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Abstract: The Kelvin–Voigt model for a thin stratified two-dimensional visco-elastic strip is analyzed
both in the quasistatic and in the dynamic cases. The Neumann boundary conditions on the upper
and the lower parts of the boundary and periodicity conditions with respect to the longitudinal
variable are stated. A complete asymptotic expansion of the solution is constructed in both cases, by
using the dimension reduction combined with a homogenization technique. The error between the
exact solution and the asymptotic one is evaluated in each case and the obtained results fully justify
the asymptotic construction. The results were partially (quasistatic case) announced in the short note
in C.R. Acad. Sci. Paris; the present article contains the complete proofs and generalizations in the
dynamic case.
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1. Introduction

The dimension reduction of a thin viscoelastic stratified laminate and the construction
of the complete asymptotic solution in the quasistatic and dynamic cases represent the main
results of this article. The method of the dimension reduction replaces the two-dimensional
models such as the partial differential equations (PDEs) set in a thin rectangle or a union
of thin rectangles by a one-dimensional model set in an interval or a graph. In the case of
the three-dimensional domain, this method reduces the PDE model to a two-dimensional
one (in the case of a plate (thin parallelepiped) or a shell) or to a one-dimensional model
(in the case of a “long” parallelepiped simulation, a bar). For thin homogeneous plates
and bars, this method was applied starting from the nineteenth century. However, its
mathematical justification via the derivation of models with reduced dimension from the
elasticity equations by means of the asymptotic analysis started in the twentieth century
(see [1–5] and the literature therein). This theory used the ratio of characteristic sizes of
the domain in the “transversal” and “longitudinal” directions as a small parameter. Later
this approach was applied to the heterogeneous plates and rods. The dimension reduction
of thin heterogeneous plates was considered first in [6–8]; in particular, in [7–10], the
complete asymptotic expansions were constructed and justified. Such dimension reduction
is an important tool which can be applied to the analysis of stresses and strains in thin
heterogeneous structures [11].

Earlier, the Kelvin–Voigt model was considered in the homogenization theory for com-
posite materials in [12–14] where the so-called memory effect was found; the asymptotic
analysis of the PDE model without non-local terms leads to a limit model containing such
terms. In Ref. [15], this effect was obtained for the case of time-depending coefficients.
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The presence of the fading memory term in the homogenized model means that the ho-
mogenized model becomes nonlocal in time, while the initial Kelvin–Voigt model does not
contain any integral terms in time. So, the Kelvin–Voigt model being the short memory
model generates the homogenized model, that is, the long memory model. The homog-
enization of porous two-phase viscoelastic media was recently presented in [16] and the
model reduction of viscoelasticity in heterogeneous media is still of great interest in the
mechanics of composites (see the recent thesis [17] and review [18]).

The results obtained below for the quasistatic Kelvin–Voigt model were announced
in [19] but the proof is given for the first time in the present paper; the dynamic case is
also considered here for the first time. In the present paper, the quasistatic and dynamic
two-dimensional PDE boundary value problems for the Kelvin–Voigt model are considered
in a thin layer simulating a stratified plate. The small parameter ε corresponds to the ratio of
the thickness to the characteristic longitudinal size of the plate. The developed asymptotic
technique introduces the homogenization combined with the dimension reduction of the
two-dimensional plate and derives a one-dimensional model. In this case, the dimension
reduction leads to a different problem compared with that obtained in the homogenization
of a massive body, because in the dimension reduction, one of the homogenized equations
has the fourth order with respect to the space derivative, while in the “massive” case, all
the homogenized equations are of the second order. As for the “massive” case, we show
that the fading memory effect holds for the plates in the dimension reduction. To our
knowledge, this is the first time that the complete asymptotic expansion of the solution
to the Kelvin–Voigt model of a thin stratified plate has been constructed and the error
estimates of order O(εJ) proved for asymptotic approximations of order J with arbitrary J.
Discussing strong and weak points of the proposed method, it can be pointed out that it
allows us to obtain all terms of the asymptotic expansion and, for any given J, to obtain
approximations of the accuracy O(εJ), while other methods mainly give the leading term
only and do not always give error estimates. Note that these estimates are important to
describe the limitations of the theory. Another advantage is that the form of the asymptotic
expansion gives the possibility to use the form of the solution in the construction of some
subspaces in model reduction via projection, as is done in the method of asymptotic partial
decomposition of the domain and in the method of partial homogenization (see [10,20,21]).
However, to obtain such high accuracy of the reduced model, the method of asymptotic
expansions requires a high regularity of the right-hand side function.

The outlook of this article is as follows. In Section 2, we present the quasistatic Kelvin–
Voigt problem with Neumann and periodicity conditions on the boundary. Section 3 deals
with the construction of the complete asymptotic expansion of the solution to this problem.
As is usual in asymptotic methods, one of the main challenges is to find the form of an
asymptotic solution as some formal series with undetermined coefficients. Furthermore,
this form (called anstaz) is plugged into the equations and the boundary conditions of the
problem and, equating the terms of the same order, one can obtain a recurrent chain of
equations for the undetermined coefficients of this ansatz. The ansatz in the present paper
generalizes N. Bakhvalov’s ansatz [22,23], applied to the elastic composite plates and rods
in [9], but additionally it contains the integral terms. A similar ansatz was introduced in [24],
where it was applied for the homogenization of the long memory visco-elasticity equations
for heterogeneous media. However, we believe that for the short memory viscoelastiity,
this ansatz is introduced for the first time.

The justification of asymptotic expansions is provided by a truncation at the high-order
terms of the formal series and the evaluation of the residual in the equation and in the
boundary conditions after plugging the truncated series into the equations and boundary
conditions. Then, usually the a priori estimates of the initial model are applied and the
stability argument is used to obtain the accurate error estimate for the difference of the
exact solution and the truncated asymptotic approximation. This justification is presented
in Section 4 and the error estimates for the difference of the exact and asymptotic solutions
are derived. The absence of the non-steady term in the Kelvin–Voight equation imposes
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an auxiliary construction in order to obtain estimates that contain constants which have
known expressions with respect to the small parameter of the problem. In Section 5, we
pass to the more general Kelvin–Voigt model, the dynamic one. We present the asymptotic
expansion proposed for this case, and we obtain the homogenized equations. We prove
the existence of the auxiliary problems for the terms of asymptotic expansion by means
of the Galerkin method. The technique used for obtaining the a priori estimates relies on
the Gronwall inequality. Finally, in Section 6, we justify the asymptotic construction of the
dynamic problem by proving that the error between the exact and asymptotic solutions
is small.

2. Quasistatic Visco-Elastic Plates/Rods

Let
Gε = R× (0, ε) (1)

be a thin layer in R2, modeling a plate/rod. Consider the quasistatic visco-elasticity
equations set in this layer with the 1-periodicity condition in the variable x1 and with
Neumann conditions on the other boundaries of the layer:

Pεuε ≡ −
2

∑
i,j=1

∂

∂xi

(
Bij(

x2

ε
)

∂u̇ε

∂xj

)
−

2

∑
i,j=1

∂

∂xi

(
Aij(

x2

ε
)

∂uε

∂xj

)
= fε(x1, t) in Gε × (0, T),

2

∑
j=1

(
B2j

∂u̇ε

∂xj
+ A2j

∂uε

∂xj

)
= 0 on ({x2 = 0} ∪ {x2 = ε})× (0, T),

uε(0) = 0 in Gε,

(2)

where ḟ represents the time derivative of the function f .
The coefficients Aij, Bij are 2× 2 matrix-valued functions depending on the transversal

variable only and having the following form:

A11 =

(
λ + 2µ 0

0 µ

)
, A12 =

(
0 λ
µ 0

)
,

A21 =

(
0 µ
λ 0

)
, A22 =

(
µ 0
0 λ + 2µ

)
,

B11 =

(
λ̂ + 2µ̂ 0

0 µ̂

)
, B12 =

(
0 λ̂
µ̂ 0

)
,

B21 =

(
0 µ̂

λ̂ 0

)
, B22 =

(
µ̂ 0
0 λ̂ + 2µ̂

)
,

where λ, µ, λ̂, µ̂ are piece-wise smooth positive functions of ξ2 = x2
ε ; namely, there exist

positive numbers ξ1 < ...< ξN < 1, such that λ, µ, λ̂, µ̂∈ C1([ξ i, ξ i+1]) for all i = 0, ..., N
(ξ0 = 0, ξN+1 = 1). Moreover, if we denote Aij = (akl

ij )1≤k,l≤2, the following properties hold:

(i) akl
ij (ξ2) = ail

kj(ξ2) = alk
ji (ξ2), ∀ i, j, k, l ∈ {1, 2}, ∀ξ2 ∈ [0, 1],

(ii) (∃) κ > 0 independent of ε such that
2

∑
i,j,k,l=1

akl
ij (ξ2)η

l
jη

k
i ≥ κ

2

∑
j,l=1

(ηl
j)

2, (∀) ξ2∈ [0, 1], (∀) η=(ηl
j)1≤j,l≤2, ηl

j =η
j
l .

(3)
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The properties (i) and (ii) are valid for the elements of the matrices Bij, bkl
ij , as well.

We suppose that the right hand side, fε, depends on the longitudinal space variable x1 and
on the time variable t and is scaled as follows:

fε(x1, t) =
(

ε f1(x1, t)
ε2 f2(x1, t)

)
where the two components have the following properties:

f1, f2 are independent of ε;

f1, f2 ∈ C∞(R× [0, T]), 1− periodic in x1;

(∃) a positive number t∗, such that f j(·, t) = 0 for t < t∗;

< f j(x1, t) >= 0 (∀) t ∈ [0, T];

(4)

where < · >=
∫ 1

0
· dx1 is the average over the period.

Problem (2) simulates the viscoelastic deformation of a thin stratified plate under a
periodic in x1 mass force; ε is the ratio of the thickness of the plate to the longitudinal
period of the applied force and is a small parameter.

Denote as G1
ε the rectangle (0, 1)× (0, ε). Denote as H1

per(G1
ε ) the space of functions

defined on Gε, 1-periodic in x1 and such that their restriction to any rectangle (a, b)× (0, ε)
belongs to H1((a, b)× (0, ε)). It is supplied by the inner product of the space H1(G1

ε ).
The weak solution to problem (2) is defined as a two-dimensional vector-valued

function uε with uε ∈ H1(0, T; (H1
per(G1

ε ))
2), satisfying

∫
G1

ε

2

∑
i,j=1

(
Bij(

x2

ε
)

∂u̇ε

∂xj
+ Aij(

x2

ε
)

∂uε

∂xj

)
∂v
∂xi

dx =
∫

G1
ε

fε · vdx,

(∀) v ∈ (H1
per(G1

ε ))
2, a.e. in (0, T),

uε(0) = 0 in (L2
per(G1

ε ))
2.

(5)

Classical methods allow us to prove the following theorem:

Theorem 1. There exists a unique solution for (5), uε∈H1(0, T; (H1
per(G1

ε ))
2) satisfying the

condition
< uε(·, x2, t) >= 0. (6)

Proof. The existence and the regularity are given by Galerkin’s method. The uniqueness
follows by taking in (5) a right-hand side equal to zero and the test function v = uε.

The next section deals with the construction of the complete asymptotic expansion.

3. Asymptotic Expansion of the Solution

The results of this section were announced in [19]. The asymptotic approximation of
order J is sought in the form

u(J)
ε (x, t) = v(J)

ε (x1, t) +
J

∑
l=1

εl
t∫

0

(
NV

l (
x2

ε
, t− t′)Dlv̇(J)

ε (x1, t′)

+NE
l (

x2

ε
, t− t′)Dlv(J)

ε (x1, t′)
)

dt′,

(7)
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where Dl = ∂l/∂xl
1, NV

l , NE
l are 2× 2 matrix-valued functions, v(J)

ε is a two-dimensional
vector function, such that its two components have the following expansion with respect
to ε:

v(J)
ε,1 (x1, t) =

J

∑
j=0

εj+1vj,1(x1, t), v(J)
ε,2 (x1, t) =

J

∑
j=0

εjvj,2(x1, t), (8)

and the functions vj,1, vj,2 do not depend on the small parameter.
This ansatz generalizes N. Bakhvalov’s ansatz [22,23], applied to the elastic composite

plates and rods in [9]. Ansatz (7) contains the integral terms.
To construct the complete asymptotic solution means to determine the matrix-valued

coefficients NV
l , NE

l and the scalar functions vj,1, vj,2.
Substituting the ansatz (7) into (2)1,2, taking together the terms of the same order with

respect to ε, and letting the coefficients of the derivatives Dlv̇(J)
ε and Dlv(J)

ε be constant, we
obtain, as in [9], equations for the matrix-valued coefficients NV

l , NE
l . Denote

F̃V
l (ξ2, s) = B12

∂2NV
l−1

∂s∂ξ2
+ A12

∂NV
l−1

∂ξ2
+ B11

∂NV
l−2

∂s
+ A11NV

l−2;

FV
l (ξ2, s) = F̃V

l (ξ2, s) +
∂

∂ξ2

(
B21

∂NV
l−1

∂s
+ A21NV

l−1

)
;

F̃E
l (ξ2, s) = B12

∂2NE
l−1

∂s∂ξ2
+ A12

∂NE
l−1

∂ξ2
+ B11

∂NE
l−2

∂s
+ A11NE

l−2;

FE
l (ξ2, s) = F̃E

l (ξ2, s) +
∂

∂ξ2

(
B21

∂NE
l−1

∂s
+ A21NE

l−1

)
;

(9)

and

G̃V
l (ξ2) = B12

∂NV
l−1

∂ξ2
(ξ2, 0) + B11NV

l−2(ξ2, 0) + B11δl2;

GV
l (ξ2) = G̃V

l (ξ2) +
∂

∂ξ2

(
B21(NV

l−1(ξ2, 0) + I2δl1)
)

;

G̃E
l (ξ2) = B12

∂NE
l−1

∂ξ2
(ξ2, 0) + B11NE

l−2(ξ2, 0) + A11δl2;

GE
l (ξ2) = G̃E

l (ξ2) +
∂

∂ξ2

(
B21NE

l−1(ξ2, 0) + A21δl1

)
.

(10)

By means of the previous notation, the boundary value problems for matrices NV
l , NE

l
can be written as follows:

− ∂

∂ξ2

(
B22(ξ2)

∂2N I
l

∂ξ2∂s
(ξ2, s)

)
− ∂

∂ξ2

(
A22(ξ2)

∂N I
l

∂ξ2
(ξ2, s)

)
=FI

l (ξ2, s)−〈F̃I
l 〉(s) in (0, 1)×(0, T),

B22(0)
∂2N I

l
∂ξ2∂s

(0, s) + A22(0)
∂N I

l
∂ξ2

(0, s)

= −B21(0)
∂N I

l−1
∂s

(0, s)− A21(0)N I
l−1(0, s) in (0, T),

− ∂

∂ξ2

(
B22(ξ2)

∂N I
l

∂ξ2
(ξ2, 0)

)
= GV

l (ξ2)− 〈G̃I
l 〉 in (0, 1),

B22(0)
∂N I

l
∂ξ2

(0, 0) = −B21(0)N I
l−1(0, 0)− N(I)(0)δl1,

〈N I
l (·, s)〉 = 0,

(11)

where I = V or I = E and N(I) = B21 if I = V, N(I) = A21 if I = E. Note that
these problems are non-steady and non-local with respect to the variable s, and that the
initial conditions are given by boundary value problems for the ordinary differential
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Equation (11)3,4. These problems can be solved analytically and so there exist the unique
solutions NV

l and NE
l . The substitution of the ansatz into the left-hand side of (2)1 gives

Pεu
(J)
ε = −

J

∑
l=1

εl−2
t∫

0

(〈
F̃V

l

〉
(t− t′)Dlv̇(J)

ε (x1, t′)

+
〈

F̃E
l

〉
(t− t′)Dlv(J)

ε (x1, t′)
)

dt′ −
J

∑
l=1

εl−2
(〈

G̃V
l

〉
Dlv̇(J)

ε (x1, t)

+
〈

G̃E
l

〉
Dlv(J)

ε (x1, t)
)
+ r(J)

ε ,

(12)

where the residual r(J)
ε can be evaluated and its order is O(εJ−1√ε) in the norm L2(0, T;

(L2(G1
ε ))

2). In order to calculate the coefficients 〈F̃I
l 〉(s), 〈G̃

I
l 〉, I ∈ {V, E} for l ∈ {1, 2, 3, 4},

we introduce the notation

MI
l =

∂N I
l

∂ξ2
, I ∈ {V, E}, (13)

and 
F(x, t) = x〈F〉 −

∫ x

0
F(s, t)ds,

F(x, t) =
〈∫ θ

0
F(s, t)ds

〉
−
∫ x

0
F(s, t)ds,

(14)

where F : [0, 1]× [0, T] 7→ R is an integrable function. In this way, problem (11) leads to
B22

∂MI
l

∂s
+ A22MI

l =
¯̃FI
l −
(

B21
∂N I

l−1
∂s

+ A21N I
l−1

)
in (0, 1)×(0, T),

B22MI
l (0) =

¯̃GI
l − B21N I

l−1(0)− N(I)δl1 in (0, 1), I ∈ {V, E}.
(15)

The unique solution of (15) is given by

MI
l =B−1

22 exp(−B−1
22 A22s)

(
¯̃GI

l +
∫ s

0
exp(B−1

22 A22σ) ¯̃FI
l dσ−N(I)δl1

)
−B−1

22 B21N I
l−1 + B−1

22 exp(−B−1
22 A22s)C1

∫ s

0
exp(B−1

11 A11σ)N I
l−1dσ,

(16)

where

C1 =

 0 0
2(λ̂µ−µ̂λ)

λ̂+2µ̂
0

.

In addition, from (15)1 and (9)1 (or (9)3), we obtain

F̃I
l = C2

¯̃FI
l−1 + C4

∂N I
l−2

∂s
+ C3N I

l−2 + C5MI
l−1, I ∈ {V, E}, (17)

with

C2 =

(
0 λ̂

λ̂+2µ̂

1 0

)
, C3 =

(
(λ+2µ)(λ̂+2µ̂)−λλ̂

λ̂+2µ̂
0

0 0

)
,

C4 =

(
(λ̂+2µ̂)2−λ̂2

λ̂+2µ̂
0

0 0

)
, C5 =

(
0 2(µ̂λ−λ̂µ)

λ̂+2µ̂

0 0

)
.

In the same way, from (15)2 and (10)1 (or (10)3), we establish the recurrence relation
for G̃I

l :
G̃I

l = C2
¯̃GI

l−1 + C4N I
l−2(0) + C(I)δl2, I ∈ {V, E}, (18)

with C(I) = C4 for I = V and C(I) = C3 for I = E.
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Using next the relations (17) and (18), we calculate the first coefficients, so Equation (2)1,
after the substitution of the ansatz, becomes

−ε
(

ÊV D2v̇0,1 + ÊED2v0,1 +
ˆ̂EV D3v̇0,2 +

ˆ̂EED3v0,2

+

t∫
0

(
F̂V(t− t′)D2v̇0,1(t′) + F̂E(t− t′)D2v0,1

+ ˆ̂FV(t− t′)D3v̇0,2 +
ˆ̂FV(t− t′)D3v0,2

)
dt′
)

+... = ε f1

−ε2
(

ˆ̂̂
EV D3v̇0,1 +

ˆ̂̂
EED3v0,1 + ĴV D4v̇0,2 + ĴED4v0,2

+

t∫
0

(
ˆ̂̂
FV(t− t′)D3v̇0,1 +

ˆ̂̂
FV(t− t′)D3v0,1

+ (ĤV(t− t′)D4v̇0,2 + ĤE(t− t′)D4v0,2

)
dt′
)

+... = ε2 f2.

(19)

In the previous relations we wrote explicitly only the leading term, all the other terms
being replaced by “...”.

The coefficients ÊV , ÊE, ˆ̂EV , ˆ̂EE,
ˆ̂̂
EV ,

ˆ̂̂
EE, ĴV , ĴE and F̂V , F̂E, ˆ̂FV , ˆ̂FE,

ˆ̂̂
FV ,

ˆ̂̂
FE, ĤV , ĤE

have the following expressions:

〈(G̃V
2 )11〉=: ÊV=

〈
4µ̂(λ̂+µ̂)

λ̂ + 2µ̂

〉
, 〈(G̃E

2 )11〉=: ÊE=

〈
(λ+2µ)(λ̂+2µ̂)−λλ̂

λ̂ + 2µ̂

〉
,

〈(G̃V
3 )12〉=: ˆ̂EV=

〈
4µ̂(λ̂ + µ̂)

λ̂ + 2µ̂

(
1
2
−ξ2

)〉
, 〈(G̃E

3 )12〉=: ˆ̂EE=

〈
4µ̂(λ̂+µ̂)

λ̂ + 2µ̂

(
µ

µ̂

)〉
,

〈(G̃V
3 )21〉=:

ˆ̂̂
EV=

〈
4µ̂(λ̂+µ̂)

λ̂ + 2µ̂

〉
, 〈(G̃E

3 )21〉=:
ˆ̂̂
EE=

〈
(λ+2µ)(λ̂+2µ̂)−λλ̂

λ̂ + 2µ̂

〉
,

〈(G̃V
4 )22〉=: ĴV=

〈
4µ̂(λ̂+µ̂)

λ̂ + 2µ̂

(
1
2
−ξ2

)〉
, 〈(G̃E

4 )22〉=: ĴE=

〈
4µ̂(λ̂ + µ̂)

λ̂+2µ̂

(
µ

µ̂

)〉
(20)

and


〈(F̃V

2 )11〉(s)=: F̂V(s) =

〈
2λ̂(µλ̂− λµ̂)

(λ̂ + 2µ̂)2
exp

(
−λ + 2µ

λ̂ + 2µ̂
s
)〉

,

〈(F̃E
2 )11〉(s)=: F̂E(s) =

〈
2λ(µλ̂− λµ̂)

(λ̂ + 2µ̂)2
exp

(
−λ + 2µ

λ̂ + 2µ̂
s
)〉

,

〈(F̃V
3 )12〉(s) =: ˆ̂FV(s), 〈(F̃E

3 )12〉(s) =: ˆ̂FE(s),
〈(F̃V

3 )21〉(s) =:
ˆ̂̂
FV(s)=

〈
2λ̂(µλ̂−λµ̂)

(λ̂ + 2µ̂)2
exp

(
−λ + 2µ

λ̂ + 2µ̂
s
)〉

,

〈(F̃E
3 )21〉(s) =:

ˆ̂̂
FE(s) =

〈
2λ(µλ̂− λµ̂)

(λ̂ + 2µ̂)2
exp

(
−λ + 2µ

λ̂ + 2µ̂
s
)〉

,

〈(F̃V
4 )22〉(s) =: ĤV(s)=

〈(
F̃V

3
)

12

〉
(s), 〈(F̃E

4 )22〉(s) =: ĤE(s)=
〈(

F̃E
3
)

12

〉
(s),

(21)
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where

ˆ̂FV(s) =

=−4µ̂(λ̂ + µ̂)

λ̂ + 2µ̂

(
µ

µ̂
exp
(
−µ

µ̂
s
))

+
4(µλ̂(λ̂ + 2µ̂) + µ̂2(λ + 2µ))

(λ̂ + 2µ̂)2

(
exp
(
−µ

µ̂
s
))

−4(µλ̂− λµ̂)2

(λ̂ + 2µ̂)3
exp

(
−λ + 2µ

λ̂ + 2µ̂
s
) ∫ s

0
exp

(
λ + 2µ

λ̂ + 2µ̂
σ

)(
exp

(
−µ

µ̂
σ

))
dσ,

ˆ̂FE(s) =

=−4µ̂(λ̂+µ̂)

λ̂ + 2µ̂

((
µ

µ̂

)2
exp
(
−µ

µ̂
s
))

+
4(µλ̂(λ̂+2µ̂)+µ̂2(λ+2µ))

(λ̂ + 2µ̂)2

(
µ

µ̂
exp
(
−µ

µ̂
s
))

−4(µλ̂− λµ̂)2

(λ̂ + 2µ̂)3
exp

(
−λ + 2µ

λ̂ + 2µ̂
s
) ∫ s

0
exp

(
λ + 2µ

λ̂ + 2µ̂
σ

)(
µ

µ̂
exp

(
−µ

µ̂
σ

))
dσ.

Divide the first equation of (19) by −ε and the second by −ε2. From (19), we obtain a
recurrent chain of 1-periodic in x1 problems with the unknowns vj,1, vj,2, the two compo-
nents of vj, introduced in the ansatz (8). For determining vj we have to solve in R× (0, T)

ÊVD2v̇j,1(x1, t)+ÊED2vj,1(x1, t)+ ˆ̂EVD3v̇j,2(x1, t)+ ˆ̂EED3vj,2(x1, t)

= −
t∫

0

(
F̂V(t− t′)D2v̇j,1(x1, t′) + F̂E(t− t′)D2vj,1(x1, t′)

+ ˆ̂FV(t−t′)D3v̇j,2(x1, t′)+ ˆ̂FV(t−t′)D3vj,2(x1, t′)
)

dt′+Fj,1(x1, t),

ˆ̂̂
EVD3v̇j,1(x1, t)+

ˆ̂̂
EED3vj,1(x1, t)+ ĴVD4v̇j,2(x1, t)+ ĴED4vj,2(x1, t)

= −
t∫

0

(
ˆ̂̂
FV(t− t′)D3v̇j,1(x1, t′) +

ˆ̂̂
FV(t− t′)D3vj,1(x1, t′)

+(ĤV(t−t′)D4v̇j,2(x1, t′)+ĤE(t−t′)D4vj,2(x1, t′)
)

dt′+Fj,2(x1, t),

(22)

with vj(0) = 0 and 〈vj〉 = 0, conseqences of (4)3,4.

The function Fj =

(
Fj,1
Fj,2

)
appearing in the right-hand side of (22) depends on the

values of functions v0, ..., vj−1 and of their derivatives of order 1 with respect to t and of

arbitrary order with respect to x1. For j = 0 we have F0 = −
(

f1
f2

)
. By induction, we

prove that
< Fj(·, t) >= 0.

For proving the existence and the uniqueness of the solution for (22), we use a version
of the fixed point theorem on the reiterate integral operator (see [25]). This idea was used
for the long memory viscoelastic equations in a bounded domain in [26]. Towards this end,
we keep Equation (22)2 and we replace (22)1 with D(22)1. We introduce the notation

Wj(x1, t) =

(
D3vj,1(x1, t)

D4vj,2(x1, t)

)
(23)

for the new unknown of the problem and

BV =

(
ÊV ˆ̂EV

ˆ̂̂
EV ĴV

)
, BE =

(
ÊE ˆ̂EE

ˆ̂̂
EE ĴE

)
, (24)
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KV(s) = −
(

F̂V(s) ˆ̂FV(s)
ˆ̂̂
FV(s) ĤV(s)

)
, KE(s) = −

(
F̂E(s) ˆ̂FE(s)
ˆ̂̂
FE(s) ĤE(s)

)
, (25)

ψj(x1, t) =

(
DFj,1(x1, t)

Fj,2(x1, t)

)
(26)

for the known elements of (22). In this way, we have to solve the following problem:
BVẆj + BEWj

=
∫ t

0

(
KV(t− t′)Ẇj(x1, t′) + KE(t− t′)Wj(x1, t′)

)
dt′+ψj(x1, t),

Wj(0) = 0, 〈Wj〉 = 0.

(27)

It can be proved as in [27] that det(BV) 6= 0. Calculating (BV)−1(27)1 and then
integrating from 0 to t the obtained relation using the initial condition (27)2, we obtain

Wj(x1, t)

=
∫ t

0
K1Wj(x1, θ)dθ+

∫ t

0

(∫ θ

0
K2(θ − t′)Wj(x1, t′)dt′

)
dθ+ϕj(x1, t),

Wj(0) = 0, 〈Wj〉 = 0,

(28)

where 
K1 = (BV)−1(KV(0)− BE),

K2(s) = (BV)−1(KE(s) + K̇V(s)),

ϕ(x1, t) =
∫ t

0
(BV)−1ψj(x1, θ)dθ.

(29)

Proposition 1. Let us suppose that ϕj ∈ L∞(0, T; (L2(0, 1))2). Then every solution Wj of (28),
if any, has the regularity

Wj ∈ L2(0, T; (L2(0, 1))2). (30)

Proof. We obtain by induction the following result:

P(n) :
∫ 1

0
W2

j (x1, t)dx1 ≤
(

3M
2

)n
Tn−1 tn

n!
‖Wj‖2

L2(0,t;(L2(0,1))2)

+ 3

(
3M

2 T2
)n
− 1

3M
2 T2 − 1

‖ϕj‖2
L∞(0,T;(L2(0,1))2) a.e. in (0, T), (∀) n ≥ 1,

(31)

with 
M = 8(MK1 + MK2 T2),
MK1 = max{((K1)kl)

2; k, l ∈ {1, 2}},
MK2 = max{ max

s∈[0,T]
((K2(s))kl)

2; k, l ∈ {1, 2}}.
(32)

Let us denote 
αj(x1, t) =

∫ t

0
K1Wj(x1, θ)dθ,

β j(x1, t) =
∫ t

0

(∫ θ

0
K2(θ − t′)Wj(x1, t′)dt′

)
dθ.

(33)
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From
∫ 1

0
((33)1)

2dx1 it follows that

∫ 1

0
α2

j (x1, t)dx1 ≤ 4MK1 t‖Wj‖2
L2(0,t;(L2(0,1))2) (34)

and from
∫ 1

0
((33)2)

2dx1 we obtain

∫ 1

0
β2

j (x1, t)dx1 ≤ 4MK2 T2t‖Wj‖2
L2(0,t;(L2(0,1))2). (35)

Introducing (33) in (28)1, calculating
∫ 1

0
((28)1)

2dx1 and using the inequality (a + b +

c)2 ≤ 3(a2 + b2 + c2) and the estimates (34), (35) we obtain a.e. in (0, T)∫ 1

0
W2

j (x1, t)dx1 ≤
3M

2
t‖Wj‖2

L2(0,t;(L2(0,1))2) + 3‖ϕj‖2
L∞(0,T;(L2(0,1))2), (36)

which represents P(1). We suppose next that P(n− 1) is true and, introducing P(n− 1)
into the first term of the right-hand side of (36), we obtain P(n) as follows:

∫ 1

0
W2

j (x1, t)dx1 ≤
(

3M
2

)n
Tn−2t

∫ t

0

θn−1

(n− 1)!
‖Wj‖2

L2(0,θ;(L2(0,1))2)dθ

+3

3M
2

T2

(
3M

2 T2
)n−1

− 1
3M

2 T2 − 1
+ 1

 ‖ϕj‖2
L∞(0,T;(L2(0,1))2)

and we use ‖Wj‖2
L2(0,θ;(L2(0,1))2) ≤ ‖Wj‖2

L2(0,t;(L2(0,1))2).
If in the right-hand side of (31) we use the inequality t ≤ T and then we integrate from

0 to T, it follows that (∀) n ≥ 1(
1− 1

n!

(
3M

2
T2
)n)
‖Wj‖2

L2(0,T;(L2(0,1))2)

≤ 3T

(
3M

2 T2
)n
− 1

3M
2 T2 − 1

‖ϕj‖2
L∞(0,T;(L2(0,1))2),

(37)

which completes the proof, since lim
n→∞

1
n!

(
3M

2
T2
)n

= 0, which means that there exists

n0∈N such that for any fixed value n ≥ n0, 1− 1
n!

(
3M

2
T2
)n
≥ 1

2
.

Corollary 1. Every solution of (28), if any, has the additional regularity

Wj ∈ L∞(0, T; (L2(0, 1))2). (38)

Proof. This regularity is obtained as a consequence of (30) and (31).

We introduce the space

H = {η ∈ L2(0, T; (L2
per(0, 1))2)/〈η〉 = 0} (39)

and we define the operator Aj : H 7→ H

AjW =
∫ t

0
K1W(x1, θ)dθ +

∫ t

0

(∫ θ

0
K2(θ − t′)W(x1, t′)dt′

)
dθ +ϕj (40)
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Proposition 2. If ϕj ∈ L∞(0, T; (L2(0, 1))2) then

(a) the operator Aj is continuous from H to H,
(b) there exists p ∈ N such that Ap

j is contraction.

Proof. (a) Let W1, W2 be two elements of the space H; denote
a(x1, t) =

∫ t

0
K1(W1(x1, θ)−W2(x1, θ))dθ,

b(x1, t) =
∫ t

0

(∫ θ

0
K2(θ − t′)

(
W1(x1, t′)−W2(x1, t′)

)
dt′
)

dθ.
(41)

Instead of (34) and (35), now we have
∫ 1

0
a2(x1, t)dx1 ≤ 4MK1 t‖W1 −W2‖2

L2(0,t;(L2(0,1))2)∫ 1

0
b2(x1, t)dx1 ≤ 4MK2 T2t‖W1 −W2‖2

L2(0,t;(L2(0,1))2).
(42)

Calculating
∫ T

0

∫ 1

0
(AjW1 − AjW2)

2dx1dt by using (42) it follows that

‖AjW1 − AjW2‖2
L2(0,T;(L2(0,1))2) ≤

MT2

2
‖W1 −W2‖2

L2(0,T;(L2(0,1))2). (43)

(b) In the same way as before we also obtain from (42)

‖AjW1(t)− AjW2(t)‖2
(L2(0,1))2 ≤ Mt‖W1 −W2‖2

L2(0,t;(L2(0,1))2)

(∀)W1, W2 ∈ H.
(44)

We prove by induction

P(n) :
‖An

j W1(t)−An
j W2(t)‖2

(L2(0,1))2≤MnTn−1 tn

n!
‖W1−W2‖2

L2(0,t;(L2(0,1))2),

(∀) n ≥ 1, (∀)W1, W2 ∈ H, a.e. in (0, T).
(45)

For n = 1 (45) becomes (44). We suppose next that P(n− 1) holds and we prove P(n).
Let us take in (44) Wl → An−1

j Wl , l = 1, 2; it follows that

‖An
j W1(t)− An

j W2(t)‖2
(L2(0,1))2 ≤ MT‖An−1

j W1 − An−1
j W2‖2

L2(0,t;(L2(0,1))2)

≤ MnTn−1
∫ t

0

θn−1

(n− 1)!
‖W1 −W2‖2

L2(0,θ;(L2(0,1))2)dθ

≤ MnTn−1‖W1 −W2‖2
L2(0,t;(L2(0,1))2)

∫ t

0

θn−1

(n− 1)!
dθ

= MnTn−1 tn

n!
‖W1 −W2‖2

L2(0,t;(L2(0,1))2),

which represents (45). Using in the right-hand side of (45) the inequality t ≤ T and then
integrating (45) from 0 to T we obtain

‖An
j W1−An

j W2‖2
L2(0,T;(L2(0,1))2)≤

(
(MT2)n

n!

)1/2

‖W1−W2‖2
L2(0,T;(L2(0,1))2)

(∀) n ≥ 1, (∀)W1, W2 ∈ H.
(46)
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Since lim
n→∞

(MT2)n

n!
= 0, it follows that there exists p ∈ N such that cp =

(MT2)p

p!
< 1,

which completes the proof.

Theorem 2. If ϕj ∈ L∞(0, T; (L2(0, 1))2) then problem (28) has a unique solution.

Proof. Define the operator Bj : H 7→ H by

Bj = Ap
j . (47)

From Proposition 2 it follows that

(∀) j ∈ {1, ..., J} (∃ !)W0
j ∈ H such that BjW0

j = W0
j . (48)

The relation (48) yields
Bk

j W0
j = W0

j (∀) k ≥ 1. (49)

Taking next n = p in (46), we obtain

‖BjW1−BjW2‖2
L2(0,T;(L2(0,1))2) ≤ cp‖W1−W2‖2

L2(0,T;(L2(0,1))2)

(∀)W1, W2 ∈ H.
(50)

Let us consider k ≥ 1 arbitrary. Applying (50) k-times it follows that

‖Bk
j W1−Bk

j W2‖2
L2(0,T;(L2(0,1))2) ≤ ck

p‖W1−W2‖2
L2(0,T;(L2(0,1))2)

(∀) k ≥ 1, (∀)W1, W2 ∈ H.
(51)

Taking in (51) W2 = W0
j , using (49) and making k→ ∞ we obtain

lim
k→∞
‖Bk

j W1−W0
j ‖

2
L2(0,T;(L2(0,1))2) = 0 (∀)W1 ∈ H. (52)

In order to apply (52) for W1 = AjW0
j , we calculate AjW0

j , by means of (49) and (47),
as follows:

AjW0
j = Aj(Bk

j W0
j ) = Akp+1

j W0
j = Akp

j (AjW0
j ) = Bk

j (AjW0
j ),

which gives the existence result for problem (28).
To complete the proof, it remains to establish the uniqueness of the solution.

Let us suppose that problem (28) has two solutions W1
j 6= W0

j and let us calculate

BjW1
j = Ap−1

j (AW1
j ) = Ap−1

j W1
j = ... = AjW1

j = W1
j , which is in contradiction with the

uniqueness of the fixed point of Bj.

Proposition 3. For any j ∈ {0, 1, ..., J} we have ϕj ∈ L∞(0, T; (L2(0, 1))2). Then the unique
solution of (28), W0

j , has the regularity

P(j, k) : W0
j , DkW0

j , Ẇ0
j , DkẆ0

j ∈L∞(0, T; (L2(0, 1))2), k∈N. (53)

Proof. We prove P(j, k) by induction with respect to j and, for any j ∈ {1, ..., J}, with respect
to k. We begin by proving P(0, k). Using the assumption (4)2, it is easy to obtain from
the expression of F0, (26) and (29)3 at least ϕ0 ∈ L∞(0, T; (L2(0, 1))2). Applying next
Corollary 1, we obtain

W0
0 ∈ L∞(0, T; (L2(0, 1))2). (54)
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Calculating in a distributional sense Dk(28)1 for j = 0 and k ∈ N arbitrary, it fol-
lows that

DkW0
0=
∫ t

0
K1DkW0

0(θ)dθ+
∫ t

0

(∫ θ

0
K2(θ − t′)DkW0

0(t
′)dt′

)
dθ + Dkϕ0. (55)

Due to the regularity (4)2 we have Dkϕ0 ∈ L∞(0, T; (L2(0, 1))2) (∀) k ∈ N and, apply-
ing again Corollary 1 (for problem (28) with ϕ0 → Dkϕ0), we obtain

DkW0
0 ∈ L∞(0, T; (L2(0, 1))2) (∀) k ∈ N. (56)

Calculating next
∂

∂t
(28)1 for j = 0 we get a.e. in (0, 1)× (0, T)

Ẇ0
0 = K1W0

0 +
∫ t

0
K2(t− t′)W0

0(t
′)dt′ + ϕ̇0. (57)

Computing
∫ 1

0
(57)2dx1 and using the inequality (a + b + c)2 ≤ 3(a2 + b2 + c2) we ob-

tain ∫ 1

0

(
Ẇ0

0(x1, t)
)2

dx1 ≤ 3
(∫ 1

0

(
K1W0

0(x1, t)
)2

dx1∫ 1

0

(∫ t

0
K2(t− t′)W0

0(x1, t′)dt′
)2

dx1 +
∫ 1

0
(ϕ̇0(x1, t))2dx1

)
.

(58)

In order to majorate the right-hand side of (58), we introduce the additional notation

M(BV)−1 = max{
(
(BV)−1

kl

)2
; k, l ∈ {1, 2}}.

With estimates of the same type as those from the proof of Proposition 1 for the first
two terms of the right-hand side of (58) and with∫ 1

0
(ϕ̇0(x1, t))2dx1 ≤ 4M(BV)−1‖ψ0‖L∞(0,T;(L2(0,1))2)

for the last term, it follows that

‖Ẇ0
0‖2

L∞(0,T;(L2(0,1))2) ≤ 4MK1‖W
0
0‖2

L∞(0,T;(L2(0,1))2)

+ 4TMK2‖W
0
0‖2

L2(0,T;(L2(0,1))2) + 4M(BV)−1‖ψ0‖L∞(0,T;(L2(0,1))2),
(59)

which yields
Ẇ0

0 ∈ L∞(0, T; (L2(0, 1))2). (60)

Calculating next Dk(57) and proceeding as for the previous estimate, we finally obtain

DkẆ0
0 ∈ L∞(0, T; (L2(0, 1))2) (∀) k ∈ N, (61)

which means that P(0, k) (represented by (54), (56), (60) and (61)) was proved.
Suppose next that P(j′, k) holds for any j′ < j and for any k ∈ N and prove P(j, k) for

any k ∈ N. We first notice that ϕj ∈ L∞(0, T; (L2(0, 1))2), as a consequence of (29), (26) and
of the expression of Fj. Indeed, as we have already said, the functions Fj depend on the
values of functions v0, . . . , vj−1 and of their derivatives of order 1 with respect to t and
of arbitrary order with respect to x1; so, if we replace in Fj the functions v0, . . . , vj−1 with
W0, . . . , Wj−1 from (23) and we use either P(0, k) or the induction assumption, we obtain
the desired regularity for ϕj, as stated above. Proceeding next as for the proof of P(0, k), we
obtain step by step the regularities (54), (56), (60) and (61) for W0

0 replaced with W0
j , which

completes the proof.
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4. Error Estimates

In order to justify the asymptotic construction presented in the previous section, we
show that the error between the exact solution and the asymptotic solution of order J is
of order εα(J), with α(J) > 0, which will be given in what follows. From the previous
computations, the problem for u(J)

ε can be written as

Pεu
(J)
ε = fε(x1, t)− r(J)

ε in Gε × (0, T),
2

∑
j=1

(
B2j

∂u̇(J)
ε

∂xj
+A2j

∂u(J)
ε

∂xj

)
=−r(J),b

ε on ({x2=0}∪{x2= ε})×(0, T),

u(J)
ε 1− periodic in x1,
〈u(J)

ε (·, x2, t)〉 = 0,
u(J)

ε (0) = 0 in Gε,

(62)

with r(J),b
ε representing the residual function on the boundaries, with b = 0 for x2 = 0 and

b = ε for x2 = ε. The residual functions can be evaluated and r(J)
ε = O(εJ−1/2) in the norm

L2(0, T; (L2(G1
ε ))

2), r(J),b
ε = O(εJ) in the norm L2((0, 1)× (0, T)).

For replacing the boundary conditions (62)2 with homogeneous ones, we proceed as
in [27] and we introduce a particular function with some desired properties. More precisely,
we consider the function ϕ

(J)
ε : Gε 7→ R2 given by

ϕ
(J)
ε (x1, x2, t) =

x2(ε− x2)

ε2

{(
x2 − ε

µ̂(0)
exp

(
−µ(0)

µ̂(0)
t
) ∫ t

0
exp

(
µ(0)
µ̂(0)

θ

)
r(J),0

ε,1 dθ

+
x2

µ̂(1)
exp

(
−µ(1)

µ̂(1)
t
) ∫ t

0
exp

(
µ(1)
µ̂(1)

θ

)
r(J),ε

ε,1 dθ

)
e1

+

(
x2 − ε

λ̂(0) + 2µ̂(0)
exp

(
−λ(0) + 2µ(0)

λ̂(0) + 2µ̂(0)
t
) ∫ t

0
exp

(
λ(0) + 2µ(0)
λ̂(0) + 2µ̂(0)

θ

)
r(J),0

ε,2 dθ

+
x2

λ̂(1) + 2µ̂(1)
exp

(
−λ(1) + 2µ(1)

λ̂(1) + 2µ̂(1)
t
) ∫ t

0
exp

(
λ(1) + 2µ(1)
λ̂(1) + 2µ̂(1)

θ

)
r(J),ε

ε,2 dθ

)
e2

}
(63)

and we show directly that this function has the properties

2

∑
j=1

(
B2j

∂ϕ̇
(J)
ε

∂xj
+A2j

∂ϕ
(J)
ε

∂xj

)
=−r(J),b

ε on ({x2=0}∪{x2= ε})×(0,T),

ϕ
(J)
ε 1− periodic in x1,
〈ϕ(J)

ε (·, x2, t)〉 = 0,
ϕε(0) = 0 in Gε.

(64)

Denoting
g(J)

ε = r(J)
ε + Pεϕ

(J)
ε (65)

and then, successively
U(J)

ε = u(J)
ε −ϕ

(J)
ε (66)

and
Û(J)

ε = uε −U(J)
ε , (67)
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we obtain from (62), (64) and (2) the problem

PεÛ
(J)
ε = g(J)

ε in Gε × (0, T),
2

∑
j=1

(
B2j

∂ ˙̂U(J)
ε

∂xj
+ A2j

∂Û(J)
ε

∂xj

)
= 0 on ({x2=0}∪{x2= ε})× (0, T),

Û(J)
ε 1− periodic in x1,
〈Û(J)

ε (·, x2, t)〉 = 0,
Û(J)

ε (0) = 0 in Gε,

(68)

Let us define the space

VG1
ε
= {v ∈ (H1

per(G
1
ε ))

2/〈v(·, x2)〉 = 0}. (69)

As in Section 2, we obtain the variational problem associated with (68) as follows:

Û(J)
ε ∈ H1(0, T; VG1

ε
),∫

G1
ε

2

∑
i,j=1

(
Bij

∂ ˙̂U(J)
ε

∂xj
+ Aij

∂Û(J)
ε

∂xj

)
∂v
∂xi

dx =
∫

G1
ε

g(J)
ε · vdx,

(∀) v ∈ VG1
ε
, a.e. in (0, T),

Û(J)
ε (0) = 0 in (L2

per(G1
ε ))

2.

(70)

Taking in (70) as test function v = ˙̂U(J)
ε (t), integrating the obtained relation from 0 to t,

using the equalities
2

∑
i,j=1

Aij(or Bij)
∂u
∂xj
· ∂v

∂xi
=

2

∑
i,j=1

Aij(or Bij)
∂v
∂xj
· ∂u

∂xi
(∀)u, v ∈ (H1(G1

ε ))
2,

2

∑
i,j=1

Aij(or Bij)
∂u
∂xj
· ∂u

∂xi
=

2

∑
i,j,k,l=1

akl
ij (or bkl

ij )El j(u)Eki(u) (∀)u ∈ (H1(G1
ε ))

2,
(71)

and the property (3) (ii) we obtain

2κ
∫ t

0

∫
G1

ε

(
E( ˙̂U(J)

ε )
)2

+ κ
∫

G1
ε

(
E(Û(J)

ε (t))
)2
≤ 2

∫ t

0

∫
G1

ε

g(J)
ε · ˙̂U(J)

ε . (72)

where E(u) = 1
2
(∇u + (∇u)T) is the linearized strain tensor.

We notice that the left-hand side of (72) does not contain a term corresponding to
‖ ˙̂U(J)

ε ‖L2(0,T;(L2(G1
ε ))2), since we deal with the quasistatic case. In order to obtain such a

term (with a constant having a known expression with respect to ε) we establish several
auxiliary results.

Proposition 4. Let Ω ∈ R2 a bounded domain with Lipschitz boundary. Then there exists
α(Ω) > 0 such that ∫

Ω
(E(u))2dx ≥ α(Ω)

∫
Ω

u2dx (∀)u ∈ HΩ, (73)

the space HΩ being defined as in (69).

Proof. The relation (73) is equivalent to∫
Ω
(E(w))2dx ≥ α(Ω) (∀)w ∈ HΩ, ‖w‖(L2(Ω))2 = 1. (74)
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By contradiction, let us suppose that (∀) n ∈ N, (∃)wn ∈ HΩ with ‖w‖(L2(Ω))2 = 1

such that
∫

Ω
(E(wn))

2dx ≤ 1
n

; hence

lim
n→∞

∫
Ω
(E(wn))

2dx = 0. (75)

On the other hand, Korn’s inequality written for wn gives ‖wn‖2
(H1(Ω))2 ≤

1
c(Ω)(∫

Ω(E(wn))
2dx + 1

)
. This leads to the convergence (on a subsequence) wnk ⇀ w∗ weakly

in (H1(Ω))2 when k→ ∞, which yields

‖w∗‖(L2(Ω))2 = 1 (76)

and, with the weakly lower semicontinuity of the norm, E(w∗) = 0. This last property,
together with the 1-periodicity in x1 of the function w∗ and with 〈w∗(·, x2)〉 = 0, gives
w∗ = 0, in contradiction with (76).

Let us define the domain G = (0, 1)2, the new variable (ξ1, ξ2), (ξ1, ξ2) = (x1, x2/ε)
and the function Vε : Ḡ× [0, T] 7→ R2, Vε,1(ξ, t) = ε−1Û(J)

ε,1 (x, t),

Vε,2(ξ, t) = Û(J)
ε,2 (x, t).

(77)

Using Proposition 4 and the previous definitions we prove that

Proposition 5. The following estimate holds:∫
G1

ε

(
E( ˙̂U(J)

ε (t))
)2

dx ≥ α(G)ε2
∫

G1
ε

( ˙̂U(J)
ε (t))2dx a.e. in (0, T). (78)

Proof. Taking into account (77) we obtain∫
G1

ε

(
E( ˙̂U(J)

ε (t))
)2

dx

= ε
∫

G

(
ε2
(

∂V̇ε,1

∂ξ1

)2

+
1
2

(
∂V̇ε,1

∂ξ2
+

∂V̇ε,2

∂ξ1

)2

+
1
ε2

(
∂V̇ε,2

∂ξ2

)2)
(t)dξ

≥ ε3
∫

G

(
E(V̇ε(t))

)2dξ.

(79)

Applying next (73) for Ω = G and u = V̇ε(t) we obtain∫
G

(
E(V̇ε(t))

)2dξ ≥ α(G)
∫

G
(V̇ε(t))2dξ. (80)

The last relation necessary for obtaining (78) is∫
G
(V̇ε(t))2dξ ≥ 1

ε

∫
G1

ε

( ˙̂U(J)
ε (t))2dx (81)

and, combining (79), (80), (81) we obtain the estimate (78).

We are now in a position to establish a first result concerning the error between the
exact solution and the asymptotic solution of order J.
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Theorem 3. Let uε be the exact solution of problem (2) and u(J)
ε the asymptotic solution of order

J. Then
‖uε − u(J)

ε ‖H1(0,T;(H1(G1
ε )2)) = O(ε

J−9/2). (82)

Proof. Introducing the estimate (78) into (72) and majorating the right-hand side 2
∫ t

0∫
G1

ε
g(J)

ε · ˙̂U(J)
ε by κα(G)ε2

∫ t

0

∫
G1

ε

(
˙̂U(J)

ε

)2
+

1
κα(G)ε2

∫ t

0

∫
G1

ε

(
g(J)

ε

)2
we obtain a.e. in (0, T)


∫ t

0

∫
G1

ε

( ˙̂U(J)
ε ))2 ≤ C1ε−4‖g(J)

ε ‖2
L2(0,T;(L2(G1

ε ))2)
,∫

G1
ε

(
E(Û(J)

ε (t))
)2
≤ C2ε−2‖g(J)

ε ‖2
L2(0,T;(L2(G1

ε ))2)
,

(83)

with C1, C2 positive constants independent of ε. From (65), (63) and the estimates for
r(J)

ε , r(J),b
ε given at the beginning of this section it follows that

‖g(J)
ε ‖L2(0,T;(L2(G1

ε ))2) = O(ε
J−1/2). (84)

From (84) and (83) we obtain the first error estimates ‖ ˙̂U(J)
ε ‖L2(0,T;(L2(G1

ε ))2) = O(ε
J−5/2),

‖E(Û(J)
ε )2‖L∞(0,T;(L2(G1

ε ))2×2) = O(ε
J−3/2).

(85)

Using the initial condition (68)5 we obtain Û(J)
ε (t) =

∫ t

0

∂Û(J)
ε (s)
∂s

(s)ds, which yields

‖Û(J)
ε ‖L2(0,T;(L2(G1

ε ))2) = O(ε
J−5/2). (86)

An obvious consequence of (72) and (84) is also

‖E( ˙̂U(J)
ε )2‖L2(0,T;(L2(G1

ε ))2×2) = O(ε
J−3/2). (87)

Finally, using the estimates (85), (86), (87) and Korn’s inequality applied in G (by
means of the function Vε defined by (77)), we obtain (82) and the proof is completed.

As one can see, for values of J ≤ 4 the error between the exact and the asymptotic
solution is not small, while we are interested in constructing an asymptotic solution that rep-
resents a good approximation of the exact solution from the first term. In order to improve
this error estimate and justify in this way our asymptotic construction, we prove that

Theorem 4. Let uε be the exact solution of problem (2) and u(J)
ε the asymptotic solution of order

J. Then
‖uε − u(J)

ε ‖H1(0,T;(H1(G1
ε )2)) = O(ε

J+1/2). (88)

Proof. Let us consider J ≥ 1 and K ≥ J + 5. We calculate

‖uε − u(J)
ε ‖H1(0,T;(H1(G1

ε )2)) ≤ ‖uε − u(K)
ε ‖H1(0,T;(H1(G1

ε )2))

+‖u(K)
ε − u(J)

ε ‖H1(0,T;(H1(G1
ε )2)).
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For obtaining (88) we have to estimate the second term of the previous inequality

using (7) written for K and for J, which gives u(K)
ε −u(J)

ε = O(εJ+1) and
∂

∂x2

(
u(K)

ε −u(J)
ε

)
=

O(εJ). Hence

‖uε − u(J)
ε ‖H1(0,T;(H1(G1

ε )2)) = O(ε
K−9/2) +O(εJ+1/2) = O(εJ+1/2).

5. Dynamic Visco-Elastic Plates/Rods: Description of the Problem and
Asymptotic Construction

Consider the same thin layer in R2, Gε, defined by (1). We analyze in what follows the
dynamic visco-elastic problem set in this layer with the same conditions as in the quasistatic
case, i.e., the 1-periodicity condition in the variable x1 and with Neumann conditions on
the other boundaries of the layer

Pεuε≡ρüε −
2

∑
i,j=1

∂

∂xi

(
Bij(

x2

ε
)

∂u̇ε

∂xj

)
−

2

∑
i,j=1

∂

∂xi

(
Aij(

x2

ε
)

∂uε

∂xj

)
= f(x1, t) in Gε × (0, T),

2

∑
j=1

(
B2j

∂u̇ε

∂xj
+ A2j

∂uε

∂xj

)
= 0 on ({x2 = 0} ∪ {x2 = ε})× (0, T),

uε(0) = u̇ε(0) = 0 in Gε.

(89)

The coefficients Aij, Bij are those presented in Section 2. Unlike in the quasistatic case,
we take a right-hand side, f, independent of ε. The two components of the mass force, f,
have the properties (4).

In the dynamic case we define the weak solution for problem (89) as the solution of
the variational problem

uε ∈ H1(0, T; (H1
per(G

1
ε ))

2),∫
G1

ε

üε · v +
∫

G1
ε

2

∑
i,j=1

(
Bij(

x2

ε
)

∂u̇ε

∂xj
+ Aij(

x2

ε
)

∂uε

∂xj

)
∂v
∂xi

dx

=
∫

G1
ε

f · vdx (∀) v ∈ (H1
per(G

1
ε ))

2, a.e. in (0, T),

uε(0) = u̇ε(0) = 0 in (L2
per(G1

ε ))
2.

(90)

For the dynamic case we propose an asymptotic solution of order J different from the
one considered in the quasistatic case, in the form

u(J)
ε (x1, x2, t) = v(J)

ε (x1, t)

+
J

∑
p=−1

J

∑
q+l=1

εq+l+p
∫ t

0
Nq,l,p(

x2

ε
, t− t′)

∂q+lv(J)
ε (x1, t′)

∂t′ q∂xl
1

dt′,
(91)

where Nq,l,p are 2× 2 matrix-valued functions and v(J)
ε is a two-dimensional vector function,

with the following expansion with respect to ε:

v(J)
ε (x1, t) =

J

∑
j=0

εjvj(x1, t), (92)

the functions vj being independent of the small parameter ε.
To construct the complete asymptotic solution means to determine the matrix-valued

coefficients Nq,l,p and the scalar functions vj,1, vj,2.
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Substituting the ansatz (91) into (89)1,2, taking together the terms of the same order

with respect to ε, and letting the coefficients of the derivatives
∂q+lv(J)

ε (x1, s)
∂sq∂xl

1
be constant,

we obtain the problems for the matrix-valued coefficients Nq,l,p. For writing these problems
we introduce the following notation:

F̃q,l,p(ξ2, s) = B12
∂2Nq,l−1,p

∂s∂ξ2
+ A12

∂Nq,l−1,p

∂ξ2

+ B11
∂Nq,l−2,p

∂s
+ A11Nq,l−2,p − ρ

∂2Nq,l,p−2

∂s2 ,

Fq,l,p(ξ2, s) = F̃q,l,p(ξ2, s) +
∂

∂ξ2

(
B21

∂Nq,l−1,p

∂s
+ A21Nq,l−1,p

) (93)

and

G̃q,l,p(ξ2)=B12
∂Nq,l−1,p

∂ξ2
(ξ2,0)+B11Nq,l−2,p(ξ2,0)−ρ

∂Nq,l,p−2

∂s
(ξ2,0)

−ρNq−1,l,p−1(ξ2,0)+B11δq,1δl,2δp,−1+A11δq,0δl,2δp,0−ρI2δq,2δl,0δp,0,

Gq,l,p(ξ2) = G̃q,l,p(ξ2) +
∂

∂ξ2

(
B21Nq,l−1,p(ξ2, 0) + B21δq,1δl,1δp,−1

+ A21δq,0δl,1δp,0
)
.

(94)

By means of the previous notation, the boundary value problems for matrices Nq,l,p,
similar to those obtained in the quasistatic case, can be written as follows:

− ∂

∂ξ2

(
B22(ξ2)

∂2Nq,l,p

∂ξ2∂s
(ξ2, s)

)
− ∂

∂ξ2

(
A22(ξ2)

∂Nq,l,p

∂ξ2
(ξ2, s)

)
=Fq,l,p(ξ2, s)−〈F̃q,l,p〉(s) in (0, 1)×(0, T),

B22(0)
∂2Nq,l,p

∂ξ2∂s
(0, s) + A22(0)

∂Nq,l,p

∂ξ2
(0, s)

= −B21(0)
∂Nq,l−1,p

∂s
(0, s)− A21(0)Nq,l−1,p(0, s) in (0, T),

− ∂

∂ξ2

(
B22(ξ2)

∂Nq,l,p

∂ξ2
(ξ2, 0)

)
= Gq,l,p(ξ2)− 〈G̃q,l,p〉 in (0, 1),

B22(0)
∂Nq,l,p

∂ξ2
(0, 0) = −B21(0)

(
Nq,l−1,p(0, 0) + I2δq,1δl,1δp,−1

)
− A21(0)δq,0δl,1δp,0,

〈Nq,l,p(·, s)〉 = 0.

(95)

The unique solution of the previous problem, Nq,l,p, can be determined by solving
analytically the corresponding problem. The substitution of the ansatz (91) into the left-
hand side of (89)1 gives

Pεu
(J)
ε = −

J

∑
p=−1

J

∑
q+l=1

εq+l+p−2
〈

G̃q,l,p

〉∂q+lv(J)
ε (x1, t)

∂tq∂xl
1

−
J

∑
p=−1

J

∑
q+l=1

εq+l+p−2
t∫

0

〈
F̃q,l,p

〉
(t− t′)

∂q+lv(J)
ε (x1, t′)

∂t′ q∂xl
1

dt′ + r(J)
ε ,

(96)

where the residual r(J)
ε can be evaluated and its order is O(εJ−3/2) in the norm L2(0, T;

(L2(G1
ε ))

2).
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Introducing next the ansatz (91) into the left-hand side of (89)2 we obtain the bound-
ary conditions

2

∑
j=1

(
B2j

∂u̇(J)
ε

∂xj
+A2j

∂u(J)
ε

∂xj

)
=−r(J),b

ε on ({x2=0}∪{x2= ε})×(0, T), (97)

where r(J),b
ε (with b = 0 on {x2 = 0} and b = ε on {x2 = ε}) is a residual of order O(εJ−1)

in the norm L2((0, 1)× (0, T)).
In order to calculate the coefficients

〈
F̃q,l,p

〉
(s),

〈
G̃q,l,p

〉
, we introduce the notation

Mq,l,p =
∂Nq,l,p

∂ξ2
(98)

and, proceeding as in the quasistatic case, we obtain the recurrent relations that give the
unique matrices Mq,l,p,

〈
F̃q,l,p

〉
(s),

〈
G̃q,l,p

〉
:

Mq,l,p =B−1
22 exp(−B−1

22 A22s)
(

¯̃Gq,l,p−B21δq,1δl,1δp,−1−A21δq,0δl,1δp,0

+
∫ s

0
exp(B−1

22 A22σ) ¯̃Fq,l,p)dσ

)
− B−1

22 B21Nq,l−1,p

+B−1
22 exp(−B−1

22 A22s)C1

∫ s

0
exp(B−1

11 A11σ)Nq,l−1,pdσ,

(99)

F̃q,l,p = C2
¯̃Fq,l−1,p + C4

∂Nq,l−2,p

∂s
+ C3Nq,l−2,p

+C5Mq,l−1,p − ρ
∂2Nq,l,p−2

∂s2 ,
(100)

G̃q,l,p = C2
¯̃Gq,l−1,p + C4Nq,l−2,p(0) + C4δq,1δl,2δp,−1 + C3δq,0δl,2δp,0

−ρ
∂Nq,l,p−2

∂s
(0)− ρNq−1,l,p−1(0)− ρI2δq,2δl,0δp,0,

(101)

with the matrices C1, ..., C5 defined in Section 3. Moreover, Nq,l,p is uniquely determined
from (98) and (95)5.

We give below all the matrices that are important in the asymptotic analysis that
follows. We begin with the elements corresponding to q + l + p ∈ {0, 1}:

q + l + p = 0
{

F̃1,0,−1 = G̃1,0,−1 = M1,0,−1 = N1,0,−1 = O2,
F̃0,1,−1 = G̃0,1,−1 = M0,1,−1 = N0,1,−1 = O2,

q + l + p = 1


F̃2,0,−1 = G̃2,0,−1 = O2,
F̃0,2,−1 = G̃0,2,−1 = O2,
F̃1,1,−1 = G̃1,1,−1 = O2,
F̃0,1,0 = G̃0,1,0 = O2,
F̃1,0,0 = G̃1,0,0 = O2.

(102)

For q + l + p = 2 we obtain
F̃3,0,−1 = G̃3,0,−1 = F̃0,3,−1 = G̃0,3,−1 = F̃2,1,−1 = G̃2,1,−1 = O2,
F̃1,1,0 = G̃1,1,0 = F̃1,0,1 = G̃1,0,1 = F̃0,1,1 = G̃0,1,1 = O2,
F̃1,2,−1 = F̃V

2 , G̃1,2,−1 = G̃V
2 ,

F̃2,0,0 = O2, G̃2,0,0 = −ρI2,
F̃0,2,0 = F̃E

2 , G̃0,2,0 = G̃E
2 ,

(103)
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where F̃V
2 , G̃V

2 , F̃E
2 , G̃E

2 have the elements given by (20) and (21). Introducing the expan-
sion (92) into (96) and then taking in (89)1 as left-hand side (96), we obtain the problem for
vj in (0, 1)× (0, T) as below:

〈ρ〉v̈j,1 − ÊE ∂2vj,1

∂x2
1
− ÊV ∂2v̇j,1

∂x2
1

−
∫ t

0

(
F̂E(t− t′)

∂2vj,1

∂x2
1
(t′) + F̂V(t− t′)

∂2v̇j,1

∂x2
1
(t′)

)
dt′ = Fj,1,

〈ρ〉v̈j,2 = Fj,2,

(104)

where Fj = Fj(x1, t) depends on v0, v1, ..., vj−1, F0 =

(
f1
f2

)
and the same property as in

the quasistatic case holds: < Fj(·, t) >= 0 . The coefficients from (104) are given by (20)1
and (21)1,2. From (104) one can see that, unlike in the quasistatic case, in the dynamic case
the problems for vj,1 and vj,2 are uncoupled and they contain only second-order derivatives
with respect to x1.

The problem for vj,2 {
〈ρ〉v̈j,2 = Fj,2 in (0, 1)× (0, T),

vj,2(0) = v̇j,2(0) = 0 in (0, 1),
(105)

gives, by integrating twice from 0 to t Equation (105)1 and using the initial conditions (105)2,

vj,2(x1, t) =
1
〈ρ〉

∫ t

0

∫ θ

0
Fj,2(x1, s)dsdθ. (106)

Notice that the property 〈vj,2(·, x2, t)〉 = 0 is obtained as a consequence of the same
property of Fj,2.

In what follows, we study the problem for vj,1, completing Equation (104)1 with the
other properties of vj,1 as below,

〈ρ〉v̈j,1 − ÊE ∂2vj,1

∂x2
1
− ÊV ∂2v̇j,1

∂x2
1

−
∫ t

0

(
F̂E(t−t′)

∂2vj,1

∂x2
1
(t′)+F̂V(t−t′)

∂2v̇j,1

∂x2
1
(t′)

)
dt′=Fj,1 in (0,1)×(0,T),

vj,1 1− periodic in x1,
〈vj,1(·, t)〉 = 0,
vj,1(x1, 0) = v̇j,1(x1, 0) = 0,

(107)

by means of its variational analysis. Towards this end, let us define the space

V = {v ∈ H1
per(0, 1)/〈v〉 = 0} (108)

and let us compute
∫ 1

0
(107)1 ϕ dx1, for ϕ ∈ V. This yields

〈ρ〉 d
dt

∫ 1

0
v̇j,1(t)ϕ + ÊE

∫ 1

0

∂vj,1

∂x1
(t)

∂ϕ

∂x1
+ ÊV d

dt

∫ 1

0

∂vj,1

∂x1
(t)

∂ϕ

∂x1

+
∫ t

0

(
F̂E(t−t′)

∫ 1

0

∂vj,1

∂x1
(t′)

∂ϕ

∂x1
+F̂V(t−t′)

d
dt′

∫ 1

0

∂vj,1

∂x1
(t′)

∂ϕ

∂x1

)
dt′

=
∫ 1

0
Fj,1(t)ϕ (∀) ϕ ∈ V, a.e. in (0, T).

(109)
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We calculate next using the initial condition

∫ t

0
F̂V(t−t′)

d
dt′

∫ 1

0

∂vj,1

∂x1
(t′)

∂ϕ

∂x1
dt′ =

∫ t

0

∂

∂t′

(
F̂V(t−t′)

∫ 1

0

∂vj,1

∂x1
(t′)

∂ϕ

∂x1

)
dt′

−
∫ t

0

(
∂

∂t′
(

F̂V(t−t′)
) ∫ 1

0

∂vj,1

∂x1
(t′)

∂ϕ

∂x1

)
dt′ = F̂V(0)

∫ 1

0

∂vj,1

∂x1
(t)

∂ϕ

∂x1

−
∫ t

0

(
∂

∂t′
(

F̂V(t−t′)
) ∫ 1

0

∂vj,1

∂x1
(t′)

∂ϕ

∂x1

)
dt′.

Replacing it in (109) and introducing the notation
Ĉ = 4

〈
µλ̂(λ̂ + 2µ̂) + µ̂2(λ + 2µ)

(λ̂ + 2µ̂)2

〉
,

D̂(s) = 4

〈
(λµ̂− µλ̂)2

(λ̂ + 2µ̂)3
exp

(
−λ + 2µ

λ̂ + 2µ̂
s
)〉 (110)

we obtain the following variational problem associated with (107):

vj,1 ∈W1,∞(0, T; V) ∩ H2(0, T; L2(0, 1)),

〈ρ〉
∫ 1

0
v̈j,1(t)ϕ + Ĉ

∫ 1

0

∂vj,1

∂x1
(t)

∂ϕ

∂x1
+ ÊV

∫ 1

0

∂v̇j,1

∂x1
(t)

∂ϕ

∂x1

−
∫ t

0

(
D̂(t− t′)

∫ 1

0

∂vj,1

∂x1
(t′)

∂ϕ

∂x1

)
dt′ =

∫ 1

0
Fj,1(t)ϕ (∀) ϕ ∈ V, a.e. in (0, T),

vj,1(0) = v̇j,1(0) = 0.

(111)

We prove next

Theorem 5. There exists a unique function vj,1, solution for (111).

Proof. We begin by proving the uniqueness of the solution that relies on some a priori esti-
mates. Consider v1

j,1 and v2
j,1, two solutions for (111), and denote v = v1

j,1− v2
j,1. Subtracting

the corresponding two relations (111)2 written for an arbitrary fixed value t = θ, taking
as test function ϕ = v̇(θ), integrating from 0 to t with respect to θ, and using the initial
conditions (111)3, we obtain

〈ρ〉‖v̇j,1(t)‖2
L2(0,1) + Ĉ

∥∥∥∥∂vj,1

∂x1
(t)
∥∥∥∥2

L2(0,1)
+ 2ÊV

∫ t

0

∥∥∥∥∂v̇j,1

∂x1
(t′)
∥∥∥∥2

L2(0,1)
dt′

= 2
∫ t

0

(∫ θ

0

(
D̂(θ − t′)

∫ 1

0

∂vj,1

∂x1
(t′)

∂v̇j,1

∂x1
(θ)

)
dt′
)

dθ.
(112)

The right-hand side of (112) can be written as follows:

2
∫ t

0

(∫ θ

0

(
D̂(θ − t′)

∫ 1

0

∂vj,1

∂x1
(t′)

∂v̇j,1

∂x1
(θ)

)
dt′
)

dθ

= 2
∫ t

0

(
D̂(t− t′)

∂vj,1

∂x1
(t′),

∂vj,1

∂x1
(t)
)

L2(0,1)
dt′ − 2D̂(0)

∫ t

0

∥∥∥∥∂vj,1

∂x1
(θ)

∥∥∥∥2

L2(0,1)
dθ

−2
∫ t

0

(∫ θ

0

∂D̂
∂θ

(θ − t′)
∂vj,1

∂x1
(t′)dt′,

∂vj,1

∂x1
(θ)

)
L2(0,1)

dθ =: I1 + I2 + I3.
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We majorate next each of the three terms of the previous relation.

I1 ≤ 2
∫ t

0

(∣∣D̂(t− t′)
∣∣∥∥∥∥∂vj,1

∂x1
(t′)
∥∥∥∥

L2(0,1)

∥∥∥∥∂vj,1

∂x1
(t)
∥∥∥∥

L2(0,1)

)
dt′

≤ α1

∥∥∥∥∂vj,1

∂x1
(t)
∥∥∥∥

L2(0,1)

∫ t

0

∥∥∥∥∂vj,1

∂x1
(t′)
∥∥∥∥

L2(0,1)
dt′,

with α1 = 2 max
s∈[0,T]

∣∣D̂(s)
∣∣.

For the second term we obviously have I2 ≤ 0 and for the third one the following
estimate holds:

−2
∫ t

0

(∫ θ

0

∂D̂
∂θ

(θ − t′)
∂vj,1

∂x1
(t′)dt′,

∂vj,1

∂x1
(θ)

)
L2(0,1)

dθ

≤ 2
∫ t

0

(∥∥∥∥∂vj,1

∂x1
(θ)

∥∥∥∥
L2(0,1)

∫ θ

0

∣∣∣∣∂D̂
∂θ

(θ − t′)
∣∣∣∣∥∥∥∥∂vj,1

∂x1
(t′)
∥∥∥∥

L2(0,1)
dt′
)

dθ

≤ 2
∫ t

0

(∥∥∥∥∂vj,1

∂x1
(θ)

∥∥∥∥
L2(0,1)

∫ t

0

∣∣∣∣∂D̂
∂θ

(θ − t′)
∣∣∣∣∥∥∥∥∂vj,1

∂x1
(t′)
∥∥∥∥

L2(0,1)
dt′
)

dθ

≤ α2

∫ t

0

∥∥∥∥∂vj,1

∂x1
(t′)
∥∥∥∥2

L2(0,1)
dt′,

with α2 = 2T max
s∈[0,T]

∣∣∣ ˙̂D(s)
∣∣∣.

Introducing the previous estimates into (112) we obtain

〈ρ〉‖v̇j,1(t)‖2
L2(0,1) + Ĉ

∥∥∥∥∂vj,1

∂x1
(t)
∥∥∥∥2

L2(0,1)
+ 2ÊV

∫ t

0

∥∥∥∥∂v̇j,1

∂x1
(t′)
∥∥∥∥2

L2(0,1)
dt′

≤ α1

∥∥∥∥∂vj,1

∂x1
(t)
∥∥∥∥

L2(0,1)

∫ t

0

∥∥∥∥∂vj,1

∂x1
(t′)
∥∥∥∥

L2(0,1)
dt′+α2

∫ t

0

∥∥∥∥∂vj,1

∂x1
(t′)
∥∥∥∥2

L2(0,1)
dt′.

(113)

We majorate next the first term of the right-hand side of (113) as follows:

α1

∥∥∥∥∂vj,1

∂x1
(t)
∥∥∥∥

L2(0,1)

∫ t

0

∥∥∥∥∂vj,1

∂x1
(t′)
∥∥∥∥

L2(0,1)
dt′ ≤ Ĉ

2

∥∥∥∥∂vj,1

∂x1
(t)
∥∥∥∥2

L2(0,1)

+ α3

∫ t

0

∥∥∥∥∂vj,1

∂x1
(t′)
∥∥∥∥2

L2(0,1)
dt′.

Introducing this estimate into (113) we obtain

‖v̇j,1(t)‖2
L2(0,1) +

∥∥∥∥∂vj,1

∂x1
(t)
∥∥∥∥2

L2(0,1)
≤ α4

∫ t

0

(
‖v̇j,1(t′)‖2

L2(0,1) +

∥∥∥∥∂vj,1

∂x1
(t′)
∥∥∥∥2

L2(0,1)

)
dt′,

which gives, applying the Gronwall’s inequality,

v̇j,1 =
∂vj,1

∂x1
= 0 a.e. in (0, T).

Combining this with the condition 〈vj,1(·, t)〉 = 0 we get to the uniqueness of the
solution for problem (111).
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For obtaining the existence and regularity results we use Galerkin’s method. Consider
{ϕk}k∈N a basis of the separable space V and define

vn(x1, t) =
n

∑
k=1

ak(t)ϕk(x1), (114)

with ak : [0, T] 7→ R, ak(0) = ȧk(0) = 0, such that

〈ρ〉
∫ 1

0
v̈n(t)ϕk + Ĉ

∫ 1

0

∂vn

∂x1
(t)

∂ϕk
∂x1

+ ÊV
∫ 1

0

∂v̇n

∂x1
(t)

∂ϕk
∂x1

−
∫ t

0

(
D̂(t− t′)

∫ 1

0

∂vn

∂x1
(t′)

∂ϕk
∂x1

)
dt′ =

∫ 1

0
Fj,1(t)ϕk k = 1, ..., n, a.e. in (0, T).

(115)

Introducing (114) into (115) we obtain an n× n linear system of integro-differential
equations of order 2 for the functions a1, ..., an. Taking into account that the matrix coefficient

of

 ä1
...
än

 is 〈ρ〉In due to the choice of {ϕk}k∈N with
∫ 1

0
ϕl ϕk = δlk, we obtain the existence

and the uniqueness of the functions a1, ..., an satisfying the initial conditions ak(0) = ȧk(0) =
0, k = 1, ..., n.

Calculating next
n

∑
k=1

ȧk(t)(115), integrating from 0 to t and using the initial conditions,

we obtain below the analogous of (113), but with a right-hand side 6= 0:

〈ρ〉‖v̇n(t)‖2
L2(0,1) + Ĉ

∥∥∥∥∂vn

∂x1
(t)
∥∥∥∥2

L2(0,1)
+ 2ÊV

∫ t

0

∥∥∥∥∂v̇n

∂x1
(t′)
∥∥∥∥2

L2(0,1)
dt′

≤ α1

∥∥∥∥∂vn

∂x1
(t)
∥∥∥∥

L2(0,1)

∫ t

0

∥∥∥∥∂vn

∂x1
(t′)
∥∥∥∥

L2(0,1)
dt+α2

∫ t

0

∥∥∥∥ ∂v
∂x1

(t′)
∥∥∥∥2

L2(0,1)
dt′ + 2

∫ t

0

∫ 1

0
Fj,1v̇n.

(116)

Finally, majorating the last term of the right-hand side of (116) and using Gronwall’s
inequality, we obtain the first estimates that give

{v̇n}n bounded in L∞(0, T; L2(0, 1)),{
∂vn

∂x1

}
n

bounded in L∞(0, T; L2(0, 1)),{
∂v̇n

∂x1

}
n

bounded in L2((0, 1)× (0, T)).

(117)

In order to obtain further estimates, we calculate
n

∑
k=1

äk(t)(115). Integrating by parts

the second term of the right-hand side of the obtained relation and then integrating the
equality from 0 to θ with the initial conditions vn(0) = v̇n(0) = 0 we obtain

2〈ρ〉
∫ θ

0
‖v̈n(t)‖2

L2(0,1)dt + ÊV
∥∥∥∥∂v̇n

∂x1
(θ)

∥∥∥∥2

L2(0,1)
= −2Ĉ

(
∂vn

∂x1
(θ),

∂v̇n

∂x1
(θ)

)
L2(0,1)

+2Ĉ
∥∥∥∥∂v̇n

∂x1

∥∥∥∥2

L2((0,1)×(0,T))
− 2

∫ θ

0

(∫ t

0

(̂
D(t− t′)

∫ 1

0

∂vn

∂x1
(t′)

∂v̈n

∂x1
(t)
)

dt′
)

dt

+2
∫ θ

0

∫ 1

0
Fj,1v̈n.

(118)

The first term of the right-hand side of (118) is estimated as follows, using (117)2:

−2Ĉ
(

∂vn

∂x1
(θ),

∂v̇n

∂x1
(θ)

)
L2(0,1)

≤ ÊV

2

∥∥∥∥∂v̇n

∂x1
(θ)

∥∥∥∥2

L2(0,1)
+ α3;
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for the second term of the right-hand side of (118) we use (117)3; for the third term we

proceed as for obtaining (113); and the last term is majorated by 〈ρ〉
∫ θ

0
‖v̈n(t)‖2

L2(0,1)dt +

1
〈ρ〉 ‖Fj,1‖2

L2((0,1)×(0,T)). Introducing these calculations into (118) and using again Gronwall’s

inequality we obtain 
{

∂v̇n

∂x1

}
n

bounded in L∞(0, T; L2(0, 1)),

{v̈n}n bounded in L2((0, 1)× (0, T)).
(119)

Taking into account (117) and (119) we obtain the regularity (111)1 for any weak
limit point of the sequence {vn}n with respect to the spaces that appear in (117) and (119),

denoted vj,1. Passing to the limit (on a subsequence) with n → ∞ in
∫ T

0
τ(115), with τ

an arbitrary function of L2(0, T), it follows that any weak limit point of the sequence
{vn}n, vj,1, verifies also the equality (111)2. For completing the proof, it remains to show

the initial conditions (111)3. For this purpose let us calculate
∫ T

0
τ (115)dt, with τ ∈

C1([0, T]), τ(T) = 0 an arbitrary function of t and (115) written for an arbitrary test
function ϕ ∈ V. Integrating by parts the first term and using v̇n(0) = 0, τ(T) = 0 it follows
that (∀) τ ∈ C1([0, T]), τ(T) = 0, (∀) ϕ ∈ V

−〈ρ〉
∫ T

0

∫ 1

0
v̇n ϕτ̇dx1dt + Ĉ

∫ T

0

∫ 1

0

∂vn

∂x1

∂ϕ

∂x1
τdx1dt + ÊV

∫ T

0

∫ 1

0

∂v̇n

∂x1

∂ϕ

∂x1
τdx1dt

−
∫ T

0
τ

(∫ t

0
D̂(t− t′)

∫ 1

0

∂vn

∂x1
(t′)

∂ϕ

∂x1
dx1dt′

)
dt =

∫ T

0

∫ 1

0
Fj,1 ϕτdx1dt.

(120)

Performing the same calculation for (111) instead of (115) we obtain

−〈ρ〉τ(0)
∫ 1

0
v̇j,1 ϕdx1 − 〈ρ〉

∫ T

0

∫ 1

0
v̇j,1 ϕτ̇dx1dt + Ĉ

∫ T

0

∫ 1

0

∂vj,1

∂x1

∂ϕ

∂x1
τdx1dt

+ÊV
∫ T

0

∫ 1

0

∂v̇j,1

∂x1

∂ϕ

∂x1
τdx1dt−

∫ T

0
τ

(∫ t

0
D̂(t− t′)

∫ 1

0

∂vj,1

∂x1
(t′)

∂ϕ

∂x1
dx1dt′

)
dt =

∫ T

0

∫ 1

0
Fj,1 ϕτdx1dt.

(121)

Passing to the limit in (120) and using (121) we obtain∫ 1

0
v̇j,1 ϕdx1 = 0 (∀) ϕ ∈ V;

hence, from the definition of V, it follows that

v̇j,1(0) = const. (122)

The regularity (111)1 yields v̇j,1 ∈ C([0, T]; L2(0, 1)), with

〈v̇j,1(t)〉 (∀) t ∈ [0, T]. (123)

Finally, from (122) and (123) we obtain the initial condition (111)32 . In a similar way
we obtain (111)31 , which completes the proof.

6. Error Estimates

In order to justify the asymptotic construction presented in the previous section, we
proceed as in the quasistatic case for showing that the error between the exact solution and
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the asymptotic one is small. The problem for the asymptotic solution of order J is similar to
that of the quasistatic case

Pεu
(J)
ε = fε(x1, t)− r(J)

ε in Gε × (0, T),
2

∑
j=1

(
B2j

∂u̇(J)
ε

∂xj
+A2j

∂u(J)
ε

∂xj

)
=−r(J),b

ε on ({x2=0} ∪ {x2= ε})×(0, T),

u(J)
ε 1− periodic in x1,
〈u(J)

ε (·, x2, t)〉 = 0,
u(J)

ε (0) = u̇(J)
ε (0) = 0 in Gε,

(124)

with Pεu
(J)
ε given by (89)1, which means that it contains in addition the term ü(J)

ε . In
this case, the residuals have the same meaning as in the quasistatic case, but here their
orders are r(J)

ε = O(εJ−3/2) in the norm L2(0, T; (L2(G1
ε ))

2), r(J),b
ε = O(εJ−1) in the norm

L2((0, 1)× (0, T)). This is a consequence of the difference between the second term of the
ansatz (91) and the second term of the ansatz (7).

With the construction of the same auxiliary function ϕ
(J)
ε as in the quasistatic case and

defining in the same way g(J)
ε , U(J)

ε , Û(J)
ε we obtain for Û(J)

ε the following problem, of the
same type as in the quasistatic case:

PεÛ
(J)
ε = g(J)

ε in Gε × (0, T),
2

∑
j=1

(
B2j

∂ ˙̂U(J)
ε

∂xj
+ A2j

∂Û(J)
ε

∂xj

)
= 0 on ({x2=0}∪{x2= ε})× (0, T),

Û(J)
ε 1− periodic in x1,
〈Û(J)

ε (·, x2, t)〉 = 0,
Û(J)

ε (0) = ˙̂U(J)
ε (0) = 0 in Gε.

(125)

The variational problem associated with (125) is in this case

Û(J)
ε ∈W1,∞(0, T; VG1

ε
) ∩ H2(0, T; (L2

per(G
1
ε ))

2),

ρ
∫

G1
ε

¨̂U(J)
ε (t) · vdx +

∫
G1

ε

2

∑
i,j=1

(
Bij

∂ ˙̂U(J)
ε (t)
∂xj

+ Aij
∂Û(J)

ε (t)
∂xj

)
∂v
∂xi

dx

=
∫

G1
ε

g(J)
ε (t) · vdx (∀) v ∈ VG1

ε
, a.e. in (0, T),

Û(J)
ε (0) = ˙̂U(J)

ε (0) = 0 in (L2
per(G1

ε ))
2,

(126)

the space VG1
ε

being the one defined in the quasistatic case. Taking in (126)2 as test function

v = ˙̂U(J)
ε (t), integrating the obtained relation from 0 to t, using the equalities

2

∑
i,j=1

Aij(or Bij)
∂u
∂xj
· ∂v

∂xi
=

2

∑
i,j=1

Aij(or Bij)
∂v
∂xj
· ∂u

∂xi
(∀)u, v ∈ (H1(G1

ε ))
2,

2

∑
i,j=1

Aij(or Bij)
∂u
∂xj
· ∂u

∂xi
=

2

∑
i,j,k,l=1

akl
ij (or bkl

ij )El j(u)Eki(u) (∀)u ∈ (H1(G1
ε ))

2,
(127)

the coercivity property of the matrices A and B and the initial conditions we obtain a
different estimate from that obtained in the quasistatic case:

ρ
∫

G1
ε

(
˙̂U(J)

ε (t))
)2

+ 2κ
∫ t

0

∫
G1

ε

(
E( ˙̂U(J)

ε )
)2

+ κ
∫

G1
ε

(
E(Û(J)

ε (t))
)2

≤ C(ρ, T)
∫ t

0

∫
G1

ε

(
˙̂U(J)

ε

)2
+ C1

∫ t

0

∫
G1

ε

(
g(J)

ε

)2
, a.e. in (0, T).

(128)
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with C(ρ, T), C1 positive constants independent of ε. The first result concerning the error
between the exact solution and the asymptotic solution of order J is given below:

Theorem 6. Let uε be the exact solution of problem (89) and u(J)
ε the asymptotic solution of order

J. Then
‖uε − u(J)

ε ‖H1(0,T;(H1
per(G1

ε )2)) = O(ε
J−7/2). (129)

Proof. From (128) we obtain

ρ
∫

G1
ε

(
˙̂U(J)

ε (t))
)2
≤ C(ρ, T)

∫ t

0

∫
G1

ε

(
˙̂U(J)

ε

)2
+ C1

∫ t

0

∫
G1

ε

(
g(J)

ε

)2

≤ C(ρ, T)‖ ˙̂U(J)
ε ‖2

L2(0,T;(L2
per(G1

ε )2))
+ C1‖g

(J)
ε ‖2

L2(0,T;(L2
per(G1

ε )2))
.

Since
‖h‖L2(0,T;L2(G1

ε ))
≤ T1/2‖h‖L∞(0,T;L2(G1

ε ))

for any h ∈ L∞(0, T; L2(G1
ε )) with h(0) = 0, we obtain from the previous inequality an

estimate for ‖ ˙̂U(J)
ε ‖2

L∞(0,T;(L2
per(G1

ε )2))
by choosing C(ρ, T) =

ρ

2T1/2 , which gives, combined

with (128), max
{
‖Û(J)

ε ‖L2(0,T;(L2(G1
ε ))2), ‖

˙̂U(J)
ε ‖L2(0,T;(L2(G1

ε ))2), ‖E(Û
(J)
ε )2‖L2(0,T;(L2(G1

ε ))2×2),

‖E( ˙̂U(J)
ε )2‖L2(0,T;(L2(G1

ε ))2×2)

}
≤ C2‖g

(J)
ε ‖2

L2(0,T;(L2(G1
ε ))2)

,
(130)

with C2 a positive constant independent of ε.
We establish by direct calculation the order of ‖g(J)

ε ‖L2(0,T;(L2(G1
ε ))2) using, as in

Section 4, (63), (65) and the estimates for r(J)
ε , r(J),b

ε given at the beginning of this section
as follows:

‖g(J)
ε ‖L2(0,T;(L2(G1

ε ))2) = O(ε
J−3/2). (131)

For obtaining (129), we proceed as in the quasistatic case by considering the function
Vε defined by (77) and, from (130), (131) and Korn’s inequality applied in G (by means of
the function Vε), we obtain (129), which completes the proof.

As one can see, for values of J ≤ 3 the error between the exact and the asymptotic
solution is not small, while we are interested in constructing an asymptotic solution that
represents a good approximation of the exact solution from the first term. The next result
improves this error estimate:

Theorem 7. Let uε be the exact solution of problem (89) and u(J)
ε the asymptotic solution of order

J. Then

‖uε − u(J)
ε ‖H1(0,T;(H1(G1

ε )2)) =

{
O(εJ−1/2) if J ≥ 1,

O(ε1/2) if J = 0.
(132)

Proof. Let us consider J ≥ 0 and K ≥ J + 4 and let us calculate

‖uε − u(J)
ε ‖H1(0,T;(H1(G1

ε )2)) ≤ ‖uε − u(K)
ε ‖H1(0,T;(H1(G1

ε )2))

+‖u(K)
ε − u(J)

ε ‖H1(0,T;(H1(G1
ε )2)).

For estimating the second term we analyze separately two cases:
(i) J = 0; then

u(K)
ε − u(0)

ε = v(K)
ε − v(0)

ε
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+
K

∑
p=−1

K

∑
q+l=1

εq+l+p
∫ t

0
Nq,l,p(

x2

ε
, t− t′)

∂q+lv(J)
ε (x1, t′)

∂t′ q∂xl
1

dt′ = O(ε1).

This estimate is a consequence of (102)1 and of (8) and leads to the second estimate
of (132) (taking into account the derivation with respect to x2 that introduces ε−1 and the
integration over G1

ε that introduces ε1/2).
(ii) J ≥ 1; in this case, using the ansatsz (91), we obtain

u(K)
ε − u(J)

ε = v(K)
ε − v(J)

ε

+
K

∑
p=J+1

J

∑
q+l=1

εq+l+p
∫ t

0
Nq,l,p(

x2

ε
, t− t′)

∂q+lv(J)
ε (x1, t′)

∂t′ q∂xl
1

dt′

+
K

∑
p=−1

K

∑
q+l=J+1

εq+l+p
∫ t

0
Nq,l,p(

x2

ε
, t− t′)

∂q+lv(J)
ε (x1, t′)

∂t′ q∂xl
1

dt′

= O(εJ+1) +O(εJ+2) +O(εJ) = O(εJ).

Taking into account, as before, the derivation with respect to x2 and the integration
over G1

ε we obtain the first estimate of (132) .

7. Conclusions

The asymptotic analysis for the quasistatic Kelvin–Voigt model was announced in [19],
but the proofs are given for the first time in the present paper, while the approach cor-
responding to the dynamic case is considered here for the first time. The asymptotic
technique introduces the homogenization combined with the dimension reduction of a
two-dimensional plate and derives a one-dimensional model. As far as we know, it is
the first time that the complete asymptotic expansion of the solution to the Kelvin–Voigt
model of a thin stratified plate has been constructed and the error estimates of order O(εJ)
established for asymptotic approximations of any order J. The proposed method allows
us to obtain all the terms of the asymptotic expansion and, for any given J, to obtain
approximations of the accuracy O(εJ), while other methods mainly give the leading term
only and do not always give error estimates. Note that these estimates are important to
describe the limitations of the theory. Another advantage is that the form of the asymptotic
expansion gives the possibility to use the form of the solution in the construction of some
subspaces in model reduction via projection, as is done in the method of asymptotic partial
decomposition of the domain and in the method of partial homogenization.
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