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1 General characteristics of the dissertation
Topicality of the problem
Markov chains are very widely used in behavioral sciences to model sequences
of dependent observations. Therefore investigations in this �eld are always
relevant.

In this work we explored properties of a chain (Xn, n > 0) evolving in a closed
cone C of a �nite dimensional normed space E. We assumed that iterations of
(Xn) are given by a function F : C × W → C and a sequence (εn, n > 1) of
independent identically distributed random elements of a separable metric space
W , i.e.

Xn = F (Xn−1, εn), n > 1.

The main assumption regarding F was asymptotical homogeneity of F (·, w).
To be more precise we assumed that for each w ∈ W there exists homogeneous
function G(·, w) such that

tn →∞, xn → x 6= 0 ⇒ t−1
n F (tnxn, w) → G(x,w); (1.1)

G(0, w) = 0. (1.2)

The class of the described chains covers many models found in practical
applications (several examples are provided in section 2.1). Further on we call
such chains asymptotically homogeneous.

Aim and tasks of the work
In this work we aimed to solve two problems:

• to give conditions for existence of a unique stationary distribution of an
asymptotically homogeneous Markov chains;

• to �nd out when the tail of the stationary distribution is heavy.

Scienti�c novelty and practical value
Novelty. To our best knowledge the class of asymptotically homogeneous
Markov chains was not described elsewhere in the literature in the same fashion
as we did this. Therefore suggested approach is essentially new. Considering
the solved problems it is worthwhile to mention the sources which gave rise to
the obtained results.

Existence of a stationary distribution. In 1992 Bougerol and Picard (see [1])
investigated random linear equation

Xn = AnXn−1 + Bn, (1.3)

here An is a real random k × k matrix and Bn is a real random k × 1 vector.
Under very weak assumptions they have shown that

• with probability 1 there exists limit

γ = lim
n→∞

1
n

log‖A1 . . . An‖,

which is called the top Lyapunov exponent of the model;
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• the random linear equation admits unique stationary distribution if γ is
negative and there is no stationary solution if γ is positive.

One can see that linear random equation is a particular case of asymp-
totically homogeneous chain correspondig to F (x, (w1, w2)) = w1x + w2 and
C ⊂ Rk. On the other hand there are many models which �t into the scope of
the class but are not linear. Therefore it was unclear if one can develop criteria
analogous to that of Bougerol and Picard (see theorem 2.1 and remark 2.1) and
under certain assumptions applicable not only to the linear model.

Tail index. There are several sources which inspired investigations in this
direction.

First of all it is well known result of Kesten (see [7]) on linear random
equation (1.3). He considered non-negative linear random equation and has
shown that under certain assumptions stationary distribution of linear random
equation is heavy tailed, i.e. there exist α > 0 and function c : [0;∞)k → [0;∞)
such that

tα P{xT X > t} −−−→
t→∞

c(x),

here X denotes a random vector having stationary distribution of the chain
whereas x ∈ [0;∞)k is a �xed non-random vector. As it was mentioned above
linear random equation is a particular case of an asymptotically homogeneous
Markov chain.

Another general work on heavy tails of stationary solutions of random equa-
tions was done by Goldie (see [3]). He considered chains evolving in a line or in a
half-line and gave results applicable to a big subset of one dimensional asympto-
tically homogeneous chains. He actually exploited the property of asymptotical
homogeneity however big subset of models was lost because the property was no-
ticed only for chains having special limiting function G introduced by relations
(1.1)�(1.2) (for details see original source and remark 2.2).

Finally there was work [9]. The authors of it also dealt with linear random
equation and explored the case which was not covered by Kesten.
Practical value. The obtained results give uni�ed approach for investigation
of asymptotically homogeneous Markov chains and in many cases quickly lead
to the results which are not trivial to prove by means of other methods. On the
other hand dealing with particular models one can relax certain assumptions
put by our theorems. To give deeper insight we provide several comments on
each of the solved problems.

Existence of a stationary distribution. Despite it's generality our main the-
orem on stationarity (see theorem 2.1) imposes irreducibility conditions which
may be considered as disadvantage. However analyzing di�erent models met in
the literature† we have come to the conclusion that irreducibility assumptions
are usually weaker once it is possible to write down implicit stationary solution
via the sequence of innovations. In other cases irreducibility assumptions are
usually similar to that of theorem 2.1.

Talking on moment conditions we can say that they are usually optimal or
better as compared to those met in the literature.

Tail index. Considering applications one can see that our main theorem
on tail behaviour (see theorem 2.3) is di�cult to apply in practice since it's

†analysis of models can be found in the dissertation
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conditions involve random element having stationary distribution of the chain.
The same can be said about results obtained in [3]. However in contrast to
[3] we provide auxiliary propositions (see prop. 2.2, 2.3) which substantially
facilitate checking conditions of the main theorem since they rely only on the
function ruling iterations of the chain.

The structure of the work
The dissertation is written in lithuanian. There are three chapters, two ap-
pendixes and a list of references. The total number of pages is 63.

The �rst chapter is devoted to rigorous de�nition of an asymptotically ho-
mogenous chain as well as examples of such chains. In the second chapter there
are given results on the existence of a stationary distribution meanwhile it the
third one can �nd results on a tail index of one dimensional asymptotically
homogeneous chain.

The �rst appendix is devoted to some mathematical facts. In the second one
there are listed abbreviations of �nancial time series models.

2 Main results
In this section we summarize our main results. If it is not said otherwise (Xn)
denotes an asymptotically homogeneous chain, C stands for it's state space†
and (εn) is a sequence of independent identically distributed random elements
of a separable metric space W . There are also two measurable functions F,G
from C ×W to C. The �rst one de�nes iterations of (Xn):

Xn = F (Xn−1, εn).

The second one is de�ned by relations (1.1)�(1.2). It is called homogeneous
function corresponding to F and plays important role in a formulation of the
results.

We also use the following notions:

R(x,w) = ‖G(x, w)‖, H(x,w) =
G(x,w)
‖G(x,w)‖ , S = {x ∈ C | ‖x‖ = 1}

and by ε we denote a random element of W having the same distribution as
members of (εn).

Formulation of the results requires concepts from the theory of irreducible
Markov chains. We do not provide them here referring reader to comprehensive
account [10].

2.1 Examples of asymptotically homogeneous chains
G/G/1 queue. Consider G/G/1 queue. Let customers arrive at moments
U1 + · · · + Un and serving times are Vn (here (Un) and (Vn) are sequences
of independent identically distributed non-negative random variables). If Xn

denotes waiting time of a customer number n then (see for example [2], chapter
VI, section 9)

Xn = (Xn−1 + εn)+; (2.1)
†recall that C is assumed to be a closed cone of a �nite dimensional normed space
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with εn = Vn−1 − Un. If Xn denotes total time spent by a customer number n
then

Xn = Vn + (Xn−1 − Un)+. (2.2)
It is not di�cult to check out that in both cases (Xn) is an asymptotically

homogeneous Markov chain corresponding to state space C = [0;∞). In the
model (2.1) one has W ⊂ R and F (x,w) = (x + w)+ meanwhile in the model
(2.2) these are W = (0;∞)2 and F (x, (u, v)) = v + (x − u)+. In both cases
corresponding limiting function is G(x,w) = x. Consider for example the �rst
model. If tn →∞, xn → x 6= 0 then

t−1
n F (tnxn, w) = t−1

n (tnxn + w)+ = (xn + t−1
n w)+ → x.

AR(1) model with ARCH type errors. Klüppelberg and Borkovec (see
[9]) investigated a model de�ned by a system of equations

Xn = aXn−1 + εn

√
b + cX2

n−1; (2.3)

here a 6= 0, b, c > 0 are �xed parameters of the model and a sequence (εn)
consists of real valued independent identically distributed random variables.
One can see that the chain is asymptotically homogeneous with C = R,W ⊂
R, F (x,w) = ax + w

√
b + cx2 and G(x,w) = ax + w

√
c|x|.

HARCH process. In 1997 Müller et. al. (see [11]) introduced HARCH(k)
process to describe behaviour of �nancial time series. The model is de�ned by
a system of equations

xn = σnεn,

σ2
n = c0 +

k∑

j=1

cj

(
j∑

i=1

xn−i

)2

;

here c0, . . . , ck are �xed non-negative parameters of the model (it is also assumed
that c0, ck > 0) and (εn) is a sequence of real valued independent identically
distributed random variables. Denote

Xn =




xn

...
xn−k+1


 ,

and de�ne function F : Rk × R→ Rk as follows

F (x, w) =




√
c0 +

∑k
j=1 cj

(∑j
i=1 xi

)2

w

x1

...
xk−1




, x =




x1

...
xk


 .

Then Xn = F (Xn−1, εn). It is asymptotically homogeneous chain corresponding
to C = Rk and W ⊂ R. One can also easily check that limiting homogeneous
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function is given by

G(x,w) =




√∑k
j=1 cj

(∑j
i=1 xi

)2

w

x1

...
xk−1




.

2.2 Stationarity
Let (Xn) be an asymptotically homogeneous chain and b : W → [0;∞) be a
Borel function satisfying condition

E b(ε) < ∞.

In this subsection we assume that for all w ∈ W the following relations hold:

(NZ) G(x,w) 6= 0 for each x 6= 0;

(M1) M(x,w) = |log+‖F (x,w)‖ − log+‖G(x,w)‖| 6 b(w) for all x;

(M2) sup‖x‖=1|log R(x,w)| 6 b(w).

Together with the chain (Xn) we will need two auxiliary sequences (Yn) and
(Zn) which are de�ned by equalities

Yn = G(Yn−1, εn), n > 1; Zn =
Yn

‖Yn‖ , n > 0. (2.4)

Note that (Yn) is a Markov chain provided Y0 and (εn) are independent. We
assume that Y0 6= 0 a.s. In such case NZ implies that Yn 6= 0 a.s. for each n.
Hence the chain (Yn) evolves in C0 = C \ {0} and the sequence (Zn) is de�ned
correctly. Moreover, by homogeneity

Zn =
Yn

‖Yn‖ =
G(Yn−1‖Yn−1‖−1, εn)
R(Yn−1‖Yn−1‖−1, εn)

= H(Zn−1, εn).

Therefore (Zn) is also a Markov chain evolving in S. Finally notice that by M2

E|log R(Z, ε)| < ∞

for each random element Z having support in S.

Theorem 2.1. Assume that (Xn) and (Yn) are irreducible T-chains, (Xn) is
aperiodic and conditions NZ, M1�M2 hold. Then (Zn) is positive Harris recur-
rent chain. Let Z be a random element of S having it's stationary distribution.
Take ε independent of Z and denote

γ = E log R(Z, ε).

If γ < 0 then (Xn) is positive Harris recurrent chain; if γ > 0 it is dissipative
or null.
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Corollary 2.1. For each z ∈ S

γ = lim
n→∞

n∑

i=1

log R(Zi−1(z), εi) a.s.; (2.5)

here Z0(z) = z, Zn(z) = H(Zn−1(z), εn).

Remark 2.1. In the rest of the summary we call γ Lyapunov exponent. The
justi�cation of this name comes from the following proposition which is proved
in the dissertation.

Proposition 2.1. Let the chain (Xn) be de�ned by (1.3), Dk denotes a set of
invertible k × k matrices and k × (k + 1) matrix εn = (An, Bn) is a random
element of W = Dk ×Rk. If εn has a density which is positive in the whole set
W then theorem 2.1 applies to (Xn). Moreover the following equality holds

γ = lim
n→∞

1
n

log‖An · · ·A1‖.

2.3 Tail index
In this subsection we assume that C = [0;∞) or C = R (i.e. asymptotically
homogeneous chain evolves in a half-line or in a line) and investigate heaviness of
a tail of a stationary distribution of the chain. We also assume that G(x,w) 6= 0
for all x 6= 0 and w ∈ W . In what follows we use auxiliary chains introduced
in the previous subsection. They are correctly de�ned. If the chain starts from
x we denote this by adding brackets with a starting point inside. For example
(Zn(x)) means the chain (Zn) with Z0 = x a.s. Since a standard norm on a line
is an absolute value function we simplify norm notion and use |·| instead of ‖·‖.

In the previous subsection we have given conditions under which asymptoti-
cally homogeneous chains possesses a unique stationary distribution. They are
not necessary in general and there are examples then one can prove unique-
ness without our assumptions. Results stated here also do not require these
conditions in general. Therefore we simply assume that the chain (Xn) has a
unique stationary distribution and by X denote a random variable having this
stationary distribution.

Our �nal assumption is that with probability 1 there exists Lyapunov expo-
nent, i.e. for each z ∈ S the limit

γ = lim
n→∞

n∑

i=1

log R(Zi−1(z), εi)

is well de�ned.

2.3.1 Chains on a half-line
In this case asymptotical homogeneity of F means

x−1F (x,w) −−−−→
x→∞

G(1, w),

R(1, ε) = G(1, ε) and the top Lyapunov exponent γ = E log G(1, ε), provided
log G(1, ε) is integrable. In paper [3] the following theorem was proved (see
lemma 2.2, theorem 2.3 and corollary 2.4).
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Theorem 2.2. Suppose the top Lyapunov exponent γ is negative, the distribu-
tion of log G(1, ε) is non-arithmetic and with some α > 0

E Gα(1, ε) = 1, E Gα(1, ε)|log G(1, ε)| < ∞. (2.6)

If, in addition,
E|Fα(X, ε)−Gα(X, ε)| < ∞ (2.7)

then
tα P{X > t} −−−→

t→∞
κ

with κ = (mα)−1 E [Fα(X, ε)−Gα(X, ε)] and m = E Gα(1, ε) log G(1, ε).

A su�cient condition for existence of α satisfying (2.6) is

EGβ(1, ε) ∈ (1;∞) for some β > 0.

In this case the function f(x) = E Gx(1, ε) is continuous on (0; β) and take
values less than 1 in a neighborhood of 0 (a proof is provided in the dissertation),
therefore f(α) = 1 for some α ∈ (0; β).

The main disadvantage of condition (2.7) is that it involves the unknown
stationary distribution of the model. Therefore we provide some criteria, based
only on the known function F , for this condition to hold.

Proposition 2.2. Suppose that (Xn) is a ϕ-irreducible T -chain and the top
Lyapunov exponent is negative. If, for some 0 < θ < θ1 < α and all ∆ > 0,

(F1) supx6∆ E Fα(x, ε) < ∞,

(F2) supx>∆ x−θ1 E F θ1(x, ε) < ∞,

(F3) supx>∆ x−θ E
∣∣Fα(x, ε)−Gα(x, ε)

∣∣ < ∞,

then the chain is positive recurrent and condition (2.7) holds.

If α 6 1, condition F3 can be replaced by either of the following two condi-
tions:

(F3a) supx>∆ x−θ E
∣∣F (x, ε)−G(x, ε)

∣∣α < ∞;

(F3b) supx>∆ x−θ E Gα−1(x, ε)
∣∣F (x, ε)−G(x, ε)

∣∣ < ∞.

This follows from inequalities

|aα − bα| 6 |a− b|α, |aα − bα| 6 bα−1|a− b|, (2.8)

which are valid for all a, b > 0. If α > 1, we may use another inequality,

|aα − bα| 6 α2α−1
(
bα−1|a− b|+ |a− b|α)

, (2.9)

and replace F3 by both F3a and F3b.
If, for x > ∆, ∣∣F (x,w)−G(x, w)

∣∣ 6 cxσp(w)

with some σ < 1 and some function p satisfying

E pα(ε) < ∞ and E Gα−1(1, ε)p(ε) < ∞
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(in the case α 6 1 only one of these conditions is required), then in both cases
F3 holds with some θ < α (either θ = ασ or θ = α− 1 + σ).

Let us return to theorem 2.2. If we want to say that the tail index of
the stationary distribution of the model is α, we must show that the limiting
constant κ = (mα)−1 E

[
Fα(X, ε)−Gα(X, ε)

]
is positive. This is not always the

case. Consider, for example, the model de�ned by

Xn = max(1, Xn−1 − 1)εn. (2.10)

If P{ε ∈ (0; 2)} = 1, E log ε < 0 and E ε = 1 then the distribution of ε is
the unique stationary distribution for the model, i.e. we can take X = ε. All
assumptions of theorem 2.2 are satis�ed; however, κ = 0.

We spent some time trying to prove the following conjecture: κ = 0 if
and only if the stationary distribution is concentrated on some compact interval
[a; b]. However, we neither could prove it, nor could construct a counterexample.
Now, we are less convinced that the conjecture is true.

Obviously, κ > 0 if F (x,w) − G(x, w) > 0 for all x > 0 and w ∈ W . More
generally, κ is positive if for some g ∈ L1(π) (where π denotes the stationary
distribution of the chain (Xn)) and all x

E[Fα(x, ε)−Gα(x, ε)] > E g
(
F (x, ε)

)− g(x).

Indeed, integrating this inequality with respect to π we get

E
[
Fα(X, ε)−Gα(X, ε)

]
> E g(F (X, ε))− E g(X) (2.11)

and the term in the right hand side equals 0, because F (X, ε) d= X.
If E

[
Fα(x, ε)−Gα(x, ε)

]
= O(xθ), as x →∞, (cf. condition F3) one can try

the function g(x) = bxθ with an appropriate b ∈ R, because typically

E F θ(x, ε)− xθ ∼ EGθ(x, ε)− xθ = xθ(EGθ(1, ε)− 1).

For example, let us turn back to model (2.10) with E log ε < 0 and E ε = 1.
Assume that E ε log ε > log 2 and denote qθ = E εθ. Then one can show that
there exists a θ ∈ (0; 1) with qθ < 2θ−1 and that (2.11) holds with g(x) = bxθ

and any b ∈ (21−θ; q−1
θ ). If E ε log ε 6 log 2, our method fails, but we do not

know if κ = 0 in this case.

2.3.2 Chains on a line
In this subsection we consider the case C = R, where S = {−1, 1} is a two-point
set. In this case asymptotical homogeneity means

t−1F (tz, w) −−−→
t→∞

G(z, w), z ∈ S.

We assume that the transition probability matrix of the chain
(
Zn(z)

)
is positive

and denote by Z a random variable, independent of ε and distributed accord-
ingly to the unique stationary distribution of the chain. Then the top Lyapunov
exponent equals E log R(Z, ε) provided this mean is well-de�ned.

Take α > 0. If E Rα(±1, ε) < ∞, de�ne

Qα(z, z′) = E Rα(z, ε)1{H(z,ε)=z′}, (z, z′) ∈ S × S.
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We can think about Qα as a non-negative 2× 2 matrix. For example,

Q0 =
(

P{H(−1, ε) = −1} P{H(−1, ε) = 1}
P{H(1, ε) = −1} P{H(1, ε) = 1}

)

is the matrix of transition probabilities of the chain
(
Zn(z)

)
. If Q0(z, z′) = 0

then Qα(z, z′) = 0 for all α and vice versa. Hence, all Qα are irreducible
matrices.

Denote by ρα the spectral radius of the matrix Qα. Then ρα is a simple
eigenvalue of Qα and there exist positive numbers rα(±1) and πα{±1} such
that

rα =
(

rα(−1)
rα(1)

)
and πα =

(
πα{−1} πα{1}

)

are, respectively, right and left eigenvectors of Qα, corresponding to the eigen-
value ρα [4, theorem 8.2.11]. We think about rα and πα as a positive function on
S and a measure on S, respectively. Without loss of generality we can assume
that πα is a probability and παrα = 1.

Theorem 2.3. Suppose that
(i) there does not exist a d ∈ R such that the distribution of both log R(±1, ε)

is concentrated on the lattice Zd;
(ii) the top Lyapunov exponent is negative;
(iii) for some α > 0 the matrix Qα is well de�ned, ρα = 1 and for all z ∈ S

E Rα(z, ε)|log R(z, ε)| < ∞. (2.12)

If, in addition,

(X1) E|X|θ < ∞ for some 0 < θ < α,

(X2a) E
∣∣|F (X, ε)|α − |G(X, ε)|α

∣∣ < ∞,

(X2b) E
[|F (X, ε)|α + |G(X, ε)|α]

1{F (X,ε)G(X,ε)<0} < ∞,

then for all z ∈ S

tα P{sign X = z, |X| > t} −−−→
t→∞

κ(z)

with some κ(z) ∈ [0;∞).

Remark 2.2. If G(−1, ε) d= −G(1, ε) then by homogeneity and independence
of X and ε, for all Borel A ⊂ R,

P{X < 0, G(X, ε) ∈ A} = P{X < 0, |X|G(−1, ε) ∈ A}
= P{X < 0, XG(1, ε) ∈ A}

and also
P{X > 0, G(X, ε) ∈ A} = P{X > 0, XG(1, ε) ∈ A}.

Summing up we get

P{G(X, ε) ∈ A} = P{XG(1, ε) ∈ A},
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i.e. G(X, ε) d= XG(1, ε). Therefore in this case theorem 2.3 reduces to corol-
lary 2.4 of [3] (which is proved, however, without assumption X1). If distribu-
tions of G(−1, ε) and −G(1, ε) di�er, our theorem is not covered by that corol-
lary. This is seen from the fact that in all cases considered in [3] κ(−1) = κ(1)
and this equality does not hold in general.

For the existence of α satisfying ρα = 1 and (2.12) it su�ces to �nd a β
with ρβ > 1. In order to check this inequality we may use any estimate of
the spectral radius from below. For example, it is known [4, corollary 8.1.20,
theorem 8.1.21] that

ρθ > max
z∈S

Qθ(z, z) and ρθ > min
z∈S

∑

z′∈S

Qθ(z, z′).

Therefore it su�ces to �nd a β with either ERβ(z, ε)1{H(z,ε)=z} ∈ (1;∞) for
some z ∈ S or E Rβ(z, ε) ∈ (1;∞) for all z.

For checking conditions X1�X2, we provide the following proposition.

Proposition 2.3. Suppose that (Xn) is a ϕ-irreducible T -chain and the top
Lyapunov exponent is negative. If, for some θ < θ1 < α, all ∆ > 0 and all
z ∈ S,

(F1) sup06t6∆ E
∣∣F (tz, ε)

∣∣α < ∞,

(F2) supt>∆ t−θ1 E
∣∣F (tz, ε)

∣∣θ1
< ∞,

(F3a) supt>∆ t−θ E
∣∣|F (tz, ε)|α − |G(tz, ε)|α∣∣ < ∞,

(F3b) supt>∆ t−θ E
[|F (tz, ε)|α + |G(tz, ε)|α]

1{F (tz,ε)G(tz,ε)<0} < ∞,

then the chain is positive recurrent and conditions X1�X2 hold.

The limits κ(z) in theorem 2.3 can be explicitly written as

κ(z) =
πα{z}
mα

∑

z′∈S

rα(z′) E
([

z′F (X, ε)
]+α − [

z′G(X, ε)
]+α

)
,

where x+α means (x+)α and

m =
∑

z∈S

πα{z}E Rα(z, ε)rα(H(z, ε)) log R(z, ε).

If G(−1, ε) d= −G(1, ε) then Qα =
(

a b
b a

)
with

a = E Rα(1, ε)1{H(1,ε)=1} and b = E Rα(1, ε)1{H(1,ε)=−1}.

It is easily seen that then ρα = a + b, πα = ( 1
2

1
2 ) and r = (1 1)>. Therefore in

this case
κ(1) = κ(−1) =

1
2αm

E
(|F (X, ε)|α − |G(X, ε)|α)

, (2.13)

where m = ERα(1, ε) log R(1, ε).
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If G(−1, ε) d= G(1, ε) then

Qα =
(

b a
b a

)
, ρα = a + b, πα =

(
a

a+b
b

a+b

)
, rα =

(
1
1

)

(with the same a, b as above) and again (2.13) hold. Hence equalities (2.13) are
valid in all cases, where R(−1, ε) d= R(1, ε).

Now consider general case. Since both probabilities πα{z} are positive, either
both κ(z) are positive, or both equal 0. Since rα > 0, the constants are positive
when ∑

z∈S

rα(z) E
([

zF (X, ε)
]+α − [

zG(X, ε)
]+α

)
> 0.

To prove this inequality we can use the same method as in the previous subsec-
tion: it su�ces to show that for some g ∈ L1(π) and all x ∈ R

∑

z∈S

rα(z) E
([

zF (x, ε)
]+α − [

zx
]+α

)
> E g(F (x, ε))− g(x).

This time one can try the function g(x) = b
∑

z rθ(z)(zx)+θ, because

E
∑

z

rθ(z)[zG(x, ε)]+θ = |x|θ E
∑

z

rθ(z)[zG(signx, ε)]+θ

=
∑

z,z′
1{sign x=z′}|x|θrθ(z) E[zG(z′, ε)]+θ =

∑

z,z′
(z′x)+θrθ(z)Qθ(z′, z)

= ρθ

∑

z′
(z′x)+θrθ(z′).

3 Concluding part
Conclusions
In the dissertation there is investigated a class of Markov chains de�ned by
iterations of a function possessing a property of asymptotical homogeneity. Two
problems are solved:

• there are established rather general conditions under which the chain has
unique stationary distribution;

• for the chains evolving in a real line there are established conditions under
which the stationary distribution of the chain is heavy-tailed.

Published works on the topic
1. V. Kazakevi£ius and V. Skorniakov. Asymptotically homogeneous iterated

random functions with applications to the HARCH process. Lithuanian
Mathematical Journal, 49(1):26�39, 2009.

2. V. Kazakevi£ius and V. Skorniakov. Tail index of asymptotically homoge-
neous Markov chain. Lithuanian Mathematical Journal, 2010 (to appear).
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Rezium
e
Mokslo problemos aktualumas. Markovo grandin
es pla£iai naudojamos
i�vairiuose praktiniuose taikymuose modeliuojant priklausomu� atsitiktiniu� dy-
dºiu� sekas, tod
el tyrimai ²ioje srityje visada aktualu	s.

Darbe nagrin
etos Markovo grandin
es, kuriu� bu	senu� aib
e C yra baigtinia-
mat
es normuotos erdv
es E ku	gis. Laikyta, kad grandin
es (Xn, n > 0) iteracijos
yra nusakomos ma£ia funkcija F : C × W → C ir nepriklausomu� vienodai
pasiskirs£iusiu� separabilios metrin
es erdv
es W elementu� seka (εn, n > 1):

Xn = F (Xn−1, εn), n > 1.

Pagrindin
e prielaida apie funkcij¡ F buvo F (·, w) asimptotinis homogeni²kumas,
t.y. laikyta, kad kiekvienam w ∈ W egzistuoja funkcija G(·, w), tenkinanti
s¡ry²ius:

tn →∞, xn → x 6= 0 ⇒ t−1
n F (tnxn, w) → G(x,w); (3.1)

G(0, w) = 0. (3.2)

Darbe tirtu� grandiniu� klas
e apima daug praktiniuose taikymuose sutinkamu�
modeliu�. Toliau tokios grandin
es vadinamos asimptoti²kai homogenin
emis.
Darbo tikslas ir uºdaviniai. Darbe siek
eme charakterizuoti asimptoti²kai
homogeniniu� Markovo grandiniu� klas¦ ir i²spr¦sti du uºdavinius:

• pateikti bendras s¡lygas, garantuojan£ias vienintelio stacionaraus grandi-
n
es skirstinio egzistavim¡;
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• pateikti s¡lygas, kurioms esant stacionarus grandin
es skirstinys turi �sun-
kias� uodegas.

Mokslinis naujumas ir praktin
e reik²m
e. Mu	su� ºiniomis iki ²iol literatu	ro-
je asimptoti²kai homogeniniu� grandiniu� klas
e nebuvo charakterizuojama tokiu
bu	du, kaip tai atlikta disertacijoje, tod
el pateikiama medºiaga yra i² esm
es
nauja.

Gauti rezultatai leidºia nesunkiai tirti asimptoti²kai homogenines grandines,
kuriu� tyrimas kitais metodais bu	tu� sud
etingas uºdavinys, tod
el yra aktualu	s ne
tik teorine, bet ir praktine prasme.
Darbo struktu	ra. Disertacija para²yta lietuviu� kalba. J¡ sudaro trys skyriai
ir du priedai. Bendras puslapiu� skai£ius � 63.

Pirmajame skyriuje grieºtai apibr
eºiama asimptoti²kai homogenin
es grandi-
n
es s¡voka ir pateikiami pavyzdºiai, iliustruojantys kokia plati yra nagrin
ejama
Markovo grandiniu� klas
e. Antrajame skyriuje pateikiami rezultatai, susij¦ su
stacionaraus skirstinio egzistavimu, o tre£iajame � su to skirstinio uodegos
svoriu, kai nagrin
ejamos grandin
es bu	senu� aib
e yra pusties
e arba ties
e.

Pirmasis priedas skirtas matematiniams faktams, kuriais remiamasi i�rodin
e-
jant disertacijos teoremas ir teiginius. Antrajame priede pateikiami laiko eilu£iu�
teorijos trumpiniai.
I²vados. Disertacijoje tirta Markovo grandiniu� klas
e, kurios iteracijos nusako-
mos atsitiktin
emis asimptoti²kai homogenin
emis funkcijomis, ir i²spr¦sti du uº-
daviniai:

• surastos bendros s¡lygos, kurios garantuoja vienintelio stacionaraus skirs-
tinio egzistavim¡;

• vienmat
ems grandin
ems surastos s¡lygos, kurioms esant stacionarus skirs-
tinys turi �sunkias� uodegas.

Pad
eka. Nuo²irdºiai d
ekoju savo vadovui doc. dr. Vytautui Kazakevi£iui.
Buvo labai malonu pas ji� mokytis ir kartu dirbti. Jo skirtas laikas ir i�d
etos
pastangos leido ºenkliai pagerinti disertacijos kokyb¦ ir prapl
esti mano akirati�.

Taip pat nor
e£iau pad
ekoti savo kolegoms i² Matematin
es statistikos katedros
uº visokeriop¡ param¡ studiju� metu ir ger¡ darbin¦ atmosfer¡.
Trumpos ºinios apie autoriu�. Gimimo vieta ir data � Vilnius, 1981-11-
16. 2000 � 2004 m. i�gytas matematin
es statistikos bakalauro laipsnis, 2004 �
2006 m. � matematin
es statistikos magistro laipsnis, 2006 � 2010 m. studi-
juota matematikos krypties doktorantu	roje. Visos studijos (nuo 2000 iki 2010)
vykdytos Vilniaus universitete, Matematikos ir informatikos fakultete.
Universitetinio darbo patirtis. Nuo 2008 m. rugs
ejo m
en. iki ²ios dienos
dirbu Vilniaus universitete. Uºimu lektoriaus pareigas.
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