frequencies, however, not in a monotonic
fashion. The direction of frequency change of each peak is
indicated by an arrow, when compared to the Do = 0 case.
Absolute frequency of some peaks increase, while for others it
decreases. This can also be interpreted as relative energy gap
between progression peaks becoming larger when Do is posi-
tive, and gap is reduced when Do is negative.

Next, we look at the absorption spectrum of model M2. In
Fig. (2) we present the absorption spectrum of the J dimer at a
temperature of 300 K with shifts Do1,1 = Do2,1 � Do = �250, 0,
250 cm�1. Now, even in the Do = 0 case, when nonlinear effects
are still absent, we find the mismatch between the absorption

spectrum simulated using the D2 and sqD2 ansatze and mD2.
This is purely due to electronic coupling between vibronic
states of sites, which was lacking in modelM1. Also, note that
the spectra of D2 and sqD2 ansatze are identical, since according
to equations sqD2 becomes different from D2 only when quad-
ratic vibronic coupling is present, i.e. Do a 0. The exact mD2

spectrum has a familiar J dimer absorption lineshape dominated
by the exchange narrowing effect,39 which effectively reduces the
HR factor as compared to the monomer shown in Fig. (1).
Absorption spectra of D2 and sqD2 ansatze reproduce the
exchange narrowing effect, however, their spectra has additional
secondary peaks not seen in the mD2 spectrum. Their spectra
also have slightly higher energy 0–0 quanta transitions peak (and
0–1, 0–2, etc.) as compared to the mD2 spectrum, which implies
that mD2 is able to better represent the lower energy excited
aggregate state.

When the quadratic vibronic coupling effects are present
(Do = �250, 250 cm�1), again, in both cases, we find D2 and
sqD2 spectra to differ from mD2 spectra. Very slight differences
can also be seen between D2 and sqD2 ansatze, however, without
any obvious improvement from sqD2. In both cases, mD2 spectra
again show a J dimer exchange narrowing type lineshape with

Fig. 1 Absorption spectrum of a monomer (M1 model) at a temperature of 300 K with Do1,1 equal to (a) �250 cm�1, (b) 0 cm�1, and (c) +250 cm�1

simulated using D2, sqD2 and mD2 ansatze. Arrows indicate the peak frequency shift direction when compared to the Do = 0 case.

Fig. 2 Absorption spectrum of a J-type dimer (M2 model) at 300 K temperature with Do1,1 = Do2,1, equal to (a) �250 cm�1, (b) 0 cm�1, and (c) +250 cm�1

simulated using D2, sqD2 and mD2 ansatze.
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changes to peak amplitudes similar to those seen in Fig. (1) –
relative energy gap between peaks become larger when Do is
positive, and is reduced when Do is negative. The spectrum
with Do = 250 cm�1 has a more pronounced fine structure to
its absorption progression peaks than those spectra with Do =
�250 cm�1 and = 0.

These findings suggest that neither D2 nor a more compli-
cated sqD2 is able to fully capture the absorption spectrum of J
dimers with high frequency intramolecular vibrational modes,
not even in the simplest case (Do = 0 cm�1) when the quadratic
vibronic coupling is excluded.

Next, let’s look at the absorption spectra of the M3 model.
In this case phonon modes become thermally excited so we
additionally present temperature-dependent spectra. In Fig. (3)
we present absorption spectra of a J dimer coupled to the
phonon bath at various temperatures. Now each chromophore
couples to 50 low frequency vibrational modes, therefore, to
investigate the quadratic vibronic coupling effect, we will look

at cases when all mode frequencies, oe
nq, in an excited aggregate

are equal to frequencies in a ground aggregate state, og
nq, scaled

by a factor of g = 0.95, 1, 1.05.
When g = 1, all methods produce qualitatively identical

absorption spectra over a broad range of temperatures. At low
temperatures, the spectra consist of a single absorption peak.
With increasing temperature, spectra broaden and slightly shift
(on average) due to thermal excitation of vibrational modes in
the electronic ground state and due to finite discretization at
low frequencies.

Now, when phonon mode frequencies in the aggregate
excited state are higher (g = 1.05), in addition to the previously
seen thermal spectra broadening, we also observe two types of
spectral shifts: a static shift – the whole absorption spectra
shifts to the higher energies, as compared to the g = 1 case, and
a temperature dependent absorption peak shift to higher
energies. Spectrum simulated with all ansatze when g = 1.05
are also qualitatively similar, however, the spectrum of mD2 in

Fig. 3 Absorption spectrum of a J dimer (M3 model) coupled to the phonon bath at various temperatures with vibrational mode frequencies in
aggregate excited states oe

nq equal to a) 0.95 og
nq, b) og

nq, and c) 1.05 og
nq simulated using D2 (1st row), sqD2 (2nd row) and mD2 (3rd row) ansatze.
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Fig. (3i) has a less straightforward temperature dependent peak
shift dependence. Peak frequency changes are not as linear
with temperature as in spectra simulated with D2 and sqD2

ansatze in Fig. (3c and f). Similarly, when phonon mode
frequencies in the aggregate excited state are lower (g = 0.95),
we find all the same spectral shift effects, only now to the lower
energy side. Spectra simulated with different ansatze appear
qualitatively the same, therefore we conclude that to simulate
absorption spectra of a J dimer coupled to low frequency
phonon modes, even with quadratic vibronic coupling, it is
sufficient to use the simplest D2 ansatz fluorescence spectra.

In order to compute the fluorescence spectrum, for each
considered ansatze, we first have to find the lowest energy

E(e)
0 excited aggregate state C

gð Þ
E0

0ð Þ
��� E

in terms of the ansatz free

parameter by minimizing the total aggregate energy E =
hC|Ĥ|Ci, as explained in Section (II B). The resulting energies
E(e)

0 for models are given in Table (1).
We see that for model M1, when vibrational nonlinearities

are absent, all ansatze give exactly the same energy, however, by
including the quadratic vibronic coupling (Do a 0 cases), both
sqD2 and mD2 find lower energy states than the D2 ansatz. The
mD2 ansatz further outperforms the sqD2 ansatz, when Do is
negative. Consequently, the sqD2 model outperforms the D2

ansatz when searching for excited state energy minimum when
quadratic coupling is included.

In model M2, when Do = 0, we see that D2 and sqD2 again
find equivalent energy state, however, now mD2 ansatz man-
ages to represent a significantly lower energy state, which is not
accessed by any of the non-multiple ansatze and is created
purely due to electronic coupling between pigments. When
nonlinearities are included, the sqD2 ansatz again outperforms
D2, especially when Do is positive, yet mD2 further improves in
sqD2 states.

In model M3, we try to find the minimum point in 1020-
dimensional space for mD2, 204-dimensional for D2, and 404-
dimensional for sqD2, which is a difficult problem to solve. To
have a fair comparison of ansatze for modelM3, we limited the

search for the C
gð Þ

E0
0ð Þ

��� E
state in terms of the sqD2 ansatz to its

sqCS displacement parameters, lkq, and set squeezing para-
meters to rkq = 1, ykq = 0 (no squeezing). For the mD2 ansatz, we
limited the search to just one of its multiples. With these limits
set, essentially both sqD2 and mD2 ansatze behave as D2, thus
all three ansatze relax to the same excited aggregate state with
energies equivalent to those under the D2 column. This is
confirmed by numerical results where all ansatze managed to
represent states with very similar energies. The obtained numbers
are also likely within the margin of error and require an improved
approach for finding the actual lowest energy states.

Now, let’s look at the fluorescence spectra of the same
models. In Fig. (4) we display fluorescence spectra of a mono-
mer coupled to high frequency vibration (M1 model) at a
temperature of 300 K with frequency shifts of DDo1,1 � Do =
�250, 0, +250 cm�1. When Do = 0, we find all three ansatze to
produce identical fluorescence spectra, which, as expected, has
mirror symmetry with the M1 model absorption spectrum in
Fig. (1b). The fluorescence spectrum consists of progression of
energeticaly downward transition peaks.

When the quadratic vibronic coupling term is included
(Do = �250, +250 cm�1), simulated fluorescence spectra of
the considered ansatze are different. In both cases, the fluores-
cence spectrum of D2 qualitatively matches the mD2 ansatz
spectrum peak amplitudes and frequencies, while the inter-
mediate complexity sqD2 consistently overestimates the peak
amplitudes and shows additional peaks that are not present in
the mD2 ansatz spectrum. Here, we see an example, where
additional, but not sufficient, DOF (squeezing) of sqD2 ansatz
actually produces a visually worse quality spectrum than the
smaller state space D2 ansatz. This is in contrast to absorption
spectra of the M1 model, where both D2 and sqD2 ansatze
showed equivalent errors when compared to mD2 spectra.

By comparing mD2 fluorescence spectra with quadratic
vibronic coupling to that without it, we find that fluorescence
progression peak amplitudes change – effective HR factor
increases when Do is positive, and decreases when Do is
negative. Also, quadratic vibronic coupling shifts the whole
spectra to the lower energy side when Do is positive, and to the
higher side when Do is negative. In contrast to the absorption
spectra in Fig. (1), energy gaps between progression peaks
remain unchanged, Also, by comparing quadratic vibronic
coupling absorption and fluoresnce spectra of the M1 model
of the mD2 ansatz, we see that quadratic vibronic coupling
breaks the mirror symmetry between the two.

Now, lets move on to theM2 model. In Fig. (5) we show its
fluorescence spectrum simulated at 300 K temperature with
Do1,1 = Do2,1 � Do equal to �250 cm�1, 0 cm�1, and 250 cm�1.

When nonlinearities are absent (Do = 0), we again see that D2

and sqD2 ansatze yeld identical fluorescence spectra, which differ
from the spectrum of the mD2 ansatz in fluorescence peak
amplitudes and frequencies. The discrepancy between spectra is
again a result of D2 and sqD2 ansatze not being able to appro-
priately represent vibronic states created by electronic coupling
between J dimer pigments. The lineshape of the mD2 fluorescence

Table 1 Energy E(e)
0 of aggregate excited state C

ðgÞ
E0

0ð Þ
��� E

for models using
D2, sqD2 and mD2 ansatze. mD2 ansatz consist of M = 5 superposition
terms. Values are in units of cm�1

M1 Do D2 sqD2 mD2

�250 �812.5 �812.5 �816.9
0 �1000.0 �1000.0 �1000.0
250 �1187.5 �1190.9 �1190.9

M2 Do D2 sqD2 mD2

�250 �956.3 �959.9 �1119.2
0 �1125.0 �1125.0 �1284.7
250 �1131.9 �1302.0 �1460.9

M3 oe
nq D2 sqD2 mD2

0.95 og
nq �265.09 �265.1 �265.0

1.0 og
nq �112.5 �112.2 �111.7

1.05 og
nq 41.1 40.4 41.1
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spectrum is dominated by the exchange narrowing effect and does
not have mirror symmetry with the absorption spectrum.

From the fluorescence spectra of the M2 model with the
quadratic vibronic coupling term (Do = �250, +250 cm�1), we
draw the same conclusions as in theM1 model: the D2 spectrum
matches mD2 spectrum better than does sqD2; effective HR
factor increases when Do is positive, and decreases when Do
is negative; quadratic vibronic coupling shift the spectra to the
lower energy side when Do is positive, and to the higher side
when Do is negative; energy gaps between progression peaks
remain unchanged from the Do = 0 spectrum.

Overall, the fluorescence spectrum of the J dimer coupled to
the high frequency vibrational modes is accurately captured
only by the mD2 ansatz, while sqD2 yields a visually slightly
worse quality spectrum than the D2 ansatz, however, neither is
a match to mD2 accuracy.

Next, lets look at the fluorescence spectra of theM3 model.
In Fig. (6) we show the fluorescence spectra of a J dimer coupled to
low frequency phonon bath modes at various temperatures. We see
that all ansatze produce qualitatively simillar fluorescence spectra
with all vibrational mode scaling factors g = 0.95, 1, and 1.05. As in
the absorption spectra of the M3 model in Fig. (3), we find
analogous effects of spectral broadening with increasing

temperature, as well as two type of spectral shifts: a static shift –
the whole spectrum shifts to the higher energies when g is positive,
and to the lower energies when g is negative, as compared to the
g = 1 case, and an additional temperature dependent fluorescence
peak shift to the higher energy side when g is positive, and to the
lower side when g is negative. In addition to these, we now observe
fluorescence peak drift to the lower energies with increasing
temperature when the frequency scale factor is g = 1, regardless of
the ansatze used.

All in all, spectra simulated with considered ansatze appear
qualitatively equivalent, thus we conclude that to simulate
fluorescence spectra of the J dimer coupled to low frequency
phonon modes, even with quadratic vibronic coupling, it is
sufficient to use the simplest D2 ansatz.

IV Discussion

Natural progression in constructing more and more sophisticated
Davydov type ansatze, would be to write down ansatz as a super-
position of sqD2 ansatze – the multi-sqD2 ansatz. This was recently
done by Zeng et al.,40 where they used it to simulate dynamics and
absorption spectra of pyrazine and the 2-pyridone dimer aggregate,

Fig. 4 Fluorescence spectrum of a monomer (M1 model) at 300 K temperature with Do1,1 equal to (a) �250 cm�1, (b) 0 cm�1, and (c) +250 cm�1

simulated using D2, sqD2 and mD2 ansatze. Arrows indicate the peak frequency shift direction when compared to the Do = 0 case.

Fig. 5 Fluorescence spectrum of a J dimer (M2 model) at 300 K temperature with Do1,1 = Do2,1, equal to (a) �250 cm�1, (b) 0 cm�1, and (c) 250 cm�1

simulated using D2, sqD2 and mD2 ansatze.
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and found a great match with the state-of-the-art multi-configuration
time-dependent Hartree (MCTDH) method results. In fact, the
presented approach of using Davydov type ansatze is closely related
to the Gaussian-MCTDH with frozen Gaussians functions for D2,
mD2 ansatze, and sqD2 with thawed Gaussian functions.6,41–43

Our analysis presented in Section (III), shows that using
sqCS, instead of regular CS, does not provide any significant
improvement in the simulated absorption and fluorescence
spectra of J dimers, even when the quadratic vibronic coupling
is used. Therefore one has to wonder if an additional numerical
effort needed to propagate multi-sqD2 ansatz is worth, since
any arbitrary wavefunction can be already exactly expanded
using the mD2 ansatz using the unity operator expression

Î ¼ p�1
ðð

dReldImljlihlj: (21)

It would be interesting to see if the multi-sqD2 ansatz would
require less terms in its superposition than the mD2 ansatz to obtain
equivalent spectra. However, this is outside the topic of this paper.

We looked at the quadratic vibronic coupling effects for low
and high frequency modes. For the high frequency modes, we
looked at large nonlinearities by increasing and decreasing the
mode frequency by 25%, which is much larger than what is
observed in molecules.14 This was chosen to investigate the limits
of all ansatze, however, for smaller nonlinearities we expect the
same conclusion, i.e., that multiple-type ansatze are required to
simulate aggregate spectra. This is because we considered strong
electronic coupling between pigments, which eventually splits the
wavepacket into several discrete packets and move quasi-
independent along seperate vibronic state energy surfaces, while
the quadratic vibronic coupling introduces only the secondary
effects, which were not captured by non-multiple ansatze.

For the low frequency modes, we considered small nonlinearities
by changing frequencies by 5%, more in line with what is observed,
with small electronic coupling between pigments, and found all
considered ansatze to produce qualitatively identical spectra. This
implies that even when quadratic vibronic coupling is the main
source of nonlinearity, for realistic frequency shifts, sqCS does not

Fig. 6 Fluorescence spectrum of a J dimer (M3 model) coupled to the bath at various temperatures with vibrational mode frequencies in aggregate
excited states oe

nq equal to (a) 0.95 og
nq, (b) og

nq, (c) 1.05 og
nq simulated using D2 (1st row), sqD2 (2nd row) and mD2 (3rd row) ansatze.
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provide any significant improvement. However, it is worth mention-
ing that the sqD2 model outperforms the D2 ansatz when searching
for excited state energy minimum when quadratic coupling is
included. This improvement may be important for other types of
processes such as charge separation and internal conversion.

In conclusion, we compared the absorption and fluorescence
spectra of the vibronic J dimer model with quadratic vibronic
coupling simulated using three increasing sophistication wave-
function ansatze: D2, sqD2 and mD2. We found that it is
necessary to use the mD2 ansatz whenever molecular aggregate
electronic DOFs are coupled to higher frequency intramolecular
vibrational modes. If they are coupled to low frequency phonon
bath modes, all three ansatze produce qualitatively the same
spectra. The quadratic vibronic coupling term manifests itself in
both absorption and fluorescence spectra as a lineshape peak
amplitude redistribution, static frequency shift and an addi-
tional shift, which is dependent on the temperature.
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Appendix
A Time-dependent variational principle

Will be using time-dependent Dirac–Frenkel variational principle
to obtain a set of equations of motion of the D2, sqD2 and mD2

ansatze free parameters: GD2
= {an(t), lkq(t)}, GsqD2

= {an(t), lkq(t),
rkq(t)} and GmD2

= {ai,n(t), li,kq(t)}. Solution of the set of equations
will result in ansatze time evolution, such that the deviation from
an exact solution of the Schrödinger equation will be minimized.
As a first step, we write down model Lagrangian in the form of

L tð Þ ¼ i

2
hC tð Þj _C tð Þi � h _C tð ÞjC tð Þi
� �

� hC tð ÞjĤjC tð Þi (A1)

where :
x(t) is the time derivative of x(t). For the sqD2 ansatz,

Lagrangian can be expressed as (hereafter, we omit explicitly
writing parameter time dependence)

LsqD2
¼ i

2

X
n

a�n _an �
i

2

X
m

am _a�m

þ i

2

X
n;h;q

anj j2 _lhql
�
hq � _l�hqlhq þ i _yhq sinh

2 rhq
� �� �

�
X
n

anj j2en �
Xnam

n;m

Vnmama�n

�
X
n;m;q

amj j2og
nq sinh2 rnq

� �
þ lnq
�� ��2� �

þ 2
X
n;q

anj j2oe
nqfnqRelnq

�
X
n;q

anj j2Donq

� cos h 2rnq
� �

� sin h 2rnq
� �

cosðynqÞ þ ð2RelnqÞ2
� �

(A2)

and for mD2, Lagrangian reads

LmD2
¼ i
X
i;j

X
n

a?i;n _aj;nSij

þ i
X
i;j

X
n

a?i;naj;nSijKij

�
X
i;j

X
n

a?i;naj;nSijen �
X
i;j

X
n;m

a?i;naj;mSijJnm

�
X
ij

X
n

a?i;naj;nSij

X
h

onhl
?
i;nhlj;nh

þ
X
ij

X
n

a?i;naj;nSij

X
h

onhfnh ~l?i;nh þ ~lj;nh
� �

�
X
ij

X
n

a?i;naj;nSij

X
h

Donh 1þ l?i;nh þ lj;nh
� �2� 	

;

(A3)

where the Debay–Waller factor is

Sij ¼ exp
X
k;q

l?i;kqlj;kq �
1

2
li;kq
�� ��2þ lj;kq

�� ��2� �( )
; (A4)

and

Kij ¼
X
kq

l?i;kq _lj;kq �
1

2

d

dt
lj;kq
�� ��2: (A5)

Now, for each Lagrangian Lb, where b = sqD2, mD2, we apply
the Euler–Lagrange equation

d

dt

@Lb

@ _gb?

 !
� @Lb
@g?b
¼ 0; (A6)

to each free parameter gb A Gb of the ansatz in order to obtain
the equation of motion.

For the sqD2 ansatz, this procedure results in a system of
differential equations:

_an ¼ �
1

2
an
X
h;q

_lhql
�
hq � _l�hqlhq

� �

� i

2
an
X
h;q

_yhq sinh
2 rhq
� �

� ianen � i
Xnam

m

Vmam

� ian
X
m;q

og
mq sinh2 rmq

� �
þ lmq

�� ��2� �

þ i2an
X
q

oe
nqfnqRelnq

� ian
X
q

Donq cosh 2rnq
� �

þ ian
X
q

Donq sinh 2rnq
� �

cos ynq
� �

þ 2Relnq
� �2

;

(A7)
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for each index n, and

_lkh ¼ �iog
khlkh þ

i

r
akj j2oe

khfkh � 4
i

r
akj j2DokhRelkh; (A8)

_rkh ¼
2

r
akj j2Dokh sin ykhð Þ; (A9)

_ykh ¼ �2og
kh � 4

akj j2

r
Dokh 1� coth 2rkhð Þ cos ykhð Þð Þ; (A10)

for each pair of {k,h} indices.
We denote r ¼

P
n anj j

2 as the total population. Only the last
two terms rkh and ykh, which make up the complex squeezing
parameter z = rkheiykh, depend on Do. Now, if we look back at
Hamiltonian terms eqn (2)–(5), we see straightaway that only
the quadratic vibronic term depends on Do, thus squeezing is
generated only by this term. Otherwise, if Do = 0, squeezing
amplitude rkh becomes time independent, while squeezing
angle ykh changes at a constant rate of �2og

kh.
For the mD2 ansatz, variational principle yields a system of

implicit differential equations:X
j

_aj;nSij þ aj;nSijKij

� �

¼ �i
X
j;m

aj;mSijJnm

� i
X
j

aj;nSij Aij þ Bij;n þ Cij;n

� �
;

(A11)

for each pair of indices {i, n}, andX
j;n

a?i;n _aj;nSijlj;kh þ Pij;n
_lj;kh þ Pij;nlj;khKij

� �

¼ �i
X
j;n;m

Gij;nmlj;khJnm

� i
X
j;n

Pij;nlj;kh Aij þ Bij;n þ Cij;n

� �

� i
X
j;n

Pij;no
g
khlj;kh þ i

X
j

Pij;kfkhoe
kh

� 2i
X
j

Pij;kDokh l?i;kh þ lj;kh
� �

;

(A12)

for a pair of {i, k, h} indices, which we additionally defined

Gij;nm ¼ a?i;naj;mSij (A13)

Pij,n = Gij,nn, (A14)

Aij ¼
X
k;q

og
khl

?
i;khlj;kh; (A15)

Bij;n ¼ �
X
h

fnhoe
nh l?i;nh þ lj;nh
� �

; (A16)

Cij;n ¼
X
h

Donh 1þ l?i;nh þ lj;nh
� �2� 	

: (A17)

For the D2 ansatz, we can once again explicitly compute
equations of motions following TDVP, however, we do not have

to, since the D2 ansatz is a simplified version of the mD2 ansatz,
when multiplicity number is set to M = 1.

Calculation of linear response functions S(1)
abs/flor requires

evaluation of two distinct coherent states. In the case of D2

and mD2 ansatze, the overlap between two distinct a and b
coherent state are given by

hlajlbi ¼ exp l�alb �
1

2
jlaj2 þ jlbj2
� �� 	

: (A18)

Meanwhile, overlap of two squeezed coherent states, as used
in the sqD2 ansatz, is given by expression13

hla; zajlb; zbi ¼
1ffiffiffiffiffiffi
zab
p exp � laj j2þ lbj j2

2

 !

� exp
l�alb
zab
þ l�2a
2zab

Zab þ
l2b
2zab

Zba

� 	
; (A19)

where

Zab = e�iy
b cos h(ra)sin h(rb) �e�iy

a cos h(rb) sin h(ra), (A20)

zab = cos h(ra) cos h(rb) �ei(y
b
�y

a) sin h(ra)sin h(rb) (A21)
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The Dirac-Frenkel variational method with Davydov D2 trial wavefunction is extended by introducing a
thermalization algorithm and applied to simulate dynamics of a general open quantum system. The algorithm
allows to control temperature variations of a harmonic finite-size bath when in contact with the quantum
system. Thermalization of the bath vibrational modes is realized via stochastic scatterings, implemented as
a discrete-time Bernoulli process with Poisson statistics. It controls bath temperature by steering vibrational
modes’ evolution towards their canonical thermal equilibrium. Numerical analysis of the exciton relaxation
dynamics in a small molecular cluster reveals that thermalization additionally provides significant calculation
speedup due to the reduced number of vibrational modes needed to obtain the convergence.

DOI: 10.1103/PhysRevA.103.032202

I. INTRODUCTION

Obtaining dynamics of open quantum systems, i.e., quan-
tum systems that are identified as separate from their
environment yet remain in thermal contact with it, is one of
the most general non-equilibrium statistical physics problem.
Its applicability ranges from excited state relaxation in opti-
cal response [1,2], energy transport in molecular aggregates
[3–8], photosynthetic complexes [9–12], to others [13–17].
Prevalent theoretical description is given in terms of a system-
bath model in constant-temperature bath conditions [18,19],
where the system degrees of freedom are coupled to the bath-
induced thermal fluctuations representing the environment,
e.g., phonons or vibrational motion of surrounding molecules.
Fluctuations are modeled by an infinite number of quantum
harmonic oscillators constituting the quantum bath at thermal
equilibrium.

These conditions can be fulfilled using the reduced den-
sity matrix approach [2,7]. Second order perturbation theory,
with respect to the system-bath coupling, leads to the reduced
equations of motion of the system-only variables, while the
bath is averaged out. Then the system variables indirectly
depend on the bath degrees of freedom via fluctuation corre-
lation functions, which are well-behaved analytical functions.
At the second perturbation order [7,18], equations of motion
are reminiscent of the Pauli master equation with relaxation
coefficients calculated with respect to the thermal equilibrium.
However, now the resulting equations can lead to unphysical
results, e.g., negative probabilities [20]. The more compli-
cated fourth-order equations of motion include divergent
parameters and are often avoided [21]. A nonperturbative, nu-
merically exact approach of hierarchical equations of motion
for the exponential fluctuation correlation functions is avail-
able to obtain the exact dynamics [22–24], and chain-mapping
techniques together with the time-dependent density matrix
renormalization group are alternatively possible for struc-

tured environments [25,26]. However, computational costs
limit these methods to models with just few degrees of
freedom. A well-known method of stochastic Schrödinger
equation requires averaging over many entangled trajectories
to obtain dynamics at finite temperature [27–32]. Its hier-
archical realization [33] improves convergence; meanwhile,
the thermofield dynamics approach tries to directly compute
thermally averaged dynamics by mapping the initial thermal
density matrix onto a fictitious bath vacuum state and then
coupling the system to it [34–37]. Alternatively, dissipative
dynamics can be obtained by straightforward addition of a
linear friction coefficient to the model Hamiltonian [38]; how-
ever, it only applies at zero temperature. Yet, in all these
cases, the thermal state of the nearest surrounding is not under
control.

An important aspect of the bath, or more explicitly of the
finite number of bath oscillators, is its heat capacity. For a
single quantum harmonic oscillator the heat capacity in the
limit of weak system-bath coupling is given by

c
(
β−1

) =(βω)2 exp(βω)

[exp(βω) − 1]2
, (1)

where throughout the paper h̄ = 1, β = (kBT )−1 is an inverse
temperature, and ω is the oscillator frequency. When the sys-
tem exchanges energy with a bath made of such oscillators,
its temperature may be affected. If the system-bath energy
exchange is excessively large, the thermal energy can accumu-
late in the bath oscillators and this will effectively change the
thermostat temperature [39]. In most cases, the bath heating
effect is undesirable as, in the system-bath models, the bath is
generally supposed to represent a constant-temperature ther-
mostat.

On the other hand, the bath heating effect could be re-
lated to the natural phenomenon of molecular local heating
[40,41]; i.e., if a molecule quickly dissipates a large amount
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of thermal energy to its environment, e.g., due to exciton-
exciton annihilation [42–44] or ultrafast molecular internal
conversion [45,46], the local heating of the molecule nearest
the surrounding takes place and the further cooling process,
the quantum thermalization [47,48], becomes an important
ingredient to consider when describing the corresponding ex-
periments.

In this work, we introduce the thermalization algorithm
to the time-dependent variational theory that allows explicit
control over the bath temperature. By varying the bath size
and the thermalization rate, both the degree of bath heating
and the cooling time can be adjusted. These properties allow
to mimic realistic physical conditions, making the presented
approach superior to the density-operator-based approaches,
where the bath heating is excluded, and to the explicit bath
models, where the bath temperature is not controlled.

II. FLUCTUATING EXCITON MODEL

We consider a molecular aggregate made of N coupled
chromophores at specific sites. In the simplest case, the sites
represent distinct molecules that can be electronically excited
by, e.g., laser or sunlight irradiation in the visible spectral
region. Vibrational normal modes of molecules and of the
surrounding medium will be treated as the baths of harmonic
oscillators. Each chromophore is directly affected only by
its own intramolecular vibrations and of its closest environ-
ment; therefore, a separate and uncorrelated (local) manifold
of vibrational modes q = 1, 2, . . . , Q is associated with each
chromophore. Such a model is characterized by a Hamiltonian
Ĥ = ĤS + ĤB + ĤSB, with system, bath, and system-bath-
coupling terms being

ĤS =
∑

n

εnâ†
nân +

n �=m∑
n,m

Jnmâ†
nâm, (2)

ĤB =
∑
n,q

ωnqb̂†
nqb̂nq, (3)

ĤSB = −
∑

n

â†
nân

∑
q

ωnqgnq(b̂†
nq + b̂nq ). (4)

Here εn denotes the nth chromophore electronic excitation
energy, Jnm is the resonant coupling between nth and mth
chromophores, and â†

n and ân are the corresponding electronic
excitation creation and annihilation bosonic operators. The
frequency of the qth vibrational mode in the nth bath is ωnq,
the electron-vibrational coupling is characterized by gnq, and
b̂†

nq and b̂nq are the creation and annihilation bosonic operators
of the qth mode in the nth bath.

In the following we consider only a single electronic
excitation in the aggregate. The time evolution of a nonequi-
librium state is described by the Davydov D2 wavefunction
[49,50]

∣∣�D2

〉 =
N∑
n

αn(t )â†
nân|0〉el ×

N,Q∏
m,q

|λmq(t )〉, (5)

where αn(t ) is the electronic excitation amplitude, and |0〉el =∏
n |0〉n is the global ground state, when all sites are in their

electronic ground states. |λmq(t )〉 is the coherent state of the

qth mode in the mth bath [51,52]. It is fully described by
the time-dependent complex displacements, λmq(t ). The time-
dependent Dirac-Frenkel variational method allows to obtain
equations of motion for parameters αn and λmq [3,6,53,54]:

dαn(t )

dt
= −iαn(t )εn − i

m �=n∑
m

αm(t )Jnm

+iαn(t )
∑

q

ωnq(2gnq − hq )Re(λnq(t )), (6)

dλmq(t )

dt
= −iωmq(λmq(t ) − hq(t )). (7)

Here hq(t ) = ∑N
i giq|αi(t )|2 is the site population-weighted

electron-vibrational coupling strength. The first line in Eq. (6)
describes the dynamics of an isolated system. Accordingly,
the first term on the right-hand side of Eq. (7) describes
isolated oscillator. Other terms are due to the system-bath
interaction.

Description of the model at a given temperature T requires
creation of a statistical ensemble. This is achieved by Monte
Carlo sampling over a statistical thermal ensemble, i.e., over
initial bath oscillator displacements λmq(0), sampled from the
Glauber-Sudarshan probability distribution [55]

P (λmq) = Z−1 exp(−|λmq|2[eβωmq − 1]). (8)

The ensemble describes canonical statistics of quantum har-
monic oscillators, which applies to our model prior to external
perturbations. The ensemble-averaged quantities will be de-
noted by 〈· · · 〉th. The ensemble of exciton trajectories allows
to describe irreversible excitation energy relaxation. While
the initial thermal state before excitation can be properly
defined, the bath accepts energy during exciton relaxation
and the state of the bath after relaxation steers away from
equilibrium. Equations of motion guarantee energy conser-
vation; hence the combined system-bath cannot thermalize.
In order to thermalize the bath, we extend the original model
by introducing the secondary bath (we will refer to the local
baths as the primary baths). The effective heat capacity of the
secondary bath is infinite; hence, the bath can be characterized
by a constant temperature T∞. The secondary bath will not be
treated explicitly: modes of the primary baths interact with the
secondary bath via stochastic scattering events, or quantum
jumps [56,57], which affect the kinetic energy of primary bath
modes.

The scattering statistics follows the Poisson distribution
Pmq(θ, τ ) = 1

θ! (τνmq )θe−τνmq , which defines the probability of
observing θ scattering events per time interval τ with individ-
ual event scattering rate νmq. Poisson statistics is obtained by
simulating a discrete-time Bernoulli process [58,59] in a limit
of τ → 0 and νmqτ � 1. This is realized in simulations by
dividing the total evolution time ttotal into equidistant length
τ intervals. At the end of each interval, for each mode in the
primary bath, we flip a biased coin with probability νmqτ of
landing “heads.” If the coin lands heads, we shift the momen-
tum of the mode pmq(kt ) = √

2Imλmq(kt ) to a value drawn
from the Glauber-Sudarshan distribution [see Eq. (8)], while
the coordinate remains unchanged. Otherwise, if coin lands
“tails,” no changes are done. To obtain converged statistics,
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FIG. 1. Phase-space trajectory of one specific bath mode ωq =
100 cm−1 for a single excited chromophore calculated with various
scattering rates ν. The initial temperature of the primary bath is
T1(0) = 300 K and the secondary bath is at a constant temperature
T∞ = 200 K. The scattering step size is τ = 0.01 ps. Wiggles in dy-
namics are due to finite-size ensemble averaging (5000 trajectories).

we apply the thermalization algorithm to every trajectory of
the thermal ensemble.

III. SIMULATION RESULTS

We first demonstrate control of the primary bath tem-
perature of the simplest possible system, a single, N = 1,
chromophore unit. For demonstration we set up artificial con-
ditions: the initial primary bath temperature is T1(0) = 300 K,
and the secondary bath is at T∞ = 200 K. The primary bath
consists of Q = 750 vibrational modes with frequencies ωq =
ω0 + (q − 1)�ω. An offset by ω0 = 0.01 cm−1 is introduced
for stability and a step size �ω = 1 cm−1. The coupling
parameters gnq follow the super-Ohmic spectral density func-
tion C′′(ω) = ωs exp (−ω/ωc) with s = 2 and ωc = 100 cm−1

[3,60]. The number of modes and discretization parameters
are sufficient to obtain convergent model dynamics. For ther-
malization, we consider scattering rates of all modes to be
equal, νmq → ν, and the scattering step size is τ = 0.01 ps−1.
The thermal ensemble consists of 5000 trajectories.

In Fig. 1 the coordinate 〈x1q〉th = 〈√2Reλ1q〉th and mo-
mentum 〈p1q〉th = 〈√2Imλmq〉th phase-space trajectory of a
single 100 cm−1 frequency vibrational mode, calculated with
various scattering rates ν, is presented. The oscillator, in the
absence of thermalization, evolves along a closed trajectory
around xmin

1q = √
2g1q. Applying the thermalization proce-

dure, a dissipative-type trajectory is observed. The coordinate
〈x1q〉th equilibrates to xmin

1q (equilibrium is shifted from zero
due to coupling with the system), while momentum 〈p1q〉th
approaches zero. The thermalization time can be adjusted
by changing the scattering rate, ν. Both weakly damped and
overdamped regimes become available.

The transient temperature of the primary bath can be
estimated [39] by computing the average kinetic energy
〈Kmq(t, ε)〉th over the time interval ε. The parameter ε then
implies the resolution. For the whole primary bath the tran-

FIG. 2. The primary bath temperature T1(t ) calculated with vari-
ous scattering rates ν. The initial temperature of the primary bath is
T1(0) = 300 K and the secondary bath is at a constant temperature
T∞ = 200 K. The scattering step size is τ = 0.01 ps.

sient temperature is then given by

Tm(t ) = 1

kBQ

Q∑
q=1

ωmq ln

(
1 + ωmq

2〈Kmq(t, ε)〉th

)−1

. (9)

In Fig. 2 we present the primary bath temperature calculated
with ε = 50 fs and various scattering rates, ν. In the absence
of thermalization, the primary bath temperature remains at the
initial value of T1(0) = 300 K. Meanwhile, thermalization in-
troduces cooling of the primary bath down to the temperature
of the secondary bath. The scattering rate, ν, allows to control
the thermalization time.

The temperature control and stability considerably af-
fect the electronic excitation dynamics. To demonstrate the
sensitivity of the excitation evolution to the thermaliza-
tion, we consider a linear N = 3 chromophore aggregate,
with chromophore transition energies 0, 250, and 500
cm−1, and nearest-neighbor coupling J = 100 cm−1. Ex-
cited states of such chromophore aggregate are excitons
[7,61]. They represent electronic excitations delocalized
over several sites with time-dependent delocalization length
[62]. Hence, we switch to the eigenstate basis (exciton
representation, defined by ĤSψ

(exc) = εψ (exc)): ρ(exc)
e (t ) =∑

n,m (ψ (exc)
ne )�〈α∗

n (t )αm(t )〉thψ
(exc)
me . The initial electronic state

corresponds to the optically excited highest-energy exciton
eigenstate. The parameters of the primary baths of chro-
mophores are the same as above; however, now the initial
primary bath temperature and the secondary bath temperature
are the same: Tm(0) = T∞ = 77 K. The thermal ensemble
consists of 240 trajectories. In Fig. 3 we present exciton
state populations ρexc

e (t ) and the primary bath temperatures
Tm(t ) calculated in (i) the dense primary bath discretization
regime without thermalization (the bath discretization step
size is �ω = 1 cm−1, Q = 750 vibrational modes per site),
(ii) the sparse discretization regime without thermalization
(�ω = 50 cm−1, Q = 15), and (iii) the sparse discretized bath
with thermalization (ν = 2.5 ps−1).

Consider the excitation dynamics without thermalization.
In models (i) and (ii) exciton populations sequentially relax
to lower-energy exciton states, eventually reaching the low-
est energy state [63–65]. The final population distribution in
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FIG. 3. Multisite bath model exciton state populations ρexc
n (t )

and local bath temperatures Tm(t ) calculated in model (i), the dense
primary bath discretization regime without thermalization, in model
(ii), the sparse discretization regime without thermalization, and in
model (iii), the sparsely discretized bath with thermalization (ν =
2.5 ps−1).

the sparse regime, model (ii), significantly differs from the
dense case. The origin of the discrepancy is twofold: the bath
recursion time trec = 2π/�ω for model (ii) is shorter than
the calculation time trec < ttotal, and the sparse primary bath
shows significant growth of the bath temperature [compare
Figs. 3(b) and 3(d)]. Both of these drawbacks are addressed
by introducing the bath thermalization in model (iii). Looking
at Fig. 3(e), we see that the exciton population dynamics
and steady-state values for model (iii) become quantitatively
comparable to the case of model (i).

IV. DISCUSSION

A single quantum harmonic oscillator is characterized by
a specific heat c(β−1) < kB, which depends on temperature
as given by Eq. (1). For a given set of bath oscillators the
specific heat at a given temperature can be estimated; however,
the harmonic oscillators of the bath as defined by Eq. (3) do
not exchange energy. Accordingly, as the system relaxes, only
a few in-resonant oscillators accept the energy and diverge

away from equilibrium [66]. Hence, the temperature at which
excitation dynamics occurs no longer matches the initial bath
temperature; local heating takes place.

A straightforward approach to avoid heating is to increase
the bath density of states until the dynamics of interest
converges (in our model, this is achieved by increasing
the number of bath oscillators). However, this is accept-
able only for small systems, since computation effort scales
quadratically with both number of sites and bath oscillators.
Thermalization can be utilized to steer the bath to the re-
quired temperature. An additional merit of thermalization is
the significant reduction of the number of vibrational modes
needed per bath. Our simulations show convergence with just
15 modes per bath while maintaining comparable exciton
relaxation dynamics (Fig. 3).

In an effort to reduce the computational effort, Wang et al.
[67] used a logarithmic bath discretization. However, high-
frequency representation of the continuous spectral density
becomes poor. Our model is in line with the explicit surrogate
Hamiltonian [68] and its stochastic realization [69–71]; while
our approach does not require the explicit modeling of the
secondary bath, it still maintains proper quantum dynamics
in the system.

The time-dependent variational approach with the Davy-
dov D2 Ansatz can be improved by considering more complex
Davydov Ansätze family members, e.g., multitude of D1

Ansatz (multi-D1) and multi-D2 [53,67,72,73] or its Born-
Oppenheimer approximated variant [74], sD2. Either way,
they all suffer from finite bath heating capacity, in most cases,
even stronger than the D2 Ansatz, because of the significantly
increased computational effort needed to propagate numerous
bath oscillators. Work is in progress on adapting the presented
thermalization algorithm to these more intricate Ansätze.

In conclusion, we present a system-bath model with
stochastic bath thermalization using the time-dependent vari-
ational approach with Davydov D2 Ansatz. Thermalization
allows to steer the bath vibrational mode evolution towards
an equilibrium thermal state of selected temperature in a
controlled way, and at the same time for the bath to still
maintain an aspect of being coupled to the system. In addition,
by analyzing exciton relaxation dynamics of a chromophore
aggregate with thermalization, we found the exciton dynamics
to converge with a much smaller number of bath modes,
significantly speeding up numerical computation.
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Numerical implementation of an explicit phonon bath requires a large number of oscillator modes in order to
maintain oscillators at the initial temperature when modeling energy relaxation processes. An additional ther-
malization algorithm may be useful in controlling the local temperature. In this paper we extend our previously
proposed thermalization algorithm [M. Jakučionis and D. Abramavičius, Phys. Rev. A 103, 032202 (2021)] to be
used with the numerically exact multiple-Davydov-D2 trial wave function for simulation of relaxation dynamics
and spectroscopic signals of open quantum systems using the time-dependent Dirac-Frenkel variational principle.
By applying it to the molecular aggregate model, we demonstrate how the thermalization approach significantly
reduces the numerical cost of simulations by decreasing the number of oscillators needed to explicitly simulate
the aggregate’s environment fluctuations while maintaining correspondence to the exact population relaxation
dynamics. Additionally, we show how the thermalization can be used to find the equilibrium state of the excited
molecular aggregate, which is necessary for simulation of the fluorescence and other spectroscopic signals. The
thermalization algorithm we present offers the possibility to investigate larger system-bath models than was
previously possible using the multiple-Davydov-D2 trial wave function and local heating effects in molecular
complexes.

DOI: 10.1103/PhysRevA.107.062205

I. INTRODUCTION

Open-quantum-system models are widely used to de-
scribe properties of molecular aggregates [1,2]. The system
usually consists of molecular electronic states. Intramolec-
ular vibrational degrees of freedom (DOFs), which play a
major role in the relaxation process of the systems of in-
terest, can also be included in the quantum-system model.
The rest of the DOFs are treated as an environment of
a constant temperature: the bath. The bath is modeled as
a collection of quantum harmonic oscillators (QHOs) and
is characterized by a continuous-fluctuation spectral density
function [2–5]. Separation into the system and the bath parts
is mostly a formality as the system-bath coupling has to
be included to account for molecular environment-induced
decoherence and temperature effects; hence the quantum dy-
namics penetrates into the bath and the bath also changes its
state.

When using wave-function-based simulation approaches,
it can be challenging to maintain a precise representation
of the bath as a constant temperature thermostat, because
energy exchange between the system and the bath can alter
thermal properties of the bath. Generally, a large number
of explicitly modeled QHO modes have to be included to
minimize the negative effects of thermal energy accumulation
in the bath, but this is numerically expensive. Therefore, one
always has to balance between the size of the model, the
accuracy of the chosen numerical method, and the method’s
numerical cost. Alternatively, one could numerically change
the wave-function variables during its time evolution in a way
so as to prevent accumulation of the thermal energy in the
bath and to maintain it at a desired temperature, i.e., perform
thermalization.

It is challenging to accurately simulate the dynamics of
quantum systems that exchange energy and (quasi)particles
with their surroundings, i.e., of the open quantum systems
[6,7], because the numerical cost needed to propagate the
corresponding dynamical equations in time increases ex-
ponentially with the number of DOFs. The wave-function
approach based on the multiple-Davydov-D2 trial wave func-
tion (multiple-Davydov-D2 Ansatz) [8–12], along with the
time-dependent variational principle, has been shown to be
an excellent tool for accurately simulating the dynamics
of system-bath models [8,13–19] and spectroscopic signals
[10,18–21]. Despite relying on an adaptive time-dependent
state basis set, the problem of rapidly growing numerical costs
remains.

In a previous study we proposed the thermalization algo-
rithm [22] to be used with the Davydov-D2 Ansatz [13,23–
28], which restricts QHOs to their lowest uncertainty states:
coherent states [29,30] with Gaussian wave packets in their
coordinate-momentum phase space. We demonstrated how
the thermalization algorithm regulates the temperature of the
environment and enables the electronically excited molec-
ular system to relax into its equilibrium state at a given
temperature [31–33] even when using a reduced number
of bath oscillators, which greatly reduces numerical costs.
The characteristics of the resulting equilibrium state are
essential for modeling fluorescence, excited-state emission,
excited-state absorption, and other spectroscopic signals [1].
However, the Davydov-D2 Ansatz is a crude approximation
of the actual system-bath model eigenstates and thus is un-
able to completely capture electronic population relaxation
dynamics [10].

Meanwhile, the system-bath dynamics obtained using the
multiple-Davydov Ansätze is consistent with the results from

2469-9926/2023/107(6)/062205(8) 062205-1 ©2023 American Physical Society
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other state-of-the-art methods, such as hierarchical equa-
tions of motion [9–11], the quasiadiabatic path integral [14],
and the multiconfiguration time-dependent Hartree method
[15,34], even when the number of bath oscillators is large.
Due to the more complicated wave-function structure of the
multiple-Davydov-D2 ansatz, straightforward application of
the D2 Ansatz thermalization algorithm is not possible. In
this work we extend the thermalization algorithm for the
multiple-Davydov-D2 Ansatz by introducing an additional
state projection algorithm and adopting the coarse-grained
scattering approximation.

In Sec. II we describe the thermalization algorithm for
the multiple-Davydov-D2 Ansatz. In Sec. III we provide a
theoretical description of its application to simulating the flu-
orescence spectra. In Sec. IV we demonstrate its capabilities
by simulating the excitation relaxation dynamics of an H-type
molecular aggregate and its fluorescence spectrum. In Sec. V
we discuss changes made to adapt the thermalization algo-
rithm of the D2 Ansatz for the multiple-Davydov-D2 Ansatz.

II. THERMALIZATION OF THE
MULTIPLE-DAVYDOV-D2 ANSATZ

We consider a molecular aggregate model, where each
molecule n = 1, 2, . . . , N couples to its own local reservoir
k = 1, 2, . . . , N , each of which consists of q = 1, 2, . . . , Q
QHO modes. The model is given by the Hamiltonian Ĥ =
ĤS + ĤB + ĤSB with the system, the bath, and the system-
bath coupling terms defined as

ĤS =
N∑
n

εnâ†
nân +

n �=m∑
n,m

Jnmâ†
nâm, (1)

ĤB =
N,Q∑
k,q

ωkqb̂†
kqb̂kq, (2)

ĤSB = −
N∑
n

â†
nân

Q∑
q

ωnqgnq(b̂†
nq + b̂nq), (3)

with the reduced Planck’s constant set to h̄ = 1. Here εn is
the nth molecule electronic excitation energy, Jnm denotes
the resonant coupling between the nth and mth molecules,
ωnq denotes the frequency of the qth QHO in the kth local
reservoir, and gnq is the coupling strength between the qth
oscillator in the nth local reservoir and the nth molecule. The
operators â†

n and ân represent the creation and annihilation op-
erators for electronic excitations, respectively, while b̂†

nq and

b̂nq represent the creation and annihilation bosonic operators
for QHOs.

In addition, we implicitly couple the system-bath model
to the secondary bath characterized by a fixed temperature T .
The coupling between the secondary and primary baths occurs
via the scattering events that allow the system-bath model to
exchange energy with the secondary bath and thermalize local
reservoirs, as is described below.

The state of the system-bath model is given by the
multiple-Davydov-D2 wave function

|�(t )〉 =
M,N∑
i,n

αi,n(t )|n〉 ⊗ |λi(t )〉, (4)

where αi,n(t ) is the ith multiple complex amplitude associated
with a singly excited electronic state |n〉 localized on the nth
molecule, |n〉 = â†

n|0〉el. Here |0〉el is the electronic ground
state. The complexity and accuracy of the multiple-Davydov-
D2 Ansatz can be adjusted by varying the multiplicity number
M. The states of the QHO modes are represented by multidi-
mensional coherent states

|λi(t )〉 = exp
N,Q∑
k,q

[λi,kq(t )b̂†
kq − λ�

i,kq(t )b̂kq]|0〉vib, (5)

where λi,kq(t ) is the ith multiple complex displacement
parameter and |0〉vib = ⊗k,q|0〉k,q is the global vibrational
ground state of all QHOs.

The multiple-Davydov-D2 wave function describes a state
of the system-bath model as a superposition of M multidi-
mensional coherent state terms, which allows it to represent
a wide range of system-bath model states beyond the
Born-Oppenheimer and Gaussian approximations. The ther-
malization algorithm for the multiple-Davydov-D2 Ansatz is
realized by stochastic scattering events [35,36] during time
evolution of the wave function. These events change the mo-
menta pkq of all the qth QHO modes of the kth local reservoir
at once. We assume that the scattering probability Pk (θ, τsc)
of θ scattering events occurring per time interval τsc with a
scattering rate νk is given by a Poisson distribution

Pk (θ, τsc) = 1

θ !
(τscνk )θe−τscνk . (6)

Numerically, Poisson statistics are realized by simulating
Bernoulli processes [37,38] in the limit of τsc → 0 while
maintaining the condition that νkτsc � 1. To simulate the
scattering events, we divide wave-function propagation into
equal time length τsc intervals

ti = (iτsc, (i + 1)τsc], i = 0, 1, . . . . (7)

At the end of each interval, for each local reservoir, we flip
a biased coin with the probability νkτsc of landing heads for
all local reservoirs. If the kth coin lands heads, we change
the momenta of all oscillator modes of that kth reservoir;
otherwise, no changes are made. A list of scattering moments
at which the numerical simulation is paused to perform the
scatterings can be precomputed prior to starting the simulation
by drawing probabilities for all local reservoir and all time
intervals ti from Eq. (6).

We assume that during the scattering event the local
bath, which experiences the scattering, acquires thermal-
equilibrium kinetic energy. Such a state is given by a single
coherent state for one specific QHO. In order to set the new
momentum values of the scattered reservoir oscillator modes,
we first project the multiple-Davydov-D2 wave function of
Eq. (4) to its single-multiple Davydov-D2 form

|ψ (t )〉 =
N∑
n

βn(t )|n〉 ⊗ |λ̃(t )〉, (8)

where βn are the projected complex electronic amplitudes
and |λ̃(t )〉 is the projected multidimensional coherent state,
which is defined later. This follows the decoherence idea [39],
where the macroscopic environment performs a collapse of
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the wave function into a set of preferred states, in our case,
the electronic-vibrational states |n〉 ⊗ |λ̃(t )〉. The projected
complex electronic amplitudes are equal to

βn(t ) =
M∑
i

αi,n(t )〈λ̃(t )|λi(t )〉, (9)

while the projected multidimensional coherent state

|λ̃(t )〉 = exp
N,Q∑
k,q

[λ̃kq(t )b̂†
kq − λ̃�

kq(t )b̂kq]|0〉vib (10)

is defined in terms of the complex displacements

λ̃kq(t ) = 1√
2

[xkq(t ) + ipkq(t )], (11)

where xkq(t ) and pkq(t ) are QHO coordinate and momentum
expectation values

xkq = 1√
2

M,M,N∑
i, j,n

α�
i,nα j,n〈λi|λ j〉

N,Q∑
k,q

(λ�
i,kq + λ j,kq ), (12)

pkq = i√
2

M,M,N∑
i, j,n

α�
i,nα j,n〈λi|λ j〉

N,Q∑
k,q

(λ�
i,kq − λ j,kq ) (13)

calculated from the multiple-Davydov-D2 Ansatz, where
〈λi|λ j〉 is the overlap of two coherent states

〈λi|λ j〉 = exp
N,Q∑
k,q

[
λ�

i,kqλ j,kq − 1

2
(|λi,kq|2 + |λ j,kq|2)

]
. (14)

This completes the projection operation of the multiple-
Davydov-D2 state, given by Eq. (4), into its simplified D2

form in Eq. (8).
Once the projected wave function is deduced, we mod-

ify the momenta of the scattered oscillators by sampling the
QHO diagonal density operator distribution in the coherent
state representation at temperature T , known as the Glauber-
Sudarshan distribution [14,40–42]

P (λ̃kq) = Z−1
kq exp[−|λ̃kq|2(eωkq/kBT − 1)]. (15)

For scattered modes, we set the momentum values in
Eq. (11) to

pkq(t ) =
√

2Im
(
λ̃P

kq

)
, (16)

where λ̃P
kq is a sample drawn from the Glauber-Sudarshan

distribution. In addition, Z−1
kq and ωkq are partition func-

tions and frequencies of the QHO, respectively, and kB is
the Boltzmann constant. During the scattering events, coordi-
nates xkq of both the scattered and nonscattered modes remain
unchanged. Notice that the local baths, which do not experi-
ence scattering, remain unaffected by the scattering of other
modes.

Now that the wave function of the system-bath model
after scattering is known [given by Eq. (8)] we rewrite it in
the multiple-Davydov-D2 wave-function form of Eq. (4) by
populating amplitudes and displacements of the first multiple

i = 1 as

α1,n(t ) = βn(t ), (17)

λ1,kq(t ) = λ̃kq(t ). (18)

The amplitudes of the unpopulated multiples are set to
α j=2,...,M,n(t ) = 0, while the unpopulated displacements are
positioned in a layered hexagonal pattern around the popu-
lated coherent state [18]

λ j=2,...,M,kq(t ) =λ1,kq(τ )

+ 1
4 [1 + 	β( j)
]ei2π[β( j)+(1/12)	β( j)
], (19)

where β( j) = ( j − 2)/6 is the coordination function and 	x

is the floor function. The exact arrangement of displacements
of the unpopulated multiples is not critical as long as the
distance in the phase space to the populated multiple coherent
state is not too large; otherwise, the initially unpopulated
multiples will not contribute to further dynamics [16,43].

Once the scattered multiple-Davydov-D2 wave function
is determined and the scattering event is finalized, fur-
ther simulation of multiple-Davydov-D2 dynamics according
to equations of motion (EOMs) proceeds. This procedure
generates a stochastic wave-function trajectory, where the
system-bath model at each time moment is described by a
pure state, which is a single member of a statistical ensem-
ble [14,41]. The thermalized model dynamics is obtained by
averaging observables over an ensemble of wave-function
trajectories γ , which differ by their initial amplitudes αi,n(0),
initial coherent state displacements λi,kq(0), and a sequence
of scattering events. Ensemble averaging is performed in a
parallelized Monte Carlo scheme.

III. THERMALIZED FLUORESCENCE SPECTRA

Wave-function trajectories allow calculation of an arbitrary
observable. Calculation of the equilibrium fluorescence spec-
trum requires us to know the thermally equilibrated state of
the excited model. The presented thermalization procedure
allows us to obtain such a state and calculate the fluorescence
spectrum.

In general, the frequency-domain spectrum of a quantum
system can be written as a Fourier transform

F (ω) = Re
∫ ∞

0
dt eiωt S(t ) (20)

of the corresponding time-domain response function S(t ).
The fluorescence response function Sfl(t ) is a specific case of
the more general time-resolved fluorescence (TRF) response
function [1,44]

STRF(τeq, t ) = 1

�

�∑
γ=1

〈�G(0)|γ μ̂−V̂†
E(τeq + t )μ̂+

× V̂G(t )μ̂−V̂E(τeq)μ̂+|�G(0)〉γ , (21)

where V̂E and V̂G are the excited- and ground-state system-
bath propagators

V̂A(t1)|�A(t2)〉 = |�A(t1 + t2)〉, (22)
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μ̂+ = ∑N
n (e · μn)â†

n and μ̂− = ∑N
n (e · μn)ân are the excita-

tion creation and annihilation operators of the system [18],
respectively, μn is the electronic transition dipole moment
vector, e is the external field polarization vector, and |�G(0)〉γ
is a model ground state with an initial condition of the γ th
trajectory. The EOMs for propagating the multiple-Davydov-
D2 wave function, as well as the approach to solving them, are
described in detail in Refs. [18,43].

Here STRF(τeq, t ) is a function of two times: the equi-
libration time τeq and the coherence time t . During the
equilibration time, the system evolves in its excited state and,
due to the system-bath interaction, relaxes to an equilibrium
state. After this, during the coherence time, spontaneous emis-
sion occurs.

We will apply thermalization during the equilibration time
to facilitate the relaxation of the system-bath model into
the lowest-energy equilibrium state by removing excess ther-
mal energy from local reservoirs. We denote by ĜE,γ the
excited-state propagator V̂E but with thermalization. Then the
thermalized TRF (TTRF) response function can be written as

S̃TRF(τeq, t ) = 1

�

�∑
γ=1

〈�G(0)|γ μ̂−Ĝ†
E,γ (τeq)V̂†

G(t )μ̂+

× V̂G(t )μ̂−ĜE,γ (τeq)μ̂+|�G(0)〉γ . (23)

By considering the equilibration time to be long enough to
reach the equilibrium state of the system-bath model, we
define the fluorescence response function as

Sfl(t ) = lim
τeq→∞ STRF(τeq, t ) (24)

and the thermalized fluorescence (TF) response function as

S̃fl(t ) = lim
τeq→∞ S̃TRF(τeq, t ). (25)

The spectra obtained using the fluorescence response function
without and with thermalization will be compared in the next
section. For the numerical simulation, the required equilibra-
tion time interval has to be deduced by increasing τeq until the
resulting fluorescence spectra converge.

IV. RESULTS

To investigate the thermalization algorithm for the
multiple-Davydov-D2 Ansatz, we will analyze the linear
trimer model, which we previously used to study
thermalization of the Davydov-D2 Ansatz [22]. The model
consists of N = 3 coupled molecules, with excited-state
energies εn being equal to 0, 250, and 500 cm−1, forming
an energy funnel. The nearest-neighbor couplings are set to
J1,2 = J2,3 = 100 cm−1 and J3,1 = 0. The electronic dipole
moment vectors of molecules are μn = (1, 0, 0) in the
Cartesian coordinate system. This classifies the trimer as the
H-type molecular aggregate [45].

The QHOs of local molecular reservoirs are characterized
by the super-Ohmic [46] spectral density function
C′′(ω) = ω(ω/ωc)s−1 exp(−ω/ωc) with an order parameter
s = 2 and a cutoff frequency ωc = 100 cm−1. The QHO
frequencies are ωkq = ω0 + (q − 1)�ω, where the frequency
offset is ω0 = 0.01 cm−1. The reorganization energy of

each local reservoir is �k = ∑
q ωkqg2

kq = 100 cm−1.
The scattering time step size is set to τsc = 0.01 ps. Finally, the
ensemble consists of 900 wave-functions trajectories, which
we found to be sufficient to obtain the converged model
dynamics. The multiple-Davydov-D2 Ansatz multiplicity
M = 5 is used as the results with a higher multiplicity
quantitatively match the M = 5 case.

We will be considering three bath models: the dense bath
model, where the spectral density function C′′(ω) is dis-
cretized into Q = 75 oscillators per local reservoir with a step
size of �ω = 10 cm−1; the sparse bath model, where the
number of modes is reduced by a factor of 5 to just Q = 15
oscillators per local reservoir with �ω = 50 cm−1; and the
sparse bath with thermalization model, where C′′(ω) is dis-
cretized according to the sparse bath model and thermalization
is used.

In the absence of the bath, the system has three single-
excitation stationary exciton states with energies E exc

1 ≈
−37.23 cm−1, E exc

2 = 250 cm−1, and E exc
3 ≈ 537.23 cm−1,

satisfying the time-independent Schrödinger equation

ĤS�
exc
n = E exc

n �exc
n , (26)

with the system Hamiltonian given by Eq. (1). The exciton
eigenstates [2,4] �exc

n have their excitations delocalized over
multiple molecules [41]. Therefore, it is convenient to analyze
molecular aggregate excitation relaxation dynamics in terms
of excitons as they are natural quasiparticles of the aggregate.
We define the probability of finding the aggregate in its nth
excitonic state as the population, given by

ρexc
n (t ) =

∑
k,l,i, j

(
�exc

k

)�

n〈α�
i,k (t )α j,l (t )Si, j (t )〉th

(
�exc

l

)
n, (27)

where 〈· · · 〉th is the averaging over an ensemble of wave-
function trajectories. Using the multiple-Davydov-D2 Ansatz,
we proceed with the following analysis.

First, we study the electronic excitation dynamics. The
initial excitonic-state populations correspond to the optically
excited highest-energy states ρexc

3 = 1 and ρexc
1,2 = 0, while

the initial QHO displacements λi,kq(0) are sampled from the
Glauber-Sudarshan distribution in Eq. (15) to account for the
initial temperatures of Tk = 77 K.

In Fig. 1 we display the trimer model exciton-state pop-
ulations ρexc

n (t ) and average temperatures [47] Tk (t ) of local
reservoirs for all three bath models. The aggregate en-
vironment causes dephasing between excitonic states and
induces irreversible population relaxation [1,2]. The popula-
tion dynamics of the dense bath models exhibits a sequential
relaxation from the initially populated highest-energy exci-
tonic state to the lowest-energy state via the intermediate state.
Eventually, the population distribution reaches the equilib-
rium state. The majority of the excitation energy is transferred
to oscillators of local reservoirs. We observe an increase of
temperatures [47–49] due to the finite number of oscillators in
local reservoirs. An infinite number of oscillators would have
to be included to maintain a constant temperature at the initial
value. The initial rapid rise in temperature is due to oscillator
reorganization in the aggregate’s electronic excited-state man-
ifold, while the following slow rise is due to energy transfer
from the system to local reservoirs.
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FIG. 1. Exciton-state populations ρexc
n (t ) and the average temper-

atures Tk (t ) of local reservoirs of the trimer in (a) and (b) the dense
bath model, (c) and (d) the sparse bath model, and (e) and (f) the
sparse bath model with thermalization.

In the sparse bath model, we observe that if the number
of vibrational modes is reduced, the population dynamics
become skewed due to an insufficiently dense representation
of the spectral density function. Furthermore, the temperature
increase is higher than that for the dense bath model, which
further changes the characteristics of the resulting equilibrium
state.

When the thermalization algorithm is applied to the sparse
bath model with a scattering rate νk = 1.25 ps−1, the pop-
ulation dynamics is restored and qualitatively matches that
of the dense model. Although the initial temperatures of the
local reservoirs exceed those of the dense bath model, they
gradually decrease due to thermalization, and this rate can be
adjusted by changing the scattering rate.

Next we turn our attention to simulating the fluorescence
spectrum of the linear trimer with the dense bath model with
scattering rate νk = 1 ps−1. The initial excitonic-state popula-
tion distribution is now calculated in terms of the system-field
interaction, as described in Ref. [18].

FIG. 2. The (a) TRF and (b) TTRF spectra of the trimer in the
dense bath model, simulated with increasing equilibration time τeq.
The absorption spectrum is also shown. Vertical dashed lines show
energies E exc of the excitonic states.

In Fig. 2 we compare the TRF and TTRF spectra with
increasing equilibration times τeq. When τeq = 0, both the
TRF and TTRF spectra are equivalent and exactly match
the absorption spectrum, which consists of three peaks due
to a transition involving the combined excitonic-vibrational
(vibronic) states and cannot be regarded as purely exci-
tonic. For reference, vertical dotted lines indicate energies
E exc of excitonic states. These do not match the three peak
energies exactly due to the system being coupled to the
environment.

By allowing equilibration to occur, τeq > 0, both the TRF
and TTRF spectra show a peak intensity shift towards lower
energies as excitation relaxes towards the equilibrated state
during the equilibration time. After equilibrating for τeq =
2 ps, we find that both spectra have converged and do not
change with longer τeq. Therefore, the TRF and TTRF spectra
at τeq = 2 ps can be considered as the fluorescence and TF
spectra of the trimer model as defined in Eqs. (24) and (25).

Both spectra exhibit their highest intensities at the ener-
gies of the lowest vibronic states. However, the fluorescence
spectrum also has considerable intensities at energies of the
intermediate and highest vibronic states. Surprisingly, the
higher-energy peak is more intense than the intermediate
peak. The TF spectrum intensities at these energies are negli-
gible, which indicates that the thermalization allows the trimer
model to reach a lower-energy equilibrium state, which is no

062205-5
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FIG. 3. Comparison of the fluorescence spectra of the trimer with
the dense bath model obtained without thermalization, with thermal-
ization, and using the optimization approach. The equilibration time
is τeq = 2 ps. The absorption spectrum is also shown. Vertical dashed
lines show energies E exc of the excitonic states.

longer hindered by the excess thermal energy accumulation in
QHOs of local reservoirs.

In Fig. 3 we also compare the obtained fluorescence and
TF spectra with the fluorescence spectrum simulated using
a previously proposed excited-state numerical optimization
approach [19,50,51]. It relies on finding the model’s lowest-
energy excitonic state in terms of the multiple-Davydov-D2

Ansatz parameters and then applying thermal fluctuations to
effectively generate the model in a lowest-energy equilibrium
state at a temperature of 77 K. We see that all three methods
produce a similar lowest vibronic peak, but the TF spectrum
has a higher-intensity tail towards the low-energy side and
almost no intensities at energies of the intermediate and the
highest vibronic states, while the fluorescence spectrum sim-
ulated using the optimization approach has a low intensity at
the energy of the intermediate vibronic states. The optimiza-
tion approach spectrum more closely resembles that of the
thermalized model than the nonthermalized spectrum.

V. DISCUSSION

Starting from an arbitrary nonequilibrium initial condition,
a closed quantum system will not equilibrate due to energy
conservation. The thermalization procedure is necessary to
guarantee proper thermal equilibrium in the long run for all
bath oscillators. This requires introducing the concept of
primary and secondary baths. In our model the primary bath
is a part of explicit quantum DOFs, while the secondary bath
is a thermal reservoir with infinite thermal capacity, i.e., it
maintains a constant temperature in any energy exchange
process. In this case, the secondary bath cannot be described
by mechanical equations; only statistical or thermodynamical
concepts apply. Our statistical algorithm performs energy
exchange between the primary and secondary baths using the
statistical scattering idea: The primary bath state is reset to
the thermally equilibrated state, thus giving up excess energy
to or drawing additional energy from the secondary bath. This
is a major extension of the explicit quantum time-dependent

variational principle (TDVP) theory: The extended model
covers a broader range of phenomena, i.e., local heating and
cooling, as well as bath oscillator dynamic localization, which
are not available in the standard TDVP theory.

In order to adapt the Davydov-D2 Ansatz thermalization
algorithm for the multiple-Davydov-D2 Ansatz, several exten-
sions were made. During the time evolution of the system-bath
model, the multiple-Davydov-D2 Ansatz multiples become
correlated, leading to a non-Gaussian bath wave function. It
becomes impossible to represent a new Gaussian wave func-
tion of scattered QHO modes, sampled from Eq. (15), without
changing the wave function of the rest of the nonscattered
oscillators at the same time. Therefore, we chose to project
the multiple-Davydov-D2 Ansatz into the Davydov-D2 Ansatz
whenever scattering occurred, allowing us to correctly repre-
sent the newly sampled Gaussian wave function of scattered
oscillators. This idea requires consideration of a few aspects.

The projected Davydov-D2 wave function accurately
maintains average coordinates and momenta of the
multiple-Davydov-D2 Ansatz QHO states, while variances
and higher-order moments are affected. This causes variation
of excitation relaxation dynamics compared to the standard
multiple-Davydov-D2 Ansatz. However, system-bath models
mostly rely only on the linear coupling between the system
and average coordinates of QHO modes; therefore, as seen
in Fig. 1, the discrepancy is minimal. The higher-order
couplings become necessary when anharmonic vibrational
modes or changes to their frequencies upon excitation are
considered [19,52].

To maintain the close correspondence to the standard
multiple-Davydov-D2 Ansatz, the projection should not occur
too often. This is because, after scattering, it takes time for
the wave function to again become correlated between its
many multiples, i.e., to take advantage of the unpopulated
multiple-Davydov-D2 Ansatz multiples after projection. If the
repopulation time is shorter than the time between projection
operations, the model population dynamics becomes similar
to that of the Davydov-D2 Ansatz, even though the multiple-
Davydov-D2 Ansatz is being used. The average time interval
between projection operations is determined by the scattering
rate νk , a property of the physical system, while the scattering
time τsc is a parameter of the model and must be as small as
necessary to ensure the Bernoulli-to-Poisson statistics transi-
tion condition νkτsc � 1.

To increase the average time between projection op-
erations, we adopt a coarser scattering approach for the
multiple-Davydov-D2 Ansatz compared to the Davydov-D2

Ansatz. Instead of considering scattering events of individual
oscillators, we consider events where all oscillators of certain
local reservoirs are scattered at once, requiring only a single
projection operation to scatter many oscillators at once. This
approach allows the multiple-Davydov-D2 Ansatz to continue
utilizing all its multiples for the improved accuracy over the
Davydov-D2 Ansatz while reducing the number of explicitly
modeled oscillators needed to maintain the local reservoirs’
temperatures close to initial values, thereby reducing the nu-
merical cost.

Using the multiple-Davydov-D2 Ansatz to simulate the
population dynamics of the trimer model, it took an average
of 166 min per trajectory using the dense bath model, but
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only 1.3 min using the sparse bath model and 2 min using
the sparse bath model with thermalization. The computational
overhead of thermalization is small compared to the overall
time savings when switching from using the dense bath to
the sparse bath. The numerical cost reduction is also greater
for the multiple-Davydov-D2 Ansatz than for the Davydov-D2

Ansatz in Ref. [22], because the multiple-Davydov-D2 Ansatz
EOMs constitute an implicit system of differential equations,
which require a more involved two-step numerical approach
to find a solution [18,43]. By considering fewer oscillators in
each local reservoir, simulations of the dynamics and spec-
troscopic signals of aggregates made up of more molecules
become possible.

Computing a single trajectory of the TTRF response func-
tion in Eq. (23) with an equilibration time of τeq = 2 ps took
an average of 79 min. The previously proposed optimization
method [19] for simulating fluorescence spectra does not re-
quire propagation during the equilibration time interval of the
TRF response function and has to be computed only once, but
it takes 193 min. In general, we find that the computation of
TTRF is more reliable and numerically stable. The optimiza-
tion approach struggles to consistently find the lowest-energy
excitonic state of the model due to its heuristic nature, requir-
ing many attempts to find the solution and eventually having
to choose the lowest-energy one. This is particularly apparent
when a wide range of oscillator frequencies are included.

For elementary system-bath models without Hamiltonian
parameter disorder, the optimization approach can be a

good starting point for fluorescence spectra simulation.
However, a more accurate spectrum most likely will
be obtained using the TTRF approach. For models with
Hamiltonian disorder, e.g., static molecule excitation energy
disorder [53–55], the optimization approach would require
finding the model’s lowest-energy excitonic state for each
realization of the Hamiltonian, negating its advantage
of having to perform the optimization procedure only
once.

In conclusion, the thermalization algorithm presented for
the numerically exact multiple-Davydov-D2 Ansatz allows us
to reduce the numerical cost of system-bath model simula-
tions by having to explicitly include fewer bath oscillators
while maintaining a correspondence with the exact relaxation
dynamics. The thermalization algorithm efficiently controls
molecular heating effects due to the reduced number of os-
cillators. Furthermore, the application of thermalization to
the simulation of fluorescence spectra demonstrates a lower
computation time, greater numerically stability, and higher
accuracy compared to the numerical optimization approach.
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