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PRESSURE BOUNDARY CONDITIONS FOR VISCOUS FLOWS IN

THIN TUBE STRUCTURES: STOKES EQUATIONS WITH LOCALLY

DISTRIBUTED BRINKMAN TERM

Grigory Panasenko1,* and Konstantinas Pileckas2

Abstract. The steady state Stokes-Brinkman equations in a thin tube structure is considered. The
Brinkman term differs from zero only in small balls near the ends of the tubes. The boundary conditions
are: given pressure at the inflow and outflow of the tube structure and the no slip boundary condition
on the lateral boundary. The complete asymptotic expansion of the problem is constructed. The error
estimates are proved. The method of partial asymptotic dimension reduction is introduced for the
Stokes-Brinkman equations and justified by an error estimate. This method approximates the main
problem by a hybrid dimension problem for the Stokes-Brinkman equations in a reduced domain.
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Mathematical models of viscous flows in thin domains have multiple applications. Such domains have one or
several dimensions which are much smaller than other ones. In particular, tube structures are some unions of
thin cylinders or rectangles (pipes or channels) [28]. This geometry simulates a network of blood vessels as a
biological application or pipelines and cooling systems as industrial applications.

Full dimension numerical computations of flows networks of thin tubes require huge computer resources. To
reduce these resources and accelerate computations we use asymptotic analysis where the small parameter is
the ratio of thickness of pipes or channels to their length. This analysis leads to the construction of asymptotic
expansions justified by error estimates [30], [33], [5], [24], [25], [19], [18], [26], [6]. It is also implemented in
some special numerical methods combining the description with reduced dimension and full dimension zooms
for small zones of singular behavior of the solution. For example, method of asymptotic partial decomposition
of domain was introduced for the stationary Navier–Stokes equations in [29] and then developed in [30], [33],
[3]. Another practical approach coupling models of different dimension was developed in [11], [36], [37].

Basically, the Newtonian rheology for the fluid motion corresponding to the stationary and nonstationary
Navier–Stokes or Stokes equations was considered, while several papers studied non-Newtonian models ([34],
[5], [25]). However, the modeling of zones of thrombus formation could be better described by the Brinkman
equations combining the Stokes description of the fluid motion with the Darcy filtration law. Indeed, the external
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part of the thrombus behaves as a porous medium, but approaching the surface of the thrombus it corresponds
better to the Newtonian fluid.

Also in the present paper we will consider the inflow-outflow boundary conditions involving pressure. These
conditions are more convenient from the computational point of view. They also allow to compute the perme-
ability of a piece of tissue containing a network of vessels. An extensive studying of the Stokes and Navier–Stokes
equations with boundary conditions involving pressure started in the pioneer paper [8] and since then continues
in a vast mathematical literature (see [35], [25], [17], [13], [16] and the bibliography there).

For classical theory of the Navier–Stokes equations see [20], [42], [12].

1. Definition of a thin tube structure

Let us remind the definitions of the tube structure and its graph given in [30].

Definition 1.1. Let O1, O2, ..., ON be N different points in Rn, n = 2, 3, and e1, e2, ..., eM be M closed segments
each connecting two of these points (i.e. each ej = OijOkj , where ij , kj ∈ {1, ..., N}, ij 6= kj). All points Oi are
supposed to be the ends of some segments ej . The segments ej are called edges of the graph. A point Oi is
called a node, if it is the common end of at least two edges and Oi is called a vertex, if it is the end of the only
one edge. Any two edges ej and ei can intersect only at the common node. The set of vertices is supposed to
be non-empty.

Denote B =
M⋃
j=1

ej the union of edges and assume that B is a connected set (see Fig. 1). The union of all edges

having the same end point Ol is called the bundle Bl. Fig. 1 a) presents the graph as a union of edges e1, ..., e5,
points O1, O2, O3 are the nodes, points O4, O5, O6 are the vertices. Each point Oi, a node or a vertex, with all
edges containing Oi as an end point, form bundle Bl, for example, O1 with edges e1 and e5 form bundle B1.
Fig. 1 b) presents the graph as a union of edges e1, ..., e9, points O1, O2, O3, O4 are the nodes, points O5, O6, O7

are the vertices.
Let e be some edge, e = OiOj . Consider two Cartesian coordinate systems in Rn. The first one has the origin

in Oi and the axis Oix
(e)
n has the direction of the ray [OiOj); the second one has the origin in Oj and the

opposite direction, i.e. Oj x̃
(e)
n is directed over the ray [OjOi).

Below in various situations, we choose one or another coordinates system denoting the local variable in both
cases by x(e) and pointing out which end is taken as the origin of the coordinate system.

With every edge ej we associate a bounded domain σj ⊂ Rn−1 containing the origin and having C2- smooth

boundary ∂σj , j = 1, ...,M . For every edge ej = e and associated σj = σ(e) we denote by Π
(e)
ε the cylinder

Π(e)
ε =

{
x(e) ∈ Rn : x(e)

n ∈ (0, |e|), x
(e)′

ε
∈ σ(e)

}
,

where x(e)′ = (x
(e)
1 , ..., x

(e)
n−1), |e| is the length of the edge e and ε > 0 is a small parameter. Notice that the

edges ej and Cartesian coordinates of nodes and vertices Oj , as well as the domains σj , do not depend on ε.

We will define as well a semi-infinite dilated cylinder Π
(e)
∞ =

{
x(e) ∈ Rn : x

(e)
n ∈ [0,∞), x(e)′ ∈ σ(e)

}
.

Let O1, ..., ON1
be nodes and ON1+1, ..., ON be vertices. Let ω1, ..., ωN1 be bounded independent of ε domains

in Rn; introduce the nodal domains ωjε = {x ∈ Rn :
x−Oj
ε

∈ ωj}.
Every vertex Oj is the end of one and only one edge ek which will also be denoted as eOj ; we will re-denote

as well the domain σk associated to this edge as σOj . Notice that the subscript k may be different from j.
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Figure 1. Graphs of tube structures.

Figure 2. Tube structures.

Definition 1.2. By a tube structure, we call the following domain

Bε =
( M⋃
j=1

Π(ej)
ε

)⋃(N1⋃
j=1

ωjε

)
.

Suppose that it is a connected set and that the boundary ∂Bε of Bε is C2-smooth except for the parts of the

boundary which are the bases γjε = {x(e)′ ∈ σOj , x(e)
n = 0} of cylinders Π

(e)
ε , j = N1 + 1, ..., N (see Fig. 2).

Let r1 be the maximal diameter of domains ωi, i = 1, ..., N , denote r = r1 + 1. Consider a node or a vertex
Ol and all edges ej having Ol as one of their end points. We call the union of all these edges a bundle of

edges and denote it Bl, i.e., Bl =
⋃

j:Ol∈ej
ej . By a bundle of cylinders BOl we call the union ωlε ∪

( ⋃
j:Ol∈ej

Π
(ej)
ε

)
.

We will consider as well the half-bundle HBOl = ωlε ∪
( ⋃
j:Ol∈ej

{x ∈ Π
(ej)
ε , x

(ej)
n ∈ [0, |ej |/2]}

)
. We will use also

Ωl = ωl ∪
( ⋃
j:Ol∈ej

Π
(ej)
∞

)
, a bundle of dilated semi-infinite cylinders.

2. Formulation of the problem. Existence and uniqueness of a
solution

Let Γ = ∂Bε\
N⋃

j=N1+1

γjε be the lateral surface of the domain Bε. In the tube structure Bε we define the spaces

Ŵ 1,2(Bε) =
{
η ∈W 1,2(Bε) : η|Γ = 0, ητ |γjε = 0, j = N1 + 1, . . . , N

}
,

K̂1,2(Bε) =
{
η ∈ Ŵ 1,2(Bε) : divη = 0

}
,

(2.1)

We denote B(O,R) the open ball in Rn with the center O and the radius R.
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Let us consider the following boundary value problem for the steady-state Stokes equations in a tube structure
Bε 

−div
(
νε(x)

(
∇+∇T

)
u
)

+Kε(x)u +∇p = 0 in Bε,

divu = 0 in Bε,
u = 0 on ∂Bε\ ∪Nj=N1+1 γ

j
ε ,

uτ = 0 on γjε ,
−ν∂nu · n + p = cj/ε2 on γjε , j = N1 + 1, ..., N,

(2.2)

where νε is the function (effective dynamical viscosity related to the porosity) equal to the positive constant

ν(0) everywhere except for the balls B(Ol, rε) and equal to the given functions νε(x) = ν(l)
(
x−Ol
ε

)
in the balls

B(Ol, rε), l = 1, ..., N1, Kε is the n × n symmetric matrix-valued function (inverse to effective permeability
of porous medium) equal to zero everywhere except for the balls B(Ol, rε) and equal to the given functions

Kε(x) = K(l)
(
x−Ol
ε

)
in the balls B(Ol, rε), l = 1, ..., N1, νε,Kε ∈ C1(Bε), νε is greater than some positive

constant independent of ε, Kε ≥ 0 (non-negative matrix) ; ν(l),K(l) are independent of ε; n is the unit normal
vector to γjε , uτ = u− (u ·n)n is the tangential component of the vector u, ∂ng = ∇g ·n is the normal derivative
of g, cj are some given constants. This model was rigorously derived from the Navier–Stokes equation in a porous
medium in [2] and was extensively studied in fluid mechanics [14]. This model describes the Newtonian flow in
the tubes combined with the fluid filtration process through the zones B(Ol, rε), simulating the eventual clots
or thrombi. In these zones νε stands for the effective dynamical velocity taking into account the porosity of the
clot, while Kε stands for the inverse to the effective permeability of the clot. The coefficients Kε, νε is supposed
to be C1-smooth function, while νε is continuous in the closure of Bε.

In this section we prove the existence and uniqueness of the solution to problem (2.2) with the right-hand
side f ∈ L2(Bε). From the boundary condition uτ |γjε = 0 and the divergence equation divu = 0, it follows that

−ν∂nu · n|γjε = 0.Thus we can rewrite (2.2) with the right-hand side in the following form


−div

(
νε(x)Du

)
+Kε(x)u +∇p = f(x) in Bε,

divu = 0 in Bε,
u = 0 on ∂Bε\ ∪Nj=N1+1 γ

j
ε ,

uτ = 0 on γjε ,
p = pj on γjε , j = N1 + 1, ..., N,

(2.3)

where pj stand for the constants cj/ε2, D = ∇+∇T .

Let us define a weak solution of problem (2.3) as a vector field u ∈ K̂1,2(Bε) satisfying the integral identity

∫
Bε

(
1
2νε(x)Du ·Dη +Kε(x)u · η

)
dx = −

N∑
j=N1+1

pj
∫
γjε

ηn ds+
∫
Bε

f · η dx (2.4)

for every η ∈ K̂1,2(Bε). Here and below for any two n× n matrices A and B having entries aij and bij denote
A ·B the sum

∑n
i,j=1 aijbij .

Introduce p∗j = pj − pN , j = N1, ..., N . Consider an equivalent weak formulation: find a vector field u ∈
K̂1,2(Bε) satisfying the integral identity

∫
Bε

(
1
2νε(x)Du ·Dη +Kε(x)u · η

)
dx = −

N−1∑
j=N1+1

p∗j
∫
γjε

ηn dx′ +
∫
Bε

f(x) · η dx (2.5)
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for every η ∈ K̂1,2(Bε). The equivalence of these formulations follows from the identity

N−1∑
j=N1+1

p∗j

∫
γjε

ηn dx′ =

N∑
j=N1+1

pj

∫
γjε

ηn dx′,

which is a corollary of the relation

N∑
j=N1+1

∫
γjε

ηn dx′ = 0

for the solenoidal vector-valued function η.
Let us explain this weak formulation heuristically; the rigorous analysis of the equivalence of the weak

formulation and the classical one needs to study the regularity of the weak solution, see [9], [1] for the methods.

Identity (2.4) follows from equations (2.3) after multiplying them by η ∈ K̂1,2(Bε) and integrating by parts
in Bε. On the other hand, for a sufficiently regular solution u satisfying (2.4) there exists a pressure field p
such that the pair (u, p) satisfies equations (2.3)1,2 a.e. in Bε. Boundary conditions (2.3)3,4,5 are satisfied in the

sense of traces (see the definition of the space K̂1,2(Bε)). More exactly, function p is defined up to an additive
constant but this constant can be chosen so that p satisfies (2.3)5. Indeed, take in (2.4) a smooth solenoidal
function η satisfying the boundary conditions η|Γ = 0, ητ |γjε = 0, j = N1 + 1, ..., N. Integrating by parts in

(2.4) yields

∫
Bε

(
− div

(
νε(x)Du

)
+Kε(x)u− f(x)

)
· η
)

dx

= −ν(0)
N∑

j=N1+1

∫
γjε

∂nu · η ds−
N∑

j=N1+1

pj
∫
γjε

ηn dx′

= −
N∑

j=N1+1

pj
∫
γjε

ηn dx′.

(2.6)

If η ∈ J∞0 (Bε) = {η ∈ C∞0 (Bε) : divη = 0}, then it follows from (2.6) that

∫
Bε

(
− div

(
νε(x)Du +Kε(x)u− f(x)

)
· η
)

dx = 0 ∀η ∈ J∞0 (Bε).

Hence, there exists a pressure function p such that

−div
(
νε(x)Du

)
+Kε(x)u +∇p = f a.e. in Bε.

Then

∫
Bε

(
− div

(
νε(x)Du

)
+Kε(x)u− f(x)

)
· η dx = −

∫
Bε

∇p · η dx = −
N∑

j=N1+1

∫
γjε

p · ηn dx′
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for every η ∈ K̂1,2(Bε). Therefore,

N∑
j=N1+1

∫
γjε

pηn dx′ =

N∑
j=N1+1

pj

∫
γjε

ηn dx′.

Thus,

N∑
j=N1+1

∫
γjε

(p− pj) · ηn dx′ = 0 ∀η ∈ K̂1,2(Bε). (2.7)

Let us fix arbitrary j ∈ {N1 + 1, . . . , N}. Taking η ∈ K1,2
0 (Bε) such that η|γkε = 0 for k 6= j, we get∫

γjε

(p− pj)η · n dx(ej)′ = 0. (2.8)

The normal traces of functions η from K1,2
0 (Bε) satisfying the conditions η|γkε = 0 for k 6= j compile the whole

space W 1/2,2(γjε) ∩ L̂2(γjε).

Since C∞0 (Bε) ∩ L2(Bε) is dense in W 1/2,2(γjε) ∩ L̂2(γjε) from the last equality it follows that

(p− pj)|γjε = cj ,

where cj is a constant (similarly to [16], [17]). Using these relations and taking now in (2.8) a test function

η ∈ K̂1,2(Bε) such that

∫
γkε

η · n dx′ = 0 for k 6= j and k 6= N ,

∫
γjε

η · n dx′ = 1 and

∫
γNε

η · n dx′ = −1, we get

N∑
j=N1+1

cj

∫
γjε

η · n dx′ = cj − cN ⇒ cj = cN .

Thus,

cj = cN ∀j = N1 + 1, ..., N. (2.9)

Since the pressure p in the weak formulation is defined up to an additive constant, we may set cj = cN = 0, j =
N1 + 1, ..., N . Then from (2.9) we have

p|γjε = pj , j = N1 + 1, ..., N.

These considerations justify the definition of the weak solution.

Theorem 2.1. For arbitrary f ∈ L2(Bε) and p∗j ∈ R, j = N1 + 1, ..., N − 1 problem (2.3) admits a unique weak

solution u ∈ K̂1,2(Bε). There holds the estimate

‖∇u‖L2(Bε) ≤ c
(
εn/2

N−1∑
j=N1+1

|p∗j |+ ε‖f‖L2(Bε)

)
(2.10)



PRESSURE BOUNDARY CONDITIONS FOR VISCOUS FLOWS IN THIN TUBE STRUCTURES: STOKES EQUATIONS 7

with the constant c independent of ε.

Proof. Define in K̂1,2(Bε) the inner product [u,η] =
∫
Bε

1
2νε(x)Du ·Dη +Kε(x)u · η dx. Due to the Poincaré-

Friedrichs inequality and the Korn inequality the corresponding norm is equivalent to the Dirichlet norm with a
constant independent of ε. Using the Cauchy-Schwarz, the trace theorem and the Poincaré-Friedrichs inequality
we derive the estimates

∣∣∣ N−1∑
j=N1+1

p∗j
∫
γjε

ηn dx′
∣∣∣ ≤ N−1∑

j=N1+1

|p∗j |
( ∫
γjε

|η|2 dx
)1/2

|γjε |1/2

≤ cεn/2
N−1∑

j=N1+1

|p∗j |‖∇η‖L2(Bε).

(2.11)

Finally, ∣∣∣ ∫
Bε

f · η dx
∣∣∣ ≤ ( ∫

Bε

|f |2 dx
)1/2( ∫

Bε

|η|2 dx
)1/2

≤ cε‖f‖L2(Bε)‖∇η‖L2(Bε).

(2.12)

Consider the linear functional Φ : K̂1,2(Bε)→ R defined by

Φ(η) = −
N−1∑

j=N1+1

p∗j

∫
γjε

ηn dx′ +

∫
Bε

f · η dx.

Due to estimates (2.11) and (2.12) it is bounded in the Hilbert space K̂1,2(Bε) and so, by the Riesz theorem

there exists a unique function u ∈ K̂1,2(Bε) such that for all η ∈ K̂1,2(Bε),

Φ(η) = [u · η].

So, this function u is a unique solution to the weak formulation (2.3). Due to estimates (2.11) and (2.12) it
satisfies estimate (2.10).

Remark 2.2. Notice also that the weak solution u of problem (2.3) belongs to the space W 2,2(Bε) whenever
f ∈ L2(Bε). The corresponding pressure belongs to W 1,2(Bε). This can be proved extending the solutions and
the data by reflection over the sections γjε to a larger domain (see [9], [1]).

Remark 2.3. We will also consider problem (2.3) with f ∈W−1,2(Bε) such that

f = f0 −
n∑
i=1

∂fi
∂xi

, fi ∈ L2(Bε), i = 0, 1, ..., n, (2.13)

fi(x) = 0 in the neighborhood of bases γjε . A weak solution is defined as u ∈ K̂1,2(Bε) satisfying

∫
Bε

(
1
2νε(x)Du ·Dη +Kε(x)u · η

)
dx

= −
N∑

j=N1+1

pj
∫
γjε

ηn ds+
∫
Bε

(
f0 · η +

∑n
i=1 fi · ∂η∂xi

)
dx

(2.14)
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for every η ∈ K̂1,2(Bε). In this case Theorem 2.1 can be easily generalized with the estimate

‖∇u‖L2(Bε) ≤ c
(
εn/2

N−1∑
j=N1+1

|p∗j |+ ε‖f0‖L2(Bε) +

n∑
i=1

‖fi‖L2(Bε)

)
(2.15)

with the constant c independent of ε.

Let us now recover and estimate the pressure p corresponding to the weak solution u ∈ Ŵ 1,2(Bε) of problem

(2.3). To do this, we need to prove that a linear bounded functional L defined on the space Ŵ 1,2(Bε) and

vanishing on the subspace K̂1,2(Bε) can be represented in the form L(η) =

∫
Bε

p(x)divη(x)dx, where p ∈

L2(Bε). First of all, let us study the divergence equation in the space Ŵ 1,2(Bε) with the right-hand side from
L2(Bε). First of all recall the well-known result on the divergence equation.

Let Ω be a bounded domain in Rn, n = 2, 3. Denote

L̂2(Ω) = {h ∈ L2(Ω) :

∫
Ω

h(x)dx = 0}.

Consider the following problem (divergence equation): for given h ∈ L̂2(Ω), find a vector field w ∈ W̊ 1,2(Ω)
satisfying the equation

divw = h, (2.16)

and the estimate

‖∇w‖L2(Ω) ≤ c‖h‖L2(Ω) (2.17)

with some constant c depending only on Ω.
Notice that the condition

∫
Ω

h(x) dx = 0 is necessary for the solvability of the above problem. Indeed, by the

Stokes formula, ∫
Ω

hdx =

∫
Ω

divw dx =

∫
∂Ω

w · n ds = 0.

The following lemma was proved in [21].

Lemma 2.4. Let Ω be a bounded domain in Rn, n = 2, 3, with Lipschitz boundary. Then (2.16) admits at least
one solution w ∈ W̊ 1,2(Ω) satisfying estimate (2.17).

The next lemma is proved in [31] (Lem. 3.6).

Lemma 2.5. Consider equation (2.16) set in Ω = Π
(e)
ε . Then (2.16) admits at least one solution w ∈ W̊ 1,2(Π

(e)
ε )

satisfying estimate

‖∇w‖
L2(Π

(e)
ε )
≤ cε−1‖h‖

L2(Π
(e)
ε )
. (2.18)

This lemma yields the following assertion.
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Lemma 2.6. Consider equation (2.16) set in Ω = Bε. Then (2.16) admits at least one solution w ∈ W̊ 1,2(Bε)
satisfying estimate

‖∇w‖L2(Bε) ≤ cε
−3/2‖h‖L2(Bε) (2.19)

Its formulation follows [31] (Lem. 3.7). However, in [31] there is a misprint in the constant which we fixed
here. Its proof is in Appendix B.

Let σ ⊂ Rn−1 be a bounded domain with Lipschitz boundary and Π =
{
x : x′ ∈ σ, 0 < xn < 1

}
, be a cylinder

in Rn. First, we consider the divergence equation in the cylinder Π.

Lemma 2.7. Let h ∈ L2(Π). Then the divergence equation

divw(x) = h(x), x ∈ Π. (2.20)

admits at least one solution w ∈W 1,2(Π) vanishing on the part of the boundary ∂Π\{x : xn = 0} and wτ |xn=0 =
0. The solution satisfies the estimate

‖∇w‖L2(Π) ≤ c‖h‖L2(Π). (2.21)

Proof. Let us extend h as an odd function to the larger cylinder Π̃ =
{
x : x′ ∈ σ,−1 < xn < 1

}
(with respect

to xn). Consider in Π̃ the following divergence equation:

{
div W = h̃(x), x ∈ Π̃,

W = 0, x ∈ ∂Π̃,
(2.22)

where

h̃(x) =

{
h(x), x ∈ Π,

−h(x′,−xn), x ∈ Π̃ \Π.

Note that

∫
Π̃

h̃(x)dx = 0.

Then, according to Lemma 2.4, there exists the solution W ∈ W̊ 1,2(Bε) satisfying the estimate

‖W‖W 1,2(Π̃) ≤ c‖h̃‖L2(Π̃) ≤ c‖h‖L2(Π) .

Without loss of generality we can assume that W has the odd component W′ and even component Wn (with
respect to xn). Indeed, if we have some solution W to this divergence equation (2.22), we can consider the

function W̃ defined by relations

W̃n(x′, xn) =
1

2
(Wn(x′, xn) +Wn(x′,−xn)),

W̃′(x′, xn) =
1

2
(W′(x′, xn)−W′(x′,−xn)).
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Then W̃ is still a solution to the divergence equation (2.22) and it satisfies the above parity conditions with

respect to xn. This implies that W̃′ = 0 on the section xn = 0, that is W̃τ = 0 for xn = 0.

The restriction w of W̃ on Π is a solution to problem (2.20).

Lemma 2.8. Let h be a function from L2(Bε). Then the divergence equation

divw(x) = h(x), x ∈ Bε, (2.23)

admits at least one solution w ∈ Ŵ 1,2(Bε), satisfying the estimate

‖∇w‖L2(Bε) ≤ cε
−3/2‖h‖L2(Bε). (2.24)

Proof. Let us fix a cylinder Π
(e)
ε having the base γNε . Let us cut this cylinder at the distance ε from the base

γNε . Denote the cut piece by Cε. Introduce 〈h〉Bε =

∫
Bε

h(x)dx/mes(Bε) the mean value of h in Bε. Let χA be

the characteristic function of the set A. For the function h1 = h− 〈h〉
Bε
χ
Cε

(x) we construct a solution of the
divergence equation

divw1(x) = h1(x), x ∈ Bε, (2.25)

from the space W̊ 1,2(Bε).
According to Lemma 2.6, it satisfies the estimate

‖∇w1‖L2(Bε) ≤ cε
−3/2‖h1‖L2(Bε) ≤ cε

−3/2‖h‖L2(Bε), (2.26)

because

‖〈h〉
Bε
χ
Cε

(x)‖L2(Bε) =
1

mesBε

∣∣∣ ∫
Bε

hdx
∣∣∣√mesCε ≤ cε1/2‖h‖L2(Bε). (2.27)

Now, in the cylinder Cε we construct a solution w0 ∈ Ŵ 1,2(Cε) of the divergence equation

divw0(x) = 〈h〉
Bε
χ
Cε

(x), x ∈ Cε, (2.28)

satisfying wτ |γNε = 0 and the estimate

‖∇w0‖L2(Cε) ≤ c‖〈h〉BεχCε (x)‖L2(Cε) ≤ cε
1/2‖h‖L2(Bε), (2.29)

The first inequality in (2.29) follows from Lemma 2.7 contracting 1/ε-times the cylinder Π in (2.21), the second
inequality follows from (2.27). Since, by the construction of Lemma 2.7, the vector-function w0 vanishes on the

second base of the cylinder Cε, it can be extended by zero into Bε \ Cε. So, w0 ∈ Ŵ 1,2(Bε). Finally, taking
w = w1 + w0, we finalize the proof.

Theorem 2.9. Let Φ be a linear bounded functional defined on the space Ŵ 1,2(Bε), η 7→ Φ(η) vanishing on

the subspace K̂1,2(Bε). Then there exists a unique function p ∈ L̂2(Bε) such that Φ(η) can be presented in a
form

∫
Bε
p(x)divη(x)dx.
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Proof. In the proof of Lemma 2.6 for any h ∈ L2(Bε) there was constructed a function w, belonging the space

Ŵ 1,2(Bε), satisfying the relation

divw(x) = h(x), x ∈ Bε, (2.30)

and estimate (2.19). One can easily check that this construction defines a bounded linear operator M−1 from

L2(Bε) onto Ŵ 1,2(Bε).

Let us define the equivalence classes in Ŵ 1,2(Bε). We say that two functions w and v belong to the same
class if they have the same divergence: divw = divv. We will call functions w belonging to the class W as
representatives of this class. Define the sum W + V of two classes W and V as the equivalence class containing
the function w + v, where w ∈W and v ∈ V are the representatives of W and V respectively. Also, define the
product αW of the equivalence class W by a real number α as the equivalence class containing the function
αw, where w ∈ W is a representative of the class W . So, we can consider the vector space of the equivalence
classes (known in the literature as the quotient space). Introduce the inner product in this space: if W and V
are two classes and w ∈W , v ∈ V , then the inner product in this quotient space is defined as

(W,V ) =

∫
Bε

divw · divvdx. (2.31)

One can easily check that this definition satisfies the axioms of the inner product (bilinearity, symmetry and
positivity of the associated norm) and is stable with respect to the choice of the representatives w and v of the
classes W and V respectively.

Consider the value Φ(w) for some w ∈ Ŵ 1,2(Bε). Let W be its equivalence class corresponding to the
divergence h ∈ L2(Bε), i.e. w ∈W and M−1h ∈W . Then Φ(w) = Φ(M−1h), because w−M−1h is divergence
free, and so Φ(w −M−1h) = 0. So, Φ(w) is uniquely defined for all functions of the class W , and so, one can
consider Φ as a linear functional on the vector space of equivalence classes. As the functional Φ is bounded with
respect to the norm of Ŵ 1,2(Bε) and the operator M−1 is also bounded,

|Φ(M−1h)| ≤ cε‖h‖L2(Bε) = cε‖divw‖L2(Bε),

where cε is a constant depending on ε. So, Φ is bounded on the space of equivalence classes with inner prod-
uct (2.31) and so, according to the Riesz theorem, there exists a unique equivalence class U such that for a

representative u of U and for any w ∈ Ŵ 1,2(Bε) it can be represented in a form of an inner product

Φ(w) =

∫
Bε

divu · divwdx. (2.32)

Taking now p = divu we complete the proof of the existence of p. Its uniqueness follows from the uniqueness of
the equivalence class U , so that for all u from U divu is the same.

Now we can introduce another weak formulation for problem (2.3), namely, formulation “with pressure”: find

u ∈ Ŵ 1,2(Bε) and p ∈ L2(Bε) such that

∫
Bε

(1

2
νε(x)Du ·Dη +Kε(x)u · η

)
dx−

∫
Bε

p(x)divη dx = −
N∑

j=N1+1

pj

∫
γjε

η · n ds+

∫
Bε

f · η dx (2.33)

holds for every η ∈ Ŵ 1,2(Bε).
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Theorem 2.10. For arbitrary f ∈ L2(Bε) and pj ∈ R, j = N1 + 1, ..., N , problem (2.3) admits a unique weak

solution (u, p), u ∈ Ŵ 1,2(Bε), p ∈ L2(Bε). The following estimate

ε−3/2‖∇u‖L2(Bε) + ‖p‖L2(Bε) ≤ cε
−3/2

(
εn/2

N∑
j=N1+1

|pj |+ ε‖f‖L2(Bε)

)
(2.34)

holds with the constant c independent of ε.

Proof. Applying Theorem 2.9 to the functional

L(η) =

∫
Bε

(1

2
νε(x)Du ·Dη +Kε(x)u · η

)
dx+

N∑
j=N1+1

pj

∫
γjε

η · n ds−
∫
Bε

f · η dx, (2.35)

defined on η ∈ Ŵ 1,2(Bε), we get the existence and uniqueness of the pressure p ∈ L2(Bε) such that

L(η) =

∫
Bε

pdiv η dx.

So, u and p satisfy integral identity (2.33).
Evidently, applying estimates (2.11), (2.12), we get:

|L(η)| ≤
(
‖∇u‖L2(Bε) + εn/2

N∑
j=N1+1

|pj |+ ε‖f‖L2(Bε)

)
‖∇η‖L2(Bε). (2.36)

Using Lemma 2.8, we can take in (2.33) the test function η such that divη = p(x) and

‖∇η‖L2(Bε) ≤ cε
−3/2‖p‖L2(Bε).

Then (2.36) yields:

|L(η)| = ‖p‖2L2(Bε)
≤ cε−3/2

(
‖∇u‖L2(Bε) + εn/2

N∑
j=N1+1

|pj |+ ε‖f‖L2(Bε)

)
‖p‖L2(Bε), (2.37)

and from (2.10) we get (2.34).

Note that u is the same in both weak formulations.

Remark 2.11. As before if

f = f0 −
n∑
i=1

∂fi
∂xi

, fi ∈ L2(Bε), i = 0, 1, ..., n, (2.38)

fi(x) = 0 in the neighborhood of bases γjε , then the term ε‖f‖L2(Bε) in (2.34) is replaced by ε‖f0‖L2(Bε) +∑n
l=1 ‖fl‖L2(Bε).



PRESSURE BOUNDARY CONDITIONS FOR VISCOUS FLOWS IN THIN TUBE STRUCTURES: STOKES EQUATIONS 13

In this case a weak solution is defined as u ∈ K̂1,2(Bε) satisfying

∫
Bε

(
1
2νε(x)Du ·Dη +Kε(x)u · η

)
dx

= −
N∑

j=N1+1

pj
∫
γjε

ηn ds+
∫
Bε

(
f0 · η +

∑n
i=1 fi · ∂η∂xi

)
dx

(2.39)

for every η ∈ K̂1,2(Bε). Now, Theorem 2.1 can be easily generalized with the estimate

‖∇u‖L2(Bε) ≤ c
(
εn/2

N−1∑
j=N1+1

|p∗j |+ ε‖f0‖L2(Bε) +

n∑
i=1

‖fi‖L2(Bε)

)
(2.40)

with the constant c independent of ε.

2.1. Asymptotic expansion of the solution

In this section we describe the construction of the asymptotic expansion. Let ζ ∈ C2(R) be even function
independent of ε such that, ζ(t) = 0 if |t| ≤ 1/3, and ζ(t) = 1 if |t| ≥ 2/3. Denote e = eOj (the edge with the end

Oj) and x(e) the Cartesian coordinates corresponding to the origin Oj and the edge e, i.e., x(e) = P(e)(x−Oj),
P(e) is the orthogonal matrix relating the global coordinates x with the local ones x(e).

The asymptotic expansion of the velocity field is sought in the form:

u(J)(x) =
∑
Ol,l=N1+1,...,N ;e=OlOil

ζ
( |e| − x(e)

n

3r1ε

)
U[e,J]

(x(e)′

ε

)

+
∑
e=OαOβ ;α,β≤N1

ζ
( x(e)

n

3r1ε

)
ζ
( |e| − x(e)

n

3r1ε

)
U[e,J]

(x(e)′

ε

)

+
N∑
l=1

(
1− ζ

( |x−Ol|
|e|min

))
U[BLOl,J]

(x−Ol
ε

)
,

(2.41)

where the first sum is taken over all edges having a vertex as an end point (and with the origin of the local
coordinate system at the vertex), the second sum is taken over all remaining edges, and all terms in these

sums are extended by zero out of cylinders Π
(e)
ε ; the terms of the third sum are extended by zero out of the

corresponding bundles; functions U[e,J] are the Poiseuille flow’s velocities corresponding to the cylinders Π
(e)
ε

(they will be defined below), they are expanded in powers of ε; functions U[BLOl,J] are the boundary layer type
functions exponentially decaying at the infinity, they as well are expanded in powers of ε:

U[e,J] =
(
P (e)

)t
(0, . . . , 0, Ũ [e,J])t,

U
(e)
(j) =

(
P (e)

)t
(0, . . . , 0, Ũ

(e)
j )t, j = 0, 1, . . . , J,

Ũ [e,J](y(e)′) =
J∑
j=0

εjŨ
(e)
j (y(e)′),

U[BLOl,J](y) =
J∑
j=0

εjU
[BLOl]
j (y).

(2.42)
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The asymptotic expansion of the pressure for every half-cylinder Π
(e)
ε , xn < |e|/2, corresponding to the edge

e = OlOil , l = N1 + 1, ..., N , (Ol is the origin of the local coordinate system) is sought in the form:

p(J)(x) = −s(e)x
(e)
n + a(e), (2.43)

and on every half-bundle HBOl , l = 1, ..., N1, (Ol is the origin of the local coordinate system) we define:

p(J)(x) =
∑
e⊂Bl ζ

( x(e)
n

3r1ε

)(
− s(e)x

(e)
n + a(e) − a(es)

)
+ a(es)

+
1

ε

(
1− ζ

( |x−Ol|
|e|min

))
P [BLOl,J]

(x−Ol
ε

)
,

(2.44)

where the terms of the sum are extended by zero out of cylinders Π
(e)
ε ,

s(e) =
1

ε2

J∑
j=0

εjs
(e)
j , a(e) =

1

ε2

J∑
j=0

εja
(e)
j (2.45)

and

P [BLOl,J](y) =

J∑
j=0

εjP
[BLOl,J]
j (y). (2.46)

Here es is the selected edge of the bundle (arbitrary chosen among edges of the bundle) and the local coordinates
x(e) are redefined so that all of them have the same origin Ol.

The algorithm of successive determination of the terms in asymptotic expansions (2.41), (2.43) is as follows.

The base case. For any edge e define U
(e)
0 (y(e)′) as the solution of the Dirichlet problem

−ν(0)∆(y(e)′)U
(e)
0 (y(e)′) = 1, y(e)′ ∈ σ(e);

U
(e)
0 |∂σ(e) = 0,

and define κe as the integral
∫
σ(e) U

(e)
0 (y(e)′)dy(e)′.

Solve the conductivity problem on the graph for the function p0:

−κe
∂2p

(e)
0

∂x
(e)
n

2 (x
(e)
n ) = 0, x

(e)
n ∈ (0, |e|),

−
∑

e:Ol∈e
κe
∂p

(e)
0

∂x
(e)
n

(0) = 0, l = 1, ..., N1,

p
(e)
0 (0) = cl, l = N1 + 1, ..., N,

p
(e)
0 (0) = p

(es)
0 (0), ∀e ⊂ Bl, l = N1.

(2.47)

Here the local coordinates x(e) are redefined so that all of them have the same origin Ol. So, p0 is a continuous
function on the graph. Indeed, the last condition of this problem means that the values of the function p0 for the

values of local variables x
(e)
n = 0 associated to all edges e of the bundle Bl are the same. Note that introducing

the weak (variational) formulation in appropriate spaces and applying the Lax-Milgram lemma as in the first
part of [32] one can prove the existence and uniqueness of the solution of this problem.
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Solving the above conductivity problem, we define for every edge e the constants s
(e)
0 and a

(e)
0 such that

p
(e)
0 (x(e)) = −s(e)

0 x(e)
n + a

(e)
0

and the velocity

Ũ
(e)
(0) (y(e)′)=s

(e)
0 U

(e)
0 (y(e)′), U

(e)
0 (y(e)′) =

(
P(e)

)t
(0, . . . , 0, Ũ

(e)
(0) )t(y(e)′). (2.48)

Introduce the notation:

D(l) = −divy

(
ν(l)(y)Dy ·

)
,

where functions ν(l) and K(l) are extended out of the ball B(0, R) by ν(0) and zero respectively. Now to
compensate the residual due to the multiplication of the Poiseuille flow by a cut-off function, we consider the
boundary layer correctors and problems for these correctors set in a dilated bundle of semi-infinite cylinders Ωl:

For l = 1, ..., N1 the boundary layer problem for (U
[BLOl]
0 (y), P

[BLOl]
0 (y)) is:

D(l)U
[BLOl]
0 +∇yP [BLOl]

0 = f
[REGOl]
0 + f

[BLOl]
0 , y ∈ Ωl,

divyU
[BLOl]
0 = h

[REGOl]
0 , y ∈ Ωl,

U
[BLOl]
0 |∂Ωl = 0,

(2.49)

where

f
[REGOl]
0 (y)

= −
∑

e:Ol∈e

{
s

(e)
0

(
− ν(0)∆y

(
ζ
(y(e)

n

3r1

)(
P(e)

)t
(0, . . . , 0, U

[e]
0 (y(e)′))∗

)
−∇y

(
ζ
(y(e)

n

3r1

)
y

(e)
n

))
+ (a

(e)
1 − a

(es)
1 ) ∇y

(
ζ
(y(e)

n

3r1

))}
,

(2.50)

f
[BLOl]
0 (y) = 0, (2.51)

h
[REGOl]
0 (y) = divy

∑
e:Ol∈e

{
s

(e)
0 ζ
(y(e)

n

3r1

)(
P(e)

)t
(0, . . . , 0, U

[e]
0 (y(e)′))t

}
. (2.52)

Here the sum
∑

e:Ol∈e
is taken over all edges e having ends in the node Ol and the terms are extended by zero out

of each cylinder Π
(ej)
ε . Here we have an unknown quantity in the right-hand side, the constant a

(e)
1 − a

(es)
1 is

unknown. Let us address this term. Denote by (U
[BLOl]
0 (y), P̂

[BLOl]
0 (y)) the solution of problem (2.49) without

the last term (a
(e)
1 − a

(es)
1 )∇y

(
ζ
(y(e)

n

3r1

))
in f

[REGOl]
0 (y) (since this term is of gradient form, the solutions differ

only by the pressure components). The right-hand sides of system (2.49) have compact supports. Therefore,

according to results of Propositions A.1 and A.2 [33], the pressure P̂
[BLOl]
0 (y) exponentially stabilizes in each

outlet (corresponding to the edge e) to a constant, say â
[BLOl,e]
0 , in the sense of integral estimates

lim
k→+∞

e2βk

∫
{y(e)n ∈(k,k+1)}∩Ωl

(P̂
[BLOl]
0 (y)− â[BLOl,e]

0 )2 dy = 0, β > 0. (2.53)
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This constant can be set equal to zero at one of the outlets, corresponding to the edge es. Then we define the

constants a
(e)
1 − a

(es)
1 = â

[BLOl,e]
0 and define the boundary layer corrector for the pressure as

P
[BLOl]
0 (y) = P̂

[BLOl]
0 (y)−

∑
e:Ol∈e, e 6=es

ζ
(y(e)

n

3r1

)
â

[BLOl,e]
0 .

Consider now the conductivity problem of rank 1 on the graph for the function p1:



−κe
∂2p

(e)
1

∂x
(e)
n

2 (x
(e)
n ) = 0, x

(e)
n ∈ (0, |e|),

−
∑

e:Ol∈e
κe
∂p

(e)
1

∂x
(e)
n

(0) = 0, l = 1, ..., N1,

p
(e)
1 (x

(e)
n = 0) = â

[BLOl′ ,e]
0 , l = N1 + 1, ..., N,

p
(e)
1 (0)− p(es)

1 (0) = â
[BLOl,e]
0 , ∀e ⊂ Bl, e 6= es,

(2.54)

where es is the selected edge of the bundle. Here and below Ol′ is the node connected by an edge e = Ol′Ol with

the vertex Ol, â
[BLOl′ ,e]
0 is the limit of P̂

[BLOl′ ,e]
0 (y) at the outlet corresponding to the edge e = Ol′Ol. So, in

this problem on the graph the solution may be discontinuous at the nodes. Namely, at each node Ol there are

prescribed jumps of p
(e)
1 between the edges e and es of the bundle. This problem as well has a unique solution

p1. Note that problem (2.54) can be reduced to a problem on the graph with a right-hand side for a continuous
unknown function as in [32].

Now, constants s
(e)
1 and a

(e)
1 are known: p

(e)
1 (x

(e)
n ) = −s(e)

1 x
(e)
n + a

(e)
1 , and we can completely determine the

pressure in the boundary layer problem (2.49):

P
[BLOl]
0 (y) = P̂

[BLOl]
0 (y)−

∑
e:Ol∈e, e 6=es

ζ
(y(e)

n

3r1

)
â

[BLOl,e]
0 .

Suppose that all terms of expansion (2.41)–(2.46) corresponding to the rank less or equal to j − 1 are known,
and that the macroscopic pressure pj on the graph is known as well. Let us describe the passage from the rank
j − 1 to the rank j.

Step 1. As the macroscopic pressure on the graph pj is known, define for every edge e constants s
(e)
j and

a
(e)
j such that

p
(e)
j (x(e)) = −s(e)

j x(e)
n + a

(e)
j

and

Ũ
(e)
(j) (y(e)′) = s

(e)
j U

(e)
0 (y(e)′),

U
(e)
j =

(
P(e)

)t
(0, . . . , 0, Ũ

(e)
(j) )t.

(2.55)
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Step 2. The boundary layer solution is a pair
(
U

[BLOl]
j , P

[BLOl]
j

)
solving the following Stokes system in Ωl,

l = 1, ..., N1:

D(l)
y U

[BLOl]
j +∇yP [BLOl]

j = f
[REGOl]
j + f

[BLOl]
j ,

divyU
[BLOl]
j = h

[REGOl]
j ,

U
[BLOl]
j |∂Ωl = 0, j = 0, ..., J,

(2.56)

where

f
[REGOl]
j (y(e)) = −

∑
e:Ol∈e

{
− ν∆y

[
ζ
(y(e)

n

3r1

)
U

[e]
j (y(e)′)

]
+∇y

[
ζ
(y(e)

n

3r1

)(
− s(e)

j y
(e)
n

)]
+â

[BLOl,e]
j ∇yζ

(y(e)
n

3r1

)} (2.57)

(for j = J the coefficient â
[BLOl,e]
j (t) is omitted),

f
[BLOl]
j (y(e)) = K(l)U

[BLOl]
j−2 , (2.58)

h
[REGOl]
j (y, t) = −

∑
e:Ol∈e

divy

(
ζ
(y(e)

n

3r1

)
U

[e]
j (y(e)′, t)

)
. (2.59)

Here the sum
∑

e:Ol∈e
is taken over all edges e having ends in the node Ol, the terms of the sum are extended by

zero out of cylinders Π
(e)
ε and by convention, the terms with the negative subscripts j are equal to zero. Note

that by construction, suppf
[REGOl]
j ∩ suppK(l) = ∅.

First, we find the couple
(
U

[BLOl]
j , P̂

[BLOl]
j

)
which is the solution to the same problem (2.56) without the

last term in the definition of f
[REGOl]
j (see (2.57)). It can be proved by induction, using Theorems A.1 and

A.2 [33], that U
[BLOl]
j exponentially tends to zero as |y| → +∞, while the corresponding pressure function

P̂
[BLOl]
j stabilizes in outlets to infinity to some constants â

[BLOl,e]
j in the sense of (2.53); these constants may

be different for different outlets. Since the pressure function is defined up to an additive constant, we can fix
the limit constant equal to zero for the outlet corresponding to the selected edge es.

Step 3. Solve the conductivity problem on the graph for the function p
(e)
j+1 (j < J):

−κe
∂2p

(e)
j+1

∂x
(e)
n

2 (x
(e)
n ) = 0, x

(e)
n ∈ (0, |e|),

−
∑

e:Ol∈e
κe
∂p

(e)
j+1

∂x
(e)
n

(0) = 0, l = 1, ..., N1,

p
(e)
j+1(0) = â

[BLOl′ ,e]
j , l = N1 + 1, ..., N,

p
(e)
j+1(0)− p(es)

j+1(0) = â
[BLOl,e]
j , ∀e ⊂ Bl, e 6= es,

where the local coordinates x(e) are redefined so that all of them have the same origin Ol.
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Step 4. Finally, we find the pressure P
[BLOl]
j (y) in boundary layer problem (2.56), (2.57) for l = 1, ..., N1:

P
[BLOl]
j (y) = P̂

[BLOl]
j (y)−

∑
e:Ol∈e, e 6=es

ζ
(y(eαm )

n

3r1

)
â

[BLOl,e]
j .

This step finalizes the passage from j to j + 1.

2.2. Residual

Consider the asymptotic expansion
(
u(J), p(J)

)
of order J (see (2.41), (2.43)). By construction

u(J) ∈W 1,2(Bε), p
(J) ∈ L2(Bε). (2.60)

Put L(u, p) = −div
(
νε(x)Du

)
+ Kε(x)u + ∇p. Let us calculate L(u(J), p(J)) in a half-bundle HBOl , l =

1, ..., N1. We obtain

f (J)(x) = L(u(J), p(J))

= εJ−1K(l)U
[BLOl]
J−1 + εJK(l)U

[BLOl]
J + εJ−2

∑
e:Ol∈e

â
[BLOl,e]
J ∇yζ

(y(e)
n

3r1

)

−
{
L
(
ζ
( |x−Ol|
|e|min

)
U[BLOl,J](y), ζ

( |x−Ol|
|e|min

)
P [BLOl,J](y)

)
χ(x)

}
.

Here y =
x−Ol
ε

; y(e) =
x(e)

ε
; χ = χ

supp
(

1−ζ
(
|x−Ol|
|e|min

)) is the characteristic function of the set supp
(

1 −

ζ
(
|x−Ol|
|e|min

))
. As before the terms of the sums

∑
e:Ol∈e

are extended by zero out of cylinders Π
(e)
ε .

Here the first line of the right-hand side is the residual of the term K(l)u(J), the second line of the right-
hand side comes from the pressure gradient term; this term is the only one that was not compensated by the
boundary layer-in-space problems. The last line is the residual generated by the multiplication of the boundary

layer correctors by the cut-off function ζ
( |x−Ol|
|e|min

)
. Notice that terms appearing in this last line exponentially

vanish because in the set supp
(
1 − ζ

( |x−Ol|
|e|min

))
(where χ 6= 0) the order of this term in L2-norm is O(e−c1/ε)

with some positive constant c1 (see the Appendix in [33]). From the obtained formulas it follows that

‖f (J)‖L2(Bε) = ‖L(u(J), p(J))‖L2(Bε) = O(εJ−2). (2.61)

In the vertex associated cylinders BOl , l = N1 + 1, ..., N , the residual is equal to zero.
Let us calculate the divergence of u(J). In any half-bundle we have

divu(J) = −∇ζ
( |x−Ol|
|e|min

)
·U[BLOl,J](y) = h(J)(y).
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Obviously, h(J) ∈W 1,2(Bε). Since the support of the function ∇ζ
( |x−Ol|
|e|min

)
belongs to the middle third of every

cylinder, there the relations

‖h(J)‖W 1,2(Bε) = O(e−c2/ε) (2.62)

hold for some c2 > 0.
It is easy to see that ∫

Bε

h(J)(y) dy = 0.

Therefore, by Lemma 2.6, there exists a vector field w(J) ∈ W̊ 1,2(Bε) such that divw(J) = −h(J). Moreover,
the estimates

‖w(J)‖W 1,2(Bε) ≤ ε
−3/2c‖h(J)‖L2(Bε) (2.63)

hold.
Set ũ(J) = u(J) + w(J). Then divũ(J) = 0, ũ(J) satisfies the lateral boundary Γ the no-slip boundary

conditions without residual, and because of (2.62) we have

‖f (J)
1 ‖L2(Bε) = O(εJ−2), (2.64)

where f
(J)
1 = L(ũ(J), p(J)).

As for the pressure boundary conditions, the non-compensated values â
[BLOl′ ,e]
J , l = N1 + 1, ..., N (limits of

P̂
[BLOl′ ,e]
J at the outlets corresponding to edges Ol′Ol, l = N1 + 1, ..., N generate a constant residual in the

boundary condition on γlε, that is εJ−1â
[BLOl′ ,e]
J .

2.3. Error estimate

Theorem 2.12. The following error estimates

‖u− ũ(J)‖W 1,2(Bε) = O(εJ+(n−1)/2), ‖p− p(J)‖L2(Bε) = O(εJ+(n−1)/2−1) (2.65)

hold.

Proof. Let v = u− ũ(J), q = p− p(J). Then the integral identity∫
Bε

1
2νε(x)Du(J) ·Dη +Kε(x)u(J) · η dx−

∫
Bε

q(x)divη dx

=
N∑

j=N1+1

εJ−1â
[BLOl′ ,e]
J

∫
γjε

ηn ds−
∫
Bε

f
(J)
1 · η dx

holds for every η ∈ Ŵ 1,2(Bε).
Applying Theorem 2.10 with estimate (2.34) we get:

‖v‖W 1,2(Bε) = ‖u− ũ(J)‖W 1,2(Bε) = O(εJ−1) (2.66)
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and

‖q‖L2(Bε) = ‖p− p(J)‖L2(Bε) = O(εJ−5/2). (2.67)

Evaluating now the norm of the difference u(J) and u(J+2) we obtain:

‖ũ(J) − ũ(J+2)‖W 1,2(Bε) = O(εJ+(n−1)/2).

Replacing J by J + 2 in (2.66) yields:

‖u− ũ(J+2)‖W 1,2(Bε) = O(εJ+1).

So, the triangle inequality gives the first estimate (2.65). Applying the same argument to p(J) and p(J+4), we
get the second estimate (2.65).

Remark 2.13. The asymptotic expansion (2.41)–(2.46) can be slightly modified without loss of the accuracy.

Namely, the argument
|x−Ol|
|e|min

of the cut-off function ζ may be replaced by
|x−Ol|

δ
with δ = CJε| ln ε||e|min,

where the constant CJ is chosen in such a way that

Eδ/ε = ‖U[BLOl,J]‖W 2,2(Ωl,δ/ε) + ‖P [BLOl,J]‖W 1,2(Ωl,δ/ε) = O(εJ+(n−1)/2). (2.68)

Here Ωl,R = Ωl ∪ {|y| > R}. Indeed, by Theorem A1 [33], U[BLOl,J](y) and P [BLOl,J](y) exponentially vanish
as |y| → ∞. Thus,

ER ≤ c1e−c2R, c1, c2 > 0.

So, the estimate

Eδ/ε = O(εJ+(n−1)/2)

is true for δ such that

c2δ/ε ≥ (J + (n− 1)/2)| ln ε|,

i.e. for δ = CJε| ln ε|.
Notice that the constant CJ = c̄1J + c̄2, where c̄1, c̄2 are constants independent of J .
Then the W 1,2(Bε)-norm of the difference of the constructed asymptotic expansion u(J) and the modified

one is of order O(εJ+(n−1)/2).

2.4. Method of asymptotic partial decomposition of the domain for the inflow-outflow
boundary condition involving pressure

Using the obtained results we introduce and justify the method of asymptotic partial decomposition of the
domain (MAPDD) for problem (2.2). This method first published in [27] reduces the dimension on the main
part of Bε replacing the solution by the Poiseuille type flow and keeps the original full dimension in small
neighbourhoods of the nodes and vertices. By this, it reduces the computational costs and accelerates the
traditional numerical strategies.

Let us describe the algorithm of the MAPDD for the Stokes problem set in a tube structure Bε. Let δ be a
small positive number much greater than ε (it will be chosen of the order O(ε| ln ε|)). For any edge e = OiOj
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of the graph (Oi, Oj are two nodes) introduce two hyperplanes orthogonal to this edge and crossing it at the
distance δ from its ends. If in the edge e = OiOj only one end Oi is a node and the second end is a vertex,
then we introduce only one hyperplane at the distance δ from the node Oi. Denote the cross-sections of the

cylinder Π
(e)
ε by these two hyperplanes respectively, by Si,j (the cross-section at the distance δ from Oi) and

Sj,i (the cross-section at the distance δ from Oj) and denote the part of the cylinder Π
(e)
ε between these two

cross-sections by Bdec,ε
ij (if Oj is a vertex, then Bdec,ε

ij stands for the part of the cylinder Π
(e)
ε between Si,j and

the base of the cylinder γjε containing the vertex Oj ; in this case this base of the cylinder γjε is denoted Sj,i).

. .
S Sjiij

eOi Oj

 
Bij

dec �

Truncation of the cylinder Π
(e)
ε

Let Bε,δi be the connected, truncated by the cross-sections Si,j , part of Bε which contains the node Oi.

.Oi

Sij1Sij4

Sij
3

Sij2

Bi
,

Connected component Bε,δi

Define the subspace Wdec(Bε, δ) of Ŵ 1,2(Bε) such that on every truncated cylinder Bdec,ε
ij its elements

(vector-valued functions) have on Bdec,εij vanishing tangential entries of the vector-function and independent of
the normal variable normal component of the vector-function. Let Hdec(Bε, δ) be the subspace of Wdec(Bε, δ)
consisting of the divergence free functions. We will consider as well the subspace L2

dec(Bε, δ) of the space

L2(Bε) such that its elements are affine functions of x
(e)
1 on every truncated cylinder Bdec,ε

ij . The MAPDD
approximation to problem (2.2) is formulated as a projection of the weak formulation (2.4) with f = 0 on the
subspace Hdec(Bε, δ), namely
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find vd ∈ Hdec(Bε, δ), such that ∀η ∈ Hdec(Bε, δ), the following integral identity

∫
Bε

1

2
νε(x)Dvd ·Dη +Kε(x)vd · ηdx = −

N∑
j=N1+1

pj

∫
γjε

ηn ds (2.69)

holds.
Applying the standard Lax-Milgram lemma arguments one can prove the existence and uniqueness of the

solution vd to this problem.
Note that the corrected, according to the above Remark 1.1, asymptotic solution u(J) belongs to the space

Hdec(Bε, δ) and still satisfies the weak formulation (2.4) with the same residual as before, i.e., of order O(εJ−2)
in L2(Bε)-norm:

∫
Bε

1

2
νε(x)Du(J) ·Dη +Kε(x)u(J) · ηdx = −

N∑
j=N1+1

pj

∫
γjε

ηn ds+

∫
Bε

f
(J)
1 · ηdx

for all η ∈ K̂1,2(Bε), where

‖f (J)
1 ‖L2(Bε) = O(εJ−2). (2.70)

Respectively, u(J+2) satisfies

∫
Bε

1

2
νε(x)Du(J+2) ·Dη +Kε(x)u(J+2) · ηdx = −

N∑
j=N1+1

pj

∫
γjε

ηn ds+

∫
Bε

f
(J)
1 · ηdx,

where

‖f (J+2)
1 ‖L2(Bε) = O(εJ). (2.71)

Of course, this identity is still true for η ∈ Hdec(Bε, δ), because Hdec(Bε, δ) is a subspace of K̂1,2(Bε).
Evidently, the difference vd − u(J+2) belongs to Hdec(Bε, δ) and for every η ∈ Hdec(Bε, δ) satisfies the integral
identity ∫

Bε

1

2
νε(x)D(vd − u(J+2)) ·Dη +Kε(x)(vd − u(J+2)) · ηdx = −

∫
Bε

f
(J+2)
1 · ηdx.

Taking η = vd − u(J+2) we get the estimate

‖vd − u(J+2)‖W 1,2(Bε) = O(εJ+1). (2.72)

Using estimates (2.72), (2.65), and applying the triangle inequality we get

Theorem 2.14. Let δ be CJ+2ε| ln ε| with constant CJ+2 satisfying (2.68) with J replaced by J + 2. Then the
following error estimate

‖v − vd‖W 1,2(Bε) = O(εJ+(n−1)/2) (2.73)
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holds.

This estimate justifies the MAPDD.

Remark 2.15. The variational formulation (2.69) is equivalent to the following one, which uses functions

defined only in the “octopus-like” domains Bε,δi . Let (UB)ε,δ = ∪N1
i=1B

ε,δ
i . Introduce the space Ŵdec((UB)ε,δ)

of functions η belonging to W 1,2(Bε,δi ) for all i = 1, ..., N1, such that η = 0 on ∂Bε ∩ ∂Bε,δi and for all e = OlOj

η|Slj = η|Sjl = (P(e))∗
(

0, ..., 0, η̃n(x(e)′)
)
, η̃n ∈ W̊ 1,2(σ(e)

ε ). (2.74)

Also, introduce the space Ĥdec((UB)ε,δ) as the subspace of divergence free functions of the space Ŵdec((UB)ε,δ).

Then problem (2.69) can be stated as follows: find vd ∈ Ĥdec((UB)ε,δ), such that ∀η ∈ Ĥdec((UB)ε,δ), the
following integral identity∑N

i=1

∫
Bε,δi

1
2νε(x)Dvd ·Dη +Kε(x)vd · ηdx

+
∑M
l=1 dl

∫
σ
(el)
ε

ν(0)∇x(el)′vd · ∇x(el)′ηdx
(el)′ = −

N∑
j=N1+1

pj
∫
γjε

ηn ds
(2.75)

holds. Here dl = |e|− 2δ, the distance between the cross-sections Sij and Sji cutting the segment e (for segments
with the both end points which are nodes, e connects two nodes), dl = |e| − δ if one of the end points is a vertex,
i.e. e connects a node and a vertex. In the last case, in (2.74) with j = N1 + 1, ..., N or l = N1 + 1, ..., N , by
convention Slj = γjε (respectively, Slj = γlε ). The advantage of this form of the integral identity is that it uses
only functions defined in small truncated domains.

It is possible to “recover” the MAPDD pressure and get an equivalent formulation “with pressure”:
find the vector-field vd and the “MAPDD pressure” pd for all i = 1, ..., N1 belonging to the spaces vd ∈

Ŵdec((UB)ε,δ) and pd ∈ L2(Bε,δi ), and satisfying for all η ∈ Ŵdec((UB)ε,δ) the following integral identity∑N
i=1

∫
Bε,δi

1
2νε(x)Dvd ·Dη +Kε(x)vd · ηdx

+
∑M
l=1 dl

∫
σ
(el)
ε

ν(0)∇x(el)′vd · ∇x(el)′ηdx
(el)′

=
∑N
i=1

∫
Bε,δi

pddivηdx−
N∑

j=N1+1

pj
∫
γjε

ηn ds.

(2.76)

Theorem 2.16. There exists a unique solution to problem (2.76) such that the vector field vd is the same as in

Theorem 2.14, and the uniquely defined in all domains Bε,δi pressure pd can be extended on all cylinders Bdec,ε
ij

as an affine function of the local variable x
(e)
n so that the following error estimate

‖p− pd‖W 1,2(Bε) = O(εJ+(n−3)/2) (2.77)

holds. Here δ = CJ+2n+1ε| ln ε| with constant CJ+2n+1 satisfying (2.68) with J replaced by J + 2n+ 1.

The details of the proof of this theorem are presented in the Appendix A.

2.5. Some comments on the mixed boundary conditions

Consider now the case when on some part of the surfaces γjε , j = N1 +1, ..., N2, one sets the pressure conditions
(2.2)5 while on the other part (j = N2 + 1, ..., N) the inflow/outflow velocity is given. This case is treated in
the same way as above. The boundary layers are constructed as above. There is no need of the compatibility
condition on the integrals of the boundary value function g · n over γjε , j = N2 + 1, ..., N (if N2 < N1). The
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equations on the graph have then boundary conditions for fluxes at the vertices Oj , j = N2 + 1, ..., N , and the
boundary conditions for the unknown macroscopic pressure p at the vertices Oj , j = N1 + 1, ..., N2.

Also note, that the results can be generalized to the case when νε and Kε are less regular: boundad measurable
functions.

2.6. On the Darcy law for a tissue with network of vessels

The constructed above asymptotic expansion of the solution to problem (2.2) can be applied to the deter-
mining the permeability of a piece of tissue containing a network of vessels. The derivation of the Darcy law
for flows in porous media with periodic structure from the Stokes and Navier–Stokes equations was introduced
in [22], [10], [39]. Its justification was based on the method developed in [38], [40], [41] and the Appendix by
L.Tartar in the book [39] (see also [22] for non-stationary setting and [43] and [4] for asymptotic expansions of
the solution).

Consider a domain G containing a tube structure Bε. For simplicity, assume that G is a cube (0, 1)n and
that all vertices and the surfaces γjε , j = N1 + 1, ..., N belong to the faces of the cube S0 = {x1 = 0, (x2, x3) ∈
(0, 1)n−1} and S1 = {x1 = 1, (x2, x3) ∈ (0, 1)n−1}. Let all constants cj corresponding to γjε ⊂ S1 are equal to
ε2, so that pj = 1, while all remaining constants cj = 0. The cube G can be considered as a porous medium
and according to the Darcy’s law (confirmed by the above asymptotic expansion) the pressure gap (here equal
to one) is proportional to the average velocity in the direction x1, equal to ū1 =

∫
Bε
u1(x)dx. According to

the above asymptotic analysis, this integral is of order εn+1 because the velocity magnitude is O(ε2) and the

measure of the domain Bε is of order εn−1. Using the leading term of the asymptotic expansion ε2Ũ
(e)
0 (x(e)/ε)

in each cylinder Π
(e)
ε and replacing the integration over Bε by the integration over

( M⋃
j=1

Π
(ej)
ε

)
we modify the

average velocity with an error of order εn+2 because the measure of all smoothing domains ωεj is of order εn, and

the integral of the exponentially decaying boundary layer correctors is of order εn+2. Therefore, the algorithm
to compute the permeability in x1 direction is as follows: solve the problem on the graph (2.47), compute the
approximate average velocity

ūa1 =

M∑
j=1

∫
Π

(ej)
ε

ε2Ũ
(ej)
0 (x(ej)/ε) cos(n, x1)dx,

where cos(n, x1) is the cosine between the edge ej and the axis x1, and define the permeability in x1 direction
as the average velocity divided by the pressure gap (equal to one), so, the permeability is equal to ūa1 . Note that
for ūa1 we get the following expression:

ūa1 = εn+1
M∑
j=1

|ej |κejs
(ej)
0 cos(n, x1).

Here s
(ej)
0 = − ∂p

(ej)

0

∂x
(ej)
n

. In the case of the round cross-sections of the tubes Π
(ej)
ε , having radius εrj , we get for

the permeability:

ūa1 = ε4π(8ν(0))−1
M∑
j=1

|ej |r4
j s

(ej)
0 cos(n, x1).
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3. Conclusion

The stationary Stokes equation with Brinkman term in small parts of the domain is studied in thin tube
structures with the pressure condition at the inflows and outflows and no-slip boundary condition on the lateral
boundary. This boundary value problem models the blood flow in a network of blood vessels, where the Brinkman
flow zones simulate the filtration of the blood through thrombi. Also, it can be used to model the flow through
a roll of thin capillaries, part of the network. The leading term of the asymptotic expansion can be used to
determine the permeability of the tissue. The obtained MAPDD model of the flow can be coupled with the
diffusion-convection equations modeling the transport of cells or substances by the blood in the same way as it
was done in [7]. Such coupling can be done as well for the non-Newtonian flows in a network of vessels.

Appendix A. Proof of the recovery of the pressure in the
MAPDD problem

Denote 〈·〉 = (mesBε)
−1

∫
Bε

· dx, 〈·〉i =
(
mesBε,δi

)−1
∫
Bε,δi

· dx and define

Qi(w) =

∫
∂Bε,δi

w · n ds.

Lemma A.1. There exist N1 vector-valued functions Ui ∈ Wdec(Bε, δ), i = 1, ..., N1, such that Qj(Ui) =
δij , j = 1, ..., N1, and

‖Ui‖2L2(Bε)
≤ C∗ε−(n−1), ‖∇Ui‖2L2(Bε)

≤ C∗ε−(n+1) (A.1)

with constant C∗ independent of ε and δ.

Proof. Consider for any i = 1, ..., N1 the following problem on the graph B: Find a function qi ∈W 1,2(B), affine

at each edge e of the graph (qi(x) = −s(e)
i x

(e)
1 + a

(e)
i ) and satisfying the conditions qi(Oj) = 0, j = N1 + 1, ..., N

and

−
∑

e:Oj∈e
κ(e)
ε s

(e)
i = δij , (A.2)

for each node or vertexOj , j = 1, ..., N−1, where the local coordinate system has the originOj , u0,ε ∈ W̊ 1,2(σ
(e)
ε )

is a solution of the problem  −ν
(0)∆′

x(e)′u0,ε(x
(e)′) = 1, x(e)′ ∈ σ(e)

ε ,

u0,ε(x
(e)′) = 0, x(e)′ ∈ ∂σ(e)

ε ,
(A.3)

and κ
(e)
ε =

∫
σ
(e)
ε

u0,ε(x
(e)′)dx(e)′.

Clearly, κ
(e)
ε = εn+1κ(e), where κ(e) =

∫
σ(e)

u0(y(e)′)dy(e)′ and u0 is a unique solution of the problem

{
−ν(0)∆′

y(e)′
u0(y(e)′) = 1, y(e)′ ∈ σ(e),

u0(y(e)′)|∂σ(e) = 0, y(e)′ ∈ ∂σ(e).
(A.4)

Note that κ(e) does not depend on ε.
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Problem (A.2) is a particular case of problem on the graph

−κe
∂2p(e)

∂x
(e)
n

2 (x
(e)
n ) = 0, x

(e)
n ∈ (0, |e|),

−
∑

e:Ol∈e
κe
∂p(e)

∂x
(e)
n

(0) = Ψl, l = 1, ..., N1,

p(e)(0) = 0, l = N1 + 1, ..., N,
p(e)(0)− p(es)(0) = 0, ∀e ⊂ Bl, e 6= es,

(A.5)

where Ψl are given real numbers. The existence and uniqueness of the solution to this problem is proved as in
[32].

Relation between κ
(e)
ε and κ(e) yields: s

(e)
i = ε−(n+1)s̃

(e)
i , where s̃

(e)
i are the scaled pressure slopes and they

do not depend on ε. Let us construct now for every cylinder Bdec,εij , corresponding to the edge e, a function Ui

as Poiseuille velocity equal, in the local variables x(e), to s
(e)
i (P(e))∗

(
0, ..., 0, u0,ε(x

(e)′)
)

. Note that the order of

the measure of cross section of the cylinder is εn−1 and the magnitude of u0,ε(x
(e)′) in the Poiseuille velocity is

of order ε2 (and respectively, ε4 is the square of the magnitude of u0,ε) while its derivatives are of order ε. So,
we have:

‖Ui‖2L2(Bdec,εij )
≤ cε−2(n+1)+(n−1)+4 = cε−n+1, ‖Ui‖2W 1,2(Bdec,εij )

≤ cε−n−1.

Then we extend Ui inside the domains Bε,δk as an arbitrary function from W 1,2(Bε,δk ) with the given boundary
values (we keep the same notation for the extended function). In particular, we can do it just by multiplication
of the Poiseuille velocities Ui(x

(e)′) by cut-off functions ηε = 1− ζ depending only on the longitudinal variable

x
(e)
1 − δ
ε

, i.e. ηε(x
(e)
1 − δ) = 1− ζ(|x

(e)
1 − δ
ε

|) and we obtain the same estimates in Bε,δk , namely

‖Ui‖2L2(Bε,δk )
≤ cε−n+1, ‖Ui‖2W 1,2(Bε,δk )

≤ cε−(n+1).

In fact, the last estimates will contain an extra factor ε but it doesn’t improve the overall result: let us calculate,
for example, the norm

‖∇(ηεUi)‖2L2(Bε,δk )
= ‖η′εUi‖2L2(Bε,δk )

+ ‖η∇′Ui)‖2L2(Bε,δk )

= ‖η′εUi‖2L2(Bε,δk )
+ ‖η∇Ui)‖2L2(Bε,δk )

≤ c‖η′ε‖2L2((0,ε))‖Ui‖2L2(Bεij)
+ ‖η‖2L2((0,ε))‖∇Ui‖2L2(Bε,δk )

≤ c(ε−1ε−n+1 + εε−(n+1)) = cε−n

Here we used the estimates ηε = O(1), η′ε = O(ε−1), so that ‖η′ε‖2L2((0,ε)) = O(ε−1) and ‖ηε‖2L2((0,ε)) = O(ε).

Summing up all these estimates for Ui we get estimate (A.1). The proof of the Lemma is completed.
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Lemma A.2. Let p be a function defined in
N⋃
i=1

Bε,δi , belonging to L2(Bε,δi ) for all i = 1, ..., N1. Then there

exists a vector-valued function U ∈ Wdec(Bε, δ) such that

divU(x) =


p(x), x ∈

N1⋃
i=1

Bε,δi ,

0, x ∈ Bε\
N1⋃
i=1

Bε,δi .

(A.6)

There holds the estimate

‖U‖2W 1,2(Bε)
≤ C

(
ε−2nδ−1 + ε−2n−3δ2

) N1∑
i=1

‖p‖2
L2(Bε,δi )

(A.7)

with some positive constant C independent of ε and δ. For δ = O(ε| ln ε|) we get

‖U‖2W 1,2(Bε)
≤ Cε−2n−3/2

N1∑
i=1

‖p‖2
L2(Bε,δi )

. (A.8)

Proof. Consider the sum

Ψ =

N1∑
i=1

〈p〉iUi,

where Ui are functions constructed in the previous lemma. By Stokes formula,

∫
Bε,δk

divUkdx = Qk(Uk) = δkk = 1,

and so, ∫
Bε,δk

divΨdx = 〈p〉k
∫
Bε,δk

divUkdx = 〈p〉k.

Thus, ∫
Bε,δk

(p− divΨ)dx = 0.

Now we need to solve the divergence equation in Bε,δk , i.e. to construct a function Θ ∈ W̊ 1,2(Bε,δk ) such that

divΘ = −divΨ + p. (A.9)

The existence of a solution of (A.9) follows from Lemma 2.7. However, in order to obtain an appropriate estimate
(with a constant independent of ε and δ), we need to reduce this problem to the same problem in the δ−1-times
dilated domain

δ−1Bε,δk =
{
x : δx+Ok ∈ Bε,δk

}
.

This domain is a thin tube structure with ε/δ as a small parameter replacing former small parameter ε (recall
that δ = cε| ln ε|). So, we can apply Lemma 2.7 and construct the solution satisfying the estimate in original
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variables:

‖Θ‖2
W 1,2(Bε,δk )

≤ c(ε/δ)−3‖ − divΨ + p‖2
L2(Bε,δk )

≤ c(ε/δ)−3
(
‖∇Ψ‖2

L2(Bε,δk )
+ ‖p‖2

L2(Bε,δk )

)
.

(A.10)

Here and below c is a generic constant independent of small parameters.
Let us evaluate the norm ‖Ψ‖W 1,2(Bε,δk ). It is majorated by the sum

N−1∑
i=1

|〈p〉i|‖Ui‖W 1,2(Bε,δk ),

where

|〈p〉i| ≤ cε−(n−1)δ−1
∣∣∣ ∫
Bε,δk

pdx
∣∣∣ ≤ ε−(n−1)/2δ−1/2‖p‖L2(Bε,δk ),

and

‖Ui‖W 1,2(Bε,δk ) ≤ ‖Ui‖W 1,2(Bε) ≤ Cε
−(n+1)/2

(see the previous lemma). So, finally,

‖Ψ‖2
W 1,2(Bε,δk )

≤ ‖Ψ‖2W 1,2(Bε)
≤ Cε−2nδ−1

∑N1

i=1 ‖p‖2L2(Bε,δk )
,

‖Θ‖2
W 1,2(Bε,δk )

≤ Cε−2n−3δ2
∑N1

i=1 ‖p‖2L2(Bε,δk )
.

(A.11)

Let us take U = Ψ + Θ, where Θ is extended by zero to the cylinders Bdec,εij . Then U = Ψ for the remaining

part of the tube structure. Recall that divΨ = 0 for x ∈ Bε\
N1⋃
i=1

Bε,δi . So, using estimate (A.11) we finalize the

proof.

Now we are in position to prove the existence of the solution (vd, pd) to problem (2.76) with the test functions
from the space Wdec(Bε, δ).

Introduce the space L̂2
dec(Bε) as the space of scalar functions q ∈ L2

dec(Bε), equal to zero on all cylinders

Bdec,εij .

Theorem A.3. There exists a unique function pd ∈ L̂2
dec(Bε) satisfying integral identity (2.76).

Proof. The proof of this theorem repeats the proof of Theorem 2.9 where the spaces L2(Bε), K̂
1,2(Bε), and

Ŵ 1,2(Bε) are replaced by L̂2
dec(Bε), Hdec(Bε, δ), andWdec(Bε, δ) respectively, while the bounded linear operator

M−1 from L̂2
dec(Bε) ontoWdec(Bε, δ) is defined by the formula w = M−1p = Ψ+Θ, where Ψ and Θ are defined

in the proof of Lemma A.2.

Theorem A.4. For δ = CJ+2n+1ε| ln ε| the estimate

‖pd − p‖L2(Bε,δk ) = O(εJ+(n−3)/2) (A.12)
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holds, and there exists an extension p̃d ∈ L2
dec(Bε) of pd such that the following estimate

‖p̃d − p‖L2(Bε) = O(εJ+(n−3)/2) (A.13)

holds.

Proof. The asymptotic expansion (u(J), p(J)) satisfies the following integral identity:

∫
Bε

1
2νε(x)Du(J) ·Dη +Kε(x)u(J) · ηdx+

∑N
j=N1+1 pj

∫
γjε

ηn ds ,

=
∫
Bε
p(J)divηdx+

∫
Bε

r
(J)
ε · ηdx

(A.14)

for all η ∈ W̊ 1,2(Bε), where r
(J)
ε = f

(J)
1 = L(ũ(J), p(J)) and, according to (2.64),

‖r(J)
ε ‖L2(Bε) = O(εJ−2). (A.15)

Let us take the approximations (u(J+2n+1), p(J+2n+1)), modified according to Remark 2.13 and denote J ′ =
J + 2n+ 1. Choose δ = CJ′ε| ln ε|.

Consider the difference q = p(J′) − pd.
Applying Lemma A.2, we can construct a function U ∈ Wdec(Bε, δ) such that

divU(x) =


q(x), x ∈

N1⋃
i=1

Bε,δi ,

0, x ∈ Bε\
N1⋃
i=1

Bε,δi ,

(A.16)

and

‖U‖2W 1,2(Bε)
≤ Cε−2n−3/2

N1∑
i=1

‖q‖2
L2(Bε,δi )

(A.17)

with some constant C independent of ε, and δ. Taking U as a test function in (A.14) and in (2.76) with J ′

instead of J , consider the difference between these integral identities. Denoting u = u(J′) − vd, we get

∫
Bε

1
2νε(x)Du ·DU +Kε(x)u ·Udx =

N1∑
i=1

∫
Bε,δi

q(x)divUdx+
∫
Bε

r
(J′)
ε ·Udx, (A.18)

and so,

N1∑
i=1

∫
Bε,δi

q2dx ≤ c
(
‖∇u‖L2(Bε) + ‖r(J′)

ε ‖L2(Bε)

)
‖∇U‖L2(Bε).

So, applying (A.17), (2.73) and (A.15) we get

( N∑
i=1

∫
Bε,δi

q2dx
) 1

2 ≤ c2ε
−(n+3/4)

(
‖∇u‖L2(Bε) + ‖r(J′)

ε ‖L2(Bε)

)
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= O(ε−n−3/4+J′−2) = O(εJ+n−2) = O(εJ+(n−3)/2).

Applying estimate (2.67) for p− p(J′), and then the triangle inequality we prove estimate (A.12).

Let us extend now pd to the cylinders Bdec,εij as an affine function by the following formula:

pd(x
(e)
n ) = 〈pd〉Sij +

〈pd〉Sji − 〈pd〉Sij
|e| − 2δ + ε

(
x(e)
n − δ +

ε

2

)
, (A.19)

where for any function q ∈ L2(Bε) we denote by 〈q〉Sij the mean value of q in the cylinder Cij = {x(e)
1 ∈

Sij × (δ − ε, δ)}, having one of the bases at the cross section Sij and the height of the length ε. Note that the

asymptotic approximation p(J′) satisfies the relation analogous to (A.19):

p(J′)(x(e)
n ) = 〈p(J′)〉Sij +

〈p(J′)〉Sji − 〈p(J′)〉Sij
|e| − 2δ + ε

(
x(e)
n − δ +

ε

2

)
, (A.20)

because it is affine function of x
(e)
n within the cylinder σ

(e)
ε × {x(e)

n ∈ (δ − ε, |e| − δ + ε)}. On the other hand,

|〈pd〉Sij − 〈p(J′)〉Sij |2 ≤ c5(mesCij)
−1‖pd − p(J′)‖2

L2(Bε,δi )
. (A.21)

Applying estimate (A.12) of Theorem A.4, we get:

|〈pd〉Sij − 〈p(J′)〉Sij |2 = O(ε−n+2J+2n−2) = O(ε2J+n−4). (A.22)

So, taking into account that all cylinders have measure of order of O(ε(n−1)/2) we finally have

‖pd − p(J′)‖L2(Bε) = O(εJ+(n−3)/2). (A.23)

As in the proof of Theorem A.4, using estimate (2.67) for p− p(J′), and then the triangle inequality we get
estimate (A.13).

Appendix B. Proof of the estimate for the divergence
equation in thin tube structures

Lemma B.1. Consider equation (2.16) set in Ω = Bε. Then (2.16) admits at least one solution w ∈ W̊ 1,2(Bε)
satisfying estimate

‖∇w‖L2(Bε) ≤ cε
−3/2‖h‖L2(Bε) (B.1)

Proof. Let {ϕi(x)}M+N1
i=1 be a partition of unity subordinated to the covering of Bε, i.e., suppϕi ⊂ Π̄

(ei)
ε , i =

1, . . . ,M , suppϕM+k ⊂ ωkε , k = 1, . . . , N1. We can take the functions ϕi so that |∇ϕi(x)| ≤ cε−1. We represent
the function h in the form

h(x) =

M+N1∑
i=1

ϕi(x)h(x) ∀x ∈ Bε
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and denote µi =
∫
Bε

ϕi(x)h(x) dx. Evidently

|µi| ≤ cε(n−1)/2‖h‖L2(Bε).

Since ∫
Bε

h(x) dx = 0,

we have

M+N1∑
i=1

µi = 0. (B.2)

Put γi = Π
(ei)
ε , i = 1, . . . ,M, γM+k = ωkε , k = 1, . . . , N1, and γil = γi ∩ γl. Notice that mes γil is of order

εn, n = 2, 3. For each pair of intersecting domains γi and γl we introduce a C2–regular function ηil(x) defined

on Bε such that supp ηil ⊂ γil, |ηil(x)| ≤ c

εn
, |∇ηil(x)| ≤ c

εn+1
and

∫
γil

ηil(x) dx = 1. (B.3)

Let {Kil}i,l=1,...,M+N1
be a skew-symmetric matrix such that Kil = 0 if γil is empty, and

M+N1∑
l=1

cilKil = µi, i = 1, . . . ,M +N1, (B.4)

where {cil}i,l=1,...,M+N1 is the adjacency matrix of the graph of the covering {γi}M+N1
i=1 of the tube structure

Bε, i.e., cil = 1, if i 6= l and γil is nonempty, and cil = 0 in remaining cases. The existence of the matrix
{Kil}i,l=1,...,M+N1

is proved by induction on the number M + N1. If M + N1 = 2, then c12 = c21 = 1 and
by virtue of (B.2), one can set K12 = −K21 = µ1, K11 = K22 = 0. Assume that the assertion is valid for
M + N1 = m − 1. We prove it for M + N1 = m. Let us set Kil = 0 for those i and l for which cil = 0. As it
is well known (see [15]), from a connected graph with the number of vertices greater than two, one can always
discard one vertex so that the remaining graph is connected. From here there follows the existence of an index
λ, 1 ≤ λ ≤ m, such that the matrix {cil}, i 6= λ, l 6= λ, is the adjacency matrix of some connected graph with
(m− 1) vertices. Without loss of generality one can assume that λ = m. We consider the m-th equation from
(B.4):

µm =

m−1∑
l=1

cmlKml. (B.5)

Since the initial graph is connected, there exists an index l1, such that cml1 = 1. We set Kml1 = −Kl1m = µm,
while Kml = −Klm = 0 for l 6= l1. The remaining equations from (B.4) will be written in the form:

µ̃i =

m−1∑
l=1

cilKil, i = 1, . . . ,m− 1, (B.6)
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where µ̃i = µi − cimKim. We note that by virtue of (B.2) and (B.5), we have the equality

m−1∑
i=1

µ̃i = 0.

Indeed,

m−1∑
i=1

µ̃i =

m−1∑
i=1

µi −
m−1∑
i=1

cimKim =

m−1∑
i=1

µi +

m−1∑
i=1

cmiKmi =

m∑
i=1

µi = 0.

In addition, as it is mentioned above, the matrix {cil}i,l=1,...,m−1 satisfies the induction hypothesis for M +N1 =
m− 1. Consequently, system (B.6) has a solution with the required properties.

Note that the matrix {cil}i.l=1,...,M+N1
is independent of ε, and it can be proved by induction (as before)

that

|Kil| ≤ cmax
{
|µ1(t)|, . . . , |µM+N1

|
}

with the constant c independent of ε. Therefore,

|Kil| ≤ cε(n−1)/2‖h‖L2(Bε).

Define on Bε the function

ηi(x) =

M+N1∑
l=1

Kilηil(x), i = 1, . . . ,M +N1. (B.7)

Using the skew–symmetry of {Kil}i,l=1,...,M+N1 , it is easy to see that
supp ηi ⊂ γi and

M+N1∑
i=1

ηi(x) = 0 ∀x ∈ Bε. (B.8)

Set

h(i)(x) = ϕi(x)h(x)− ηi(x) for x ∈ Bε. (B.9)

The functions h(i) have the following properties:

(i) h(i) have the same regularity as h,
(ii) supp h(i) ⊂ γi,

(iii)

M+N1∑
i=1

h(i)(x) = h(x) ∀x ∈ Bε,

(iv)
∫
γi
h(i)(x) dx = 0, i = 1, . . .M,M + 1, . . . ,M +N1.

Let w(ei)(x), i = 1, . . . ,M, be solutions in Π
(ei)
ε of problem (2.16) with the right–sides h(i)(x), and w(k)(x), k =

N + 1, . . . ,M +N1, – solutions of (2.16) in ωkε with the right–sides h(k)(x). For w(ei) and w(k) hold estimates



PRESSURE BOUNDARY CONDITIONS FOR VISCOUS FLOWS IN THIN TUBE STRUCTURES: STOKES EQUATIONS 33

of Lemmas 2.5 and 2.4 (for the contracted 1/ε times domain Ω) , respectively. Extend the functions w(ei) and
w(k) by zero into Bε and put

w(x) =

M∑
i=1

w(ei)(x) +

M+N1∑
k=M+1

w(k)(x).

Then

divw(x) =

M+N1∑
i=1

h(i)(x) = h(x).

According to (B.7),

‖ηi‖L2(Bε) ≤ cε
(n−1)/2‖h‖L2(Bε)

M+N1∑
l=1

‖ηil‖L2(γil) ≤ cε
−1/2‖h‖L2(Bε).

So,

‖h(i)‖L2(Bε) ≤
c√
ε
‖h‖L2(Bε).

Therefore, using Lemmas 2.4 and 2.5 we obtain required estimate for w.
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