Title |
Semiconductor materials for components of optoelectronic terahertz systems activated by femtosecond 1 µm wavelength laser pulses / |
Translation of Title |
Puslaidininkinių medžiagų, skirtų 1 µm bangos ilgio femtosekundiniais lazerio impulsais aktyvuojamų terahercinių optoelektronikos sistemų komponentams, tyrimas. |
Authors |
Bičiūnas, Andrius |
Full Text |
|
Pages |
37 |
Keywords [eng] |
Terahertz ; Terahertz time–domain spectroscopy ; GaBiAs ; THz |
Abstract [eng] |
The aim of dissertation was to develop and explore the semiconductor material terahertz (THz) pulse emitters, for Terahertz time–domain spectroscopy (THz–TDS) systems using a 1 μm wavelength femtosecond laser radiation. THz pulse generation and detection using optoelectronic semiconductor components in THz–TDS excited by femtosecond laser pulses become these days a powerful experimental technique. Traditionally, mode-locked Ti:sapphire lasers emitting at the wavelengths ~800 nm are used. However Ti:sapphire lasers require many-stage optical pumping arrangement, the system is quite bulky and complicated. The solution could be the lasers emitting in 1 – 1.55 µm, which can be directly pumped by diode laser bars. Recently, several compact, efficient and cost-effective solid-state and fiber laser systems that generate femtosecond pulses at near-infrared wavelengths have been developed and employed for activating THz–TDS systems. The main obstacle of these systems is the lack of material with appropriate bandgap, high dark resistivity and short (~ ps) carrier lifetimes. |
Type |
Summaries of doctoral thesis |
Language |
English |
Publication date |
2012 |