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Abstract: The consensus protocol plays a vital role in the performance and security of a specific
Distributed Ledger Technology (DLT) solution. Currently, the traditional classification of consensus
algorithms relies on subjective criteria, such as protocol families (Proof of Work, Proof of Stake, etc.)
or other protocol features. However, such classifications often result in representatives with strongly
different characteristics belonging to the same category. To address this challenge, a quantitative
data-driven classification methodology that leverages machine learning—specifically, clustering—is
introduced here to achieve unbiased grouping of analyzed consensus protocols implemented in
various platforms. When different clustering techniques were used on the analyzed DLT dataset, an
average consistency of 78% was achieved, while some instances exhibited a match of 100%, and the
lowest consistency observed was 55%.
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1. Introduction

The wide field of DLT has received interest from different subjects, such as academics
and businesses, and a plethora of articles and developed platforms have been produced
over the past decade (see, e.g., [1–7] and references therein). Blockchain technology, which is
a subset of DLT, has generated considerable excitement, particularly in the realms of finance
and cryptocurrencies. However, note that while finance is a major area of application for
DLT and blockchain, these technologies also find utility in numerous other fields. As an
example, DLT has found practical use in healthcare [8,9], supply chains [10,11], and the
Internet of Things (IoT) [12,13].

A consensus protocol plays a vital role in the performance and security of a specific
DLT solution [7,14]. Undoubtedly, a notable challenge is the task of classifying the protocols
used to establish consensus among network participants to select the most suitable one.
This academic challenge arises from the fast-paced development of new proposals and
implementations from variegated sources, inducing a non-uniform and accepted standard-
ization, and thus categorization, of the state-of-the-art. A major source of non-alignment in
the classification of consensus protocols comes from the subjective study methodologies
applied to the analysis of these protocols. Consensus protocols are typically proposed and
developed with certain internal structures, such as utilizing a Proof of Stake (PoS) scheme
instead of a Proof of Work (PoW) one or being based on the Byzantine Fault Tolerance (BFT)
paradigm. However, this categorization is only helpful when considering the type of data
submission and validation that is implemented.

In fact, a wealth of literature has been produced on the attempts to classify consensus
protocols used in DLT [15–22]. These works (see Section 2 for an extended presentation)
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focus on searching different relations and connections between the features of the analyzed
protocols to classify them. This requires non-negligible effort from decision makers to
find the proper criteria to be employed and data to be analyzed and then interpreted.
In particular, the work in [22] introduces a quantitative approach to the classification of
consensus protocols but requires a set of experts in the field to define the weights to be
used by a decision maker for analysis and classification.

To have a clearer understanding of the objectives and limitations of intent for this
study, the research questions at the base of this work can be expressed as:

• Can consensus protocols for DLT be consistently classified using a quantitative ap-
proach such as machine learning?

• What criteria are essential to effectively characterize the features of a consensus proto-
col?

• Do the results obtained from this analysis align with those established in the existing
literature, or do they reveal new connections and patterns?

Therefore, from these questions, the objective of this research is to develop a methodol-
ogy that leverages quantifiable data and machine learning techniques to classify consensus
protocols utilized in DLT platforms. This approach eliminates the need for investigators to
find relations in complex and high-dimensional data, making it unnecessary to involve ex-
perts in the initial analysis. It is important to note that a comparable concept was introduced
in a previous study [23], but the analysis was based solely on categorical variables. On
the contrary, this work combines both quantitative and categorical data to standardize the
definitions and performance levels of various features that are otherwise vague. Therefore,
once the criteria are established and the data are collected, the idea is to cluster the DLT
platforms that utilize various consensus protocols. The choice to employ clustering as a
machine learning approach is driven by the inherent characteristics of the problem under
investigation in this research. In fact, the primary goal is to reduce subjectivity in catego-
rization and reduce dependence on expert evaluations. To achieve this goal, it is essential
that categories are extracted directly from the data through unsupervised learning rather
than being trained on a predefined set of labels in supervised learning. For instance, results
derived from the methodology presented here can reveal connections and similarities not
accounted for by classification frameworks leveraging other characteristics, such as the
consensus protocol family, i.e., PoW, PoS, BFT, etc. This means that the results obtained
from this approach offer a more nuanced understanding, potentially revealing insights not
captured by traditional classification methods based on predetermined labels.

The novelty of our approach is to be found in the application of machine learning
to consensus protocol clusterization, which is, thus, a novel multi-paradigm protocol
classification. To sum up, the main contributions of this work are:

• It reviews the state-of-the-art in terms of consensus protocol classification.
• It analyzes the criteria necessary to build a classification tool based on qualitative and

quantitative data on the DLT consensus protocols.
• It proposes a novel data-driven machine-learning-based classification methodology to

effectively classify consensus protocols using data available from DLT platforms.

The remainder of the paper is organized as follows. A review of the literature on
classification methods for consensus protocols used in DLT is presented in Section 2. The
methodology and features used to develop a data-driven consensus protocol classification
tool are introduced in Section 3. Afterwards, Section 4 shows how this methodology,
applied to a set of 19 popular protocols, gives consistent results and provides novel insight
into data-based classification. Finally, Section 5 discusses the results obtained and concludes
the work.

2. Related Work

This section presents a brief overview of efforts to classify consensus protocols for DLT.
It is a crucial part because it delimits the gap covered by this work, and the criteria used
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for the clustering in this research are selected based on the information retrieved from the
analyzed literature. Indeed, from the study of the criteria used to characterize consensus
protocols in different works, it is possible to find a suitable set of criteria to quantitatively
describe an arbitrary consensus protocol.

In order to design a classification, the authors of [15] compared the main consensus
categories and highlighted the potential of vote-based protocols for consortium and private
blockchains. The work in [16] presented a comparison and classification of consensus pro-
tocols based on 16 criteria. They found that most protocols are designed for cryptocurrency
systems and smart contract transactions. In [17], three design categories of blockchain con-
sensus protocols are analyzed: PoW-based, PoX-based, and hybrid protocols. The authors
evaluated the protocols based on 12 criteria and identified research gaps and challenges for
future development. The authors of [18] conducted a comprehensive review of 11 permis-
sionless PoX schemes, analyzed their characteristics, and investigated the compatibility
of incentives and applications in different areas. Based on seven criteria, a taxonomy of
19 consensus methods is provided in [19]. It is a complete analysis of connections, similari-
ties and differences between consensus protocols. The article in [20] reported a review and
comparison of 22 consensus protocols based on performance metrics and provided informa-
tion on their differences, application scenarios, fault tolerances, scalability, drawbacks, and
trade-offs. The work [21] analyzed 17 consensus protocols from the main body, classified
them into mode groups, and evaluated them based on effectiveness, decentralization, and
security. The authors also provided recommendations for different scenarios for blockchain
applications. The research in [22] presents a Multi-Criteria Decision-Making (MCDM)
framework to select the best consensus protocols among 18 analyzed for any custom DLT
platform according to predefined criteria. This framework provides a quantitative tool to
analyze DLT platforms and create a ranking for any arbitrary scenario. Finally, the work
in [23] uses a concept similar to the one explored in this study. However, the authors
employ 14 qualitative criteria (the same as in [15]), leading to a clustering classification;
however, the process was similar to analyzing the data using a benchmarking technique.

In summary, all the reviewed works (see Table 1 for a concise presentation of the liter-
ature) proposed different methodologies to classify the existing consensus protocols used
in DLT. They mostly classify protocols based on platform analysis and comparison, partic-
ularly with regard to existing knowledge of the underlying algorithms (benchmarking).
Only in the work [23] is the clustering approach considered. However, the cluster analysis
was limited. It tended to replicate other classifications from the literature, e.g., [19,20].

Table 1. The summary of the literature on consensus protocol classification reviewed for this study.
The first column reports the source referred to, the second column indicates the technique used
to conduct the analysis, the third column shows the number of protocols/categories analyzed, the
fourth column shows the number of criteria, while the last column lists the criteria used in the
selected source.

Source Technique #Protocols #Criteria Criteria

Nguyen and Kim [15] Benchmarking 3/2 6/8 Energy Efficiency, Modern Hardware, Forking, Double Spending At-
tack, Block Creation Speed, Pool Mining/Agreement-Making Abasement,
Nodes Can Join Freely, Number of Nodes Executing, Decentralization,
Trust, Node Identities are Managed, Security Threat, Award.

Alsunaidi and Al-
haidari [16]

Benchmarking 8 16 Node Identity Management, Data Model, Electing Miners, Energy Saving,
Tolerated Power of The Adversary, Transaction Fees, Block Reward, Verifi-
cation Speed, Throughput, Block Creation Speed, Scalability, Extendable,
51% Attack, Double Spending, Crash Fault Tolerance, Byzantine Fault
Tolerance.

Bano et al. [17] Benchmarking 20 14 Committee Formation, Strong Consistency, Committee Configuration, In-
centives, Leader, Msg., Intra-Committee Configuration, Intra-Committee
Consensus, Transaction Censorship Resistance, DoS Resistance, Adversary
Model, Throughput, Scalable, Latency, Exp. Setup.
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Table 1. Cont.

Source Technique #Protocols #Criteria Criteria

Wang et al. [18] Benchmarking 7 11 Origin of Hardness, Design Goal, Implementation Description, ZKP Prop-
erties, Simulation of Random Function, Features of Puzzle Design, Net-
work Realization.

Nijsse and Litchfield
[19]

Benchmarking 19 7 Scarce Resource, Fault Tolerance, Transaction Finality, Network Timing,
Block Proposal, Network Accessibility, Network Comm.

Xiao et al. [20] Benchmarking 22 8 Block Proposal, Block Validation, Information Propagation, Block Final-
ization, Incentive Mechanism, Fault Tolerance, Throughput, Confirmation
Latency.

Fu et al. [21] Benchmarking 17/18 3/4 Accountant selection, Block Addition, Transaction Confirma-
tion/Advantages and Disadvantages, TPS, Energy Saving, Adversary
Model (%).

Filatovas et al. [22] MCDM 18 12 TPS, Transaction Latency, Finalization, Number Of Consensus Nodes,
Number Of Network Nodes, Transaction Fees, Reward, Power Consump-
tion, Hardware Dependency, 51% Attack, Double Spending.

Aponte et al. [23] Clustering 30 14 Energy Efficiency, Modern Hardware, Forking, Double Spending At-
tack, Block Creation Speed, Pool Mining, Agreement-Making Abasement,
Nodes can Join Freely, Number of Nodes Executing, Decentralization,
Trust, Node Identities are Managed, Security Threat, Award.

This study Clustering 19 10 TPS, Transaction Latency, Finalization, Number Of Consensus Nodes,
Number Of Network Nodes, Power Consumption, Hardware Dependency,
51% Attack, Double Spending.

Therefore, our objective is to provide a deeper clustering analysis and explore the suit-
ability of selected clustering algorithms for the available data while attempting quantitative
classification of the consensus protocols used in DLT.

3. Methods

In this section, the methodology developed to classify consensus protocols is presented.
There are several steps that must be followed to achieve the intended objective of the
investigation, which are expressed graphically in Figure 1. However, the main points that
the methodology entails are:

1. Defining the criteria for evaluating the features used in the analysis;
2. Collecting data associated with predetermined features from a chosen set of DLT

platforms;
3. Implementing machine learning techniques to cluster selected protocols.

In the following, a more detailed discussion of the steps involved is presented. The
selection of features (or criteria) is reported in Section 3.1, where each criterion is defined
and described; then, data collection and processing (Section 3.2) are explained; lastly, a
presentation of the clustering techniques employed is given (Section 3.3).
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Figure 1. Representation of the methodology used to conduct this study.

3.1. Feature Selection

To effectively describe a DLT platform according to its characteristics, some features
must be determined. Using the knowledge acquired from study of the related works,
it is possible to determine which criteria might be used to quantitatively describe the
features of a consensus protocol. In particular, even when called differently, the selected
criteria and metrics are applied in the majority of the considered literature. These features,
except for Transaction fees and Reward, were also used in [22] as criteria for the definition
of an MCDM framework. Therefore, for this work, we consider the criteria (metrics)
discussed in the literature and categorized them into four criteria groups: throughput,
decentralization, sustainability, and security. For each group, the corresponding metrics are
presented briefly below.
Throughput includes the metrics that are associated with the performance of a distributed
system, such as the number of transactions that the system can handle and the response
time. In this case, the criteria are defined as:

• Transactions per second (TPS): Number of transactions processed by the DLT platform
in a second. This criterion can be computed in different ways, but normally requires
an average over a determined range of time.

• Transaction latency: The time that elapses from the submission of a transaction to the
ledger and its finalization/validation.

• Finality: Finalization of the consensus (deterministic or probabilistic) that determines
the presence of forks in the ledger.

Decentralization is the group of criteria that measures how much the consensus protocol
and the network in which it is used are prone to centralization; it also provides hints
about the performance of the system due to the number of participants in the consensus.
Specifically, there are two criteria:

• Number of consensus nodes: The number of servers participating in the consensus
process;

• Number of network nodes: The number of nodes maintaining an updated copy of
the ledger in their own memory.

Sustainability establishes whether the consensus protocol is energy demanding or re-
quires/prefers some hardware to complete the intended task faster/more efficiently. This
is described by the following:

• Power consumption: The level of electric power usage to maintain and run the
network;

• Hardware dependency: A Boolean report on the advantages of specialized hardware
(e.g., ASICs, GPUs, etc.) in consensus participation.
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Security states the levels of the characteristics associated with safety and fault tolerance. It
encompasses the following criteria:

• Fault-tolerance: The maximum percentage of faulty nodes allowed in the network;
• 51% attack: Vulnerability level of a consensus protocol to powerful adversary attacks;
• Double spending: The level of vulnerability of a consensus protocol to the spending

of the same tokens several times by acting maliciously.

3.2. Data Collection and Processing

Data collection is a multi-step process that gathers information from various online
sources such as whitepapers, DLT explorers, and academic studies [19,20,22]. Sources have
been selected according to their relevance and reliability; therefore, the data obtained were
compared and analyzed to ensure consistency. In some cases where data were unavailable
from primary sources, we had to make estimates based on indirect information or by
making an educated guess. The hierarchy utilized as a blueprint to select values related to
criteria includes the following sources (in order of importance):

1. Whitepaper(s) related to the platform/consensus protocol;
2. Review articles in the literature;
3. Benchmarks in the literature;
4. Mean values from DLT explorers;
5. Computation of the mean by using collected instantaneous values from DLT explorer;
6. Educated guess by interpolating other information/similarities with other protocols.

Although for most criteria, for example, TPS, latency, number of nodes, etc., the
sources listed 1–4 were used, the last point was extensively used to estimate the level
of power consumption, resistance to 51% attack, and double spending. Although it is
important for data validation to have reliable and referenced data, it would be pedantic and
out-of-scope to give the provenience of each value registered in the dataset. This research
focuses primarily on establishing and testing a methodology on a sample dataset with the
intention of potentially applying it to a larger, more thoroughly referenced dataset.

For this article, data from 19 DLT platforms have been collected (see Table 2): Bitcoin,
Ethereum, Ripple, Cardano, Solana, Tron, Avalanche, Cosmos, Monero, Ethereum Classic,
Stellar, Hedera Hashgraph, Algorand, EOS, NEO, IOTA, Zilliqa, Arbitrum One, and Poly-
gon. Note that Arbitrum One and Polygon are not DLT platforms on their own, but they
are layer-two solutions, which are schemes designed to increase the scalability and security
of a main DLT. In this case, both Arbitrum One and Polygon are built on top of Ethereum.
The main rationale behind the choice of these 19 DLT platforms is their financial relevance
(mainly in terms of the market cap value of their associated cryptocurrency), such that
the probability of retrieving relevant data might be bolstered by the abundance of interest
in these selected platforms, which, in turn, should lead to studies, tools, and estimations
made for the metrics of interest according to the criteria selected for this research.

To reduce the dimensionality of the 10-dimensional dataset, a technique called Prin-
cipal Component Analysis (PCA) [24] is applied to the data. In fact, PCA is a statistical
tool used to reduce the dimensionality of a dataset. The main idea is to apply an orthog-
onal linear transformation that rewrites the data to a new coordinate system in which
the variance is preserved. However, because the components of the transformed data are
arranged in increasing value of the explained variance of the original dataset, a subset
of these components (principal) is enough to describe the features expressed by the data.
In this work, for better data visualization, two components in the PCA are considered:
resulting in an explained variance of ≈65%.
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Table 2. The set of collected data for the selected DLT platforms.

Throughput Decentralization Sustainability Security

Family Platform TPS Latency Finality Consensus Network Energy Hardware Fault- 51% Double
Nodes Nodes Consumption Dependency Tolerance Attack Spending

PoW Bitcoin 7 2100 Probabilistic 100,000 10,000 High Yes 50% Safe Safe
PoS Ethereum 15 15 Probabilistic 100,000 10,000 Medium No 50% Difficult Difficult
RCPA Ripple 1500 4 Deterministic 150 1000 Medium No 20% Difficult Difficult
PoS + BFT Cardano 1000 20 Deterministic 100,000 1000 Medium No 50% Difficult Difficult
Layer2 Polygon 565 2 Probabilistic 30 30 Medium No 50% Difficult Difficult
PoS + BFT Solana 4000 1 Deterministic 2000 1000 Medium No 50% Difficult Difficult
DPoS Tron 2000 3 Probabilistic 27 1000 Medium No 50% Difficult Difficult
PoS + BFT Avalanche 4000 1 Probabilistic 1000 1000 Medium No 50% Difficult Difficult
BFT Cosmos 2500 6 Deterministic 10,000 20 Medium No 33% Difficult Difficult
PoW Monero 10 120 Probabilistic 5000 2000 Medium Yes 50% Safe Safe
PoW Ethereum Classic 20 15 Probabilistic 5000 7000 Medium Yes 50% Safe Safe
FBA Stellar 1000 5 Deterministic 65 50 Medium No 33% Difficult Difficult
aBFT Hedera Hashgraph 8000 5 Probabilistic 27 50 Low No 33% Difficult Difficult
Layer2 Arbitrum One 1225 1 Probabilistic 15 15 Low No 50% Difficult Difficult
PoS + BBA Algorand 1000 3 Deterministic 100 100 Low No 33% Difficult Difficult
DPoS EOS 5000 1 Deterministic 21 14 Medium No 33% Difficult Difficult
dBFT NEO 1000 15 Deterministic 7 100 Medium No 20% Difficult Difficult
Tangle IOTA 250 12 Probabilistic 2000 280 Low No 50% Difficult Difficult
PBFT Zilliqa 2000 15 Probabilistic 2400 2400 Medium No 33% Difficult Difficult

Due to the sensitivity of PCA to variance deviation, the data in Table 2 must be
standardized. In this work, for each feature, a transformation is applied such that the vector
of new points, ϕ, has a mean of zero and a variance of one, i.e., ϕ = x−µ

σ , where x is a point
in the original dataset, µ the mean of the feature analyzed, and σ is its standard deviation.
Note that some features are categorical or level-based. In these cases, before applying PCA
and normalization, the data are mapped to a scale 1–9 and then adjusted according to the
data that have to be described, e.g., deterministic and probabilistic finality are mapped onto
1 and 9, respectively, while low, medium, and high for energy consumption are mapped into
1, 5, and 9, respectively.

3.3. Clustering

Cluster analysis can be considered to be an unsupervised machine learning technique
to explore data, possibly without prior knowledge. The panorama of data clustering is
extensive and rich, with plenty of algorithms [25–31]. Therefore, it is important to choose
the tools to use appropriately according to the characteristics of the data of interest.

The dataset employed in this work (see Table 2) has 10 features with a limited number
of entries (19 DLT platforms). Some of the features are categorical and their values are
not variegated. These observations lead to a few considerations: the dataset is high-
dimensional, meaning that some distance metrics (e.g., Euclidean) may behave poorly;
all the selected platforms have to be clustered, especially since there is a limited number
of data points. Thus, the clustering algorithm cannot discriminate outliers/noise and
categorical data, and, in general, homogeneity of the values populating the dataset may
lead to zones of high densities of data points, making the clustering susceptible to outliers
and a sharp decrease in the density of data.

For instance, five distinct categories of clustering algorithms, each featuring a rep-
resentative algorithm, were chosen to align with the characteristics of the dataset, as
recommended in the relevant literature for high-dimensional data [32,33]. These algorith-
mic categories were selected not only for their alignment with the characteristics of the
dataset but also as integral components of a comprehensive evaluation of our approach’s
feasibility. This research serves as a testbed to assess the suitability of the applied cluster-
ing algorithms for the dataset in question. Below is a brief description of the algorithms
considered in this study, accompanied by some relevant mathematical details.
Partitional clustering:

• K-means [34]: This algorithm aims to partition the observations i (where {i ∈ S|S
is the dataset}) into K sets, minimizing the intra-class variance. In other words,
once K points are randomly selected in the space as centers of the clusters (centroid),
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the algorithm computes the distance between each data point and all the centroids,
assigning the data point to a cluster when the distance to its centroid is the minimum:

Di,k =
K

∑
k=1

∑
i∈S

∥xi − µk∥2 (1)

=⇒ ωi,k =

{
1, if k = arg minS Di,k

0, otherwise.
(2)

Here, Di,k is the Euclidean distance, xi is the i-th data point in S, and µk is the centroid
of the k-th cluster. Furthermore, ωi,k is a vector with 1s at the positions of points
belonging to the cluster k. Then, once all data points have been clustered, there is a
recomputing of the cluster centroid. Informally, it is like calculating the center of mass
of the cluster:

µk =
∑i∈S ωi,k xi

∑i∈S ωi,k
(3)

The process iterates until there is no change in the position of the centroids of the
clusters or until a maximum number of iterations is reached.

Hierarchical clustering:

• BIRCH [35]: This algorithm realizes the clustering result by constructing a clustering
feature tree, which is built as a height-balanced-tree data structure. The clustering
feature, CF, is the triple CF = (N,

−→
LS, SS), which summarizes the information main-

tained on the data. Here, N is the number of data points {Xi} (i = 1, . . . , N);
−→
LS the

linear sum of the N data points, i.e., ∑N
i=1

−→
Xi ; and SS is the square sum of the N data

points; i.e., ∑N
i=1

−→
Xi

2. In this implementation of BIRCH, agglomerative clustering is used
to create the actual clusters and label the data points.

Distribution-based clustering:

• Gaussian Mixture Model (GMM) [36]: The dataset is modeled using a fixed number
of randomly initialized Gaussian distributions, which are iteratively optimized to
improve the fit of the dataset.

Graph-based clustering:

• Spectral clustering [37]: Clustering is treated as the analysis of a graph represented
by the data points using the spectrum of the associated similarity matrix. The idea is
to transform the matrix containing the Euclidean distances among points, D, into a
similarity matrix by applying a Gaussian kernel of the form

eD2/(2δ2), (4)

where δ is a parameter that is the width of the Gaussian kernel. Then, clustering
becomes an eigenvalues/eigenvectors problem, where the first n eigenvectors (n being
the number of clusters) of the affinity matrix are a low-dimension embedding of the
data features. Clustering is thus done on these features by means of another algorithm,
e.g., k-means clustering.

Density-based clustering:

• DBSCAN [38]: This algorithm discerns between high- and low-density data points. It
clusters together data points that are considered neighbors of the center (called core)
of a high-density area, and it detects the presence of noise/outliers. The underlying
principle relies on counting the nearby neighbors of each point to determine whether
data points in a certain area of the feature plane are to be considered a cluster. Two
parameters regulated this selection: ϵ (maximum distance in arbitrary metrics at
which other points are considered neighbors) and the minimum number of points to
be considered a cluster.
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It should be noted that all the chosen algorithms except DBSCAN require as input
parameters the desired number of clusters or components. Although there are several
techniques to determine the optimal number of clusters/components to employ, this specific
choice of parameter is often discretionary and subjective. For this study, an estimation
of optimal parameters was performed using the silhouette score [39–41]. However, it is
important to note that this information serves as a guideline rather than a strict rule for
selecting the number of clusters/components. Since each clustering algorithm exhibits its
unique silhouette score trend by varying the number of clusters, the clustering results were
obtained by analyzing a range of clusters (specifically, three, four, and five clusters). As
depicted in Figure 2, the silhouette score trend for each clustering algorithm is quite erratic,
making it challenging to identify a clear “knee/elbow” point in the plot. The “knee/elbow”
signifies a specific point in the silhouette score plot after which the plot is significantly bent
(there is a marked variation in the slope). Therefore, the selection of three, four, and five
clusters was made for the “number of clusters” parameter to explore the behavior of the
clustering algorithms within an interval where potential knees could be observed in the
silhouette score plot.

Note that the silhouette score is the average over all the data points of the measure

S =
b − a

max(a, b)
, (5)

where for each data point, a is the mean intra-cluster distance, and b is the mean nearest-
cluster distance. In this way, the silhouette analysis presented in Figure 2 also measures
the performance of clustering in terms of minimization of the intra-cluster distance and
maximization of the nearest-cluster distance.

Figure 2. Silhouette scores for each clustering algorithm using different numbers of clusters. The
range of the silhouette scores is from −1 (bad clustering) to 1 (optimal clustering).

For DBSCAN, it instead requires two input parameters: ϵ (maximum distance to be
considered a neighbor of a core) and the minimum number of elements to be considered
a cluster, which is set to 1. To estimate an appropriate value of ϵ, the distance between
any pair of data points is calculated, the closest neighbor is found for each point, and this
collection of distances is sorted. By plotting these values, it might be possible to identify a
knee, i.e., a point where the plot changes its behavior abruptly. From the plot (see Figure 3)
made with the data in this work, a marked knee is observable at ϵ = 1.7. Using these
parameters, the number of clusters determined by the algorithm is three. Note that, in
general, DBSCAN indicates points that are considered noise for the dataset. However, in
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this context, the algorithm did not classify any point as noise; therefore, all the conditions
expected for a candidate clustering algorithm are fulfilled.

Figure 3. Estimation of the parameter ϵ for DBSCAN. The red dashed line represents the value
ϵ = 1.7, which is considered to be a knee in the plot.

Lastly, k-means, GMM, and spectral clustering are sensitive to random initialization of
the centers for clustering. To mitigate this and for more consistent results, the initial cluster
centers are the average taken over 100 random initialization.

4. Results

This section presents the results of applying clustering in the dataset of DLT platforms
using the prescribed methodology. Figures 4–6 provide a summary of the clustering results
of the consensus protocol with three, four, and five clusters, respectively. Furthermore,
Figure 7 illustrates the clustering achieved through the DBSCAN approach, which does not
require a predefined number of clusters.

In the case of Figure 4, we applied four distinct techniques as previously described:
k-means, BIRCH, GMM, and spectral clustering. For the other two sets of results, (Figures 5 and 6),
the same four techniques—k-means, BIRCH, GMM, and spectral clustering—were utilized
in the process. It is worth noting that the clustering results obtained from the application of
k-means and BIRCH consistently align, and as such, they are presented together.

The results presented in this study demonstrate consistency when the number of
clusters varies and the clustering algorithm remains the same. It must be noted that
increasing the number of clusters primarily leads to fragmentation rather than a complete
reorganization of the clusters.

Similarly, in terms of comparing results between different clustering algorithms, the
clusters obtained from the techniques used exhibit some level of similarity. For instance, in
Figure 4, k-means/BIRCH (Figure 4a) and GMM (Figure 4b) give the same three clusters,
while spectral clustering (Figure 4c) divides the dataset into one cluster containing platforms
implementing PoW (Bitcoin, Monero, and Ethereum Classic) and two other clusters of
roughly the same size but without immediate correlation.
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(a) (b)

(c) (d)

Figure 4. Clustering of DLT platforms in 3 clusters: (a–c) are results for each clustering algorithm,
and (d) is the RI to test the agreement of results among methods.
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(a) (b)

(c) (d)

Figure 5. Clustering of DLT platforms in 4 clusters: (a–c) are results for each clustering algorithm,
and (d) is the RI to test the agreement of results among methods.
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(a) (b)

(c) (d)

Figure 6. Clustering of DLT platforms in 5 clusters. (a–c) are results for each clustering algorithm and
(d) the RI to test the agreement of results among methods.

However, to quantitatively compare the agreement between the results of different
clustering techniques, the Rand Index (RI) [42,43] can be used. The RI measures the
agreement between different partitions of a set, and it is defined as

RI =
number of agreeing pairs

number of pairs
.

The RI ranges from 0 to 1, where 0 denotes a complete mismatch in the clustering,
and 1 indicates that the two partitions are identical. For each number of clusters analyzed,
RI is reported along with the number of actual clusters, specifically: Figure 4d for three
clusters, Figure 5d for four clusters, and Figure 6d for five clusters. Note that since the RI
is symmetric with respect to the order of the partitions, the matrices/plots are symmetric.
Using the RI, it is indeed possible to confirm the qualitative observation made beforehand.
For example, RI ≥ 0.5 for each pairwise comparison; therefore, there is at least 50%
agreement by using different clustering techniques. Moreover, on average, the agreement
among the results from the different clustering algorithms is 78%.
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In the scenario with three clusters, the results from the k-means/BIRCH techniques
exhibit complete alignment with those of GMM and DBSCAN (RI = 1). However, spectral
clustering results significantly deviate from all other techniques: registering an RI of 0.62.

For the case of four clusters, discrepancies emerge among the results obtained from
each technique. In particular, the most considerable difference is observed between spec-
tral clustering and GMM (RI = 0.55). In contrast, the least difference is noted between
k-means/BIRCH and spectral clustering techniques (RI = 0.87), while the index RI be-
tween k-means/BIRCH and GMM is 0.63.

Extending to five clusters, the results from the k-means/BIRCH techniques once again
align perfectly with GMM (RI = 1). However, the results of spectral clustering continue to
differ from those obtained by all other techniques, with an RI of 0.75.

Figure 7. Clustering of DLT platforms using DBSCAN. The algorithm determined 3 clusters when
the parameters were ϵ = 1.7 and the minimum number of points to define a cluster was 1.

Finally, clustering using DBSCAN was implemented to test an approach in which
the number of clusters should not be known (or guessed) a priori. In fact, as explained
in Section 3, DBSCAN does not require investigators to indicate as an input parameter
the number of clusters. Rather, it requires the parameters ϵ and the minimum number
of elements required to create a cluster. In the case of the examined dataset, DBSCAN
produced three clusters (see Figure 7). Furthermore, the results are identical to those
generated by k-means/BRINCH (Figure 4a) and GMM (Figure 4b). It is important to note
that with a larger dataset and greater variability in values, DBSCAN may potentially yield
a higher number of clusters.

Lastly, analysis of the performance of the tested clustering algorithms on the presented
dataset (see Table 3) shows that spectral clustering leads to weak results (it is, indeed, the
algorithm that has the lowest performance in all the cases), while the other algorithms
cluster the data reasonably well [44].
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Table 3. A compact visualization of the performance (measured as silhouette score) achieved by
clustering algorithms for each number of clusters, i.e., 3, 4, and 5 clusters.

#Clusters

Algorithm 3 4 5

k-means 0.62 0.46 0.50
BIRCH 0.62 0.46 0.50
GMM 0.62 0.42 0.50
Spectral 0.43 0.38 0.21
DBSCAN 0.62 - -

An interpretation of the results shown in this article may be related to the type of consen-
sus protocol implemented in the DLT platform. For example, as in the literature, platforms
are clustered according to the family of their consensus protocol. Mostly, clustering dis-
tinguishes PoW platforms very well (that is, Bitcoin, Monero, and Ethereum Classic) from
the rest, as found in other state-of-the-art research where different benchmarking methods
are considered, e.g., [19,20]. At the same time, it is more complicated to clearly determine
to which class of consensus protocols the members of the other clusters might belong. In-
deed, for cases in which there were three clusters (see Figure 4), it is not possible to distin-
guish any classification other than PoW against other consensus protocols. Moreover, in the
case of spectral clustering, all the PoW entries are clustered together, while in the case of
k-means/BIRCH, GMM, and DBSCAN, Bitcoin was assigned to a single-element cluster.
This tendency is also confirmed for the cases with four or five clusters (see Figures 5 and 6).
However, some other tendencies in the results can be highlighted. Protocols based on Directed
Acyclic Graph (IOTA, Avalanche, and Hedera Hashgraph) and layer-two solutions (Arbitrum
One and Polygon) are clustered together by k-means, BIRCH, and GMM techniques in all the
cases (three, four, and five clusters), while this is true for spectral clustering only in the case
with three clusters. Interestingly, in scenarios with four and five clusters, spectral clustering
diverges by separating both Directed Acyclic Graph platforms and layer-two solutions into
distinct clusters.

Additionally, in the cases with four and five clusters, layer-two solutions are not
clustered with their underlying blockchain (Ethereum), meaning that they possess charac-
teristics different from Ethereum’s. This divergence is inherently logical, as these solutions
are specifically engineered to enhance Ethereum’s scalability. It is worth noting that as the
number of clusters increases, particularly in the case with five clusters, both PoS-based
Ethereum and Cardano platforms tend to separate from the other clusters. Lastly, the
results obtained by all the techniques examined in all the analyzed cases do not establish
clear clustering that distinctively separates protocols implementing BFT-like consensus
and PoS, as suggested in the reviewed literature [14,19,20]. This limitation may depend
on some factors such as hybrid implementations combining BFT and PoS or network and
consensus committee sizes.

It is essential to acknowledge the sensitivity of the proposed methodology to factors
such as the number and selection of DLT platforms, rigor in data collection, choice of
clustering method, and number of features. In fact, all of these aspects dramatically affect
the outcome of the clustering. Specifically, spectral analysis techniques yield divergent
results in all analyzed cases, with the quality of these results being lower (see Table 3)
compared to other techniques.

Although high sensitivity to these factors could be interpreted as a weakness in the
data-driven classification process of consensus protocols, this aspect may actually be an
advantage offered by the proposed methodology. The procedure described in this article
allows, for instance, full customization and tuning of each component so that different
relations between parameters may be discovered.

Regarding the limitations and potential biases associated with this research, we iden-
tify two primary sources of bias. First, there is a limitation arising from the scarcity of



Mathematics 2024, 12, 221 16 of 18

data in certain criteria, e.g., within the security group. This scarcity introduces subjectivity,
requiring expert knowledge to fill data gaps through estimations. The second bias arises
from the conversion of qualitative metrics into quantitative values, which is based on
the chosen mapping of qualities to numerical representations. This process introduces a
potential source of bias based on the selected conversion methodology.

5. Conclusions

This work introduces a machine learning methodology for clustering DLT platforms
based on diverse underlying consensus protocols. By incorporating quantifiable criteria and
categorical features, the methodology aims to minimize subjective evaluations in the clus-
tering process and automate the classification of consensus protocols to reduce subjectivity.
The results demonstrate the methodology’s effectiveness at classifying DLT platforms:
revealing patterns such as consistent clustering of protocols with similar characteristics,
like their families (e.g., PoW and PoS). Notably, it successfully distinguishes Ethereum from
second-layer scalability solutions. Moreover, in instances where the same consensus proto-
col is employed across platforms for different purposes, as seen with PoS-based Ethereum
and its second-layer solutions (Arbitrum One and Polygon), the methodology effectively
separates and distinguishes them.

Future developments include the extension of the dataset to a wider number of plat-
forms, deeper analysis and comparison with other cluster algorithms, and alternative
machine learning approaches. However, the main goal is the development of an auto-
mated tool based on the proposed methodology to cluster and classify novel consensus
protocols without the intervention of an investigator. The applications for such an auto-
matic consensus protocol classification are diverse, including helping in the selection of
optimal algorithms for blockchain, cryptocurrency, IoT, and financial projects and thus
streamlining decision-making processes across various domains. To enhance and expand
the utility of the proposed methodology, specific directions could involve refining the tool
for industry-specific requirements, incorporating real-time data for more dynamic decision
making, and exploring collaborative opportunities with stakeholders in different contexts
for tailored applications.
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