Title Karboksipiridinų degradacijos bakterijose tyrimas /
Translation of Title Investigation of the Degradation of Carboxypyridines in Bacteria.
Authors Karvelis, Laimonas
Full Text Download
Pages 141
Keywords [eng] nicotinate ; pikolinate ; 3-hydroxypyridine ; dehydrogenase ; dioksigenase
Abstract [eng] The main aim of this work was the study of bacteria capable to degrade the pyridine monocarboxylic acids. Achromobacter sp. strain JS18 capable to utilize 3-hydroxypyridine- 2-carboxylic acid was selected by screening of microorganisms hydroxylating the pyridine ring at unusual positions or transforming pyridine derivatives . The strain 5HP consuming 5- hydroxypyridine-2-carboxylic acid as a sole carbon and energy source was isolated from soil. The 16S rRNA-based phylogenetic analysis showed that the isolate belongs to Pusillimonas genus. It was found that picolinic, nicotinic and dipicolinic acids were metabolized via three distinct inducible pathways in Achromobacer sp. JS18. The appropriate biodegradation routes of these acids as well as 3-hydroxypyridine-2-carboxylic acid were was proposed. Nicotinic acid, 5-hydroxypicolinic acid and 3-hydroxypyridine induced three distinct metabolic pathways in Pusillimonas sp. 5HP cells. All pathways had the same intermediate – 2,5-dihydroxypyridine. For the first time 5-hydroxypicolinate 2-monooxygenase, which catalyzed oxidative decarboxylation of 5-hydroxypicolinic acid, was discovered, partially purified and characterized. The analysis of Sinorhizobium sp. L1 cells showed that 3-hydroxypyridine and nicotinic acid were degraded via different metabolic pathways. The Sinorhizobium sp. L1 cells converted 3-hydroxymethylpyridine to nicotinic acid. 3-hydroxypyridine and nicotinic acid induced biosynthesis of distinct isoforms of 2,5-dihydroxypyridine dioxygenase in Sinorhizobium sp. L1. The gene cluster encoding a nicotinic acid degradation pathway in Sinorhizobium sp. L1 was cloned and characterized.
Type Doctoral thesis
Language Lithuanian
Publication date 2012