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Introduction

Let s = σ + it be a complex variable. The Lerch zeta-function L(λ, α, s)
with parameters λ ∈ R and α ∈ R, 0 < α ≤ 1, is de�ned, for σ > 1, by

L(λ, α, s) =
∞∑

m=0

e2πiλm

(m + α)s

and by analytic continuation elsewhere. If λ ∈ Z, then L(λ, α, s) reduces to the

Hurwitz zeta-function

ζ(s, α) =
∞∑

m=0

1
(m + α)s

, σ > 1,

which is a meromorphic function with a simple pole at s = 1 and Ress=1ζ(s, α) =
1. If λ 6∈ Z, then L(λ, α, s) is an entire function. In this case, without loss of
generality, we can suppose that 0 < λ < 1.

The Lerch zeta-function was introduced independently in [52] and [53]. For
all s, the function L(λ, α, s) with 0 < λ < 1 satis�es the functional equation

L(λ, α, 1− s) =
Γ(s)
(2π)s

(exp{πis

2
− 2πiαλ}L(−α, λ, s)+

exp{−πis

2
+ 2πiα(1− λ)}L(α, 1− λ, s)).

Several proofs of this equation are known. The �rst proof was given in [52].
A proof in [1] is based on a transformation formula and di�erence di�erential
equation satis�ed by the function L(λ, α, s). In [65], the Poisson summation
formula is applied, while the paper [64] uses the Fourier series method. B.C.
Berndt proposed [4] simple proofs using the contour integration as well as the
Euler-Maclaurin summation formula, see also [46].

The theory of the function L(λ, α, s) is given in [46]. Chapter 5 of [46] is
devoted to statistical properties of the Lerch zeta-function. There limit theorems
in the sense of weak convergence of probability measures in various spaces for
L(λ, α, s) can be found, see also [12], [16], [47], [49] and [50].

Actuality

The Lerch zeta-function is not so important in analytic number theory as,
for example, the Riemann zeta-function or Dirichlet L-functions. On the other
hand, the function L(λ, α, s) is a classical zeta-function, except for some particu-
lar cases, having no the Euler product over primes, therefore, it is interesting to
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compare its properties with those of zeta-functions with Euler product. More-
over, the function L(λ, α, s) depends on two parameters λ and α, and is governed
by arithmetic nature of them. Thus, the Lerch zeta-function is a very attractive
classical mathematical object.

An idea of application of probability methods in the theory of zeta-functions
comes back to H. Bohr. He prevised that the complicated value distribution
of zeta-functions can be described by probabilistic laws. H. Bohr, B. Jessen
and A. Wintner [6], [7], [33] were the �rst who proved probabilistic limit the-
orems for zeta-functions. Last �fteen years is a new period of development
of Bohr's approach. D. Joyner [34], B. Bagchi [2], K. Matsumoto [56]-[63], J.
Steuding [66], A. Laurin£ikas [40] and his students R. Ka£inskait
e [35], [36],
R. �leºevi£ien
e [67], I. Belovas [3], J. Ignatavi£i	ut
e [27]-[32], J. Genys [25], V.
Garbaliauskien
e [11], R. Macaitien
e [55] created the modern probabilistic the-
ory of zeta-functions having important applications in the universality theory.
Therefore, this research direction has a large in�uence in development of math-
ematics.

Probabilistic limit theorems for the Lerch zeta-function with transcendental
and rational parameter α were obtained by A. Laurin£ikas, R. Garunk²tis, K.
Matsumoto, J. Steuding and others [12], [16], [19], [23], [41], [43], [44], [46], [47],
[48], [50], [51]. However, the most complicated case of algebraic irrational α
remained an open problem till now. In the thesis, this gap in the theory of the
Lerch zeta-function is �lled.

Aims and problems

The aim of the thesis is to prove probabilistic limit theorems of the Lerch
zeta-function L(λ, α, s) with λ ∈ (0, 1) and algebraic irrational parameter α.

The speci�ed problems are the following:

1. To prove a limit theorem on the complex plane for L(λ, α, s) with alge-
braic irrational parameter α.

2. To prove a joint limit theorem on complex plane for a collection of Lerch
zeta-functions with algebraic irrational parameters.

3. To prove a limit theorem in the space of analytic functions for L(λ, α, s)
with algebraic irrational parameter α.

Methods

Proofs of limit theorems are based on the analytic theory of the Lerch zeta-
function as well as on the theory of weak convergence of probability measures.
The method of contour integration, Prokhorov's theorems and elements of er-
godic theory are applied. Also, a result of Cassels on the linear independence of
the system {log(m + α) : m ∈ C0} with algebraic irrational α plays an impor-
tant role in proofs. This is a new moment in the theory of value distribution of
zeta-functions.
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Novelty

All results of the thesis are new. Limit theorems for the Lerch zeta-function
with algebraic irrational parameter α are obtained for the �rst time.

Defended results of the thesis

1. A limit theorem in the sense of weak convergence of probability measures
on the complex plane for the Lerch zeta-function L(λ, α, s) with algebraic irra-
tional parameter α.

2. A joint limit theorem in the sense of weak convergence of probability
measures in the complex plane for Lerch zeta-functions with algebraic irrational
parameters.

3. A limit theorem in the sense of weak convergence of probability measures
in the space of analytic functions for L(λ, α, s) with algebraic irrational param-
eter α.

History of the problem and main results

For a long time, the Lerch zeta-function L(λ, α, s) was forgotten. Only in
1987, D. Klusch [37] obtained the asymptotic formula for the mean square of
L(λ, α, s)

T∫
0

|L(λ, α, σ + it)|2dt ∼
{

T log T if σ = 1
2 ,

T ζ(2σ, α) if 1
2 < σ < 1,

as T→∞. Two years later, he gave [39] the asymptotic expansion in δ for the
integral

∞∫
0

|L(λ, α, σ + it)|2e−δtdt.

The above results stimulated the probabilistic investigations in the theory of
the Lerch zeta-function.
The results mentioned of D. Klusch were improved in [20] by using an approxi-
mate functional equation for L(λ, α, s) obtained in [21].
Let, for T > 0,

νt
T (...) =

1
T

meas{t ∈ [0, T ] : ...},
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where in place of dots a condition satis�ed by t is to be written. Throughout
the dissertation we suppose that 0 < λ < 1. First we recall some limit theorems
on the complex plane for the function L(λ, α, s). Denote by B(S) the class of
Borel sets of the space S, and de�ne

PT (A) = νt
T (L(λ, α, σ + it) ∈ A), A ∈ B(C).

In [15] the following assertion is given (see also [46]).

Theorem A. Let σ > 1
2 be �xed. Then, for arbitrary α, 0 < α ≤ 1, there

exists a probability measure P on (C,B(C)) such that the probability measure
PT converges weakly to P as T →∞.

In Theorem A, only the existence of the limit measure for PT is obtained.
However, it is important for applications to know an explicit form of the limit
measure. Such the form of the measure P in Theorem A in the case of tran-
scendental or rational α follows from limit theorems in the space of analytic
functions.

Denote by γ the unit circle on C, i. e. γ = {s ∈ C : |s| = 1}, and de�ne

Ω1 =
∞∏

m=0

γm,

where γm = γ for m ∈ C0. By the Tikhonov theorem, with the product topol-
ogy and pointwise multiplication the in�nite-dimensional torus Ω1 is a compact
topological Abelian group. Therefore, on (Ω1,B(Ω1)), the probability Haar
measure m1H exists. This gives the probability space (Ω1,B(Ω1),m1H). Let
ω1(m) be the projection of ω1 ∈ Ω1 to the coordinate space γm, m ∈ C0. For
σ > 1

2 and ω1 ∈ Ω1 de�ne

L1(λ, α, σ, ω1) =
∞∑

m=0

e2πiλmω1(m)
(m + α)σ

.

Then L1(λ, α, σ, ω1) is a complex-valued random variable de�ned on the proba-
bility space (Ω1,B(Ω1),m1H). Theorem 5.2.2 of [46] implies the following result.
We recall that α is transcendental if there is no polynomials P (s) 6≡ 0 with ra-
tional coe�cients such that P (α) = 0.

Theorem B. Suppose that the parameter α is transcendental. Then the
probability measure PT converges weakly to the distribution of the random vari-
able
L1(λ, α, σ, ω1) as T →∞.
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We recall that the distribution of L1(λ, α, σ, ω1) is the probability measure
PL1 de�ned by

PL1(A) = m1H(ω1 ∈ Ω1 : L1(λ, α, σ, ω1) ∈ A), A ∈ B(C).

Now let

Ω2 =
∏
p∈P

γp,

where γp = γ for all primes p. Similarly to the case of Ω1, we obtain the
probability space (Ω2,B(Ω2),m2H), where m2H is the probability Haar measure
on (Ω2,B(Ω2)). Denote by ω2(p) the projection of ω2 ∈ Ω2 to the coordinate
space γp, p ∈ P. For m ∈ C, we put

ω2(m) =
∏

pk‖m

ωk
2 (p),

where pk‖m means that pk|m but pk+1 6 |m. This construction allows us to
consider the case of rational α. Let α = a

q , a, q ∈ C, 1 ≤ a ≤ q, and (a, q) = 1.
For σ > 1

2 , de�ne on (Ω2,B(Ω2),m2H) the complex-valued random variable
L2(λ, α, s, ω2) by

L2(λ, α, s, ω2) = ω2(q)qse−2πiλ a
q ·

∞∑
m=1

m≡a(modq)

e2πiλ m
q ω2(m)
ms

, ω2 ∈ Ω2,

and let PL2 denote the distribution of L2(λ, α, s, ω2):

PL2(A) = m2H(ω2 ∈ Ω2 : L2(λ, α, s, ω2) ∈ A), A ∈ B(C).

Then from Theorem 5.4.1 of [46] the following statement follows.

Theorem C. Let α = a
q , a, q ∈ C, 1 ≤ a ≤ q, and (a, q) = 1. Then the

probability measure PT converges weakly to the measure PL2 as T →∞.

J. Ignatavi£i	ut
e [27], [32] obtained the discrete versions of theorems A, B,
C. Theorems B and C show that it remains to consider the case of an algebraic
irrational parameter α. We recall that α is algebraic number if it is a root of a
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polynomial with rational coe�cients. Chapter 1 of this dissertation is devoted
to the latter problem. So, α denotes an algebraic irrational number, 0 < α < 1.

Let

L(α) = {log(m + α) : m ∈ C0}.

In [8] J. W. S. Cassels obtained that at least 51 percent of elements of the set
L(α) are linearly independent over the �eld of rational numbers Q. Let I(α)
be a maximal linearly independent over Q subset of L(α). If I(α) = L(α), then
we have the same situation as in the ease of Theorem B, since the set L(α)
with transcendental α is linearly independent over Q. Therefore, we suppose
that I(α) 6= L(α) and denote D(α) = L(α) \ I(α). Then, for any element
dm ∈ D(α), the set {dm}

⋃
I(α) is linearly dependent over Q. Therefore, there

exist a �nite number of elements im1(m), ..., imn(m)(m) ∈ I(α) and numbers
k0(m), ..., kn(m) ∈ Z \ {0} such that

dm = −k1(m)
k0(m)

im1(m)− ...− kn(m)
k0(m)

imn(m)(m).

Since the elements of L(α) are log(m + α), we �nd that

m + α = (m1(m) + α)−
k1(m)
k0(m) ...(mn(m)(m) + α)

−kn(m)
k0(m) . (0.1)

Now de�ne two subsets M(α) and N (α) of C0 by

M(α) = {m ∈ C0 : log(m + α) ∈ I(α)},

N (α) = {m ∈ C0 : log(m + α) ∈ D(α)},

and let

Ω =
∏

m∈M(α)

γm,

where γm = γ for m ∈ M(α). Then Ω is also a compact topological Abelian
group. Therefore, on (Ω,B(Ω)), the probability Haar measure mH exists, and
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this leads to the probability space (Ω,B(Ω),mH). Denote by ω(m) the projec-
tion of ω ∈ Ω to the coordinate space γm, m ∈ M(α). We extend the function
ω(m) to the whole set C0 by putting, for m ∈ N (α),

ω(m) = ω
− k1(m)

k0(m) (m1(m))...ω−
kn(m)
k0(m) (mn(m)(m)) (0.2)

if (0.1) takes place. Here the principal values of the roots are taken. So, we
have that {ω(m) : m ∈ C0} is a sequence of complex-valued random variables
de�ned on the probability space (Ω,B(Ω),mH).

Denote by A a class of algebraic irrational numbers α, 0 < α < 1, for which
the numbers k1(m)

k0(m) , ...,
kn(m)(m)

k0(m) in (0.2) are integer. If α ∈ A, then is easily seen
that {ω(m) : m ∈ C0} is a sequence of pairwise orthogonal random variables on
the probability space (Ω,B(Ω),mH). Therefore, using the Rademacher theorem
on series of pairwise orthogonal random variables, see, for example, [54]) we can
obtain in a standard way that, for σ > 1

2 ,

L(λ, α, σ, ω) =
∞∑

m=0

e2πiλmω(m)
(m + α)σ

is a complex-valued random variable de�ned on the probability space
(Ω,B(Ω),mH). Denote by PL the distribution of the random variable L(λ, α, σ, ω).

The main result of Chapter 1 is the following assertion.

Theorem 1.1. Suppose that λ ∈ (0, 1), α ∈ A, and σ > 1
2 . Then the

probability measure PT converges weakly to PL as T →∞.

Note that an analogue of Theorem 1.1 for Hurwitz zeta-function was ob-
tained in [51]. However, we propose a simpler and shorter proof.

Chapter 2 is devoted to a joint limit theorem on the complex plane for Lerch
zeta-functions with algebraic irrational parameters.

The �rst joint limit theorem in the complex plane for Lerch zeta-functions
was obtained in [47], see also [46].

Theorem D. Suppose that r > 1 and min
1≤j≤r

σj > 1
2 . Then, for all real

λ1, ..., λr and α1, ..., αr, 0 < αj ≤ 1, j = 1, ..., r, there exists a probability
measure P on (Cr

,B(Cr)) such that the probability measure

νt
T

(
(L(λ1, α1, σ1 + it), ..., L(λr, αr, σr + it)) ∈ A

)
, A ∈ B(Cr),

converges weakly to P as T →∞.
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In Theorem D, the limit measure P is not explicitly given. A joint limit
theorem with explicitly given limit measure in the space of analytic functions for
Lerch zeta-functions was obtained in [47], [49] and [46]. Let D =

{
s ∈ C : σ > 1

2

}
,

and let H(D) denote the space of analytic on D functions equipped with the
topology of uniform on compacta. Denote by Hr(D) the Cartesian product
H(D)× ...×H(D)︸ ︷︷ ︸

r

. From the mentioned limit theorem in the space Hr(D), a

joint limit theorem on Cr follows.
Denote Ω(r)

1 =
r∏

j=1

Ω1j , where Ω1j = Ω1 for j = 1, ..., r. Then again

Ω(r)
1 is a compact topological Abelian group, and we have a probability space

(Ω(r)
1 ,B(Ω(r)

1 ),m(r)
1H), where m

(r)
1H is the probability Haar measure on (Ω(r)

1 ,B(Ω(r)
1 )).

Denote by ω1 = (ω11, ..., ω1r) the elements of Ω(r)
1 , where ω1j ∈ Ω1j , j = 1, ..., r.

Let, for brevity, λ = (λ1, ..., λr), α = (α1, ..., αr), σ = (σ1, ..., σr). De�ne on
(Ω(r)

1 ,B(Ω(r)
1 ),m(r)

1H) the Cr-valued random element

L(λ, α, σ, ω1) =
(
L(λ1, α1, σ1, ω11), ..., L(λr, αr, σr, ω1r)

)
,

where, for σj > 1
2 ,

L(λj , αj , σj , ω1j) =
∞∑

m=0

e2πiλjmω1j(m)
(m + αj)σj

, j = 1, ..., r.

Let PL denote the distribution of L(λ, α, σ, ω1), i. e.,

PL(A) = m
(r)
1H

(
ω1 ∈ Ω(r)

1 : L(λ, α, σ, ω1) ∈ A
)

, A ∈ B(Cr),

and de�ne the probability measure

PT (A) = νt
T

(
(L(λ1, α1, σ1 + it), ..., L(λr, αr, σr + it)) ∈ A

)
, A ∈ B(Cr).

The numbers α1, ..., αr are algebraically independent over Q if there is no
polynomial P 6≡ 0 with rational coe�cients, such that P (α1, ..., αr) = 0.

Theorem E. Suppose that λj ∈ (0, 1), j = 1, ..., r, the numbers α1, ..., αr

are algebraically independent over the �eld Q, and min
1≤j≤r

σj > 1
2 . Then the prob-

ability measure PT converges weakly to the measure PL as T →∞.
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If the numbers α1, ..., αr are algebraically independent over Q, each number
αj , j = 1, ..., r, is transcendental. Our aim is to obtain a joint limit theorem
with algebraic irrational numbers α1, ..., αr.

Now suppose that α1, ..., αr are distinct algebraic irrational numbers, 0 <
αj < 1, j = 1, ..., r. De�ne

Ωr =
r∏

j=1

Ωj ,

where

Ωj =
∏

m∈M(αj)

γm

with γm = γ for m ∈ M(αj), j = 1, ..., r. Since each torus Ωj is a compact
topological Abelian group, Ωr is such a group as well. Thus, we obtain a prob-
ability space (Ωr,B(Ωr),mr

H), where mr
H is the probability Haar measure on

(Ωr,B(Ωr)). Let, as above, ω = (ω1, ..., ωr) ∈ Ωr, where ωj ∈ Ωj , j = 1, ..., r,
λ = (λ1, ..., λr), α = (α1, ..., αr) and σ = (σ1, ..., σr). On the probability
space (Ωr,B(Ωr),mr

H) de�ne the Cr-valued random element L(λ, α, σ, ω), for
min

1≤j≤r
σj > 1

2 , by

L(λ, α, σ, ω) =
(
L(λ1, α1, σ1, ω1), ..., L(λr, αr, σr, ωr)

)
,

where

L(λj , αj , σj , ωj) =
∞∑

m=0

e2πiλjmωj(m)
(m + αj)σj

and ωj(m) is the projection of ωj ∈ Ωj to γm if m ∈ M(αj) or the relation of
type (0.2) if m 6∈ M(αj), j = 1, ..., r. Let QL denote the distribution of the
random element L(λ, α, σ, ω). Now we can state the main result of Chapter 2.

Theorem 2.1. Suppose that λj ∈ (0, 1), j = 1, . . . , r, and that α1, ..., αr are
distinct algebraic irrational numbers from the class A such that the set

r⋃
j=1

I(αj)

14



is linearly independent over Q, and min
1≤j≤r

σj > 1
2 . Then the probability measure

PT converges weakly to the measure QL as T →∞.

The aim of Chapter 3 is to obtain an analogue Theorem 1.1 in the space of
analytic functions.

Let L(λ, α, s, ω) be the H(D)-valued random element de�ned on the proba-
bility space (Ω,B(Ω),mH) by

L(λ, α, s, ω) =
∞∑

m=0

e2πiλmω(m)
(m + α)s

. (0.3)

De�ne

PT,H(A) = ντ
T (L(λ, α, s + iτ) ∈ A), A ∈ B(H(D)).

The main result of Chapter 3 is the following statement.

Theorem 3.1. Suppose that λ ∈ (0, 1) and α ∈ A. Then the probability
measure PT,H converges weakly to the distribution PL of the random element
L(λ, α, s, ω) as T →∞.

In the case of an absolute convergence region, we can remove the condi-
tion α ∈ A. Let D1 = {s ∈ C : σ > 1}, and the H(D1)-valued random element
L(λ, α, s, ω) is a restriction of L(λ, α, s, ω) to H(D1).

Theorem 3.2. Suppose that λ ∈ (0, 1) and α is an algebraic irrational
number. Then the probability measure

ντ
T (L(λ, α, s + iτ) ∈ A), A ∈ B(H(D1)).

converges weakly to the distribution of the H(D1)-valued random element

L(λ, α, s, ω) as T →∞.

Discrete limit theorems in functional spaces for the function L(λ, α, s) are
obtained in [28]-[32]. The universality and functional independence of Lerch
zeta-functions are investigated in [13], [17], [19], [42], [45], [48] and [32]. The
zeros distribution problems are treated in [14], [18], [19], [22] and, in connection
with the Lindelöf hypothesis, in [24]. The results of the thesis are theoretical.
They �ll a gap in probabilistic theory of the Lerch zeta-function, and can by
applied for further investigations of this function.
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Chapter 1

A limit theorem on the complex plane for

the Lerch zeta-function with algebraic

irrational parameter

Let 0 < λ < 1, and α be an algebraic irrational number, 0 < α ≤ 1. In
this chapter, we obtain a limit theorem on the complex plane for the Lerch
zeta-function de�ned, for σ > 1, by

L(λ, α, s) =
∞∑

m=0

e2πiλm

(m + α)s
. (1.1)

Since λ 6∈ Z, the function L(λ, α, s) has analytic continuation to an entire func-
tion.

1.1. The statement of the main theorem

Denote by meas{A} the Lebesgue measure of a measurable set A ⊂ R and
let, for T > 0,

νt
T (...) =

1
T

meas{t ∈ [0, T ] : ...},

where in place of dots a condition satis�ed by t is to be written. De�ne the
probability measure PT on (C,B(C)) by

PT (A) = νt
T (L(λ, α, σ + it) ∈ A), A ∈ B(C),

where, as usual, B(S) stands for the the class of Borel sets of the space S.
Let

L(α) = {log(m + α) : m ∈ C0},

and let I(α) be a maximal linearly independent over the �eld of rational num-
bers Q subset of L(α). We suppose, that I(α) 6= L(α) and denote D(α) =
L(α) \ I(α). Then, for any element dm ∈ D(α), the set {dm}

⋃
I(α) is already

linearly dependent over Q. Therefore, there exist a �nite number of elements
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im1(m), ..., imn(m)(m) ∈ I(α) and numbers k0(m), ..., kn(m) ∈ Z \ {0} such that

dm = −k1(m)
k0(m)

im1(m)(m)− ...− kn(m)
k0(m)

imn(m)(m).

Since the elements of L(α) are of the form log(m + α), we have that

log(m + α) = −k1(m)
k0(m)

log(m1(m) + α)− ...− kn(m)
k0(m)

log(mn(m)(m) + α).

Hence we �nd that

m + α = (m1(m) + α)−
k1(m)
k0(m) ...(mn(m)(m) + α)−

kn(m)
k0(m) . (1.2)

Now de�ne two subsets M(α) and N (α) of C0 by

M(α) = {m ∈ C0 : log(m + α) ∈ I(α)},

N (α) = {m ∈ C0 : log(m + α) ∈ D(α)},

and let

Ω =
∏

m∈M(α)

γm,

where γm = {s ∈ C : |s| = 1} def
= γ for m ∈ M(α). Then Ω is also a compact

topological Abelian group; therefore, on (Ω,B(Ω)), the probability Haar measure
mH exists, and this leads to the probability space (Ω,B(Ω),mH). Denote by
ω(m) the projection of ω ∈ Ω to the coordinate space γm, m ∈ M(α). We
extend the function ω(m) to the whole set C0 by putting, for m ∈ N (α),

ω(m) = ω
− k1(m)

k0(m) (m1(m))...ω−
kn(m)
k0(m) (mn(m)(m)),

if relation (1.2) takes place. Here the principal values of the roots are taken.
For a given algebraic irrational α, there is no any concrete information on the

18



set L(α). Therefore, all hypotheses are possible. In the sequel, we suppose that
the numbers k1(m)

k0(m) , ...,
kn(m)
k0(m) are integer for all M ∈ N (α) and denote the class

of such numbers α, 0 < α < 1, by A. Then we have that {ω(m) : m ∈ C0} is
a sequence of pairwise orthogonal complex-valued random variables de�ned on
the probability space (Ω,B(Ω),mH). For σ > 1

2 , on (Ω,B(Ω),mH) de�ne the
complex-valued random variable L(λ, α, σ, ω) by

L(λ, α, σ, ω) =
∞∑

m=0

e2πiλmω(m)
(m + α)σ

.

Denote by PL the distribution of the random variable L(λ, α, σ, ω).
The main result of this chapter is the following assertion.

Theorem 1.1. Suppose that λ ∈ (0, 1), α ∈ A, and σ > 1
2 . Then the

probability measure PT converges weakly to PL as T →∞.

1.2. A limit theorem on the torus Ω

In this section, we prove the weak convergence of the probability measure

QT (A) = νt
T

(
((m + α)−it : m ∈M(α)) ∈ A

)
, A ∈ B(Ω).

Theorem 1.2. Let α be algebraic irrational. Then the probability measure
QT converges weakly to the Haar measure mH as T →∞.

Proof. The dual group of Ω is isomorphic to

⊕
m∈M(α)

Zm,

where Zm = Z for all m ∈ M(α). The element k = {km : m ∈ M(α)} ∈⊕
m∈M(α)

Zm, where only a �nite number of integers km are distinct from zero,

acts on Ω by

ω → ωk =
∏

m∈M(α)

ωkm(m), ω ∈ Ω.

Therefore, the Fourier transform gT (k) of the measure QT is
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gT (k) =
∫
Ω

∏
m∈M(α)

ωkm(m)dQT =

=
1
T

T∫
0

∏
m∈M(α)

(m + α)−ikmtdt =

=
1
T

T∫
0

exp

−it
∑

m∈M(α)

km log(m + α)

dt.

The set I(α) is linearly independent over Q. Thus

gT (k) =


1 if k = 0,

exp

{
−iT

∑
m∈M(α)

km log(m+α)

}
−1

−iT
∑

m∈M(α)
km log(m+α) if k 6= 0.

From this we have that

lim
T→∞

gT (k) =
{

1 if k = 0,
0 if k 6= 0.

Therefore, in view of Theorem 1.4.2 of [26] we obtain that the measure QT

converges weakly to mH as T →∞.
Note, that Theorem 1.2 is also given in [51], Lemma 4. However, the above

proof is shorter and clearer.

1.3. Limit theorems for absolutely convergent
Dirichlet series

Let σ1 > 1
2 be �xed. For m ∈ C0 , de�ne

ln(s, α) =
s

σ1
Γ
(

s

σ1

)
(m + α)s,

where Γ(s) denotes the Euler gamma-function. For σ > 1
2 , de�ne
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Ln(λ, α, s) =
1

2πi

σ1+i∞∫
σ1−i∞

L(λ, α, s + z)ln(z, α)
dz

z
.

We have σ + σ1 > 1; therefore, for Rez = σ1, the function L(λ, α, s) is repre-
sented by the absolutely convergent Dirichlet series

L(λ, α, s + z) =
∞∑

m=0

e2πiλm

(m + α)s+z
.

Now de�ne

bn(λ, α, m) =
e2πiλm

2πi

σ1+i∞∫
σ1−i∞

ln(z, α)
(m + α)z

dz

z
.

Then, in view of the well-known estimates for the function Γ(s), we �nd that

bn(λ, α, m) �n (m + α)−σ1

∞∫
−∞

|ln(σ1 + it)|
|σ1 + it|

dt �n (m + α)−σ1 .

Here f(x) �θ g(x), g(x) > 0, x ∈ X, means that there exists a constant
C = C(θ) > 0 such that |f(x)| ≤ Cg(x) for all x ∈ X. Therefore, the series

∞∑
m=0

bn(λ, α, m)
(m + α)s

converges absolutely for σ > 1
2 . Now the interchange of order of summation and

integration yields

∞∑
m=0

bn(λ, α, m)
(m + α)s

=
1

2πi

σ1+i∞∫
σ1−i∞

(
ln(z, α)

z

∞∑
m=0

e2πiλm

(m + α)s+z

)
dz =

= Ln(λ, α, s). (1.3)
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Now let

vn(m,α) = exp
{
−
(

m + α

n + α

)σ1
}

.

Then the Mellin inversion formula

1
2πi

b+i∞∫
b−i∞

Γ(s)a−sds = e−a, a, b > 0,

shows that

bn(λ, α, m) = e2πiλmvn(m,α).

Thus, we have by (1.3) that

Ln(λ, α, s) =
∞∑

m=0

e2πiλmvn(m,α)
(m + α)s

,

the series being absolutely convergent for σ > 1
2 .

For σ > 1
2 and ω0 ∈ Ω, de�ne

Ln(λ, α, s, ω) =
∞∑

m=0

e2πiλmvn(m,α)ω0(m)
(m + α)s

.

In this section, we consider the weak convergence of the probability measures

PT,n(A) = νt
T (Ln(λ, α, σ + it) ∈ A) , A ∈ B(C),

and, for ω0 ∈ Ω,

P̂T,n(A) = νt
T (Ln(λ, α, σ + it, ω0) ∈ A) , A ∈ B(C).
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Let S and S1 be two metric spaces, P be a probability measure on (S,B(S)),
and let h be S1-valued measurable function de�ned on (S,B(S)). Then P in-
duces the unique probability measure Ph−1 on (S1,B(S1)) de�ned by the equal-
ity

Ph−1(A) = P (h−1(A))

for A ∈ B(S1).
Denote by Dh the set of discontinuity points of h.

Lemma 1.1. Suppose that P (Dh) = 0 and Pn converges weakly to the mea-
sure P as n →∞. Then Pnh−1 converges weakly to Ph−1 as n →∞.

Proof. The lemma is Theorem 5.1 from [5].

Theorem 1.3. Let α be algebraic irrational and σ > 1
2 . Then the probability

measures PT,n and P̂T,n both converge weakly to the same probability measure
on (C,B(C)) as T →∞.

Proof. De�ne the function u : Ω → C by the formula

u(ω) =
∞∑

m=0

e2πiλmvn(m,α)ω(m)
(m + α)σ

.

Since the series converges absolutely for σ > 1
2 , the function u is continuous.

Moreover,

u
(
{(m + α)−it : m ∈M(α)}

)
=

=
∞∑

m=0

e2πiλmvn(m,α)
(m + α)σ+it

= Ln(λ, α, σ + it).

Therefore, we have that PT,n = QT u−1, where, for A ∈ B(C), QT u−1(A) =
QT (u−1A), and using the continuity of u, Theorem 1.2 and Lemma 1.1, we
obtain that the measure PT,n converges weakly to mHu−1 as T →∞.

Now de�ne u1 : Ω → Ω by the formula u1(ω) = ωω0. Then we obtain that

u
(
u1

(
{(m + α)−it : m ∈M(α)}

))
=
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=
∞∑

m=0

e2πiλmvn(m,α)ω0(m)
(m + α)σ+it

= Ln(λ, α, σ + it, ω0).

Therefore, similarly to the case of PT,n, we �nd that the measure P̂T,n converges
weakly to mH(uu1)−1 as T →∞. However, the invariance of the Haar measure
mH shows that mH(uu1)−1 = (mHu−1

1 )u = mHu−1, and the theorem is proved.

1.4. Approximation in the mean

To prove that the function L(λ, α, s) has a limit distribution, i. e., that the
measure PT converges weakly to some measure on (C,B(C)) we have to pass
from the function Ln(λ, α, s) to L(λ, α, s). For this, we need an approximation
of L(λ, α, s) by Ln(λ, α, s) in the mean.

Lemma 1.3. Let σ > 1
2 . Then

lim
n→∞

lim sup
T→∞

1
T

T∫
0

|L(λ, α, σ + it)− Ln(λ, α, σ + it)|dt = 0.

Proof. Let K be a compact subset of the half-plane
{
s ∈ C : σ > 1

2

}
. In

[46], Lemma 5.2.11, it is proved that, for transcendental α,

lim
n→∞

lim sup
T→∞

1
T

T∫
0

sup
s∈K

|L(λ, α, σ + it)− Ln(λ, α, σ + it)|dt = 0. (1.4)

However, it is easily seen that the proof is independent of the arithmetic of the
number α. Thus, the lemma is a corollary of relation (1.4).

The case of approximation L(λ, α, s, ω) by Ln(λ, α, s, ω) in the mean is more
complicated. First, we have to establish the boundness of the mean square
for L(λ, α, s, ω). For this, we will apply the Birkho�-Khintchine theorem from
ergodic theory.

For t ∈ R, we put

at =
{
(m + α)−it : m ∈M(α)

}
,

and de�ne the family {ϕt : t ∈ R} of transformations on Ω by ϕt(ω) = atω for
ω ∈ Ω. Then {ϕt : t ∈ R} is an one-parameter group of measurable measure-
preserving transformations on the torus Ω. We recall that a set A ∈ B(Ω) is
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invariant with respect to the group {ϕt : t ∈ R} if, for each t, the sets A and
At = ϕt(A) di�er one from another by a set of zero mH -measure. The group
{ϕt : t ∈ R} is ergodic if its σ-�eld of invariant sets consists only of sets having
mH -measure equal to 1 or 0.

Lemma 1.4. Suppose that α is algebraic irrational. Then the one-parameter
group {ϕt : t ∈ R} is ergodic.

Proof. The lemma is Lemma 7 from [51].
Let Y be the space of �nite real functions y(τ), τ ∈ R. If is well known that

the family of �nite-dimensional distributions of each random process determines
a probability measure Q on (Y,B(Y )). On the probability space (Y,B(Y ), Q),
the translation gu : Y → Y can be de�ned by gu(y(τ)) = g(τ − u). A strongly
stationary process X(τ, ω) is called ergodic if its σ- �eld of invariant sets consists
only of sets having Q-measure equal to 0 or 1.

The following statement is the classical Birkho�-Khintchine theorem, see,
for example, [10].

Lemma 1.5. Suppose that a process X(t, ω) is ergodic, E|X(t, ω)| < ∞,
and that sample paths are integrable almost surely in the Riemann sense over
every �nite interval. Then

lim
T→∞

1
T

T∫
0

X(t, ω)dt = EX(0, ω).

Lemma 1.6. Suppose that α ∈ A and σ > 1
2 . Then, for T →∞,

T∫
0

|L(λ, α, s, σ + it, ω)|2dt � T

for almost all ω ∈ Ω.

Proof. For m ∈ C0, we put

Xm(λ, α, s, σ, ω) =
e2πiλmω(m)
(m + α)σ

.

Then, obviously,

E|Xm(λ, α, σ, ω)|2 =
1

(m + α)2σ
.
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Thus, in view of the orthogonality of the random variables ω(m),

E|L(λ, α, σ, ω)|2 =
∞∑

m=0

E|Xm(λ, α, σ, ω)|2 =
∞∑

m=0

1
(m + α)2σ

< ∞. (1.5)

However,

|L(λ, α, σ, ϕt(ω))|2 = |L(λ, α, σ + it, ω)|2,

and Lemma 1.5 implies the ergodicity of the process |L(λ, α, σ + it, ω)|2. There-
fore, by Lemma 1.5

lim
T→∞

1
T

T∫
0

|L(λ, α, σ + it, ω)|2dt = E|L(λ, α, σ, ω)|2

for almost ω ∈ Ω. This togehther with (1.5) proves the lemma.

Theorem 1.4. Suppose that α ∈ A and σ > 1
2 . Then

lim
n→∞

lim sup
T→∞

1
T

T∫
0

|L(λ, α, σ + it, ω)− Ln(λ, α, σ + it, ω)|dt = 0

for almost all ω ∈ Ω.

Proof. Similarly to the case of L(λ, α, s) we have that

Ln(λ, α, s, ω) =
1

2πi

σ1+i∞∫
σ1−i∞

L(λ, α, s + z, ω)ln(z, α)
dz

z
. (1.6)

The function L(λ, α, s, ω) is analytic in {s ∈ C : σ > 1
2} for almost all ω ∈ Ω.

Let σ2 > 1
2 , and σ > σ2. Then by the residue theorem from (1.6) we deduce

that

Ln(λ, α, s, ω) =
1

2πi

σ2−σ+i∞∫
σ2−σ−i∞

L(λ, α, s + z, ω)ln(z, α)
dz

z
+ L(λ, α, s, ω).
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Hence, we �nd that

L(λ, α, σ+it, ω)−Ln(λ, α, σ+it, ω) �
∞∫

−∞

|L(λ, α, σ2+it, ω)|·|ln(σ2−σ+it, α)|dτ.

Therefore, in view of Lemma 1.6,

1
T

T∫
0

|L(λ, α, σ + it, ω)− Ln(λ, α, σ + it, ω)|dt �

�
∞∫

−∞

|ln(σ2 − σ + iτ, α)| 1
T

T∫
0

|L(λ, α, σ2 + it + iτ, ω)|dt

dτ �

�
∞∫

−∞

|ln(σ2 − σ + iτ, α)| 1
T

|τ |+T∫
−|τ |

|L(λ, α, σ2 + it, ω)|dt

dτ �

�
∞∫

−∞

|ln(σ2 − σ + iτ, α)|(1 + |τ |)dτ (1.7)

for almost all ω ∈ Ω.
Since σ2 − σ < 0, by the de�nition of ln(s, α) we have that

lim
n→∞

∞∫
−∞

|ln(σ2 − σ + iτ, α)|(1 + |τ |)dτ = 0.

This and (1.7) prove the theorem.
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1.5. Proof of Theorem 1.1

Let S be a metric space, P be a probability measure on B(S) and let ∂A
denote the boundary of A. A set A ∈ B(S) is called a continuity set of the
measure P if P (∂A) = 0.

Lemma 1.7. Let P and Pn, n ∈ C, be probability measures on (S,B(S)).
The relations:

1) Pn weakly converges to P as n →∞;
2) lim

n→∞

∫
S

f(x)dPn(x) =
∫
S

f(x)dP (x) for all bounded uniformly continuous
real functions f ;

3) lim sup
n→∞

Pn(F ) ≤ P (F ) for all closed sets F ⊂ S;
4) lim inf

n→∞
Pn(G) ≥ P (G) for all open sets G ⊂ S;

5) lim
n→∞

Pn(A) = P (A) for all continuity sets A of the measure P

are equivalent.

Proof. The lemma is Theorem 2.1 from [5].

The family {P} of probability measure on (S,B(S)) is called relatively com-
pact if every sequence of elements of {P} contains a weakly convergent sub-
sequence. The family {P} is called tight if for arbitrary ε > 0 there exists a
compact set K ∈ B(S) such that P (K) > 1− ε for all P from {P}.

The following statement is the well-known Prokhorov theorem, see, for ex-
ample [5] Theorems 6.1 and 6.2.

Lemma 1.8. If the family of probability measure {P} is tight, then it is
relatively compact. If S is a separable complete metric space and the family {P}
on (S,B(S)) is relatively compact, then it is tight.

Now suppose that S-valued random elements Yn, X1n, X2n, ... are de�ned
on the same probability space (Ω̂,B(Ω̂), P ) and that the space S is separable.
Denote by D−→ the convergence in distribution.

Lemma 1.9. Suppose, that for every u Xun
D−→

n→∞
Xn and Xn

D−→
n→∞

X.
Suppose also, that, for every ε > 0,

lim
n→∞

lim sup
n→∞

P{%(Xun, Yn) ≥ ε} = 0.

Then Yn
D−→

n→∞
X.

Proof. The lemma is Theorem 4.2 from [5].

For A ∈ B(C) and ω ∈ Ω, de�ne

P̂T (A) = νt
T (L(λ, α, σ + it, ω) ∈ A).
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Theorem 1.5. Suppose that λ ∈ (0, 1), α ∈ A and σ > 1
2 . Then the

probability measures PT and P̂T both converge weakly to the same probability
measure, say, P on (C,B(C)) as T →∞.

Proof. By Theorem 1.3 the probability measures PT,n and P̂T,n both con-
verge to the same probability measure, say, Pn on on (C,B(C)) as T → ∞.
The �rst step is to show that the family of probability measures {Pn : n ∈ C0}
is tight.

Let θ be a uniformly distributed on [0, 1] random variable de�ned on a certain
probability space (Ω̂,B(Ω̂), P). De�ne

XT,n = XT,n(σ) = L(λ, α, σ + itθ).

Then by Theorem 1.3

XT,n
D−→

T→∞
Xn, (1.8)

where Xn = Xn(σ) is a complex-valued random variable with distribution Pn.
Since the series for Ln(λ, α, s) converges absolutely for σ > 1

2 , we have that

lim
T→∞

1
T

T∫
0

|Ln(λ, α, σ + it)|2dt =

=
∞∑

m=0

v2
n(m,α)

(m + α)2σ
≤

∞∑
m=0

1
(m + α)2σ

.

Therefore, there exists a real number 0 < R < ∞ such that

sup
n∈C0

lim sup
T→∞

1
T

T∫
0

|Ln(λ, α, σ + it)|dt ≤

≤ sup
n∈C0

lim sup
T→∞

 1
T

T∫
0

|Ln(λ, α, σ + it)|2dt


1
2

≤ R.
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Thus, taking M = Rε−1 with arbitrary ε > 0, we �nd that

lim sup
T→∞

PT,n({s ∈ C : |s| > M}) = lim sup
T→∞

νT (|Ln(λ, α, σ + it)| > M) ≤

≤ lim sup
T→∞

1
M

T∫
0

|Ln(λ, α, σ + it)|dt ≤ ε. (1.9)

Clearly, the weak convergence of the measure PT,n implies that of the measure

νt
T (|Ln(λ, α, σ + it)| ∈ A), A ∈ B(R).

Therefore, by Lemma 1.7 and (1.9)

Pn({s ∈ C : |s| > M}) ≤ lim inf
T→∞

PT,n({s ∈ C : |s| > M}) ≤

≤ lim sup
T→∞

PT,n({s ∈ C : |s| > M}) ≤ ε.

Now, taking Kε = {s ∈ C : |s| ≤ M}, hence we obtain that

Pn(Kε) ≥ 1− ε, n ∈ C0.

Since Kε is a compact set on C, this proves the tightness of the family {Pn : n ∈
C0}. By the Prokhorov theorem (Lemma 1.8) now it follows that {Pn : n ∈ C0}
is relatively compact. Therefore, there exists {Pn1} ⊂ {Pn} such that Pn1

converges weakly to some probability measure P on (C,B(C)) as n1 →∞, and
we have that

Xn1

D−→
n1→∞

P. (1.10)

Let
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XT = XT (σ) = L(λ, α, σ + iTθ).

Then using Lemma 1.3, we �nd that for every ε > 0,

lim
n→∞

lim sup
T→∞

P̂ ({|XT (σ)−XT,n(σ)| ≥ ε}) =

= lim
n→∞

lim sup
T→∞

νt
T (|L(λ, α, σ + it)− Ln(λ, α, σ + it)| ≥ ε) ≤

≤ lim
n→∞

lim sup
T→∞

1
εT

T∫
0

|L(λ, α, σ + it)− Ln(λ, α, σ + it)|dt = 0.

Now from this, (1.10), (1.8) and from Lemma 1.9 we deduce that

XT
D−→

T→∞
P. (1.11)

This shows that the measure P is independent on the sequence {Pn1}. Conse-

quently, we have that

Xn
D−→

n→∞
P. (1.12)

Now de�ne

X̂T,n = X̂T,n(σ) = L(λ, α, σ + iTθ, ω)

and

X̂T = X̂T (σ) = L(λ, α, σ + iTθ, ω).

Then by the same arguments, using Theorems 1.3 and 1.4 and (1.12), we obtain
that
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X̂T
D−→

T→∞
P.

This and (1.11) prove the theorem.

Proof of Theorem 1.1. In view of Theorem 1.5, it remains to show that
P = PL.

Let A ∈ B(C) be a �xed continuity set of the measure P . Then by Theorem
1.5 and Lemma 1.8

lim
T→∞

νt
T (L(λ, α, σ + it, ω) ∈ A) = P (A). (1.13)

On (Ω,B(Ω)), de�ne a random variable ξ by

ξ = ξ(ω) =
{

1 if L(λ, α, σ, ω) ∈ A,
0 if L(λ, α, σ, ω) 6∈ A.

It is easily seen that

E(ξ) =
∫
Ω

ξdmH = mH(ω ∈ Ω : L(λ, α, σ, ω) ∈ A) = PL(A). (1.14)

By Lemma 1.4 the process ξ(ϕt(ω)) is ergodic. Therefore, by Lemma 1.5

lim
T→∞

1
T

T∫
0

ξ(ϕt(ω))dt = E(ξ) (1.15)

for almost all ω ∈ Ω. However, the de�nitions of ξ and ϕt show that

1
T

T∫
0

ξ(ϕt(ω))dt = νt
T (L(λ, α, σ + it, ω) ∈ A).

This, (1.14) and (1.15) yield

lim
T→∞

νt
T (L(λ, α, σ + it, ω) ∈ A) = PL(A)

for almost all ω ∈ Ω, and in view of (1.13), the equality P (A) = PL(A) holds
for every continuity set A of P . Hence, we have that P (A) = PL(A) for all
A ∈ B(C), and the theorem is proved.
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Chapter 2

A joint limit theorem on the complex

plane for Lerch zeta-function with

algebraic irrational parameters

2.1. The statement of a joint limit theorem

Suppose that α1, ..., αr are distinct algebraic irrational numbers from the
class A. De�ne

Ωr =
r∏

j=1

Ωj ,

where

Ωj =
∏

m∈M(αj)

γm

and γm = γ for m ∈M(αj), j = 1, ..., r, M(αj) being de�ned as in section 1.1.
Since each torus Ωj is a compact topological Abelian group, Ωr is as well. Thus,
we obtain the probability space (Ωr,B(Ωr),mr

H), where mr
H is the probability

Haar measure on (Ωr,B(Ωr)). Let, for brevity, ω = (ω1, ..., ωr) ∈ Ωr, where
ωj ∈ Ωj , j = 1, ..., r, λ = (λ1, ..., λr), α = (α1, ..., αr), and σ = (σ1, ..., σr). On
the probability space (Ωr,B(Ωr),mr

H), de�ne the Cr-valued random element
L(λ, α, σ, ω), for min

1≤j≤r
σj > 1

2 , by

L(λ, α, σ, ω) =
(
L(λ1, α1, σ1, ω1), ..., L(λr, αr, σr, ωr)

)
,

where

L(λj , αj , σj , ωj) =
∞∑

m=0

e2πiλjmωj(m)
(m + αj)σj

and ωj(m) is the projection of ωj ∈ Ωj to the coordinate space γm if m ∈M(αj),
and the relation of type (0.2) if m ∈ N (αj), j = 1, ..., r. Let QL denote the
distribution of the random element L(λ, α, σ, ω), i. e.

QL(A) = mr
H (ω ∈ Ωr : L(λ, α, σ, ω) ∈ A) , A ∈ B(Cr).
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For A ∈ B(Cr), de�ne

PT (A) = νt
T

(
(L(λ1, α1, σ1 + it), ..., L(λr, αr, σr + it)) ∈ A

)
.

Theorem 2.1. Suppose that λj ∈ (0, 1), j = 1, . . . , r, that α1, ..., αr are
distinct algebraic irrational numbers from the class A such that the set

r⋃
j=1

I(αj)

is linearly independent over Q, and min
1≤j≤r

σj > 1
2 . Then the probability measure

PT converges weakly to the measure QL as T →∞.

2.2. A limit theorem on Ωr

In this section, we consider the weak convergence of the probability measure

QT,α(A) = νt
T

((
(m + α1)it : m ∈M(α1), ..., (m + αr)it : m ∈M(αr)

)
∈ A

)
,

A ∈ B(Ωr),

as T →∞.

Theorem 2.2. Suppose that the numbers α1, ..., αr satisfy the hypotheses of
Theorem 2.1. Then the probability measure QT converges weakly to the measure
mr

H as T →∞.

Proof. The dual group of Ωr is isomorphic to

r⊕
j=1

⊕
m∈M(αj)

Zmj ,

where Zmj = Z for all m ∈M(αj) and j = 1, ..., r. The element

k =
(
(km1)m∈M(α1), ..., (kmr)m∈M(αr)

)
∈

r⊕
j=1

⊕
m∈M(αj)

Zmj
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acts on Ωr by

ω → ωk =
r∏

j=1

∏
m∈M(αj)

ω
kmj

j (m),

where only a �nite number of integers kmj are distinct from zero. Hence, we
have that the Fourier transform gT,α(k) of the probability measure QT,α is

gT,α(k) =
∫

Ω(r)

r∏
j=1

∏
m∈M(αj)

ω
kmj

j dQT =

=
1
T

T∫
0

r∏
j=1

∏
m∈M(αj)

(m + αj)ikmjtdt =

=
1
T

T∫
0

exp

it
r∑

j=1

∑
m∈M(αj)

kmj log(m + αj)

dt, (2.1)

where only a �nite number of integers kmj are distinct from zero. Since the set

r⋃
j=1

I(αj)

is linearly independent over Q, from (2.1)we obtain that

gTα(k) =


1 if k=0,
exp

iT
r∑

j=1

∑
m∈M(αj)

kmj log(m+αj)

−1

iT
r∑

j=1

∑
m∈M(αj)

kmj log(m+αj)
otherwise,

and that

lim
T→∞

gT,α(k) =
{

1 if k = 0,
0 if k 6= 0.

This proves the theorem.
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2.3. Case of absolutely convergent Dirichlet series

For a �xed σ1j > 1
2 and m,n ∈ C0, let

vj(m,n, αj) = exp
{
−
(

m + αj

n + αj

)σ1j
}

,

and let, for σ > 1
2 ,

Lnj(λj , αj , s) =
∞∑

m=0

e2πiλjmvj(m,n, αj)
(m + αj)s

, j = 1, ..., r,

the series being absolutely convergent for σ > 1
2 , see [46]. Obviously, the series

Lnj(λj , αj , s, ωj) =
∞∑

m=0

e2πiλjmωj(m)vj(m,n, αj)
(m + αj)s

, j = 1, ..., r,

is also absolutely convergent for σ > 1
2 . For brevity, denote

Ln(λ, α, σ) =
(
Ln1(λ1, α1, σ1), ..., Lnr(σr, αr, σr)

)
,

and, for ω ∈ Ωr,

Ln(λ, α, σ, ω) =
(
Ln1(λ1, α1, σ1, ω1), ..., Lnr(σr, αr, σr, ωr)

)
.

In this section, we consider the weak convergence of the probability measures

PT,n(A) = νt
T

(
Ln(λ, α, σ + it) ∈ A

)
, A ∈ B(Cr),

and, for a �xed ω̂ ∈ Ωr,

P̂T,n(A) = νt
T

(
Ln(λ, α, σ + it, ω̂) ∈ A

)
, A ∈ B(Cr),
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where σ + it = (σ1 + it, ..., σr + it).

Theorem 2.3. Suppose that the numbers α1, ..., αr and λ1, ..., λr satisfy the
hypotheses of Theorem 2.1, and min

1≤j≤r
σj > 1

2 . Then on (Cr
,B(Cr)) there exists

a probability measure Pn such that both the measures PT,n and P̂T,n converge
weakly to Pn as T →∞.

Proof. De�ne a function hn : Ωr → Cr by

hn

((
{ω1(m) : m ∈M(α1)}, . . . , {ωr(m) : m ∈M(αr)}

))
=

( ∞∑
m=0

e2πiλ1mv1(m,n, α1)
(m + α1)σ1ω1(m)

, . . . ,
∞∑

m=0

e2πiλrmvr(m,n, αr)
(m + αr)σrωr(m)

)
.

Then the function hn is continuous, and

hn

((
{(m + α1)it : m ∈M(α1)}, . . . , {(m + αr)it : m ∈M(αr)}

))
=

= Ln(λ, α, σ + it).

This, Theorem 2.2 and Lemma 1.1 show that the probability measure PT,n

converges weakly to the measure mr
Hh−1

n as T →∞.
Now de�ne a new function ĥ : Ω(r) → Ω(r) by

ĥ
((
{ω1(m) : m ∈M(α1)}, . . . , {ωr(m) : m ∈M(αr)}

))

=
(
{ω̂1(m)ω−1

1 (m) : m ∈M(α1)}, . . . , {ωr(m)ω−1
r (m) : m ∈M(αr)}

)
.

Then one easily sees that

Ln(λ, α, σ + it, ω̂) =
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= hn

(
ĥ
(
({(m + α1)it : m ∈M(α1)}, . . . , {(m + αr)it : m ∈M(αr)})

))
.

From this, reasoning similarly to the case of the measure PT,n, we �nd that
the measure P̂T,n converges weakly to the measure mr

H(hnĥ)−1 as T → ∞.
However, the Haar measure mr

H is invariant, and, therefore, we obtained that

m
(r)
H (hnĥ)−1 = (m(r)

H ĥ)h−1
n = mr

Hh−1
n ,

and the theorem is proved.

2.4. Approximation in the mean

Denote

%(z(1), z(2)) =

 r∑
j=1

|z(1)
j − z

(2)
j |2

 1
2

,

z(j) =
(
z
(j)
1 , . . . , z

(j)
r

)
∈ Cr, j = 1, 2, the metric in Cr which induces the

topology of Cr.
In this section, we approximate in the mean the vectors L(λ, α, σ + it) and

L(λ, α, σ + it, ω) by the vectors Ln(λ, α, σ + it) and Ln(λ, α, σ + it, ω), respec-
tively.

Theorem 2.4. Suppose that the numbers α1, ..., αr and λ1, ..., λr satisfy the
hypotheses of Theorem 2.1, and min

1≤j≤r
σj > 1

2 . Then

lim
n→∞

lim sup
T→∞

1
T

T∫
0

%
(
L(λ, α, σ + it), Ln(λ, α, σ + it)

)
dt = 0,

and, for almost all ω ∈ Ωr,

lim
n→∞

lim sup
T→∞

1
T

T∫
0

%
(
L(λ, α, σ + it, ω), Ln(λ, α, σ + it, ω)

)
dt = 0.
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Proof. From Lemma 5.2.11 of [46], as in Lemma 1.3, it follows that, inde-
pendently of the arithmetic origine of the numbers α and λ ∈ (0, 1), for σ > 1

2 ,
we have

lim
n→∞

lim sup
T→∞

1
T

T∫
0

∣∣L(λ, α, σ + it)− Ln(λ, α, σ + it)
∣∣dt = 0.

Consequently , we have that, for min
1≤j≤r

σj > 1
2 ,

lim
n→∞

lim sup
T→∞

1
T

T∫
0

∣∣L(λj , αj , σj + it)− Ln(λj , αj , σj + it)
∣∣dt = 0,

j = 1, . . . , r. From this, using the de�nition of the metric %, we obtain the �rst
assertion of the theorem.

Similarly, by Theorem 1 of [51] we have that, for min
1≤j≤r

σj > 1
2 ,

lim
n→∞

lim sup
T→∞

1
T

T∫
0

∣∣L(λj , αj , σj + it, ωj)− Ln(λj , αj , σj + it, ωj)
∣∣dt = 0

for almost all ωj ∈ Ωj , j = 1, . . . , r. Since the measure mr
H is a product of the

Haar measures on (Ωj ,B(Ωj)), j = 1, ..., r, the statement of the theorem follows.

2.5. Proof of Theorem 2.1

We start with an analogue of Theorem 2.3. De�ne, for ω ∈ Ωr, the proba-
bility measure

P̂T (A) = νt
T

(
Ln(λ, α, σ + it, ω) ∈ A

)
, A ∈ B(Cr).

Theorem 2.5. Suppose that the numbers λ1, ..., λr and α1, ..., αr satisfy the
hypotheses of Theorem 2.1, and that min

1≤j≤r
σj > 1

2 . Then on (Cr
,B(Cr)) there

exists a probability measure P such that both the measures PT and P̂T converge
weakly to P as T →∞.
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Proof. Theorem 2.3 shows that both the measures PT,n and P̂T,n converge
weakly to the same probability measure Pn as T → ∞. It is not di�cult to
see that the family of probability measures {Pn : n ∈ C0} is tight. Really, the
de�nition of PT,n and the Chebyshev inequality, for M > 0, give

PT,n

(
{z ∈ Cr : %(z, 0) > M}

)
= νt

T

(
%(Ln(λ, α, σ + it), 0) > M

)
≤

≤ 1
MT

T∫
0

%
(
Ln(λ, α, σ+it), 0

)
dt ≤ 1

M

 1
T

T∫
0

r∑
j=1

|Lnj(λj , αj , σj + it)|2 dt


1
2

=

=
1
M

 r∑
j=1

1
T

T∫
0

|Lnj(λj , αj , σj + it)|2 dt


1
2

. (2.2)

For each j = 1, ..., r, the series for Lnj(λj , αj , σj + it) converges absolutely;
therefore

lim sup
T→∞

1
T

T∫
0

|Lnj(λj , αj , σj + it)|2 dt =

= lim
T→∞

1
T

T∫
0

|Lnj(λj , αj , σj + it)|2 dt =

=
∞∑

m=0

v2
j (m,n, αj)

(m + αj)2σj
≤

∞∑
m=0

1
(m + αj)2σj

def=Rj < ∞,

j = 1, ..., r. This together with (2.2) shows that

lim sup
T→∞

PT,n

(
{z ∈ Cr : %(z, 0) > M}

)
≤
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sup
n∈C0

lim sup
T→∞

1
M

 r∑
j=1

1
T

T∫
0

|Lnj(λj , αj , σj + it)|2 dt


1
2

≤ R

M
, (2.3)

where

R =

 r∑
j=1

Rj

 1
2

< ∞.

Rj =
∞∑

m=0

1
(m + αj)2σj

.

Let ε > 0 be an arbitrary number, and let M = Rε−1. Then, taking into
account (2.3), we �nd that

lim sup
T→∞

PT,n

(
{z ∈ Cr : %(z, 0) > M}

)
≤ ε. (2.4)

The function h : Cr → R de�ned by h(z) = %(z, 0), clearly, is continuous.
Therefore, Theorem 2.3 and Lemma 1.1 show that the probability measure

νt
T

(
%(Ln(λ, α, σ + it), 0) ∈ A

)
, A ∈ B(Cr),

converges weakly to Pnh−1 as T →∞. The set {z ∈ Cr : %(z, 0) > M} is open.
Therefore, by Lemma 1.7 and (2.4), for all n ∈ C0, we have

Pn

(
{z ∈ Cr : %(z, 0) > M}

)
≤

≤ lim inf
T→∞

PT,n

(
{z ∈ Cr : %(z, 0) > M}

)
≤ ε. (2.5)

The set Kε = {z ∈ Cr : %(z, 0) ≤ M} is compact in Cr, and in view of (2.5)

Pn(Kε) ≥ 1− ε
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for all n ∈ C0. This means that the family of probability measures {Pn :
n ∈ C0} is tight. Hence, by the Prokhorov theorem, (see Lemma 1.8) it is
relatively compact. Thus, there exists a subsequence {Pn1

} ⊂ {Pn} such that
Pn1

converges weakly to some probability measure P on (Cr
,B(Cr)) as n1 →

∞. Let Xn(σ) be a Cr-valued random element having the distribution Pn.
Then we have from above that

Xn1(σ) D−→
n1→∞

P. (2.6)

Now we take a uniformly distributed on [0, 1] random variable θ de�ned on
some probability space (Ω̂,B(Ω̂), P). Let

XT,n(σ) = Ln(λ, α, σ + iθT ).

Then by Theorem 2.3 we have that

XT,n(σ) D−→
T→∞

Xn(σ). (2.7)

Moreover, by the �rst assertion of Theorem 2.4, we obtain that, for every ε > 0,

lim
n→∞

lim sup
T→∞

P(%(XT,n(σ), XT (σ)) ≥ ε) =

= lim
n→∞

lim sup
T→∞

νt
T

(
%(L(λ, α, σ + it), Ln(λ, α, σ + it)) ≥ ε

)
≤

≤ lim
n→∞

lim sup
T→∞

1
εT

T∫
0

%(L(λ, α, σ + it), Ln(λ, α, σ + it))dt = 0,

where

XT (σ) = L(λ, α, σ + iθT ).

Now this, (2.6), (2.7) and Lemma 1.9 imply the relation
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XT (σ) D−→
T→∞

P, (2.8)

which is equivalent to the weak convergence of the measure PT to P as T →∞.
To show the weak convergence of P̂T to P as T →∞, �rst we observe that,

in view of (2.8), the measure P is independent of the choice of the sequence
{Pn1

}. Thus, we have that

Xn(σ) D−→
n→∞

P . (2.9)

Now de�ne

X̂T,n(σ) = Ln(λ, α, σ + iθT, ω)

and

X̂T (σ) = L(λ, α, σ + iθT, ω).

Then, repeating the above arguments for X̂T,n(σ) and X̂T (σ), and applying
Theorem 2.3 as well as the second assertion of Theorem 2.4, we obtain that the
measure P̂T also converges weakly to P as T →∞.

To complete the proof of Theorem 2.1, we need some ergodicity arguments.
For t ∈ R, de�ne

at,α =
(
{(m + α1)−it : m ∈M(α1)}, . . . , {(m + αr)−it : m ∈M(αr)}

)
,

and let {ϕt,α : t ∈ R} be the one-parameter family of transformations on Ω(r)

de�ned by

ϕt,α(ω) = at,αω, ω ∈ Ω(r).

Then we have that {ϕt,α : t ∈ R} is a one-parameter group of measure preserv-
ing measurable transformations on Ω(r). We recall that a set A ∈ B(Ω(r)) is
invariant with respect to the group {ϕt,α : t ∈ R} if, for each t ∈ R, the sets A
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and At = ϕt,α(A) di�er one from another by a set of mr
H -measure zero. All in-

variant sets form a σ-sub�eld of B(Ωr). The one-parameter group {ϕt,α : t ∈ R}
is called ergodic if its σ-�eld of invariant sets consists only of sets having mr

H -
measure equal to 0 or 1.

Lemma 2.1. The one-parameter group {ϕt,α : t ∈ R} is ergodic.

Proof. We already have seen in the proof of Theorem 2.2 that the dual group
of Ω(r) is

r⊕
j=1

⊕
m∈M(αj)

Zmj ,

where Zmj = Z for all m ∈M(αj) and j = 1, ..., r. Therefore, if χ : Ω(r) → γ is
a character,

χ(ω) =
r∏

j=1

∏
m∈M(αj)

ω
kmj

j (m),

where only a �nite number of integers kmj are distinct from zero. If χ is a
nonprincipal character, from this we have that

χ(at,α) =
r∏

j=1

∏
m∈M(αj)

(m + αj)−ikmjt.

Since the set

r⋃
j=1

I(αj)

is linearly independent over Q,

r∏
j=1

∏
m∈M(αj)

(m + αj)kmj 6= 1.

Therefore, there exists a number t0 ∈ R such that χ(at0,α) 6= 1.
Denote by IA the indicator function of a set A. Let A be an invariant set of

the one-parameter group {ϕt,α : t ∈ R}. Then, for each �xed t ∈ R,
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IA(at,αω) = IA(ω)

for almost all ω ∈ Ωr. Thus, the Fourier transform ÎA of IA is

ÎA(χ) =
∫
Ωr

χ(ω)IA(ω)m(r)
H (dω) =

=
∫

Ω(r)

χ(ω)IA(at0,αω)m(r)
H (dω) =

= χ(at0,α)
∫

Ω(r)

χ(ω)IA(ω)m(r)
H (dω) = χ(at0,α)ÎA(χ).

Since χ(at0,α) 6= 1, this shows that ÎA(χ) = 0 for all nontrivial characters χ of
Ω(r).

Now let χ0 be the principal character (χ0(ω) = 1 for all ω ∈ Ωr). Denote
ÎA(χ0) = u. Using

∫
Ω(r)

χ(ω)mr
H(dω) =

{
1 if χ = χ0,
0 if χ 6= χ0,

we obtain that, for any character χ of Ωr,

ÎA(χ) = u

∫
Ω(r)

χ(ω)m(r)
H (dω) = uÎA(χ) = û(χ).

Consequently, IA(ω) = u for almost all ω ∈ Ω(r). However, u = 0 or u = 1,
hence, m

(r)
H (A) = 0 or m

(r)
H (A) = 1, and the lemma is proved.

Proof of Theorem 2.1. We �x a continuity set of the limit measure P in
Theorem 2.5. Then the latter theorem, together with Lemma 1.7, yields

lim
T→∞

νt
T

(
L(λ, α, σ + it, ω) ∈ A

)
= P (A). (2.10)
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On (Ω(r),B(Ω(r))) de�ne a random variable ξ by

ξ = ξ(ω) =
{

1 if L(λ, α, σ, ω) ∈ A,
0 if L(λ, α, σ, ω) 6∈ A.

By this de�nition,

Eξ =
∫

Ω(r)

ξdm
(r)
H = m

(r)
H

(
ω ∈ Ω : L(λ, α, σ, ω) ∈ A

)
= QL(A). (2.11)

In view of Lemma 2.1, the process ξ(ϕt,α(ω)) is ergodic . Thus, by Lemma 2.2

lim
T→∞

1
T

T∫
0

ξ(ϕt,α(ω))dt = Eξ (2.12)

for almost all ω ∈ Ω(r). On the other hand, by the de�nition of ϕt,α we �nd
that

1
T

T∫
0

ξ(ϕt,α(ω))dt = νt
T

(
L(λ, α, σ + it, ω) ∈ A

)
.

This relation together with (2.11) and (2.12) shows that

lim
T→∞

νt
T

(
L(λ, α, σ + it, ω) ∈ A

)
= QL(A)

for almost all ω ∈ Ω(r). Thus, by (2.10) we have that P (A) = QL(A) for every
continuity set A of the measure P . Hence, P (A) = QL(A) for all A ∈ B(Cr).

The theorem is proved.
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Chapter 3

A limit theorem in the space of analytic

functions for the Lerch zeta-function with

algebraic irrational parameter

3.1. The statement of the limit theorem in the
space of analytic functions

We recall, that D = {s ∈ C : σ > 1
2}, and H(D) is the space of analytic on

D functions equipped with the topology of uniform convergence on compacta.
As in Chapter 1, we suppose that α ∈ A.

For s ∈ D and ω ∈ Ω, de�ne

L(λ, α, s, ω) =
∞∑

m=0

e2πiλmω(m)
(m + α)s

. (3.1)

Then L(λ, α, s, ω) is an H(D)-valued random element de�ned on the probabil-
ity space (Ω,B(Ω),mH). Indeed, in view of the orthogonality of the random
variables ω(m), de�ned in Section 1.1, and the classical Rademacher theorem
[54], for every σ > 1

2 , the series

∞∑
m=0

e2πiλmω(m)
(m + α)σ

converges for almost all ω ∈ Ω. Therefore, by the well-known property of
Dirichlet series, the series(3.1), for almost all ω ∈ Ω, converges uniformly on
compact subsets of

Ar =
{

s ∈ C : σ >
1
2

+
1
r

}
, r ∈ N.

Hence, it follows that this series, for almost all ω ∈ Ω, converges uniformly on
compact subsets of D.

De�ne

PT,H(A) = ντ
T (L(λ, α, s + iτ) ∈ A) , A ∈ B(H(D)).
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Theorem 3.1. Suppose that λ ∈ (0, 1) and α ∈ A. The probability measure
PT,H converges weakly to the distribution PL of the random element L(λ, α, s, ω)
as T →∞.

Let D1 = {s ∈ C : σ > 1}. Then the condition α ∈ A can be removed from
Theorem 3.1. Suppose that the H(D1)-valued random element is a restriction
of L(λ, α, s, ω) to H(D1).

Theorem 3.2. Suppose that λ ∈ (0, 1) and α is an algebraic irrational
number. Then the probability measure

ντ
T (L(λ, α, s + iτ) ∈ A) , A ∈ B(H(D1)),

converges weakly to the distribution of the H(D1)-valued random element
L(λ, α, s, ω).

3.2. Case of absolutely convergent series

In this section, we prove limit theorems in the space of analytic functions
for an absolutely convergent Dirichlet series related to the function L(λ, α, s).

Let, as in Chapter 1, for σ1 > 1
2 be �xed,

vn(m,α) = exp
{
−
(

m + α

n + α

)σ1
}

, m, n ∈ N0.

In section 1.3, it was obtained that the series

Ln(λ, α, s) =
∞∑

m=0

e2πiλmvn(m,α)
(m + α)s

and

Ln(λ, α, s, ω0) =
∞∑

m=0

e2πiλmvn(m,α)ω0(m)
(m + α)s

,

where ω0 ∈ Ω, both converge absolutely for σ > 1
2 . On (H(D),B(H(D))), de�ne

two probability measures

PT,n(A) = ντ
T

(
Ln(λ, α, s + iτ) ∈ A

)
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and

P̂T,n(A) = ντ
T

(
Ln(λ, α, s + iτ, ω0) ∈ A

)
.

Theorem 3.3. Let λ ∈ (0, 1) and α ∈ A. Then the probability measures
PT,n and P̂T,n both converge weakly to the same probability measure Pn on
(H(D),B(H(D))) as T →∞.

Proof. De�ne the function un,α : Ω → H(D) by the formula

un,α(ω) =
∞∑

m=0

e2πiλmvn(m,α)ω(m)
(m + α)s

.

The continuity of the function un,α follows from the absolute convergence of
this series for σ > 1

2 . Moreover,

un,α

(
{(m + α)−iτ : m ∈M(α)}

)
=

∞∑
m=0

e2πiλmvn(m,α)
(m + α)s+iτ

= Ln(λ, α, s + iτ).

Thus, we have that the PT,n = QT u−1
n,α, where, for A ∈ B(H(D)), QT u−1

n,α(A) =
QT (u−1

n,αA). Therefore, by Theorem 1.2 and Lemma 1.1 we �nd that the measure
PT,n converges weakly to mHu−1

n,α as T →∞.
The weak convergence of P̂T,n is obtained similarly. De�ne ûn,α : Ω → H(D)

by the formula

ûn,α(ω) =
∞∑

m=0

e2πiλmvn(m,α)ω0(m)ω(m)
(m + α)s

.

Then, analogically to the case of PT,n, we �nd that the measure P̂T,n converges
weakly to mH û−1

n,α as T → ∞. Thus, it remains to prove that mHu−1
n,α =

mH û−1
n,α. For this, we de�ne u0 : Ω → Ω by the formula u0(ω) = ωω0. Then

ûn,α(ω) = un,α(u0(ω)), and the invariance of the Haar measure mH shows that

mH û−1
n,α = mH(un,αu0)−1 = (mHu−1

0 )u−1
n,α = mHu−1

n,α.

Thus, P̂n = mHu−1
n,α, and the theorem is proved.
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3.3. Approximation in the mean

To pass from the measure PT,n to PT , we need an approximation of the
function L(λ, α, s) by Ln(λ, α, s) in the mean.

Theorem 3.4. Let λ ∈ (0, 1), α ∈ A and K be a compact subset of D.
Then

lim
n→∞

lim sup
T→∞

1
T

T∫
0

sup
s∈K

∣∣L(λ, α, s + iτ)− Ln(λ, α, s + iτ)
∣∣dτ = 0.

Proof. In [46], Lemma 5.2.11, the equality of the theorem was proved for
transcendental α. However, it is easily seen that the proof is independent of the
arithmetic of the number α. Therefore, Theorem 3.3 is true for every �xed α,
0 < α < 1.

The case of the functions L(λ, α, s, ω) and Ln(λ, α, s, ω) is more complicated.
Theorem 3.5. Suppose that λ ∈ (0, 1), α ∈ A and that K is a compact

subset of D. Then

lim
n→∞

lim sup
T→∞

1
T

T∫
0

sup
s∈K

∣∣L(λ, α, s + iτ, ω)− Ln(λ, α, s + iτ, ω)
∣∣dτ = 0

for almost all ω ∈ Ω.

Proof. For σ1 > 1
2 and n ∈ N0, de�ne

ln(s, α) =
s

σ1
Γ
(

s

σ1

)
(n + α)s,

where, as usual, Γ(s) denotes the Euler gamma-function. Let,

bn(λ, α, m, ω) =
e2πiλmω(m)

2πi

σ1+i∞∫
σ1−i∞

ln(z, α)
(m + α)zz

dz.

Then the well-known estimates of Γ(s) imply
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bn(λ, α,m, ω) � (m + α)−σ1

∞∫
−∞

ln(σ1 + it, α)
|σ1 + it|

dt �n (m + α)−σ1 .

Hence, we obtain that the series

∞∑
m=0

bn(λ, α, m, ω)
(m + α)s

converges absolutely for σ > 1
2 . Therefore, the interchange of order of summa-

tion and integration yields

∞∑
m=0

bn(λ, α, m, ω)
(m + α)s

=
1

2πi

σ1+i∞∫
σ1−i∞

(
ln(z, α)

z

∞∑
m=0

e2πiλmω(m)
(m + α)s+z

)
dz =

=
1

2πi

σ1+i∞∫
σ1−i∞

L(λ, α, s + z, ω)
ln(z, α)

z
dz. (3.2)

On the other hand, the Mellin inversion formula

1
2πi

b+i∞∫
b−i∞

Γ(s)α−sds = e−α, a, b > 0,

and the de�nitions of bn(λ, α, m, ω) and vn(m,α) show that

bn(λ, α, m, ω) = e2πiλmvn(m,α)ω(m).

From this and (3.1), we deduce that

Ln(λ, α, s, ω) =
1

2πi

σ1+i∞∫
σ1−i∞

L(λ, α, s + z, ω)
ln(z, α)

z
dz. (3.3)
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Since the series (3.1) converges uniformly on compact subsets of D for almost all
ω ∈ Ω, the function L(λ, α, s, ω) is analytic on D for almost all ω ∈ Ω. Suppose
that σ2 > 1

2 and σ2 < σ. Then the above remark, (3.3), and the residue theorem
yield

Ln(λ, α, s, ω) =
1

2πi

σ2−σ+i∞∫
σ2−σ−i∞

L(λ, α, s + z, ω)
ln(z, α)

z
dz + L(λ, α, s, ω). (3.4)

Suppose that 1
2 +η = min

s∈K
Res. Clearly, η > 0. Let L be a simple closed contour

enclosing the set K such that 1
2 + 3η

4 = min
s∈L

Res, δ ≥ η
4 , where δ is the distance

of L from the set K. Then by the Cauchy integral formula

sup
s∈K

∣∣L(λ, α, s + iτ, ω)− Ln(λ, α, s + iτ, ω)
∣∣ ≤

≤ 1
2πδ

∫
L

∣∣L(λ, α, z + iτ, ω)− Ln(λ, α, z + iτ, ω)
∣∣|dz|.

If |L| denotes the length of the contour L, then this, for su�ciently large T ,
gives

1
T

T∫
0

sup
s∈K

∣∣L(λ, α, s + iτ, ω)− Ln(λ, α, s + iτ, ω)
∣∣dτ �

� 1
Tδ

T∫
0

|dz|
T+Imz∫
Imz

∣∣L(λ, α, Rez + iτ, ω)− Ln(λ, α, Rez + iτ, ω)
∣∣dτ �

� |L|
Tδ

sup
s∈L

2T∫
0

∣∣L(λ, α, σ + iτ, ω)− Ln(λ, α, σ + iτ, ω)
∣∣dτ. (3.5)

By (3.4) we have
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L(λ, α, s + iτ, ω)− Ln(λ, α, s + iτ, ω) �

�
∞∫

−∞

∣∣L(λ, α, σ2 + it + iτ, ω)
∣∣ |ln(σ2 − σ + it, α)|

|σ2 − σ + it|
dt.

Therefore, taking into account Lemma 1.6, we obtain that

1
T

2T∫
0

∣∣L(λ, α, σ + iτ, ω)− Ln(λ, α, σ + iτ, ω)
∣∣dτ �

�
∞∫

−∞

∣∣ln(σ2 − σ + it, α)
∣∣ 1
T

2T+|t|∫
−|t|

∣∣L(λ, α, σ2 + iτ, ω)
∣∣dτ dt �

�
∞∫

−∞

∣∣ln(σ2 − σ + it, α)
∣∣
 1

T

2T+|t|∫
−|t|

∣∣L(λ, α, σ2 + iτ, ω)
∣∣2dτ


1
2

dt �

�
∞∫

−∞

∣∣ln(σ2 − σ + it, α)
∣∣ (1 +

|t|
T

) 1
2

dt �

�
∞∫

−∞

∣∣ln(σ2 − σ + it, α)
∣∣ (1 + |t|) dt.

Combining this with (3.5), and taking σ2 = 1
2 + η

2 , we �nd that

1
T

T∫
0

sup
s∈K

∣∣L(λ, α, s + iτ, ω)− Ln(λ, α, s + iτ, ω)
∣∣dτ �

� sup
σ≤− η

4

∞∫
−∞

∣∣ln(σ + it, α)
∣∣ (1 + |t|) dt.

Since, for σ < 0,

lim
n→∞

∞∫
−∞

∣∣ln(σ + it, α)
∣∣ (1 + |t|) dt = 0,

the theorem is proved.
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3.4. Proof of the Theorem 3.1

For A ∈ B(H(D)) and ω ∈ Ω, de�ne the other probability measure

P̂T (A) = ντ
T

(
L(λ, α, s + iτ, ω) ∈ A

)
.

To prove the weak convergence for the measures PT and P̂T , we need a metric
on H(D) which induces its topology of uniform convergence on compacta.

It is well known, (see, for example, [9]) that there exists a sequence {Kl : l ∈
N} of compact subsets of D such that

1) D =
∞⋃

l=1

Kl;

2) Kl ⊂ Kl+1, l ∈ N;

3) If K is a compact subset of D, then K ⊆ Kl for some l.

For f, g ∈ H(D), de�ne

%(f, g) =
∞∑

l=1

2−l

sup
s∈Kl

|f(s)− g(s)|

1 + sup
s∈Kl

|f(s)− g(s)|
.

Then %(f, g) is the desired metric.

Theorem 3.6. Suppose that λ ∈ (0, 1) and α ∈ A. Then the probability
measures PT and P̂T both converge weakly to the same probability measure P on
(H(D),B(H(D))) as T →∞.

Proof. We have obtained in Theorem 3.3 that the probability measures
PT,n and P̂T,n both converge weakly to the same probability measure Pn on
(H(D),B(H(D))) as T →∞. Now we will show that the family of probability
measures {Pn : n ∈ N0} is tight.

Let θ be a uniformly distributed on some probability space (Ω̂,B(Ω̂), P).
De�ne

XT,n = XT,n(s) = Ln(λ, α, s + iTθ).

Then we have by Theorem 3.3 that

XT,n
D−→

T→∞
Xn, (3.6)
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where Xn = Xn(s) is an H(D)-valued random element with distribution Pn.
The series for Ln(λ, α, s) converges absolutely for σ > 1

2 . Therefore, for
σ > 1

2 ,

lim
T→∞

1
T

T∫
0

∣∣Ln(λ, α, σ + it)
∣∣2dt =

=
∞∑

m=0

v2
n(m,α)

(m + α)2σ
≤

∞∑
m=0

1
(m + α)2σ

.

From this, using the Cauchy integral formula, we deduce that there exists a
positive constant Cl such that

lim sup
T→∞

1
T

T∫
0

sup
s∈Kl

∣∣Ln(λ, α, s + iτ)
∣∣2dt � Cl

∞∑
m=0

1
(m + α)2σl

, l ∈ N, (3.7)

with some σl > 1
2 . Therefore, there exists a number 0 < Rl < ∞ such that

sup
n∈N0

lim sup
T→∞

1
T

T∫
0

sup
s∈Kl

∣∣Ln(λ, α, s + iτ)
∣∣dτ �

� sup
n∈N0

lim sup
T→∞

 1
T

T∫
0

sup
s∈Kl

∣∣Ln(λ, α, s + iτ)
∣∣2dτ


1
2

≤ Rl, l ∈ N. (3.8)

By (3.7) we can take, for example,

Rl =

(
Cl

∞∑
m=0

1
(m + α)σl

) 1
2

, l ∈ N.

Let ε be an arbitrary positive number, and Ml,ε = 2lRlε
−1. Then, in view of

(3.8),
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lim sup
T→∞

PT,n

({
g ∈ H(D) : sup

s∈Kl

|g(s)| > Ml,ε

})
=

= lim sup
T→∞

ντ
T

(
sup
s∈Kl

∣∣Ln(λ, α, s + iτ)
∣∣ ≥ Ml,ε

)
≤

≤ 1
Ml,ε

T∫
0

sup
s∈Kl

∣∣Ln(λ, α, s + iτ)
∣∣dτ ≤ ε

2l
, l ∈ N. (3.9)

The function h : H(D) → R given by the formula h(g) = sup
s∈Kl

|g(s)|, g ∈

H(D), is continuous. Therefore, Theorem 3.3 and Lemma 1.2 imply the weak
convergence of the probability measure

ντ
T

(
sup
s∈Kl

∣∣Ln(λ, α, s + iτ)
∣∣ ∈ A

)
, A ∈ B(R),

to the measure Pnh−1 as T →∞. Thus, by Theorem 1.8 and (3.9),

Pn

({
g ∈ H(D) : sup

s∈Kl

|g(s)| > Ml,ε

})
≤

≤ lim inf
T→∞

PT,n

({
g ∈ H(D) : sup

s∈Kl

|g(s)| > Ml,ε

})
≤

≤ lim sup
T→∞

PT,n

({
g ∈ H(D) : sup

s∈Kl

|g(s)| > Ml,ε

})
≤ ε

2l
, l ∈ N. (3.10)

Now let

Kε =
{

g ∈ H(D) : sup
s∈Kl

|g(s)| ≤ Ml,ε, l ∈ N
}

.

Then the set Kε is uniformly bounded and, therefore, a compact subset of H(D).
Moreover, by (3.10),

56



Pn(Kε) = 1− Pn(KC
ε ) ≥ 1−

∞∑
l=1

Pn

({
g ∈ H(D) : sup

s∈Kl

|g(s)| > Ml,ε

})
≥ 1− ε

∞∑
l=1

1
2l

= 1− ε

for all n ∈ N0. By de�nition, this means that the family {Pn : n ∈ N0} is tight.
The Prokhorov theorem (see Lemma 1.8) now implies the relative compactness
of the family {Pn : n ∈ N0}. Therefore, there exists {Pnk

} ⊂ {Pn} such that
Pnk

converges weakly to some probability measure P on (H(D),B(H(D))) as
k →∞. Hence, we have the relation

Xnk

D−→
k→∞

P. (3.11)

Now de�ne

XT = XT (s) = L(λ, α, s + iTθ).

Then, using Theorem 3.4, we obtain that, for every ε,

lim
n→∞

lim sup
T→∞

P
(
%(XT , XT,n) ≥ ε

)
=

= lim
n→∞

lim sup
T→∞

ντ
T

(
%
(
L(λ, α, s + iτ), Ln(λ, α, s + iτ)

)
≥ ε
)
≤

≤ lim
n→∞

lim sup
T→∞

1
Tε

T∫
0

%
(
L(λ, α, s + iτ), Ln(λ, α, s + iτ)

)
dτ = 0.

From this and from (3.6), (3.11) and Lemma 1.9 we deduce that

XT
D−→

T→∞
P. (3.12)

Thus, we have that the measure PT converges weakly to P as T →∞.
Relation (3.12) shows that the limit measure P is independent on the se-

quence {Pnk
}. Hence, since {Pn : n ∈ N0} is relatively compact, we obtain the

relation
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Xn
D−→

n→∞
P. (3.13)

Now de�ne

X̂T,n = X̂T,n(s) = Ln(λ, α, s + iTθ, ω)

and

X̂T = X̂T (s) = L(λ, α, s + iTθ, ω).

Then reasoning similarly as above and applying Theorems 3.3 and 3.5 and (3.13),
we �nd that

X̂T
D−→

T→∞
P,

i.e., the measure P̂T converges weakly to P as T →∞.
The theorem is proved.

Proof of Theorem 3.1. By Theorem 3.5, we have to show that the measure
P coincides with PL.

Let A ∈ B(H(D)) be a �xed continuity set of the measure P . Then Theo-
rem 3.5 and Lemma 1.8 imply the relation

lim
T→∞

ντ
T

(
L(λ, α, s + iτ) ∈ A

)
= P (A). (3.14)

In the sequel, we use some elements of ergodic theory. For τ ∈ R, we put

aτ =
{
(m + α)−iτ : m ∈M(α)

}

and de�ne the family {ϕτ : t ∈ R} of transformations on Ω de�ned by ϕτ (ω) =
aτω, ω ∈ Ω. Then {ϕτ : t ∈ R} is a one-parameter group of measurable measure-
preserving transformations on the torus Ω. By Lemma 1.4, the one-parameter
group {ϕτ : t ∈ R} is ergodic.

On (Ω,B(Ω)), de�ne the random variable ξ = ξ(ω) by
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ξ =

{
1 if L(λ, α, s, ω) ∈ A,

0 if L(λ, α, s, ω) /∈ A.

Then we have that

E(ξ) =
∫
Ω

ξdmH = mH

(
ω ∈ Ω : L(λ, α, s, ω) ∈ A

)
= PL(A). (3.15)

In view of ergodicity of the group {ϕτ : t ∈ R}, the random process ξ(ϕτ (ω))
is also ergodic. Therefore, by the classical Birkho�-Khinchine theorem (see
Lemma 1.6),

lim
T→∞

1
T

T∫
0

ξ(ϕτ (ω))dτ = E(ξ) (3.16)

for almost all ω ∈ Ω. On the other hand, the de�nitions of ξ and ϕτ show that

1
T

T∫
0

ξ(ϕτ (ω))dτ = ντ
T

(
L(λ, α, s + iτ, ω) ∈ A

)
.

From this and from (3.15) and (3.16) we �nd that

lim
T→∞

ντ
T

(
L(λ, α, s + iτ, ω) ∈ A

)
= PL(A)

for almost all ω ∈ Ω. Therefore, in view of (3.14), P (A) = PL(A) for every conti-
nuity set A of the measure P . Since the continuity sets constitute a determining
class, we have that P (A) = PL(A) for all A ∈ B(H(D)).

The theorem is proved.

Proof of Theorem 3.2. The theorem follows similarly to Theorem 3.1, but
its proof is simpler because the series converge absolutely, and we do not need
the orthogonality of random variables ω(m). Therefore, we can remove the
hypothesis α ∈ A from Theorem 3.1.
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Conclusions

In the thesis, the following statistical properties for the Lerch zeta-function
are obtained.

1. For the Lerch zeta-function L(λ, α, s) with parameters λ ∈ (0, 1) and
algebraic irrational parameter α from the class A, a limit theorem in the sense
of weak convergence of probability measures on the complex plane is valid.

2. For a collection of Lerch zeta-functions with algebraic irrational parame-
ters from the class A, a joint limit theorem in the sense of weak convergence of
probability measures on the complex plane is valid.

3. For the Lerch zeta-function L(λ, α, s) with parameters λ ∈ (0, 1) and
algebraic irrational parameter α from the class A, a limit theorem in the sense
of weak convergence of probability measures in the space of analytic functions
is valid.
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Notation
N0 set of all non-negative integers
N set of all positive integers
Z set of all integer numbers
R set of all real numbers
P set of all prime numbers
C set of all complex numbers
i imaginary unity: i2 = −1
s = σ + it complex variable
meas{A} Lebesgue measure of the set A
B(S) class of Borel sets of the space S
E(X) expectation of the random element X
∂A boundary of the set A
D→ convergence in distribution
Ac complement of the set A
L(λ, α, s) Lerch zeta-function
Γ(s) Euler gamma-function
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