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Abstract: A nonstationary Poiseuille flow of a non-Newtonian fluid with the shear rate dependent viscosity
is considered. This problem is nonlinear and nonlocal in time and inverse to the nonlinear heat equation.
The provided mathematical analysis includes the proof of the existence, uniqueness, regularity, and sta-
bility of the velocity and the pressure slope for a given flux carrier and of the exponential decay of the
solution as the time variable goes to infinity for the exponentially decaying flux.
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1 Introduction

The Poiseuille flow is defined as a solution of the fluid motion equations in an infinite tube with no slip
boundary condition on the lateral boundary, satisfying the following conditions: the pressure is linear with
respect to the normal (longitudinal) variable, the tangential velocity is equal to zero, and the normal
velocity depends only on the transverse variables. In the stationary case of the Newtonian fluid, the
Poiseuille flow’s normal velocity is a solution of the Dirichlet problem for the Poisson equation on the
cross-section of the tube, while for the nonstationary Navier-Stokes equation, the normal velocity satisfies
the Dirichlet problem for the heat equation with the right-hand side equal to the pressure slope depending
on the time variable only. The reconstruction of the pressure slope in the case of the prescribed flux is
related to the inverse heat equation problem (see [4,8,20,22,23,27]). The time periodic case was studied in
[2,7]. The existence of the nonstationary Poiseuille solutions under minimal regularity assumptions on the
flow rate is considered in [24]. The asymptotic behavior of the Poiseuille solutions with respect to the small
parameter was found in [16]. The stationary and nonstationary Poiseuille flows for different models of the
non-Newtonian fluid were studied in [5,6, 12,13,19,25,26].

In the present paper, we consider the non-Newtonian flow with the viscosity depending on the shear
rate. The stationary case of this nonlinear problem was considered in [9]. The regularity and stability of the
stationary Poiseuille flow for non-Newtonian rheology was considered in [18]. The present paper is devoted
to the analysis of the nonstationary Poiseuille flow for the non-Newtonian modification of the Stokes
equation. We study the existence, uniqueness, regularity, and stability of the velocity and the pressure
slope for a given flux and the exponential decay of the solution as the time variable goes to infinity for the
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exponentially decaying flux. The difference with respect to [5,6] is in the type of the non-Newtonian
rheology: in [5], it is a shear thinning one, and in [6], it corresponds to a monotone operator, while in
the present paper, the fluid satisfies different conditions. In particular, it can be shear thickening.

Apart from theoretical interest for partial differential equations, this set of questions is important for
construction of asymptotic expansions of solutions in thin domains. In particular, the results of the present
paper are important for the construction of an asymptotic expansion of a non-Newtonian flow in a network
of thin cylinders, modeling blood vessels (see, for example, [14,15,17] for Newtonian flows). The blood flow
rheology is described by Carreau’s law [10], which is covered by the dependence of the viscosity on the
shear rate considered below.

Let us present the main results.

Let n =2, 3, vo, A > 0 be positive constants. Let ¢ be a bounded domain in R™*!. Let v be a bounded
C“-smooth function R"*1/2 _ R such that for all y € R"n+D/2)

VI <A, Vvl <A, k=1,.... 4, (1.1)
where A is a positive constant independent of y.

Consider the following boundary value problem in the cylinder II = ¢ x R, do € C*, for the non-
Newtonian fluid motion equations:

u; — div(vy + Av(y(u))D(u)) + Vp=0, x €I,

divu = O, x €11, (12)
ulx, t) =0, x € dIl,
u(x, 0) = 0, x eI,

where D(u) is the strain rate matrix with the elements d;; = %(Z—Z + %) and y(u) = (dy, di3, dos, di1, dx, ds3)
if n = 3 and y(u) = (dlz, dll’ dzz) ifn=2. '
We look for solution u having prescribed flux F through the cross sections ¢ of cylinder II:

Iu - ndS = F(t). 13)

Define a Poiseuille flow as a solution (Vp, Pp) to this problem having the following structure:

Vp(x, t) = (vp(x', £),0, ...,0)", and Pp(x, t) = —a(t)x + B(t), where x' = (x, ...,x,), a € W20, T), B is
an arbitrary function of ¢, and vp, is the solution of the following problem:

Vit — %divxr((vo + Av(yp(ve,)))Veve) =a), X eo,

vp(x', t) =0, X € 00, (1.4)

vp(x', 0) = 0, x' € o,

Here, yp(vp) = (%VX'VRX, 0, O) ifn=2,y(vp) = (%VX'VEX, 0,0, O) if n = 3, and a is the given pressure slope.
The following inverse problem corresponds to problem (1.4): given F ¢ W>2(0, T), such that F(0) = 0,
find a(t) and vp(x', t) satisfying the relations:

Vet — %divxf((vo + AV()‘/P(VBX)))VX’VRX) =a(t), x eo,

vp(x', t) = 0, X' €, (1.5)
vp(x',0) =0, X €0,
and the additional flux condition
[vnee, oax = Fo. 1.6)

o

Define the shear rate y' as|d,,| in the casen = 2, and y’ = \/d} + d} + d3;. Note that Carreau’s law reads:
the viscosity v depends on the shear rate y’ as follows:
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V() = vo(l + (Y P,
Here, vy > 0, k > 0, m are constants. For m < 1, this rheology is shear thickening and satisfies condition (1.1)
for small k. For the definition of function spaces see Section 2.
The first main result is presented by the following two theorems.

Theorem 1.1. Let 90 € C*. For any ag > 0, there exist Ay = Ai(ag) and Ry = Ro(ap) such that for all A € (0, A]
and any a € W“%(0, T) such that a(0) = 0 and lallwr2o,1y < @0, problem (1.4) admits a unique' solution

vp, € Wr?2(oT) satisfying the estimate
”vPa"W‘g;'Z)'Z(aT) < cllalwr2o, 1y (1.7)
and belonging to the ball By, of space Wa(f}’z)’z(aT), where the constant ¢ depends only on o. Here,

of =0 x(0,T).

Theorem 1.2. For any ¥, > 0, there exists A, = ,(Fo) such that for all A € (0, A;] and every F € W>%(0, T)
such that F(0) = 0,F'(0) =0 and |Fly22o 1) < Fo, problem, (1.5) and (1.6) admit a unique solution

(v, @) € WiH22(gT) x W'2(0, T). Moreover, a(0) = 0, and the following estimate

Ivelwagry + w2,y < clFlw22o,1) (1.8)

holds.
The second main result (on the stability of the solution) is presented by the following two theorems.

Theorem 1.3. For any ay, there exists A; = A(ag) such that for all A € (0, A3] and every ay, a, € W2(0, T),
with a;(0) = 0 and |lailwt20,1) < o, 1 = 1, 2, there holds the estimate

2 2
Ve, = Ve agr < o = @l 1. (1.9)

Theorem 1.4. For any Fy, there exists A, = A,(Fy) such that for all A € (0, A,] and every F;, F, ¢ W%2(0, T) with
F(0) = 0, F/(0) = 0 and ||Elly>20,1) < Fo, i = 1, 2, there holds the estimate

Ve, = Ve, lweny ey + lloa — aallo,ry < cllFy = FBallytary. (1.10)

Finally, the third main result is on the decay of the Poiseuille flow as the time variable tends to infinity:
Theorem 1.5. Assume that the right-hand side a of (1.4) satisfies the conditions of Theorem 1.1, a € W2(0, co)
and satisfies the additional condition:

Jla(t)|2ezﬁfdt < +00. (1.11)
0

Letvp, € W52%(g%) be a solution of problem (1.4). There exists B, such that if B € (0, B,), thenvp, € Wir?*(a")
satisfies the following estimate:

(oe] [oe]
j j (Ve + [VevnP)e®tdxdt < ¢ j la(t) Pedt. (112)
0 o0 0

Theorem 1.6. Assume that the flux F in (1.6) satisfies the conditions of Theorem 1.2, F € W>%(0, +o0) and
satisfies the additional condition:

1 Here and below, the uniqueness takes place only in some ball where the contraction principle is applied.
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f(|F<t)|2 + POttt < +oo. (1.13)
0

Let vp, € W{#?%(0™) be a solution of the inverse problems (1.5) and (1.6). There exists B, such that if
B € (0, B,), then (vp, @) satisfies the following estimate:
Ij|(vpa)t|2eﬁtdx'dt + Iezﬂffwx,vpaﬁ dx'de + Ie‘z’f|a(t)|2dt < cj(lF(t)lZ + |F'(H)R)e tdx'dt
0o [ 0

) (1.14)

0
+ ARy

Notice that for the Newtonian case, the exponential decay of the Poiseuille solution is proved in [21,23].

These three couples of theorems are proved, respectively, in Sections 3, 4, and 5. Section 2 is devoted to
several auxiliary results, in particular to some generalization of the Banach fixed point theorem.

2 Auxiliary theorems

2.1 Notation, function spaces and embedding theorems

Let G ¢ R" be a bounded domain. Denote GT = G x (0, T). Letl > 1 be an integer. By L9(G), q < [1, co], and

wba(G), Wl’q(G), we denote the standard Lebesgue and Sobolev spaces of functions defined in G.

Let m > 1 be an integer. Let us define several spaces of functions depending of x and t. W@nm.2(GT) is
the space consisting of functions belonging to L>(GT) and having all generalized derivatives of the form ;0
with arbitrary r and s satisfying the inequality 2r + s < 2m. The norm in W®@mm™:2(GT) is defined by the
formula:

2m
Iully@mmgry = Z Z 0703l 261y
j=02r+s=j

In the second sum, the summation is over all nonnegative integers r and s satisfying the condi-
tion 2r + s =j.
We will also need the spaces W&1:2(GT) and W®-9-2(GT) consisting of functions having the finite norms:

||u||w(1~1)""‘2(GT) = ||u||L2(GT) + ||qu||L2(GT) + ||atu||L2(GT),

lullwaozgry = lullzgry + 1Vl gr)-

For all spaces W(->2(GT), we denote by Wa(l;')’z(GT) the subspace of functions satisfying the condi-
tion Ll|aG =0.
Below we formulate the embedding inequalities, which are used in the paper.

Lemma 2.1. Let G be a Lipschitz bounded domain. If u € W32(G), then u € W-(G) and u € W>*(G). There
hold the estimates

[ullwreoy < cllullwsc) s

2.1)
lullw24eey < cllullws -

For general Sobolev embedding theorems, see, e.g., [1].

Lemma 2.2. Let G be a Lipschitz-bounded domain.
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() Ifu € Wemm2(GTY gnd

p =2, 2m—2r—s—(l—l)(n+2)20, (2.2)
2 p
then d[d5u € LP(GT) and
075Ul rry < cllullyenm.agry. (2.3)

(it) Ifu e W@mm:2(GT) and 2r + s < 2m - 1, then the trace 3,05u |;-¢, € W?"-Z-5"12(G) and
1070%U | ¢= lwom-2r-s-12Gy < Cllullyemm.zgr (2.4)
with the constant c independent of t, € [0, T].
In particular, if G ¢ R", n < 2, then there hold the inequalities

IV2uell 26y < cllullyeo.26ry,
Vuellpaery < cllullwe2gry,
IVkull a6ty < cllullyeazgry,  k=2,3, 2.5)
IV2ull 567y < cllullyeazgry,

IVullpser < cllullyenagry,

and

sup [uC,H)llws2c) < clullwezgry. (2.6)
te(0,T)

The constants in inequalities (2.3)—(2.6) are independent of T.

More information on the embedding tor the spaces of function depending on x and t can be found
in [3,11].

2.2 Weak Banach contraction principle

Below we formulate and prove some version of the Banach fixed point theorem. It seems that this theorem is
known, but we present the proof for reader’s convenience since we do not know the appropriate reference.

Theorem 2.1. Let X, Y, and Z, K be reflexive Banach spaces, X c Y, Z C K,
Ixlly < lxllx vxeX, lzlz <lzlx VzeZ. 2.7)

Suppose that M ¢ X and N c Z are closed, bounded sets, M + &, N + &, and the mappingT : M — M x N
satisfies the inequality

ITx — Tyllyxz < kllx — ylly with k <1, for all x,y € M. (2.8)
Then there exists exactly one pair (X., z.) € M x N such that

Tx, = (X, Z.).

Proof. Let us define a sequence (xy,, z,) by the recurrent formulas:
(Xn+1> Zne) = T, Xo € M. (2.9)
Since T maps the bounded set M onto the bounded set M x N, there exists a positive constant ¢, such that

Ixallx < co and | Txyllxxz < co. Since the spaces X and Z are reflexive, there exists a subsequence {x,,} such
that
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X XxZ
X = Xoy Ty = (Xnps Zn,) = O Z)s X ), € M, z, €N, (2.10)

For simplicity, we will not distinguish in notation the subsequence {x,,}, {z,,} and the sequences {x,}, {z,.}.
From (2.8), it follows that

1TXn = TXpsallyxz < KXo — Xlly

YxZ
Therefore, {Tx,} is a Cauchy sequence and is strongly convergentinY x Z, i.e. Tx, 5 ()., z.). From (2.9), we

obtain

Ot 20) = Tt =5 (1, 2) "2 (x., 2.). @.11)
Thus,
1Tx: = Txullyxz < KlXy — X.ly — O asn — +oo.

Hence,

Tx. = (y,, 2.). (2.12)
The relations (2.11) and (2.12) yield

Tx, = (X, z,).
The uniqueness is obvious. O

3 Existence of non-Newtonian Poiseuille flow with prescribed
pressure slope or prescribed flux

Consider the heat equation

w—voA'w=f, x eoao,
wx',t)=0, x' € do, 3.1
w(x',0)=wy, x' €o0.

The following theorem is well known (see, e.g., [11]).

Theorem 3.1. Let 30 € C*, f e WED:2(gT), oT = ¢ x (0, T), wy € W>%(0) and

w0 e = 0, WYX = 0, 3.2)

where W(SO)(X’) = wp(x'), w((,l)(x’) = VoA'wo(x") + f(x', 0). Then problem (3.1) admits a unique solution
w € W§22(o") and the following estimate:
IWllya26my < c(lflwenagry + Iwollwz2q)) (3.3)

holds with constant c independent of T.
In particular, if wo(x") = 0 and f(x', 0) = 0, then the compatibility condition (3.2) are satisfied and the
statement of the theorem is true.

We also need results about the following inverse problem for the heat equation: find W(x', t) and a(t)
solving the problem
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Wi = voA'W = a(t) + f, x' € o,
W', t)=0, x' € 9o,
W(x', 0) = Wy, x' €0, (3.4)

IW(X', Hdx' = F(t).

Theorem 3.2. Let 90 € C4, f € W@D:2(gT), Wy € W3%(0) and F € W?2(0, T),

FO) = [WPeax, FO) = [WP0A,  WP0ke = 0, WPy =0, 55

where WO(x") = Wy(x"), WEP(x') = voA'Wo(x') + f(x', 0). Then problem (3.4) admits a unique solution
(W, @) € Wit2%(T) x W20, T) and the following estimate

W22y + lallwizo,ry < clflwenagry + IWollwe2@g) + IFlw220,1)) (3.6)

holds with constant c independent of T.

In particular, if Wy(x'") = 0, F(0) = F'(0) = 0, f(x', 0) = 0, then the compatibility conditions (3.5) are
satisfied, and the statement of the theorem is true. Moreover, in this case, the pressure slope a satisfies the
condition a(0) = 0

The proof of this theorem can be found in [23].
Consider now the nonlinear problem (1.4). Let us prove Theorem 1.1.

Proof. Let £ be an operator W{"?2(o7) — W{*?2(¢") such that for arbitrary fixed a € W»2(0, T) with
a(0) = 0 and a given v € Wy%(o7), satisfying the initial condition v(x', 0) = 0, the function V = Lv is a
solution of the heat equation:

Vt——AV h(v) +a, xe€ a0,
3.7)

V|ag =0, V(&,0=0
where
h(v) = —Adlvx (V(yP(V))VX’V) == V(yp(V))A v+ (V@GN (Ve GV - Vv ]. (3.8)

Because of the condition v(x’, 0) = 0, from the definition (3.8) of h(v), we see that h(v(x', 0)) = 0. Thus,

f(x', 0) = a(0) + h(v(x', 0)) = 0 and the compatibility conditions of Theorem 3.1 are valid.
Using the continuous embeddings (2.1), (2.6), and conditions (1.1), we obtain

jnh(v)an( dt s juvuwz T jnvnW oy VB

(3.9
<k juvuwu( jdt + sup ||v||W32(a)j||v||Wn(a)

< CA2(||V||W(,, 22T + ”V”W(“ 2, z(gr))

Analogously,
[Veh(V)] < AA(VIV] + Vv P)(A + [Viev]),

and
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[0ch(V)| < AAVavel + [Vav][Vevi (L + [View]).

Using, in addition, embeddings (2.1) and (2.5), we derive the estimates

Inv,h(v)u 2 )dt<C/12 IJ(|V3 VR + [VVR Vv + V2[4 + V2[4 Vv ]2 )dx'dE
0 o

(3.10)
2
<ol j(uvuws sy + Wl + IS

< CA2(||V||W(4 2.2 + ||V||3V(4,z),z + ||V||;/(4,z>,z ),

C) C) (o")

j I3V )IRs , dt < cA? ”(mmz + IV2VRIGUP + [V PIVev B+ [V PIVEY PV, P)dx'de

00

2 2 2 ; 2
< A VI o gry + IVVITa g IV VellEayry + sUP [IVIE, Z(G)IIIV WillE s At

te(0,T) (3.11)

- s e, )jnv WilRa ) IV2VIR,  d
< VR anagry + Wy anagr, + M unagr)-
Further,
IVah)| < AL + [VVD(VAVE + [ViVIIVIv] + [Viv])

and

T T
J19hR, e < @ [ [ATAVP + VWP IR + 19301 + 1T 9P
0

00 (3.12)
+ [V2VR V2V + V2R V3V Vv 2 )dxdt

< CAZ(HVHW(A 2, Z(UT) + v ”W“‘ 2247y "V”sv(a,z),z(gr) + ||V||sv(4,2),2(ar))-
Define in WSy ?"*(o”) a closed bounded set Bg, = {u € Wir?*(07) : Jullys22,7) < Ro and u(x', 0) = 0}.
Assume that v € Bg,. Then (3.9)-(3.12) yield the estimate

Ih + al? < cP(R§ + Rg + R§ + Rg) + cllal?,, o1 (3.13)

W(Z 1), 2( T)
By Theorem 3.1, the solution of the heat equation (3.7) admits the estimate

IVIZ w22,r) < GRS + Rg + RS + RS) + callalag 1 (3.14)

Set Mg = clao |* and RZ = 2M$ and suppose that

1
2 < =A% 1
2¢(1 + 2M3 + 4Mg + 8MY) 315

Then (3.14) yields

I£v|2 <Rg.

W(4 2), Z(U.T)

The last inequality implies that the operator £ maps the closed bounded set By, C ng’m(aT) onto itself.
Let us show that £ is a contraction in W{:®*(¢"). Multiplying equations (3.7) by an arbitrary
n € WiY%(oT) and integrating by parts, we obtain
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1 .
J covmax + 2 [z vondx' = -2 [vlip)y -Sndx’ + [ nax’. (3.16)

(o

Then for any v;, v, € Bg,, the following equality holds

f((zvl)t - (Lo’ + 2 [Ty - L) Tondw

1 ’ 1 (3.17)
- - oA f VRVt = Toro) Tydx — A j(v(y'p(w» VGV Gemdx! = i + .

Using (1.1) and the inequality,

V(W) = v(yp(v))PP < suplVyv(y)PViews — Viewal? < ofVevy — Vv 2,
y

we have

Vo 2 qur . G 2 2 44/
Ll < 3 [Ven|*dx’ + —v [Vievi = Vieval? [ Vievo | dx
()

<Y jw nPdx + 2L supwx/vZijval _ GnPdx

0 x'eo

ijmzax' + L, z@ijfvl - VevPdr.

By Young’s inequality,
Vo 2 /\2 2 !
Vil < — | Vel dx + G— | [Viev; — Vw2 dx’.
8 Vo
g

Therefore, taking in (3.16) n = Lv; — Lv,, we derive the inequality

Yo SV Lvs - Lw)I;

LZ(U) L*(0)

1d
——||Lwv; — Lv.
¥ T, Lvy = Lvy|?
Vo A o
< Z”Vx’(‘Cvl LVZ)”LZ((;) [Cs||V2||W3 20 T + 1IVie(vy - V2)||Lz(0)-

Integrating by t over the interval (0, T), we obtain

SIEV(T) - LD, + jnv (Lt) — LD, de

Ac
< —juvx(w) DB 0+ 52 sup 1O, j V(W) — Vo) s .
0 te(0,T

IN

—<c3 + CallVall T)>j||v W(t) = Vi)

< X c4R3>j||vx () ~ VAR,
Then from the last inequality, it follows that

j IV LU(E) ~ LVat), < qjuv (0~ Vo)
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4(C; + c4R)
AZ#_

where g = S
0

Let

A2 = min{}lf, #2} (3.18)
4G + c4Rp)

Then for any A € (0, A;), the operator £ is a contraction in Wé};o)’z(oT) with the contraction factor g < 1and,

by Theorem 2.1, there exists a unique fixed point vp, of the operator £, which is a solution of problem (1.4).

Estimate (1.7) for vp, follows from the fact that vp, € Bg, with R = 2¢|ao?. Indeed, from estimates

(3.9)-(3.12) applied to the fixed point v,, it follows that

I+ @l nary < 6P+ R§ + Ry + Rg)||v&||§v(4,z)‘z(0,) + allalg py-
Thus, by (3.14),
IVRI n2pry < 6L+ RG + Ro + ROV naor, + Gz 1
If A < A;, the last estimate implies (1.7). O

Consider now the inverse problem (1.5). Let us introduce the space £%0, T) as a space of functions
having primitives equal to zero at t = 0 and possessing the finite norm
1/2

T
lgleor = j|(5g)(t)|2dt ,
0

where (Sg)(t) = I(; g(1)dr is the primitive of g vanishing at ¢t = 0. Obviously, £2(0, T) is a Hilbert space and

L[?(0, T) c £X0, T) for T < +oo.
Let us prove Theorem 1.2.

Proof. Let 7 be an operator W{+?*(o") — W{#?*(") x W'X0, T) such that for arbitrary given
w € Wi22(¢T) with w(x', 0) = 0, the pair (W, a) = Iw is a solution of the inverse problem for the
heat equation:

W - ?AW - a(t) + h(w), X €o,
w |BU = O, W(XI, O) = O, (319)

j W, Hdx' = F(b),

where h(w) is defined by formula (3.8). Since F(0) = F'(0) = 0, we have h(v(x’, 0)) = 0, and so, the compat-
ibility conditions of Theorem 3.2 are valid and problem (3.19) admits a solution satisfying the properties
stated in this theorem.

Let M g, ={u € Wip:?*(0") : llully@.22my < Ro and u(x’, 0) = 0} and Ng,={s € W X0, T) : [sllyr20,7y < Ro

and s(0) = 0}. Assume that w € Mg,. Then as in Theorem 1.1, we have the estimate

1A caggr, S CAX(RG + R + RS + RE). (3.20)
So, by Theorem 1.2,
W woayr, + lalwzo,1) < ARG + Ro + RS + RG) + ColFIR 2, - (3.21)

Set MZ = c¢|Fy|? and RZ = 2M¢ and suppose that

1
A< =A% 3.2
2c5(1 + 2M2 + 4My + 8MY) (3-22)




DE GRUYTER Nonstationary Poiseuille flow of a non-Newtonian fluid =— 11

Then (3.21) yields

Wiz + el < R§.

W(4 2), 2( T) Wl 2(0 T) =

The last inequality implies that the operator 7 maps the closed bounded set M g, ¢ Wi#2%(T) onto closed
set Mg, x Ng, ¢ Wik?2(aT) x WH(0, T).

Let us show that 7 is a contraction in Wal 0:2(gT) x £2(0, T). Multiplying equations (3.19) by an arbi-
trary n € Wk"%(o7) and integrating by parts, we obtain

medx' " %va/w Vemdx' = a(t)Indx’ - %Ajv(yp(w))vxrw Vondy. G23)
Then for any wy, w; € Mp,, the following equality holds
V
f = Wapmax + 22 [[5w; - W) wome

= (au(t) - az(t»jrzdx' - %A jv(y‘P(wl))(vx'wl ~ Vowy)-Vendx

1 (3.24)
- A j(v(y}:(wm V(W))W -Vyndx!

= (@(0) - az(t))jndX’ +L+ D,

where (W, a;) € Mg, x Ng,. Taking in (3.24) n = W, - W, and using that L(Wl(x’, t) — Wi, t))dx' =
F(t) — F(t) = 0, we obtain

_ dtj|wl WyPdx’ + °j|vx/<m—wz>|2dx'

= A VO (Tws — )T - W)x
2 (3.25)

- %A I(V(Yp(wl)) = V(p(W2))Vsew; -V (Wy — Wr)dx!

o
= I] +Iz.

Estimating the terms I; and L in the right-hand side of (3.25) as in Theorem 1.1 and integrating by t, we arrive
to the inequality

JIWCT) = Wi DRy, + fuv (W) - W )R, dt

(3.26)
<o eR )jnv 1)~ W DR,
Let v, € VT/I’Z(U) N W22(¢) be the solution of the Poisson problem
Vo ’
-—Avy =1, x €eo,
270 3.27)

V=0, x'e€do.

Multiplying equations (3.19) by v, and integrating by parts yields
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f(wl - W’ - 2 ijf(w1 W) vodx!
! 1 .
= (a(t) - az(f))jVodX - 5/1 IV(yp(wl))(fowl — VeWs)- Vevodx (3.28)
1 . .
- A j WEpWD) — Vo (W2)VieW, -Vetodx.

Note that

ij(x'mx' - ijrvO(x')Fdx = ko> 0,

o

V Vi
=20 ewh - W) v = =22 ;- W) B = [ (Wi Whx = o,

t
”(wu(x', ) — WO, V()X dr = j(wl(x', £) — W', OWox' ).
Therefore,

t
Ko j(m(r) ~ a0 = Ko(Sa)(©) — (Sa)(E))

t t
= [ J o - wanwodr'ar + 2 [veonsom - vows) Werodr'dr
0o

0o

N|>-‘
O C—

j VWD) — VpW)VeWs -Vevodrdr.

From this equality, it follows that

2

T
1 [ 1500 - Smxorarsel [| it 0 - W' oty | o
0| o
A2 ol 2
" Zj ,[ I VW) (Vews = Vewy)-Vavodx'dr |- dt
0 00
A2 ol 2
* ZI I I(V(YP(Wl))‘V(YP(Wz)))foWz'fovodxdT dt
B (3.29)

T
< C[J."I/Vl Wz||Lz( )dt + A2 _[||v(yp(w1))(vx,wl - VXsz)lliz(U)dt]

e j VG W) = VGW)Tewall  d

T

<c [ I - Wi, )dt+cA2(1+R)j||v () ~ wa )R, Lt
0

Inequalities (3.26) and (3.29) yield
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T T T
% [ 150 - WO, e + 3 [1Sa)(©) = (Sa)OPAe < (1 + R [ ITow@) - WOy, . (3:30)
0 0 0

Let

. 2
: M} (31

AZ =min{A2, >
cs(1 + RY)

Then for any A € (0, A;), the operator 7 is a contraction (satisfies the condition of Theorem 2.1) in

min{vo /2, K8}

— W10)2¢ 5T 2 : . _
X x Z =Wz™(0") x £40, T) with the contraction factor g = ool s BD)

< 1. Thus, by Theorem 2.1, there

exists a unique fixed point (vp, a) of the operator equation (v,,, a) = Iv,,, which is the solution of problem (1.4).
Estimate (1.8) for (vp, @) is proved exactly in the same way as inequality (1.7) in Theorem 1.1. O

Remark 3.1. Since the constants in the embedding inequalities of Lemma 2.2 are independent of T, it is easy
to see that also the constants in estimates (1.7) and (1.8) do not depend on T.

3.1 Operator relating the pressure slope and the flux

Let a € W20, T), a(0) = 0, be given and let vp € W{"?*2(oT) be the solution of problem (1.4). Define
Fla](t) = I vp,(x', t)dx' the flux (flow rate) corresponding to the pressure slope —a(t). Note that in the
o

case of the Newtonian flow (problem (3.1) with f(x', t) = a(t), wo = 0), Fola](t) is related to a(t) via the
solution of the heat equation (3.1). This case corresponds to the value of A = 0, i.e., by Theorem 3.1, there

exists a bounded operator H : W-2(0, T) — W?%(0, T) such that Fy[a] = Ha = J w(x', Hdx'.
(0
We consider as well the operator G : W2(0, T) — W?2%(0, T) corrector of the non-Newtonian flux with
respect to the Newtonian one:
Gla] = Fla] - Folal,

where F[a] is defined over the solution vp, of nonlinear problem (1.4). Below we prove that for sufficiently
small A > 0, that operator G is a contraction.

Lemma 3.1. For any ag > 0, there exists a number p, = p,(ap) such that for any A € (0, u;] and every
a € W-2(0, T) with lalws20,1) < @0 and a(0) = 0, the solution vp, of problem (1.4) is a Lipschitz continuous
function in the norm ||Vy'- ya.02,ry with respect to a in the W12(0, T)-norm. Moreover, Fla] is a Lipschitz
continuous function in L*(0, T)-norm with respect to a.

Proof. Let vp, € Wi»?2(0") and vp, € Wi3?*(o") be two solutions of problem (1.4) corresponding to
a=o0 € W0, T) and a = @, € W2(0, T), respectively. By Theorem 1.1, these solutions exist if A € (0, A(ao)).
Moreover, the following estimates hold

||VRXI_"W(4,2)YZ(0T) < C”(X”WLZ((),T), i= 1, 2.

These solutions satisfy the integral identities

T T
J.J(VPa,-)t’Ydth + % J‘J‘ervpai -Vemdx'dt
0o 0o

T (3.32)

T
= - %A’[Iv(yp(v&i))vxrv&i Vemdx'dt + Jai(t)jn dx'dt, i=1,2, vne WED(o").
0o 0 o

Similar arguments as those at the end of the proof of Theorem 1.1 give the estimate
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T

1 Vv

V(D) = Vi (D + 22 [ 1000 = Tevn, OF, de
0

T T
< o [ [w(in(ve,)) = vO(ve )l v Sevn, = Sevgjaxde + e [ [ w(ip(ve,))l 1%,
00 00
T
- VX’Vsz |2d.X,dt + Ilal - (X2|J‘|Vpal - Vpazldxldt
] 4
T
< AQ+ ||v&l||w<4.z>.z(gr))j||vxrv3“ ViR dt
0
T 1/2
+ 1ToTlas - alion| [ 1vs, - Vel de
0
T T 1/2
< coA1+ ao) [ 1Vvi, = Vv 2 de + 1ToTlas - @lizon| [ s, - Vel de |
0 0

where |0] = mes(0). If A < min {Al(ao), m} = p,(ao), then from the last inequality, it follows that

T
J 15, = V)R e <l = @l (3.33)
0
Further,
2
|Flea](t) - Flaal(t)I* < J(VPM(X’, t) — vp, (¢, t))dX’
o
<lollve, = VeIt
< clVe(ve, = va,) oy,
< clay(t) — a(t)P.
Therefore,
T T
IlF[al](t) ~ Fla](H)Pdt < cjuvxf(vpal Vi) B < cllty ~ R
0 0
and this estimate completes the proof. O

Lemma 3.2. For any ao > 0, there exists a number u, = p,(ao) < p,(ao) such that for all A € (0, p,] the
operator G() is a contraction from W'2(0, T) to L*(0, T) within the ball |aly12,1y < @0, a(0) = 0, i.e., the
following inequality holds:

1G(ar) — G(allro,7) < qllas — allwr2o, ) (3.34)
with the contraction factor q < 1.
Proof. Let a, @ € W 2(0, T), a;(0) = O, llaillyr20,7) < @0 and let ¥y, 7, € Wiw?(o") be the solutions of
problem (3.1) corresponding to a; and o, respectively (i.e., to f = a;(t), i = 1, 2, wp = 0). Consider the differ-

ences vy, — Vp, and v, - VB, where VB, i =1, 2, are the solutions of the nonlinear problems (1.4) with the
same right-hand sides a;(t). These differences satisfy the equations
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(= V2 = 2DV = Vi)
= gdivxf(v(yp(v&i))vxrvgxi), X eoa, (3.35)
(Vo = velao = 0, (X', 0) = v, (', 0)) = O,

wherei = 1and i = 2. Subtracting one problem from another, we obtain for K = (¥, — vp,) — (¥, — vp,) the
following relations:

V
K, - ?OA,('K

= %(iiV;(’(V()"p(VPoq))V;(’Vpa1 - V(yP(VPaz))Vx’VPaZ), (3.36)

Kl =0, K(x',0)=0.

Applying a standard for the solution of the heat equation a priori estimate, we obtain
T T
IK(DIR, ,, + fuvfouizw)dt < cAZjnv(y'p(vpal))vx,vpm = V(¥p(Vews) ) ViVpaolia, At
0 0

and, by using the similar arguments as before, we obtain from inequalities (1.7) and (3.33) for A < p,(ao) that
T

T
J 1K, ) < o+ 1) [19(ve, = v, erde < cHlas - ol
0 0

So, finally,
T 2
[ [xax| de< el < cverz, o < colles - @k,
0o
Since
[ Koe, 0ax’ = Folasl(©) - Flasl®) - (Folaxl(®) - Flaol)) = Glasl(©) - Glasl(o,
[
we have
IGlao] - Glau]lZ, , 7y < colllon = olfyizg -

IfA% < yzz(ao) = min {yf(ao), C—lo}, then G[a] is a contraction from W12(0, T) to L?(0, T) with the contraction
factor g = JgoA < 1. O

4 Continuity of the non-Newtonian Poiseuille flow

Suppose that ¢ and a, satisfy conditions of Theorem 1.1. Denote by vp, and vp,, the two solutions of problem
(1.4), corresponding to the right-hand sides &; and a;.
Let us prove Theorem 1.3.

Proof. Let ap > 0 and let 4; = A(ap) be the number defined in Theorem 1.1. Then, due to this theorem, for
A € (0, i] and every ay, @ € W0, T), with|la;lly20,1) < @0, @;(0) = 0, there exist solutions v, of problems

(1.4), i = 1,2, such that vp,_e Wy?*(o7), and the following estimates

v lwe2 oy < Clatillwi2o,ry,  1=1,2, (4.1)
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hold. The difference v = vp, - vp, satisfies the equations
(vPa1 - vaz)t - ?A(vpa1 - Vpaz)
= h(vpal) - h(v&z) +(y-a), xeo, (4.2)
(vpa1 - VEXZ) loc = O, (vpa1 - vpnz)(x’, 0) =0,

where

() = SAdiv (0 0)Vxa) = ARG + (GG (Vo)) Veul,
It is easy to calculate that
|h(Vpa1) - h(Vpaz)l < C/1(|V2(vpa1 - vpa2)| + (|V2VHX1| + IVZVpa2|)|V(VPu1 — Vpaz)l + |v2Vpa1||VVPD‘1||V(VEH - VHXZ)|
+ [V [IV2(va, = ve,)D-

By embedding theorems (see Lemmas 2.1 and 2.2), we obtain the inequality

T
[1n(va) - n(vm, )y e
0

T T 1/2
< ok J‘HVZ(VH,,I - Vg,z)lliz(o)dt + (VeI 22gry + VRN w227 _HIV(VPa1 - vp,|*dx'dt
. o (4.3)
T 1/2 T
# WMo [ 1900, = vafraxde |+ Wa B r [19°(vm, = v )
0o 0
2 4
< ¥ ag + ag)llve, - V%"ﬁ;(ﬁlxz(gT)'
Therefore, the classical estimate for the heat equation (4.2) yields
Ve, = Ve Ryanagr, < €@ + a)I(Ve, = Vo) Byanagr, + clon = ol 1. (4.4)
If 2 < As(ao) = min {Al(a), ;} then (4.4) implies
c.(ay +ag)
1(Va, = Veo) lwenaer < cllas = ol - (4.5)
O

Now assume that we have two fluxes Fi(t) and F,(t) satisfying the condition of Theorem 3.2. Denote by
(vp, . o) and (vPaz, @) the two solutions of problems (1.5) and (1.6) corresponding to the given fluxes F; and
F,. Let us prove Theorem 1.4.

Proof. Let A, = A,(Fy) be the number defined in Theorem 1.2. Then, due to this theorem, for A € (0, A,], the
problems (1.5) and (1.6), i = 1, 2, admit the solutions (vg,, &;) such that vp, € WwH22(oT), @; € W20, T) and
a;(0) = 0. Moreover, the following estimates

v lwa2gry + laillwt2o,7y < ClElw220,1), 1=1,2 (4.6)

hold. The difference v = Ve, — Vp, satisfies the equations

(VE)(1 - VEXZ)[ - ?A(VBX1 = Vpaz)

= h(VPal) - h(Vpaz) + (al - az), X € 0,

) (val - Vsz) Iag = 0, (me1 - Vpaz)(X’, 0) = 0,

[ (n. 00,0 = va 0, D) ax = B - Fo),

(4.7)

where the function h is the same as in Theorem 1.3 and
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juh(vpal) B(Va,) oy At < GRS + )V, — Va2 (4.8)

N

Then, due to the estimate for a solution of the inverse problems (1.5) and (1.6) we have
Ve, = Voo yanagr + lon = tllio,ry < CAXES + FOI(Ve, = Vey) Banagr, + CIF = Fallysg 1 (4.9)

If A2 < A4(Fp) = min {/Iz(Fo), then (4.9) implies (1.10). O

5 The decay of the Poiseuille type solutions as t tends to infinity

Consider first problem (1.4) and prove Theorem 1.5.

Proof. Multiplying equations (1.4) by vpe?!, integrating over 0 and t, and then integrating by parts in g, we
obtain

I I (Vp )tvp ePtdx'dt + = I I |Vevp P ePldx'dt + g

O C—

IV()”P(Va) ) |Vievp, 2 ePtdx’dt
(2

0o 0o
T
- Ija(t)ezﬁtvpadx’dt 5.1)
T
< ld Ila(t)lz Bege + £ f I|vp Petdxdt.
0o

Since

”(vp )evieidx'dt = IeZﬁf J.lv Pdxdt = -B I eZﬂt'[|vpa|2dx'dt+ zeZﬁTjwpa(x T)Rdx,
o o
the relation (5.1) yields

T T
Iw,vp ReXtaxdt <19 I|tx(t)|2 Bdt + (ﬁ " ;)Jjwpﬂﬁezﬁtdx'dt
00 00
T
< l;ﬂ I|a(t)|2e2ﬂ‘dt + c*(ﬁ + g) II'VXIVpalz ebtdx'dt.

£
0 0

o

Taking € < > and assuming that S < e from the last inequality, we obtain

fjlvxrvp ReXtdx'dt < CI la(t)[2e?tdt. (5.2)

00

The constant ¢ in (5.2) is independent of T, and we can pass T to infinity. As a result, we obtain

J I|vxlvpu|2e2ﬂtdx'dt < cj () Pedt.
0

This estimate together with the Poincaré inequality implies (1.12). O
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Consider now problems (1.5) and (1.6) and prove Theorem 1.6.

Proof. Arguing as in the proof of Theorem 1.5, we derive

-B I et J-|Vp [Pdx'dt + ezﬁT Ilea(X T)Pdx + = Yo II'VXVVP [e2Btdx’'dt

[

T
%IIv(yP(vpa )|ervp PeXtdx'dt
0

[

T
_ ja(t)ezﬂf J.vpadx’dt - Ia(t)F(t)ezﬁtdt
0 o 0
and so, for sufficiently small 8, we obtain
Jw wpPetdx'dt < —Jla(t)lzezfdt + —IlF(t)IZ Zedx'dt. (5.3)

0o

Let us multiply now equations (1.5) by (vp );. Integrating over o, we obtain

j|(vpa)t|2dx’ W df I|VX/Vpa|2 dx' + —J‘v(yp(v&)) |Vevp [2dx' = a(t)J‘(v&)tdx’ = a(t)F'(t).

Multiplying this relation by el“ and integrating over (0, T) gives

T
jj|(vpa)t Pebidxde + 20efT walvpa(x', T)Rdx’ + %eﬁT j v(p(ve) et Ve (', THPAX
o o
T

T T
- [eraorat + g2 j eft j Worn ', OPAxde + B2 [ e [v(ip(ve))IWovnP ax'de
0

0 [

T
e A [ [uin)) e (v Revapacar
0

g

Therefore, there holds the inequality
T
f I |(VPa)t PPePtdx'dt
00

T T
cﬁfeﬂt J.lvx/vpa|2dx’dt + A sup [Veva) _[ oft _[ 1% (v, ) [ Vvpd'dt
0

<
', t)ea”
o
T T
+ 2 j|a(t)lzeztdt + — IlF’(t)P Ttdx'dt (5:4)
"2 2
0 0
1/2
< Cﬁ J‘el“ J‘lv rVP |2dx7dt + CA_RO J‘J‘ezﬁt J‘Iv ’VP |2dx dt

0o o

g f la(t)Peltdt + - IlF'(t)F Ptaxdt,

Assume that cf8 < vy /4. Then from (5.3) and (5.4), it follows that
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O C—

Il(Vp )t [Peftdx'dt + Iezﬂf IlVX’Vp [2dx'dt
7 (5.5)
< e jla(t)lzez‘dt s 1 j (FOR + |F'(O)2e2dt + AR,

Let us estimate now the norm of a. Multiplying equations (1.5) by the solution vy of the Poisson problem
(3.27), we obtain

a(t)xg = J‘(v&)tvodx’ - ? IAX’VPaVOdX, - g jdiV(V(yP(VHx))VX’VPa)V()dX,
[ [

o

= J‘(VBX)[VodX, + F(t) + g jv(yp(v&))ervPaVerodx’.

[ [
Therefore,
T T 2 T
% J‘eg‘la(t)lzdt <c je?f I(vpa)tvodx’ dt + ¢ Ie§‘|F(t)|2dt

0 0 o 0

T 2
+ cA? J‘elz}‘ Iv(yp(vpa))vx/v&vxrvodx’ de

0 o (5.6)

<cC

O C—

T
J Btl(Vpa)[ [Pdx'dt + ¢ '[ Ieﬁtlv,('Vp‘Jz dx'dt
o
T

c Jeile(t)|2dt.

0

The sufficiently small € inequalities (5.5) and (5.6) yield

T T T
”|(vpa)t|2eﬁfdx'dt " I o2t I Vv Pdx'de + Ie§t|a(t)|2dt < cI(lF(t)|2 + IF'(O)2e Rt ax'dt + cA2RE.
g 0 [ 0

Since the constant in the last inequality is independent of T, we can pass T — +co and we obtain (1.14). O
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