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Abstract: The main objective of this thesis is the extension of limit result for

sums of random linear field by using Beveridge–Nelson decomposition.

To achieve this goal, we use Beveridge–Nelson decomposition generalization by

V. Paulauskas presented in 2010 and D. Marinucci and S. Poghosyan presented in

2001. These works extend results of P.C.B. Phillips and V. Solo for random linear

fields, which were formulated for linear processes. The method enables results

proved for random fields of innovations apply to random linear fields, generated

by these innovations, under some additional assumption on linear filter.

After the investigation of Beveridge–Nelson decomposition method we came to

the conclusion that the best application of the method is for the proof of Central

limit theorem. We consider random linear fields on Zd generated by different type

of innovation.

In Chapter 2 we analyze random linear fields generated by martingale differ-

ence innovation. Martingale difference definition in the plane and higher dimen-

sion spaces is another important topic analyzed in the thesis, because it exists

different ways to define them. We use different definitions of martingale differ-

ence presented in the works by D. Tjøstheim, R. Morkvėnas, B. Nahapetian,

M. El Machkouri, and prove Central limit theorems for random linear fields with

three different types of martingale difference innovations.

In the last chapter we consider random linear fields generated by ergodic

or mixing (in particular case, independent identically distributed (i.i.d.)) ran-

dom variables. There we generalize the classical Strong Law of Large Numbers

for multi-indexed sums of i.i.d. random variables. These results are easily ob-

tained using ergodic theory. Also we compare the results for SLLN obtained

using ergodic theory and with the help of the Beveridge–Nelson decomposition.



Notation

The following notation is used throughout the thesis.
a.s. almost surely (that is, with probability one)

i.i.d. independent and identically distributed

m.d.s. martingale difference sequence

r.f. random field

BN Beveridge–Nelson

CLT central limit theorem

SLLN strong law of large number

t,k, . . . bold font letters denote vectors

Z denotes the set of integers

N denotes the set of natural numbers

Lq,p denotes that ∑
k∈Zd(∏d

i=1(|ki| + 1))q|ϕk|p < ∞

X ∈ L logLd−1 denotes that E |X| (ln(1 + |X|))d−1 < ∞



Chapter 1

Introduction

I would rather have a mind opened by wonder than one closed by belief.

Gerry Spence, ‘How to Argue and Win Every Time’

Limit theorems play an important role in probability theory and mathematical

statistics.

. . . the epistemological value of the theory of probability is revealed only by limit

theorems. Moreover, without limit theorems it is impossible to understand the real

content of the primary concept of all our sciences – the concept of probability.

B.V. Gnedenko and A.N. Kolmogorov

There are several types of limit theorems: Central limit theorems (CLT),

Strong law of large numbers (SLLN), Law of iterated logarithm (LIL) and other

modifications. They all are about behavior of the sum of random variables with

appropriate norming and different strength of convergence statement: almost sure

(a.s.), in probability (P) or by distribution (d).

Let us take as starting point the classical (Kolmogorov) Strong law of large

numbers (SLLN), which states that if we have Xi, i = 1, 2, . . . , independent

identically distributed (i.i.d.) random variables and E|X1| < ∞, EX1 = µ, then

1
n

Sn = 1
n

n∑
i=1

Xi
a.s.−→ µ.

We can interpret CLT and LIL as results on the rate of convergence in SLLN if we

know additional information about summands. For example CLT can be written

in the form √
n

σ

(
Sn

n
− µ

)
d−→ N(0, 1),
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where d−→ denotes convergence in distribution, σ2 = varX1 < ∞, N(0, 1) –

standard normal distribution. LIL is usually written in the form

Sn

n
− µ = σξ(n)

(
2
n
log log n

)1/2

where lim supn→∞ ξ(n) = 1 a.s. and lim infn→∞ ξ(n) = −1 a.s.

These standard expressions suppress the relation with SLLN. Therefore we

rewrite LIL as
1
xn

(
n

log log n

)1/2(
Sn

n
− µ

)
a.s.−→ 0.

for any sequence of constants {xn, n ∈ N}, xn → ∞, and for CLT we can write
√

n

xn

(
Sn

n
− µ

)
p−→ 0. (1.0.1)

From the last expressions it can be seen that LIL provides a boundary between

convergence in probability to zero and a.s. convergence to zero.

It was an example in the one dimensional i.i.d. case, just to illustrate main

principles of limit theorems. When random variables have different characteristics,

e.g. random variables are not independent or identically distributed, new methods

of proof must be found and condition for convergence analyzed.

Rather complete theory of limit theorems in the case of sequences of random

variables has been developed. Our interest is different. We consider random

variables Xt with discrete indexing parameter t varying in spaces Zd, d = 2 or

Zd, d > 2. Such objects are called random fields.

Multiparameter processes present a natural extension of time series or pro-

cesses of continues time. They are important in many theoretical problems and

applications. As such examples we can mention relation with mathematical statis-

tics [57], statistical mechanics [35], brain data imaging [13], computer graphics,

information extraction from text and labeling [36] and other.

Different classes of random fields are studied, we can mention: Markov random

fields, Gibbs random fields, conditional random fields, Gaussian random fields

and other. Our thesis is devoted to studies of linear random fields, which can be

considered as generalization of linear processes also called time series.

2



The construction of a linear random field is the same as that of linear random

process: we have one random field {εt, t ∈ Zd} (which often are called as in-

novations) and we form a new random field by means of non-random coefficients

(which are called a filter) in the following way:

Xt =
∑
k�0

ϕkεt−k, t = (t1, . . . , td) ∈ Zd, k = (k1, . . . , kd) ∈ Zd, (1.0.2)

or

Xt =
∑

k∈Zd

ϕkεt−k, t = (t1, . . . , td) ∈ Zd, k = (k1, . . . , kd) ∈ Zd.

If Xt is well defined (the series converge almost sure) then {Xt, t ∈ Zd} is called

a linear random field.

Here and in what follows bold letters stand for vectors (multi-dimensional or

infinite-dimensional). Linear operation are defined component-wise, for example if

t, s ∈ Zd then t+s = (t1, t2, . . . , td)+(s1, s2, . . . , sd) = (t1+s1, t2+s2, . . . , td+sd).

The comparison of elements later will be based on partial order or lexicographical

order (the latter defines total order for elements with multivariate indices). The

main questions analyzed in the thesis are:

• Application of Beveridge–Nelson (BN) decomposition to the random linear

fields;

• Different definitions of martingale difference in the case of discrete multi-

variate indices;

• Proof of CLT for linear random fields generated by martingale difference

innovations, by using BN decomposition;

• Proof of SLLN for linear random fields generated by i.i.d. innovations.

It is possible to say that in the thesis we generalize some results formulated for

linear processes in [56]. We present shortly main idea of [56]. Consider a linear

3
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process, defined by the formula

Xt =
∞∑

k=0
ckεt−k, t ∈ Z, (1.0.3)

where εi, i ∈ Z, are i.i.d. random variables, and ci and εi are such that Xt is

correctly defined (series converges a.s.) and is a stationary process. For the inves-

tigation of sums of such elements the BN decomposition, which will be introduced

in Section 1.3, is used. Note that this decomposition can be applied to an arbitrary

sequence {εi}; namely, if Xt = C(L)εt is well defined then

a−1
n

n∑
t=1

Xt = C(1)a−1
n

n∑
t=1

εt + Rn, (1.0.4)

where Rn has a very simple structure: Rn = a−1
n (ε̃0 − ε̃n), ε̃t =

∑∞
k=0 c̃kεt−k. Hav-

ing (1.0.4), the next step is to prove that, under appropriate moment conditions

on {εi} (which usually are assumed to be i.i.d. or martingale differences) and on

the coefficients ci, Rn → 0 in probability or a.s. Thus, limit theorems for ∑n
t=1 Xt

are reduced to the corresponding limit theorems for ∑n
t=1 εt. Using this approach,

it is possible to prove the Law of Large Numbers (LLN), Strong LLN (SLLN),

Central Limit Theorem (CLT), and Invariance Principle (IP). The existence of

variances of εt and Xt is not essential, and it is possible to investigate the case

where εi’s are heavy-tailed. All these possibilities are demonstrated in the funda-

mental paper [56] by Phillips and Solo. Also it is necessary to mention that the

same idea, that relation between limit behavior of sums of innovations and sums

of linear processes reflect the dependence structure (short or long memory) of

linear processes, is realized in much more general setting of Banach space valued

innovations and operator normalization in the paper [58].

In the paper [55], it was demonstrated that BN decomposition is useful when

proving limit theorems for sums ∑
t∈Dn Xt, where Dn is some subset of Zd and Xt

is of the form (1.0.2) with i.i.d. innovations {εt, t ∈ Zd}. BN decomposition in

the case of rectangles Dn = {i ∈ Z2 : 1 � i � n}, allows to write,
∑

t∈Dn

Xt = µ1
∑

t∈Dn

εt + Rn, (1.0.5)

4



where µ1 =
∑

k�0 ϕk, and Rn has not complicated form.

In the paper [55] SLLN and CLT were proved using BN decomposition.

It must be stressed that in [3] it was shown that application of the ergodic

theory to prove SLLN gives more general results comparing with ones obtained by

using BN decomposition. One of the advantages of BN decomposition mentioned

in [56] was its simplicity of application, but the proofs based on applications of

ergodic theory are also very simple.

In [43] it was proved the IP for linear random fields generated by i.i.d. inno-

vations, but the moment conditions on innovations were dependent on dimension

of indices (the existence of higher moments was required for higher dimension).

Therefore, taking the above presented remark on SLLN, in [3] it was noted that

the most successful application of BN decomposition is the CLT. In our work the

main attention is devoted to the CLT for linear random fields with innovations

forming martingale differences.

In the papers [55], [3], [43] innovations were assumed to be i.i.d. Here we con-

sider innovation forming a field of martingale differences. Martingale differences

on the line are well studied and there is a lot of results on CLT for martingales.

Different situation is in the case where indices are in Zd with d � 2 since there

are several ways to define a martingale and martingale differences. Random fields

with such type of dependence are less investigated.

The strategy of the proofs is the same as in [56]: to take CLT result for sums

of innovations (∑t∈Dn εt) and to prove that the remainder Rn as in (1.0.5) with

an appropriate normalization tends to zero.

In [56] the BN decomposition was applied for linear random process in two

different ways – the so-called direct and indirect methods of application. By both

methods we must prove that Rn tends to zero (after appropriate normalization

and in the appropriate sense), only in the direct method we use the explicit form

of Rn while in the indirect method we just use the fact that sum ∑
t∈Dn Xt is well

approximated by µ1
∑

t∈Dn εt. As in the papers [56] and [55] we show that indirect

5
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method gives better results (see Remark 2.2.1), namely, by indirect method and

under the same moment conditions the CLT is proved under weaker conditions

on the coefficients {ϕk}. Although one can think that always indirect method of

application of BN decomposition is preferable against direct one, it is not the case:

in the paper [45] it is demonstrated that better rates of convergence are obtained

by using direct method.

The doctoral thesis is arranged as follows. In Chapter 1 we give overview of

the analyzed topic, history of CLT for martingales and main method, which will

be applied in the proofs of main results. In Chapter 2 we introduce three different

types of martingale differences and prove CLT for random linear fields generated

by those innovations. In Section 2.2 we consider innovations for which CLT is

proved in [67] and modified in [28]. In Section 2.3 we use the approach, based

on [49] and in 2.4 we are dealing with martingale differences defined in [16]. In

the last third chapter we prove SLLN for random linear fields generated by i.i.d.

innovations and compare this respect with results proved by using ergodic theory.

Each section of Chapters 2 and 3 begins with a short introduction of the

problem, definitions and the formulation of known results. Then main new results

with proofs follows.

1.1 Martingale

Martingale theory illustrates the history of mathematical probability: the basic

definitions are inspired by crude notions of gambling, but the theory has become a

sophisticated tool of modern abstract mathematics. . . .

J.L. Doob [19]

Speaking about martingale we do not keep in mind known definition of mar-

tingale like tack that is used on horses to control head carriage or a type of dog

collar that provides more control over an animal and not even betting system

6



1.1. Martingale

which is of course closely related to our topic. For us martingale or martingale

differences is useful as a tool in probability theory.

English word martingale represents martegal (French dialect word meaning

inhabitant of Martigues; Martigues is or was a village in France). The best known

meaning for martingales is a betting strategy. In the gambling context it is a

strategy when a gambler doubles his bet after every loss. In that way the first

win would recover all previous losses plus win profit equal to original stake.

From mathematical point of view martingale is a stochastic process for which

conditional expectation of the next value, given current and preceding values is the

current value. It is a “fair game” where nobody wins and nobody losses. We only

can guess if inhabitants of village Martigues where considered to be eccentric and

venturesome. The Oxford English dictionary the martingale as betting strategy

dates back to 1815. This strategy will not be helpful in nowadays casino. In order

to apply it you must have very deep pockets, besides casino put max sum for

betting, so you are limited in number of games. In some games there is not only

two possibilities of wining or losing like throwing a coin, so calculation becomes

not so simple.

The first steps to use martingale in modern way can be attributed to early

works of Bachelier [2], but martingale as concept of modern probabilistic literature

was introduced by Ville (1939) [69] and later developed in Doob works [17], [18].

Papers by Bernstein [5], [6], [7] and Levy [38], [39], [40] predates the use of the

name martingale. They used martingale as consecutive sums of i.i.d. random

variables to generalize limit results. The martingale convergence theorem proved

by Doob completely changed the direction of martingale theory development. His

book [18] is one of fundamental work on martingales. The book of Hall and

Heyde [26] is another important work summarizing works on martingales and

their application in probability theory until 1980 years.

After development of the theory of martingales with one-dimensional indices

the natural step is an extension to the case of multivariate indices. But it turns out

7



Chapter 1. Introduction

that it is not an easy task, since at first one must answer the following questions:

• how elements should be ordered,

• how to define stopping time,

• how to define σ-algebras and history.

Depending on chosen answers different definitions of martingales can be formu-

lated.

The first fundamental paper devoted to martingales in the plane is written

by Cairoli and Walsh [12]. Main martingale notations and important theoretical

results were formulated there. Another important work by Wong and Zakai [72]

developed further the plane martingale theory. Among other works we can men-

tion papers by Ledoux [37], Cairoli and Gabriel [11], Walsh [70], Morkvėnas [47],

Tjøstheim [67]. One of the latest works in that area is a book of Khoshnevisan

(2002) [32]. Theory for set indexed martingales was summarized in [29].

1.1.1 Martingale definition

The definition of a martingale in one dimensional case is quite simple. Let

(Ω, F , P ) be a probability space: Ω is a set, F a σ-field of subsets of Ω,

and P is a probability measure defined on F . Let I be any interval of the

form [a, b), (a, b), (a, b], [a, b] of the ordered sets {−∞, . . . , −1, 0, 1, . . . , ∞}. Let

{Fn, n ∈ I} be an increasing sequence of σ-fields Fn ⊂ F , Fn ⊂ Fn+1. Suppose

that {Zn, n ∈ I} is a sequence of random variables on Ω satisfying

(a) Zn is measurable with respect to Fn,

(b) E|Zn| < ∞,

(c) E(Zn|Fm) = Zm a.s. for all m < n, m, n ∈ I.

8



1.1. Martingale

Then, the sequence {Zn, n ∈ I} is said to be martingale with respect to {Fn, n ∈

I}. If (a) and (b) are retained and (c) is replaced by the inequality E(Zn|Fm) �
Zm a.s. (E(Zn|Fm) � Zm a.s.), then {Zn, n ∈ I} is called a submartingale

(supermartingale).

Example 1 (Branching Processes). Write X0 = 1 and define Xn+1 =∑Xn
i=1 εi,n, n = (0, 1, . . .) where εi,n are i.i.d., integrable random variables that

take values in N ∪ {0}. Fm is σ-field generated by X0, . . . , Xm, m = (0, 1, . . .),

then {µ−nXn, n � 0} is a martingale with respect to {Fn, n � 0}, where

µ = E(ε1,1). Since Fn is generated by X0, . . . , Xm then µ−mXm is Fm mea-

surable. EXn+1 = E
∑Xn

i=1 εi,n = µEXn = · · · = µn+1 < ∞ ⇒ E(µ−(n+1)Xn) = 1

and finally

E

(
Xn+1

µn+1

∣∣∣∣∣ Fn

)
= 1

µn+1E


Xn∑

i=1
εi,n

∣∣∣∣∣ Fn


 = 1

µn+1µE(Xn|Fn) =
Xn

µn
. (1.1.1)

A reverse martingale or backwards martingale {Zn, n ∈ I} is defined with

respect to decreasing sequence of σ-fields {Fn, n ∈ I}, Fn ⊃ Fn+1. It satisfies the

condition (a) and (b) and the following condition instead of (c),

(c′) E(Zn|Fm) = Zm a.s. for all m > n, m, n ∈ I.

Theory of finite reverse martingales is just a dual of finite martingales i.e. {Zi, 1 �
i � n} is a reverse martingale with respect to {Fi, 1 � i � n} if and only if

{Zn−i+1, 1 � i � n} is martingale with respect {Fn−i+1, 1 � i � n}.

Passing to higher dimension spaces, as it was mentioned in the previous sec-

tion, we must overcome two main difficulties: to define order between elements,1

choose one of the possible martingale definitions for processes indexed by sev-

eral parameters. In [12] the partial order was chosen as an answer to the first

question, that is for two elements t = (t1, t2), t′ = (t′
1, t′

2) ∈ N2
+ the relation

1Well-ordering theorem of E. Zermelo, published in 1904, states that, depending on the

chosen axioms, every set can be well-ordered. However, the structure of this well-ordering is not

usually known and/or in line with the stochastic structure of the problem at hand.

9
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Figure 1.1: The sets, generating σ-algebras.

t � t′ means that t1 � t′
1 and t2 � t′

2. Then four different types of mar-

tingales were introduced: weak martingales, 1-martingale, 2-martingale, strong

martingale. These four definitions are based on different σ-algebras. We won’t

formulate the exact definitions, only illustrate the set of indexes by which the

random field elements which generate σ-algebra are indexed. Four different sets

are presented in Figure 1.1. If we take x = (x1, x2) ∈ N2
+ then in the picture

a) set A1 = {y = (y1, y2) ∈ N2
+ : y1 � x1, y2 � x2} generate σ-algebra for weak

martingale. In the picture b) set A2 = {y = (y1, y2) ∈ N2
+ : y2 � x2} gener-

ate σ-algebra for 2-martingale. The set A3 = {y = (y1, y2) ∈ N2
+ : y1 � x1}

is analogous to the set A2 only the restrictions are applied to the firs coor-

dinate and we get sets generating σ-algebra for 1-martingale. The last set

A4 = {y = (y1, y2) ∈ N2
+ : {y1 � x1} ∪ {y2 � x2}} illustrate restrictions for

the set generating strong martingale σ-algebra.

In our work for introduction of multiparameter martingales we used D. Khosh-

nevisan book [32] where aspects of Cairoli–Walsh theory were analyzed and new

definitions of discrete index martingales were presented.

10



1.1. Martingale

At first we introduce d-parameter martingales which are the most natural

extension of 1-parameter martingales. Suppose F∗ = {Ft, t ∈ Nd
0} is a collection

of sub σ-fields of F . We say that F∗ is a filtration if s � t (t = (t1, . . . , td), s =

(s1, . . . , sd), we recall that s � t means that si � ti for i = 1, . . . , d) implies that

Fs ⊂ Ft. A d-parameter stochastic process X = {Xt, t ∈ Nd
0} is adapted to the

filtration F∗ if for all t ∈ Nd
0, Xt is Ft measurable.

Definition 1. The process X is d-parameter submartingale (with respect to F∗) if

it is adapted (to F∗), for all t ∈ Nd
0, E|Xt| < ∞ and for all t � s, E(Xt|Fs) � Xs

a.s.

A stochastic process X is a supermartingale if −X is a submartingale. It is a

martingale if it is both a supermartingale and a submartingale.

The notion of an orthomartingale is another approach to extend 1-parameter

martingale to the multiparameter case. Although, we will not use it while proving

main results, we present it as an illustration of the first step of transition from

1-parameter martingale to the multiparameter case. Consider d (one-parameter)

filtrations F1, . . . , Fd, where F i = {F i
k, k � 0}, 1 � i � d.

Definition 2. A stochastic process X = {Xt, t ∈ Nd
0} is an orthosubmartingale

if for each 1 � i � d, and all non negative integers (tj, 1 � j � d, j 	= i), ti → Xt

is a one-parameter submartingale with respect to one parameter filtration F i.

A stochastic process X is an orthosupermartingale if −X is an orthosub-

martingale. If X is both orthosubmartingale and orthosupermartingale, it is then

an orthomartingale.

For example, let us consider the case d = 2 and write the process X as X =

(Xi,j, i, j � 0). Then, X is orthosubmartingale if

• for all i, j � 0, E|Xi,j| < ∞,

• for all j � 0, the one-parameter process i → Xi,j is adapted to the filtration

F1, while for each i � 0, j → Xi,j is adapted to F2, and

11



Chapter 1. Introduction

• for all i, j � 0, E(Xi+1,j|F1
i ) � Xi,j, a.s., and E(Xi,j+1|F2

i ) � Xi,j.

Before showing the relation between martingales and orthomartingales defined

above we must define marginal filtration and commuting filtration.

Suppose X = {Xt, t ∈ Nd
0} is a d-parameter random process that is adapted

to the d-parameter filtration F∗ = {Ft, t ∈ Nd
0}. For all 1 � i � d, define

F j
k =

∨
t∈Nd

0, tj=k

Ft, k � 0.

We define F j = {F j
k , k � 0}, 1 � j � d, and we call the σ-fields F1, . . . , Fd as

marginal filtrations of F∗.

A d-parameter filtration F∗ = {Ft, t ∈ Nd
0} is commuting if for every s, t ∈ Nd

0

and for all bounded Ft-measurable random variables Y

E(Y |Fs) = E(Y |Fs�t) a.s. (1.1.2)

(s � t denote the vector whose the ith coordinate is si ∧ ti for all i = 1, . . . , d.)

Proposition 1.1.1. Suppose that F∗ is a d-parameter commuting filtration and

that X = {Xt, t ∈ Nd
0} is adapted to F∗. Then the following is equivalent

• X is orthosubmartingale with respect to the marginals of F∗; and

• X is submartingale with respect to F∗.

The exact definition of martingales, used in this thesis, will be presented in

Chapter 2, before formulating main results.

1.1.2 Martingale differences

Most often in the applications martingale differences, but not martingales are

used. On Z a definition is quite simple. A sequence {εn, n ∈ N}, E|εn| < ∞, is

called a martingale difference sequence (m.d.s.) if its expectation with respect to

increasing sub σ-field Fn ( Fn ⊂ Fn+1, Fn ⊂ F ) is zero:

E(εn|Fn) = 0 for all n. (1.1.3)

12



1.2. Central limit theorems for martingales

For example, if ξ is a martingale, then εt = ξt − ξt−1 is m.d.s.

Considering random variables with indices from Zd, d � 2 the same idea is

used: martingale differences are defined requiring that conditional expectation

with respect to σ-algebra must be equal to 0. But since in spaces of dimension

higher than 1 the notion of the past can be defined in various ways, this gives

different definitions of martingale differences. The main definitions of martingale

differences, used in this work, will be introduced in Sections 2.2, 2.3, 2.4.

1.2 Central limit theorems for martingales

The central limit theorem (CLT) is one of the most remarkable results of the

theory of probability. Some authors say that “Nowadays, the central limit theorem

is, considered to be the unofficial sovereign of probability theory” [66]. This

theorem says that a sum of a large number of random and not strongly related

summands, each of them having only small impact to the sum, has universal law of

distribution, not depending on the distribution of summands, and this distribution

is the so-called Gaussian or normal law, denoted by N(µ, σ2), with the density

function given by formula:

f(x) = 1√
2πσ

e
−(x−µ)2

2σ2 (1.2.1)

where parameter µ is the mean (location of the peak) and σ2 is the variance (the

measure of the width of the distribution).

History of CLT goes to the eighteenth century and is connected with names

of Abraham de Moivre (1733) and Pierre-Simon Laplace (1785, 1812). Later the

rigorous proofs where given by so called “St. Petersburg school” – Chebyshev,

Lyapunov, Markov. The final shape of the CLT for independent summands was

formed in works by Lindeberg, Levy and Feller.

At the same time CLT was generalized to several directions: relaxing condition

of independence, considering random variables in vector spaces, including general

topological vector spaces [68], martingales [26].

13
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Martingales can be considered as the first step from independence to dependent

random variables. First relation between martingale theory and CLT can be found

in works of Berstein in 1927 [5] and Levy in 1937 [40].

Let (Sn, Fn, n � 1) be zero mean, square-integrable martingale and let Xn =

Sn −Sn−1, n � 2 and X1 = S1 denote martingale difference. Levy’s proof involved

a direct estimation of difference between martingale distribution and standard

normal distribution. The concept of conditional variance V 2
n plays an important

role in limit theorems for martingales

V 2
n =

n∑
i=1

E(X2
i |Fi−1). (1.2.2)

In Levy’s works it was assumed to be constant a.s. for every n.

Later in 1953 Doob [18] gave the proof of Levy’s result based on characteris-

tic function and independently Ibragimov in 1963 [27] established CLT for mar-

tingales with stationary and ergodic differences. In the latter work conditional

variance is assumed to be asymptotical constant

V 2
n

s2n

p−→ 1 (1.2.3)

where s2n = E(V 2
n ) = E(S2

n).

Rosén in 1967 [61], [60], Dvoretzky in 1971 [20], Loynes (1970) [41] provided

some extensions of the theory. Brown in 1971 [10] established a martingale analog

of the Lindeberg–Feller theorem and showed that condition (1.2.3), but not sta-

tionarity or ergodicity is crucial. The Brown’s technique was later developed by

Gänssler in 1978 [22]. Scott in 1973 [62] gave an alternative proof together with

applications and extensions. McLeish in 1974 [44] introduced an elegant method

of proof which provided new CLTs and invariance principles. Later this method

was used by Morkvėnas [47] and Tjøstheim [67] to prove theorems for martingales

indexed by multi indices.

CLT for random fields was analyzed by many authors. This topic is interesting

because the main methods applied in one dimensional indices case face some diffi-

culties in higher dimension. The σ-algebras which naturally appear are not nested

14



1.3. Beveridge–Nelson decomposition

as it is in the one-dimensional case. This question has been partially answered

first by considering martingale type conditions in [49] and then by studying con-

ditionally centered random fields [31], [30]. In [16] Dedecker proved more general

result, getting the CLT for stationary random fields with lexicographical order.

1.3 Beveridge–Nelson decomposition

It is common sense to take a method and try it. If it fails, admit it frankly and

try another. But above all, try something.

Franklin D. Roosevelt (1882–1945)

There are several approaches to work with random linear field. One of the

methods used is the so-called Beveridge–Nelson (BN) decomposition, which allows

to transfer the results obtained for random fields of innovations to linear random

field. Most of the results of the thesis are obtained in this way using direct and

indirect BN decomposition. At the end of this chapter we shall discuss the recent

result of Gordin [25].

The BN decomposition is a model based method for decomposing time series

into permanent and transitory component. The origination of the method is

modelling and analysis of GDP (Gross domestic product) in economics. Mostly

analysing short run and long run aspects of the economy authors use different

models. Often this mean distinguishing between cycles in the economy and long

term trends. The key idea in terms of trend and cycle decomposition is to allow

for permanent shocks to a time series to represent a part of what is meant by

trend.

The BN decomposition was first introduced by Stephen Beveridge and Charles

R. Nelson in 1981 [8] in time series context. In [56] it is said that such identity

in the context of time series was known and used (before the paper [8]) in [21]

and [9] for finite lag polynomials. But, as often happens, “In science the credit

goes to the man who convinces the world, not the man to whom the idea first

15
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occurs. (Sir Francis Darwin)”. Now the term Beveridge–Nelson decomposition

is so widely spread in economic literature (Google scholar gives more than 1400

entries connected with the term) that to coin a new name for the simple algebraic

identity would be impossible [15].

Historically the first draft of the paper that finally became [8] was dated July

1972 and was presented at the Western Economic Association Meeting. The paper

appeared when authors rose the question: “What does the trend mean for time

series which are not deterministic in the long run, but nevertheless is ’trending’

in the sense that it grows over time?” [52]. This seemed an obvious question in

1970 by using Box and Jenkins strategy to model trending economic time series

as ARMA in their first difference. These models implied that the future diverge

from any pre-specified path. S. Beveridge and R. Nelson thought that satisfactory

definition of trend for ‘I(1)’2 time series would preserve the property of trend that

is the best estimate of where the variable will be in the distant future. So way

not to define trend as long-horizon forecast. Rather than being fixed and pre-

determined this trend will shift as new data points reveals new information about

the future. That implies that trend is the source of stochastic variation and it is

meaningful to think of parsing its fluctuation into part due to trend and a part

due to business cycles. Later they showed that the trend is always a random walk

with stationary drift and deviation from the trend.

Since the first introduction, this decomposition has proven its usefulness for

both theoretical and empirical reasons. The generalization was made by Stock

and Watson [65] for multivariate case and other authors [14], [46], [53], [1] offering

various ways for infinite sums evaluation. In the work [48] by Morley general

unified framework for exact calculation of the BN trend and cycle components for

both univariate and multivariate linear processes is provided.

2Integrated of order 1 time series. It means that if we take first difference of time series Yt:

(1 − L)Yt = Yt − Yt−1 = ∆Y we get stationary process.
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1.3. Beveridge–Nelson decomposition

In the literature the validity of BN decomposition is analyzed in several ways.

One of them can be found in [64] where assumptions are made about Wold de-

composition3 and linear filter properties. Another more convenient and simpler

method is based on factorization of linear filter, presented in Preposition 1.3.1.

From mathematical point of view very important work is paper by Phillips and

Solo [56], where BN decomposition is systematically used for limit theorems in

univariate case. This work gave an inspiration to other works generalizing results

to the multiindex case.

Let us consider a linear process Xt, defined by formula (1.0.3). There are

several approaches to investigate sums of (dependent) random variables ∑n
t=1 Xt.

One of them is based on BN decomposition of linear processes. It was system-

atically used in [56] to prove various limit theorems for sums of linear processes.

This decomposition is a simple algebraic identity and can be easily formulated.

Let, as usual, L denote the lag operator (Lεi = εi−1). Then BN decomposition

can be formulated as follows.

Proposition 1.3.1 (([8] and [56])). Let C(L) = ∑∞
k=0 ckLk. Then

C(L) = C(1) − (1 − L)C̃(L), (1.3.1)

where C̃(L) = ∑∞
k=0 c̃kLk, c̃k = ∑∞

j=k+1 cj. If p � 1, then

∞∑
j=1

jp|cj|p < ∞ ⇒
∞∑

k=0
|c̃k|p < ∞ and |C(1)| < ∞.

If 0 < p < 1, then
∞∑

j=1
j|cj|p < ∞ ⇒

∞∑
k=0

|c̃k|p < ∞.

Remark 1.3.1. For linear processes such as (1.0.3), BN decomposition (1.3.1) yields

directly the martingale approximation to the partial sum process of stationary

time series [26].
3In time series analysis, Wold decomposition theorem implies that any stationary discrete

time stochastic process can be decomposed into a pair of uncorrelated processes, one determin-

istic, and the other being a moving average process.
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Remark 1.3.2. In [8] the algebraic decomposition (1.3.1) was used explicitly to

decompose aggregate time series, but the relations between coefficients cj and c̃j

were obtained in [56].

1.3.1 BN decomposition generalization in [55]

Here we will introduce BN decomposition, formulated by V. Paulauskas in [55].

We consider a linear random field (1.0.2) with d = 2. Let L2 = (L1, L2) be the lag

operator defined by L1εt,s = εt−1,s, L2εt,s = εt,s−1, then linear field can be written

as Xt = Φ(L2)εt with

Φ(L2) =
∑

k,l�0
ϕk,lL

k
1L

l
2.

To formulate the BN decomposition, we need the following notation:

µ1 = Φ(1, 1) =
∑

k,l�0
ϕk,l, (1.3.2)

A2(L2) = Φ∗(L2)∆2(L2), ∆2(L2) = (1 − L1)(1 − L2),

Φ∗(L2) =
∑

k,l�0
ϕ∗

k,lL
k
1L

l
2, ϕ∗

k,l =
∑

i�k+1, j�l+1
ϕi,j,

A1(L2) = B(L1)∆1(L1) + D(L2)∆1(L2), ∆1(Li) = (1 − Li),

B(L1) =
∑
j�0

bjL
j
1, bj = ϕ∗

j,−1 =
∑

i�j+1, k�0
ϕi,k,

D(L2) =
∑
j�0

djL
j
2, dj = ϕ∗

−1,j =
∑

i�0, k�j+1
ϕi,k.

We denote by Lq,p the condition

∑
k,l�0

(k∗l∗)q|ϕk,l|p < ∞,

where i∗ = i for i � 1 and 0∗ = 1.

Theorem 1.3.2 ([55], [43]). The following identity holds:

Φ(L2) = µ1 + A2(L2) − A1(L2). (1.3.3)
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1.3. Beveridge–Nelson decomposition

The relations

∑
k,l�0

|ϕ∗
k,l|p < ∞,

∑
j�0

|bj|p < ∞,
∑
j�0

|dj|p < ∞, µ1 < ∞ (1.3.4)

hold if either condition Lp,p in the case 1 � p < ∞ or condition L1,p in the case

0 < p < 1 is satisfied.

From (1.3.3), if we have summing sets rectangles Dn = {i = (i1, i2) ∈ Z2 : 1 �
i1 � n1, 1 � i2 � n2} we get (1.0.5) with the remainder term, given by formula

where

Rn = ξn1,n2 − ξn1,0 − ξ0,n2 + ξ0,0

+ ηn1,n2 − η0,n2 + ζn1,n2 − ζn1,0, (1.3.5)

and

ξt,s = Φ∗(L2)εt,s =
∑

k,l�0
ϕ∗

k,lεt−k,s−l,

ηt,n2 =
n2∑

s=1
ε̃t,s, ε̃t,s = B(L1)εt,s =

∑
j�0

bjεt−j,s,

ζn1,s =
n1∑

t=1
ε̂t,s, ε̂t,s = D(L2)εt,s =

∑
j�0

djεt,s−j.

If the set Dn is a square we can replace n1, n2 in (1.3.5) by n and get the expression

of remainder. Although, the remainder term in both cases (rectangles and squares)

have the same form, the proof of limit theorems, as can be seen in [55], meets

bigger difficulties in rectangles case.

1.3.2 BN decomposition generalization in [43]

Earlier than the paper [55] appeared, the BN decomposition in multivariate case

(that is (1.3.3) in case d = 2), but without relation (1.3.4) was given in [43]. Now

we formulate this result. A random linear field given by (1.0.2) can be written as

Xt = Φ(Ld)εt (d denote dimension of lag operator Ld = (L1, . . . , Ld)) with

Φ(L1, . . . , Ld) =
∞∑

i1=0
· · ·

∞∑
id=0

ϕ(i1, . . . , id)Li1
1 . . . Lid

d . (1.3.6)
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Assume that
∞∑

i1=0
· · ·

∞∑
id=0

∞∑
k1=i1+1

· · ·
∞∑

kd=id+1
|ϕ(k1, . . . , kd)| < ∞.

For example, this condition is satisfied if

|ϕ(i1, . . . , id)| < C(i1 × . . . × id)−2−ε

for some ε > 0 and

Φ(1, . . . , 1) =
∞∑

i1=0
· · ·

∞∑
id=0

ϕ(i1, . . . , id) < ∞.

The following lemma represent BN decomposition in d-dimensional case.

Lemma 1.3.3. Let Γd be the class of all 2d subsets γ of {1, . . . , d}. Let Bj = Lj

if j ∈ γ and Bj = 1 if j /∈ γ; we have

Φ(L1, . . . , Ld) =
∑

γ∈Γd

{ ∏
j∈γ

(Lj − 1)
}
Φγ(B1, . . . , Bd), (1.3.7)

where it is assumed that
∏

j∈∅ = 1, and

Φγ(B1, . . . , Bd) =
∞∑

i1=0
· · ·

∞∑
id=0

ϕγ(i1, . . . , id)Bi1
1 . . . Bid

d , (1.3.8)

ϕγ(i1, . . . , id) =
∞∑

s1=i1+1
· · ·

∞∑
sd=id+1

ϕ(s1, . . . , sd) (1.3.9)

where sums go over indexes sj, j ∈ γ, whereas sj = ij if j /∈ γ.

Remark 1.3.3. This lemma was generalized in [45] by letting summation indices

ij, j = 1, . . . , d vary not from 0, but from −∞.
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1.3. Beveridge–Nelson decomposition

1.3.3 Martingale-coboundary representation

In this subsection we present another method for proving limit theorems for sta-

tionary random sequence introduced in [24] and then extended for random fields

in [25]. The idea is that any stationary random sequence can be written as the

sum of martingale difference sequence and a coboundary sequence. This means

that the problem is reduced to limit theorem for sums of martingale differences

and the proof that coboundary sequence is negligible. But since the author in

[25] wrote that application of this representation for limit theorems is postponed

for the future research, at present we are not able to comment what relation is

between martingale-coboundary representation and the indirect application of BN

decomposition, which is used in the thesis.

We formulate martingale-coboundary representation in its simple one-

dimensional form. Let ξ = {ξn, n ∈ Z} be a stationary (in the strict sense)

random sequence. Under certain assumptions [24] it can be represented in the

form

ξn = ηn + ζn,

where η = {ηn, n ∈ Z} is a stationary sequence of martingale differences (this

means that E(ηn|ηn−1, ηn−2, . . .) = 0 for all n ∈ Z), and ζ = {ζn, n ∈ Z} is the

so-called coboundary (or coboundary sequence) which can be written as ζn =

θn − θn−1, n ∈ Z, by means of a certain stationary sequence θ = {θn, n ∈ Z}. The

random sequences ξ, η, θ in this representation are stationary connected, that is,

the sequence {(ξn, ηn, θn), n ∈ Z} of random vectors is stationary. While studying

the asymptotic distributions of ∑
ξn, in many cases the contribution of the ∑

ζn

into the sum can be neglected and extended to the limit theorems originally known

for ∑
ηn of martingale differences only (notice that the limit theory for martingale

differences is well developed). Sometimes the sequence ζ is negligible even if it

doesn’t satisfy coboundary definition.

Clearly the method proposed in [25] is rather general and effective but there are

some merits for BN decomposition which is used in this work. BN decomposition
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method can be applied not necessarily for stationary sequence, does not depend on

martingale definition and can give the exact expression for simple set of summation

like rectangles.
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Chapter 2

CLT for linear martingale

difference random fields

2.1 Introduction

In the paper [55] some results of [56] were generalized to linear random fields with

innovations which are i.i.d. Here, we take random field Xt defined by (1.0.2) and

write it in the case d = 2. Let

Xt =
∑
k�0

ϕkεt−k, t = {t1, t2} ∈ Z2, k = {k1, k2} ∈ Z2 (2.1.1)

and let coefficients {ϕk,k � 0, k ∈ Z2} and a random field of innovations {εt, t ∈

Z2} be such that a random field {Xt, t ∈ Z2} is well defined and stationary. For

partial order between vectors in Sections 2.2 and 2.3 symbols � and < will be

used: t � s will mean t1 � s1 and t2 � s2, while t < s will mean t1 < s1 and

t2 < s2. In Section 2.4 we will use lexicographical order, which will be introduced

later.

In the above cited paper [55] it was demonstrated that the BN decomposition

for linear random fields (exact formulation in the case d = 2 is presented in

Section 1.3.1) is useful when proving limit theorems for sums ∑
t∈Dn Xt, where

Dn is some subset of Zd. Namely, this representation in the case of rectangles

Dn = {i ∈ Z2 : 1 � i � n, } allows to write sum of random linear field (2.1.1) in

the form (1.0.5) which is handy for proving limit theorems.

In this chapter we continue the program started in [55] to generalize the results

from [56] to linear fields. If in all above mentioned papers [43], [55], and [3] inno-
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vations were assumed independent, now we consider innovations forming a field

of martingale differences. It is well known that generally dependence structure

is more complicated for random fields comparing with random processes and the

same can be said, in particular, about martingale type dependence. If martingales

and martingale differences on line are well studied and there is a lot of results on

the CLT for martingales, different situation is on plane (or in spaces with higher

dimensions), there are several ways to define martingales and martingale differ-

ences and random fields with such type of dependence are less investigated. In

Sections 2.2 and 2.3 we present result published in [4] where CLT was proved for

random linear fields with martingale differences innovations defined in [49] and

[67]. In Section 2.4 we also take the innovations of linear random field martingale

differences, but the difference is that, they satisfy the requirements of CLT for

random fields in [16]. Our strategy is the same as in [56]: to take a result with

the CLT proved for ∑
t∈Dn εt in (1.0.5) and to prove that Rn with an appropriate

normalization tends in probability to zero.

The chapter is organized as follows. In Section 2.2 we consider innovations,

for which CLT is proved in [67] and modified in [28]. Next Section 2.3 is based on

the approach used in [50]. In the last Section 2.4 we consider innovation which

satisfy results formulated in [16].

2.2 CLT for linear random fields with martin-

gale differences defined in [67]

As it was mentioned in the introduction, there are several ways to define mar-

tingale differences on the plane or spaces with higher dimension. In this section

we shall follow the approach from the papers [67] and [47], where CLT for lattice

martingale arrays was proved. These results can be considered as generalization

of classical results of Hall and Heyde, see [26]. Later in [28], CLT for lattice

martingale arrays under conditional Lindeberg condition was established.
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2.2.1 Definitions and auxiliary results

The framework will be essentially the same as in [29] and [28], now we shall present

the main definitions, referring to these sources for the details.

Although we shall deal mainly with martingales on plane, as in [28] let us

consider random variables indexed by multi-indices from Zd. Let us denote Ta :=

{x ∈ Zd : a � x}, a ∈ Zd and V [a,x] := {y ∈ Zd : a � y � x}, a,x ∈ Zd. A

random field will be denoted by Y = {Yx,x ∈ Ta}. It can be easily seen that

there exists one to one correspondence between elements from Ta and rectangles

V [a,x], therefore a process Y can be analyzed as indexed by rectangles or by the

elements of indexing set A where

A = {V [a,x] : x ∈ Ta}, (2.2.1)

i.e. Yx = YV [a,x] for V [a,x] ∈ A. This is a particular example of indexing

collection, in [29] one can find a general definition of formal indexing collection

A. We define a semi-algebra C to be the class of all subsets of Ta having form:

C = A\B, A ∈ A, B ∈ A(u),

where A(u) is the class of finite unions of sets from A.

Now, let (Ω, F , P ) be any complete probability space. A filtration (indexed

by A) is a class of complete sub-σ-fields of F {FA, A ∈ A}, which satisfies the

following conditions:

• If A, B ∈ A, and A ⊆ B then FA ⊆ FB.

• Monotone outer-continuity: F⋂
Ai

= ⋂ FAi
for all decreasing sequence (Ai)

in A.

For consistency of definitions, in what follows, if T /∈ A, we define FT = F .

If F1 and F2 are two σ-algebras from F , then σ-algebra F1 ∨ F2 is generated

by F1 ∪ F2. Thus, if B ⊂ A(u) then FB = ∨
A∈A, A⊆B FA. Let us define the
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so-called strong past σ-field (this term is used in [28], in [29] it is called strong

history of C)

G∗
C =

∨
B∈A(u), B∩C=∅

FB, when C ∈ C\A.

In some cases G∗
C has rather simple structure, for example, if C = {x}, where

x ∈ Ta\{a}, then G∗
{x} = ∨d

i=1 F i(xi −1). Here F i(t) = ∨
z∈Ta, zi�t FV [a,z] for t ∈ Z

and i = 1, . . . , d.

Definition 3. A stochastic process Y = {YA, A ∈ A} is a collection of random

variables indexed by A and is said to be adapted if YA is FA measurable, for every

A ∈ A. Y is said to be integrable if E|YA| < ∞ for every A ∈ A.

For stochastic processes under consideration, additivity will be imposed in

an almost sure sense, not path-wise. A stochastic process Y = {YA, A ∈ A} is

additive (see [29]) if it has an (almost sure) additive extension to C (that is, if

C, C1, C2 ∈ C with C = C1 ∪ C2 and C1 ∩ C2 = ∅ then almost surely

YC1 + YC2 = YC (2.2.2)

and Y∅ = 0). We recall that A ⊂ C.

Here is an example demonstrating the usefulness of the additivity property for

a process Y = (YA, A ∈ A). Let us take a set (y,x] = ∏d
i=1(yi, xi] where x,y ∈ Ta.

Clearly, this set is from C and the process Y can be presented as

Y(y,x] =
∑

i=1...d, εi=0,1
(−1)d−

∑d

i=1 εiYV [a,(y1+ε1(x1−y1),...,yd+εd(xd−yd))]. (2.2.3)

It can be easily seen that this representation satisfies additivity property (2.2.2)

and the process Y is additive.

Using the additivity property sums of A-indexed processes can be written more

conveniently. Here and in what follow we denote Y(y,y] = Y{y}. Since A consists

of rectangles and they can be written as finite union of disjoint elements from C,

V [a,x] = ⋃
y∈V [a,x]{y}. Using the additivity property one can write

YV [a,x] =
∑

y∈V [a,x]
Y{y}. (2.2.4)
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Moreover, from (2.2.4) it follows that for any a � y � x random variable Y(y,x]

given in (2.2.3) is FV [a,x] measurable. Now we can proceed to definitions of a

lattice martingale (LMG) and a strong lattice martingale.

Definition 4. Let Y = {YA, A ∈ A} be an additive, adapted, integrable, A-

indexed process. We say that

• Y is LMG if for all A and B in A, A ⊆ B implies E(YB|FA) = YA;

• Y is a strong LMG if for all C ∈ C E(YC |G∗
C) = 0.

In our case, it is more important to have the definition of LMG for processes

indexed by points, but not by sets, therefore the following Proposition 2.2.1 is

useful.

Proposition 2.2.1 ([28]). Let Y = {YA, A ∈ A} be an A-indexed process. If,

additionally, the process Y is integrable, adapted and additive, then Y is strong

LMG if and only if ∀x ∈ Ta, E(Yx|G∗
x) = 0.

When C consists of points C = {C : C = {x},x ∈ Ta} then in [47], [33] strong

LMG are called martingale differences. In this section martingale differences will

be called strong LMG.

CLT for lattice martingales (Yx,x ∈ V [1, ∞]) was proved in [67]. Those mar-

tingales are strong LMG in terminology formulated above.

Let a countable indexing collection A be as in (2.2.1). The sequence of strong

LMG can be defined as follows. Let (Dn), n ∈ N, be a sequence of finite increasing

sets from A, Dn ⊂ Dn+1, n � 1, and An := {A : A ⊂ A, A ∈ Dn}, Cn is the

class defined in the same way as C, only in the definition instead of class A(u) we

use the class An(u) – finite union elements from An. Thus, Cn is the class of all

subsets from Ta, having the form A\B, where A ∈ An, B ∈ An(u).

Definition 5. (Y n
A , Fn

A : A ∈ A, A ⊆ Dn, n � 1) is called a strong lattice mar-

tingale array if for each n � 1 (Fn
A)A∈An is a filtration (i.e. it satisfies condition
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Chapter 2. CLT for linear martingale difference random fields

A, B ∈ An, A ⊆ B ⇒ Fn
A ⊆ Fn

B) and (Y n
A )A∈An is a strong LMG relative to

(Fn
A)A∈An .

It is quite easy to construct a strong LMG array while having strong LMG

on some set. If a process (YA)A∈A is a strong LMG associated with filtration

(FA)A∈A, then for all n � 1, Y n
A = n−d/2YA is a strong LMG associated with

filtration Fn
A = FA when A ⊆ Dn and Fn

A = ∅ when A � Dn. Thus (Y n
A , Fn

A : A ∈

A, A ⊆ Dn, n � 1) is a strong lattice martingale array.

In what follows, sets Dn will be taken of the form

Dn = {x ∈ Zd, a � x � k(n)}, k(n) = (k1(n), k2(n), . . . , kd(n)), (2.2.5)

where ki(n) are non-decreasing functions of n and min1�i�d{ki(n)} → ∞ as n →

∞. Denote |Dn| := k1(n)k2(n) · · · kd(n). Thus, sets Dn are rectangles and the

lengths of sides are functions of n. More general case, where the sets Dn are

indexed by n ∈ Zd will not be analyzed in this chapter. Sometimes, to emphasize

the upper right corner, we use notation Dk1...kd
, which denote rectangle with upper

right corner at the point (k1, . . . , kd). Let us denote

Zn =
∑

x∈Dn

Y n
x .

For our formulations we need the notion of stable convergence.

Definition 6. We say that a sequence of random variable (Yn) converges to a

random variable Y stably if there exists Y ′ with the same distribution as Y and

such that exp(itYn) weakly converge to exp(itY ′) = Z(t) in L1 and E(Z(t)1E),

as a function of t, is continuous ∀E ∈ F . Here L1 denotes the space of random

variables Y with E|Y | < ∞.

We say that (FA, A ∈ A) satisfies conditional independence property if

E(E(·|FA)|FB) = E(·|FA∩B) for A, B ∈ A. (2.2.6)

In [26], [44] the CLT for martingale differences in one-dimensional case is

considered. The results were extended to multidimensional case in [47], [67]. As
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it was noted above, martingale differences used in [67] are strong LMG, therefore

the result from [67] can be formulated as follows.

Theorem 2.2.2. ([67]) Let (Y n
A , Fn

A : A ∈ A, A ⊆ Dn, n � 1) be a strong LMG

array and let η2 be some bounded random variable. Suppose that the following

conditions are satisfied

max
x∈Dn

|Y n
x | P−→

n→∞ 0, (2.2.7)
∑

x∈Dn

(Y n
x )2 P−→

n→∞ η2, (2.2.8)

E
(
max
x∈Dn

(Y n
x )2

)
is bounded, (2.2.9)

∀n � 1 ∀A ∈ An, Fn
A ⊆ Fn+1

A . (2.2.10)

Then Zn
L−→

n→∞ Z stably where the random variable Z has the characteristic function

E(exp(−1
2t
2η2)).

Similar result (only using different notations) was proved in [47].

Checking of conditions (2.2.7), (2.2.9) is not an easy task. Therefore in [28]

the conditional Lindeberg condition was introduced. Let us denote by Gn∗
x a

sequence of strong past σ-fields (Gn
x)∗ of x associated with the filtration (Fn

A)A∈An .

Introduce the following conditions: for all x ∈ Cn and for some bounded random

variable η2

(V n
Dn

)2 :=
∑

x∈Dn

E((Y n
x )2|Gn∗

x ) P−→
n→∞ η2, (2.2.11)

∀ε > 0,
∑

x∈Dn

E((Y n
x )21{|Y nx |>ε}|Gn∗

x ) P−→
n→∞ 0. (2.2.12)

(2.2.12) is called conditional Lindeberg condition. Conditions (2.2.7), (2.2.8),

(2.2.9) of Theorem 2.2.2 can be changed by (2.2.11) and (2.2.12) and the following

theorem was proved in [28].

Theorem 2.2.3 ([28]). Let (Y n
A , Fn

A : A ∈ A, A ⊆ Dn, n � 1) be a strong

LMG array. Assume that (2.2.10) holds and that for all n � 1 (FA)A∈A sat-

isfies conditional independence property. Under assumption (2.2.11), (2.2.12) we
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Chapter 2. CLT for linear martingale difference random fields

have Zn
L−→

n→∞ Z stably where the random variable Z has the characteristic function

E(exp(−1
2t
2η2)).

2.2.2 Results and proofs

Now we are able to formulate our result for linear fields. Denote

Sn = 1√
|Dn|

∑
t∈Dn

Xt. (2.2.13)

Theorem 2.2.4. Let {Xt, t ∈ Z2} be a linear random field defined in (2.1.1),

coefficients ϕk satisfy L2,2. Suppose that {εA, A ∈ A}, where εA = ∑
t∈A εt, is a

strong LMG, Eε2t = 1 and the following conditions are satisfied:

∑
x∈Dn

E

(
ε2x

|Dn|

∣∣∣∣∣ Gn∗
x

)
P−→

n→∞ η2, (2.2.14)

∀ε > 0,
∑

x∈Dn

E

(
ε2x

|Dn|1{|εnx |>ε}

∣∣∣∣∣ Gn∗
x

)
P−→

n→∞ 0. (2.2.15)

Here for x ∈ Cn Gn∗
x is a strong past σ-field of x associated with the filtration

(Fn
A)A∈An and η2 is some bounded random variable. Also assume that ∀n � 1

(Fn
A)A∈An satisfies the conditional independence property (2.2.6) and ∀n � 1, ∀A ∈

An, Fn
A ⊆ Fn+1

A . Then Sn
L−→

n→∞ S stably where the random variable S has the

characteristic function E(exp(−1
2t
2η2µ21)).

Proof. The main tool in the proof is the BN decomposition explained in Section

1.3.1. Using this decomposition we have

∑
t∈Dn

Xt = µ1Zn + Rn, (2.2.16)

where µ1 is defined in (1.3.2),

Zn =
∑

t∈Dn

εt (2.2.17)

and Rn has the form as in (1.3.5)

Rn = ξk1(n),k2(n) − ξk1(n),0 − ξ0,k2(n) + ξ0,0

+ ηk1(n),k2(n) − η0,k2(n) + ζk1(n),k2(n) − ζk1(n),0.
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We use normalization by |Dn|−1/2 with |Dn| = k1(n)kn(n) and get new vari-

ables ε̄n
x = |Dn|−1/2εx. Thus, from (2.2.16) we have

Sn = 1√
|Dn|

∑
t∈Dn

Xt = µ1Z̄n + R̄n, Z̄n = 1√
|Dn|

Zn, R̄n = 1√
|Dn|

Rn.

The proof of the theorem consists of two steps: (i) the proof of CLT for Z̄n, (ii)

the proof that R̄n → 0.

(i) The CLT result for Z̄n will be proved by using Theorem 2.2.3. Let us

consider the sum Z̄n = ∑
x∈Dn

ε̄n
x and check the assumptions of Theorem 2.2.3.

Conditions (2.2.14) and (2.2.15) ensure that (2.2.11) and (2.2.12) are satisfied.

Note that, if {εA, A ∈ A} is a strong LMG then the normalized process formed

by variables ε̄n
x will also have the same property with the filtration defined as

follows: Fn
V [a,x] = FV [a,x], for all V [a,x] ⊂ Dn, V [a,x] ∈ A. All conditions of

Theorem 2.2.3 are satisfied, therefore we get the CLT for Z̄n.

(ii) Next step is to show that |Dn|−1/2Rn
P−→ 0. We shall prove this relation

separately for each term ξt, ηt, ζt with t = (t1, t2) and t1 ∈ {0, k1(n)}, t2 ∈

{0, k2(n)}.

From the definition of ξt1,t2 using Chebyshev inequality we can write

P

(∣∣∣∣∣
∑

s1,s2�0
ϕ∗

s1,s2(ε̄
n
t1−s1,t2−s2)

∣∣∣∣∣ � ε

)
� 1

ε2
E

( ∑
s1,s2�0

ϕ∗
s1,s2

εt1−s1,t2−s2√
|Dn|

)2

� 1
ε2|Dn|

∑
s1,s2�0

ϕ∗2
s1,s2Eε2t1−s1,t2−s2 � 1

ε2|Dn|Eε2t1,t2

∑
s1,s2�0

ϕ∗2
s1,s2 → 0,

as n → ∞, |Dn| → ∞. In the second inequality mixed products disappear due to

the strong LMG property. Namely, we use

E(εt−1εt) = E(εt−1E(εt|G∗
t )).

Let εt be a strong LMG, A = {t, t′ ∈ Z2 : t1 	= t′
1, t2 	= t′

2}. Consider sums

J = E
∑
A

ctct′εtεt′ ,

where ct is some constant which depends on t.
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Take σ-algebras G∗
t = F1(t1 − 1) ∨ F2(t2 − 1) and sets

A1 = {t, t′ ∈ Z2 : {t1 > t′
1} ∪ {t1 = t′

1, t′
2 < t2}},

A2 = {t, t′ ∈ Z2 : {t1 < t′
1} ∪ {t1 = t′

1, t′
2 > t2}},

A = A1 ∪ A2, A1 ∩ A2 = ∅,

then

J = J1 + J2,

where

J1 =
∑
A1

ctct′E(εt′E(εt|G∗
t )), J2 =

∑
A2

ctct′E(εtE(εt′|G∗
t′)).

Actually there are 8 different relations between indexes t′
1, t′

2, t1, t2, but it is

easy to see that only two different σ-algebra G∗
t′ , G∗

t are needed. After applying

Proposition 2.2.1 we get that all terms in J1 and J2 are equal 0 and J = 0.

Now let us consider ηt with t1 ∈ {0, k1(n)}, t2 = k2(n).

P

(∣∣∣∣∣
k2(n)∑
t2=1

∑
s1�0

bs1 ε̄n
t1−s1,t2

∣∣∣∣∣ � ε

)
� 1

ε2|Dn|E
( k2(n)∑

t2=1

∑
s1�0

bs1εt1−s1,t2

)2

= 1
ε2|Dn|

∑
s1�0

b2s1

k2(n)∑
t2=1

Eε2t1−s1,t2 � 1
ε2k1(n)

Eε2t1,k2(n)
∑
s1�0

b2s1 → 0,

when n → ∞. Mixed products disappear because of strong LMG properties by

using the same consideration as above.

The proof for ζt is the same as for ηt.

Thus, we get that R̄n
P−→ 0, and the proof of the theorem is complete.

It was shown in [28] that in the case of strong LMG the conditions (2.2.11),

(2.2.12) imply (2.2.7), (2.2.8), (2.2.9), therefore the following result can be formu-

lated:

Theorem 2.2.5. Suppose that a random field {Xt, t ∈ Z2} is of the form (2.1.1),

coefficients ϕk satisfy L2,2, {εA, A ∈ A}, and εA = ∑
t∈A εt are strong LMG,

32



2.2. CLT for linear r.f. with martingale differences defined in [67]

Eε2t = 1 and the following conditions are satisfied:

max
x∈Dn

|εx|
|Dn| 1

2

P−→
n→∞ 0,

∑
x∈Dn

ε2x
|Dn|

P−→
n→∞ η2,

E

(
max
x∈Dn

ε2x
|Dn|

)
is bounded,

η2 is some bounded random variable. Additionally, for ∀n � 1, (Fn
A)A∈An condi-

tional independence condition (2.2.6) is satisfied and ∀n � 1, ∀A ∈ An, Fn
A ⊆

Fn+1
A . Then Sn

L−→
n→∞ S stably where the random variable S has the characteristic

function E(exp(−1
2t
2η2µ21)).

Proof. The proof is similar to the proof of Theorem 2.2.4. Recalling the direct

application of BN decomposition and constructing the sequence ε̄n
x as in the proof

of Theorem 2.2.4, we apply Theorem 2.2.2 and obtain that CLT is valid for Z̄n.

The expression of residual Rn does not depend on additional assumptions for ε̄x.

Since they are martingale differences we apply the proof of Theorem 2.2.4.

Remark 2.2.1. As it was noted in the Introduction, using direct method of appli-

cation of BN decomposition in the proof of the CLT we need stronger conditions

on the coefficients {ϕk} comparing with indirect method of BN decomposition.

One can check that applying indirect method and Lemma 2.3.4 one can prove

Theorems 2.2.4 and 2.2.5 under weaker condition L0,1 instead of L2,2. Thus essen-

tially the results of Section 3 demonstrate that like in the case of i.i.d. innovations

the indirect method of application of BN decomposition is better in the proof of

the CLT.
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2.3 CLT for linear random fields with martin-

gale differences defined in [50]

Another approach to define martingale differences on the plain was proposed in

[49], [50]. Nahapetian and Petrosian [50] derived an asymptotic normality result

for martingales on the lattice Zd directly from the CLT in Dvoretsky [20] for

discrete time martingales.

2.3.1 Definitions and auxiliary results

Let (Ω, F , P ) be a probability space and let W be a space of all finite subsets of

Zd, d � 1. By SV , V ∈ W, we denote random variables and FV , V ∈ W , stands

for a set of σ-algebra with the partial order:

FV ⊂ F , V, V̄ ∈ W; V̄ ⊂ V ⇒ FV̄ ⊂ FV , F∅ = {∅,Ω}.

If for all V ∈ W random variables SV are FV measurable, then the family S =

(SV , FV ), V ∈ W, is called a stochastic family.

Definition 7. A stochastic family S = (SV , FV ) is called a martingale if for any

V̄ , V ∈ W, V̄ ⊂ V , the following relations hold

E|SV | < ∞ and E(SV |FV̄ ) = SV̄ a.s. (2.3.1)

A special case of a martingale is a martingale differences field.

Definition 8. A random field ξt, t ∈ Zd, is called a martingale difference random

field if for all t ∈ Zd

E|ξt| < ∞ and E(ξt|ξs, s ∈ Zd\{t}) = 0 a.s.

An example of martingale difference random field is given in Example 2.
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Example 2. Let X be a finite subset of R1, X = ⋃N
i=1 Xi, Xi ∩ Xj = ∅, when

i 	= j and ∑
x∈Xi

x = 0, i = 1, 2, 3, . . . , N . Consider a random field {ξt, t ∈ Zd},

such that conditional probability

qx̄
t (x) = P (ξt = x | ξs = x̄s, s ∈ Zd\{t}),

t ∈ Zd, x ∈ X, x̄ = (x̄s, s ∈ Zd\{t})

takes the constant value qx̄
t,j, when x ∈ Xj, j = 1, . . . , N , i.e.

qx̄
t (x) = qx̄

t,j, x ∈ Xj, j = 1, . . . , N.

This random field {ξt, t ∈ Zd} is a martingale difference random field, because

E(ξt|x̄) =
∑
x∈X

xqx̄
t (x) =

N∑
i=1

∑
x∈Xi

xqx̄
t (x) =

N∑
i=1

qx̄
t,i(x)

∑
x∈Xi

x = 0.

More general definition of martingale difference field can be given.

Definition 9. A random field {ξt, t ∈ Zd} is called a martingale difference random

field with respect to some partially ordered set of σ-algebras {FV , V ∈ U}, U ⊂ W,

if

E|ξt| < ∞ and for all V ∈ U , t /∈ V E(ξt|FV ) = 0 a.s.

Remark 2.3.1. We have defined a strong LMG as a function indexed by the sets

in Section 2.2. In this section martingale differences are random variables indexed

by points. If we take V [a,x] ⊂ A and strong LMG YV [a,x], from (2.2.4), Yx

where x ∈ C satisfy condition E(Yx|G∗
x) = 0. According to Proposition 2.2.1 if

{εt, t ∈ Zd} are martingale differences as defined in his section or i.i.d., then

YV [a,x] =
∑

t∈V [a,x]
εt, (2.3.2)

is a strong LMG.

Proposition 2.3.1 ([50]). Let {ξt, t ∈ Zd} be a random field, E|ξt| < ∞, t ∈ Zd

and let SV = ∑
t∈V ξt, V ∈ W. If a stochastic family (SV , σ(ξt, t ∈ V )), V ∈ W,

forms a martingale then the random field {ξt, t ∈ Zd} is a martingale difference

random field. If a random field {ξt, t ∈ Zd} is a martingale difference random field

then the stochastic family (SV , σ(ξt, t ∈ V )), V ∈ W, represents a martingale.
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Let Ω = {(xt, t ∈ Zd)} be a set of all functions defined on Zd and xt ∈ X,

X ⊆ R1. B is σ-algebra generated by the cylindrical subsets of Ω. For any V ∈ W

denote by BV the σ-algebra of cylindrical subsets with the base XV .

Denote by τh,h ∈ Zd the group of translations,

(τhx)t = xt+h, h ∈ Zd, x ∈ Ω.

Let T be σ-algebra of invariant Ω subsets: T = {A ∈ B : τhA = A}.

A random field {ξt, t ∈ Zd} with distribution P is called a stationary if for

any A ∈ T and h ∈ Zd

P (τhA) = P (A).

(In [49] such field is called homogeneous.)

A random field {ξt, t ∈ Zd} is ergodic, if ∀A ∈ T , P (A) = 0 or P (A) = 1.

We say that the CLT holds for a random field {Xt, t ∈ Zd, E|Xt|2 < ∞} if

lim
n→∞ P

(
SDn − ESDn

(Var(SDn))
1
2

< z

)
= 1√

2π

∫ z

−∞
e− u2

2 du, (2.3.3)

where

SDn =
∑

t∈Dn

Xt, (2.3.4)

and Dn is defined in (2.2.5).

The next theorem is proved in [50].

Theorem 2.3.2. Let {ξt, t ∈ Zd} be a stationary, ergodic martingale difference

random field and 0 < σ2 = Eξ20 < ∞, then CLT for this field holds.

Remark 2.3.2. In [50] CLT is proved in the case where sets Dn are squares with

the side of length n. After inspection of the proof one can see that the result is

true for rectangles as defined in (2.2.5).

2.3.2 Results and proofs

Using Theorem 2.3.2 and Remark 2.3.2 the following theorem for linear field will

be proved.
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Theorem 2.3.3. Suppose that a random field is of the form (2.1.1) with d = 2

and {εt} form a stationary ergodic martingale difference random field and 0 <

σ2 = Eε20 < ∞. If coefficients ϕk satisfy L0,1 then the CLT for the linear random

field (2.1.1) is valid.

Remark 2.3.3. One could ask a question if a linear field (2.1.1) with increments

{εt, t ∈ Z2} which are martingale differences is a martingale? The answer is no,

and it can be seen from the relation

Xt+1,s+1 =
∑

k,l�0
ϕk,lεt+1−k,s+1−l =

∑
k,l�1

ϕk,lεt+1−k,s+1−l + ϕ0,0εt+1,s+1

+
∑

k=0,l>0
ϕk,lεt+1,s+1−l +

∑
k>0,l=0

ϕk,lεt+1−k,s+1. (2.3.5)

The most important is the first sum, since the other three terms after applying

conditional mean will be equal to 0. Therefore,

E(Xt+1,s+1|FVt,s) =
∑

k,l�1
ϕk,lεt+1−k,s+1−l =

∑
i,j�0

ϕj+1,i+lεt−j,s−i 	= Xt,s,

where Vt,s = {(i, j) : (i, j) ∈ Z2, i � t, j � s}.

The following lemma will be used in the proof of the theorem. For n ∈ Z2

denote |n| = n1n2.

Lemma 2.3.4 ([51],[55]). Let {bj, j ∈ Z2} be real numbers such that

∑
j∈Z2

|bj| < ∞,
∑
j∈Z2

bj = 0.

Then for any 1 < p � 2

1
|n|

∑
j∈Z2

∣∣∣ ∑
1−j�i�n−j

bi
∣∣∣p → 0, when min {n1, n2} → ∞.

Remark 2.3.4. In [15] was shown that requirement in Lemma 2.3.4 for p, p � 2 is

superfluous. We need only p > 1.

Proof of Theorem 2.3.3. The main tool in the proof, once again, will be BN

decomposition, that is, we use formula (2.2.16). Only now the so-called indirect
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BN decomposition will be used, when instead of using explicit expression of Rn

we will use only the fact that µ1Zn (µ1 and Zn as in (2.2.17)) well approximate

SDn from (2.3.4).

The requirements for {εt, t ∈ Z2} are the same as in Theorem 2.3.2, therefore

after proper normalization the CLT is valid for Zn. Let us define:

ωn = SDn − µ1Zn.

It is necessary to show that

ωn

µ1σ
√

|Dn|
P−→ 0

and this will follow from the relation

P (ωn > εµ1σ
√

|Dn|) � 1
ε2µ21σ

2|Dn|Eω2
n → 0. (2.3.6)

For this purpose Lemma 2.3.4 will be used. In order to apply it, we set ϕk,l = 0

if k < 0 or l < 0. Denote b0,0 = ϕ0,0 − µ1, bi,j = ϕi,j when (i, j) 	= (0, 0). Then

SDn =
∑

t,s∈Dn

∑
(i,j)∈Z2

ϕi,jεt−i,s−j =
∑

(k,l)∈Z2

( ∑
t,s∈Dn

ϕt−k,s−l

)
εk,l,

and

ωn = SDn − µ1Zn =
∑

(k,l)∈Z2

( ∑
(t,s)∈Dn

ϕt−k,s−l

)
εk,l − µ1

∑
(k,l)∈Dn

εk,l

=
∑

(k,l)∈Dn

( ∑
(t,s)∈Dn

ϕt−k,s−l − µ1

)
εk,l +

∑
(k,l)/∈Dn

( ∑
(t,s)∈Dn

ϕt−k,s−l

)
εk,l

=
∑

(k,l)∈Z2

( ∑
(t,s)∈Dn

bt−k,s−l

)
εk,l. (2.3.7)

Taking into account the definition of Dn in (2.2.5) we get

ωn =
∑

(i,j)∈Z2

( k1(n)∑
t=1

k2(n)∑
s=1

bt−i,s−j

)
εi,j, (2.3.8)

Coefficients bi,j satisfy conditions of Lemma 2.3.4.

38



2.3. CLT for linear r.f. with martingale differences defined in [50]

Now we evaluate Eω2
n:

Eω2
n = E

( ∑
(k,l)∈Z2

( ∑
(t,s)∈Dn

bt−k,s−l

)
εk,l

)2

�
∑

(k,l)∈Z2

( ∑
(t,s)∈Dn

bt−k,s−l

)2

Eε2k,l

+
∑

(k,l)∈Z2, (p,r)∈Z2,
p	=k,l 	=r

( ∑
(t,s)∈Dn

bt−k,s−l

)( ∑
(i,j)∈Dn

bi−p,j−r

)
Eεk,lεp,r. (2.3.9)

At first we show, that by using martingale difference properties mixed products

are equal to 0.

The main idea is to take σ-algebra FDn or, more precisely, the regions Dn

in such a way that one multiplier of the product εk,lεp,r would be measurable

with respect to this σ-algebra and for the another one properties of martingale

differences could be applied. For example E(εk,lεp,r) = E(E(εk,lεp,r|FDp−1,r−1)) =

E(εk,lE(εp,r|FDp−1,r−1)) = 0, when k < p, l < r, where Di,j is the rectangle with

the upper right corner at (i, j). Denote cn
p,r := ∑

i,j∈Dn
bi−p,j−r.

Consider the sum

I =
∑
A

cn
k,lc

n
p,rεk,lεp,r, (2.3.10)

where A = {(k, l), (p, r) ∈ Z2 : p 	= k, l 	= r}. We decompose this sum I = ∑8
i=1 Ii,

where Ii =
∑

Ai
cn

k,lc
n
p,rεk,lεp,r, i = 1, . . . , 8, over sets Ai which do not overlap:

A1 = {(k, l), (p, r) ∈ Z2, k > p, l > r}, A2 = {(k, l), (p, r) ∈ Z2, k < p, l > r},

A3 = {(k, l), (p, r) ∈ Z2, k < p, l < r}, A4 = {(k, l), (p, r) ∈ Z2, k < p, l = r},

A5 = {(k, l), (p, r) ∈ Z2, k = p, l > r}, A6 = {(k, l), (p, r) ∈ Z2, k = p, l < r},

A7 = {(k, l), (p, r) ∈ Z2, k > p, l < r}, A8 = {(k, l), (p, r) ∈ Z2, k > p, l = r}.

The decomposition into sets Ai, i = 1, . . . , 8, was caused by different possible

positions between two points in the plain, which are illustrated in Figure 2.1. For

different regions Ai we choose different regions D(i) for corresponding σ-algebras.

D(1) = Dk−1,l−1, D(2) = Dp,l−1, D(3) = Dp−1,r−1, D(4) = Dp−1,r,

D(5) = Dk,l−1, D(6) = Dp,r−1, D(7) = Dk,r−1, D(8) = Dk−1,l.
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Chapter 2. CLT for linear martingale difference random fields

Figure 2.1: Possible different positions between two points in the plain.

Such σ-algebras guarantee that after taking conditional expectation mixed prod-

ucts are equal 0.

If {ξt, t ∈ Z2} is a martingale difference field with respect to the increasing

sequence of subsets

Dn = {(i, j), 1 � i � n, 1 � j � n},

then it will be a martingale difference random field with respect to the sequences

of subsets

D′
n = {(i, j), 1 � i � n−1, 1 � j � n} and D′′

n = {(i, j), 1 � i � n, 1 � j � n−1}.

Arguments presented above allow to make conclusion that mixed product are

equal to 0 and

Eω2
n = E

( ∑
(k,l)∈Z2

( ∑
t,s∈Dn

bt−k,s−l

)2

ε2k,l

)
=

∑
(k,l)∈Z2

( ∑
t,s∈Dn

bt−k,s−l

)2

Eε2k,l

= Eε20,0

( ∑
(k,l)∈Z2

( ∑
t,s∈Dn

bt−k,s−l

)2)
. (2.3.11)

In the last equality the stationarity of the random field is used: 0 < σ2 =

Eε20,0 < ∞. Applying Lemma 2.3.4 with d = 2 we get

Eω2
n

|Dn| → 0
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2.3. CLT for linear r.f. with martingale differences defined in [50]

and (2.3.6) is proved. The theorem is proved.

Now we consider a linear random field with non-stationary increments. We

need the notion of strong mixing for random fields .

Definition 10. Let {εt, t ∈ Zd} be a random field with distribution P . It satisfies

strong mixing condition if

sup{|P (AB) − P (A)P (B)|, A ∈ BI , B ∈ BV , |I| < n, |V | < m}

� αm,n(d(I, V )) for all I ∈ W, V ∈ W, m, n ∈ N.

and αm,n(d) → 0 when d → ∞, m, n fixed. Here

d(I, V ) = inf
t∈I,s∈V

{|t − s|}, |t| = max
1�i�d

{|t(i)|}.

In [49] CLT for strong mixing martingale difference random field was formu-

lated.

Theorem 2.3.5 ([49]). Let {εt, t ∈ Zd} is a martingale difference random field

such that E|εt|γ < C, C < ∞, t ∈ Zd, γ > 2 and inft var εt = σ2 > 0. If strong

mixing condition is valid for {εt, t ∈ Zd} and

αm,n(r) < f(m)α(r), (2.3.12)

where α(r) → 0, when r → ∞ and f(m), m ∈ N is some arbitrary function, then

CLT for {εt, t ∈ Zd} is valid.

For the linear random field generated by a strong mixing martingale difference

random field the following result can be formulated.

Theorem 2.3.6. If a random field is of the form (2.1.1), conditions of Theorem

2.3.5 are fulfilled when d = 2 and coefficients ϕk satisfies L0,1 then CLT for (2.1.1)

is valid.

Proof. The proof is almost the same as in the case of a stationary random field.

Only the proof of (2.3.11) differs. Since we have the finiteness of moments of εt of
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Chapter 2. CLT for linear martingale difference random fields

the order γ with γ > 2 (this condition is needed to prove CLT for Zn) we easily

get

(Eε2t)
1
2 � (E|εt|γ)

1
γ ⇒ Eε2t � (E|εt|γ)

2
γ < C

2
γ = C1, C < ∞, γ > 2,

then

Eω2
n = E

( ∑
k,l∈Z

( ∑
t,s∈Dn

bt−k,s−l

)2

ε2k,l

)
=

∑
k,l∈Z

( ∑
t,s∈Dn

bt−k,s−l

)2

Eε2k,l

� C1

( ∑
k,l∈Z

( ∑
t,s∈Dn

bt−k,s−l

)2)
.

The rest part of the proof is the same as in the proof of Theorem 2.3.5. The

theorem is proved.

42



2.4. CLT for linear random fields with martingale differences defined
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2.4 CLT for linear random fields with martin-

gale differences defined in [16]

In this section we are interested in CLT for linear random fields (2.1.1) on the

lattice Zd d � 2 with lexicographical order. The main result which will be used

in this section is the CLT proved in [16].

The proof is based on the idea, as in the previous section, that sum ∑
t∈Γn

Xt

of random linear fields (2.1.1), where Γn is some set, can be well approximated by

the sum of innovations Zn = ∑
t∈Γn

εt multiplied by µ1 =
∑

k�0 ϕk.

2.4.1 Definitions and auxiliary results

A real random field will be defined as probability space (RZd
, AZd

, P ) where A is

the Borel σ-algebra of R. By xt ∈ X, X ⊆ R, we denote the projection from RZd to

R defined by xi(ω) = ωi for any ω in RZd . From now on the field of all projections

{xt, t ∈ Zd} will designate the whole random field (Ω, B, P ) := (RZd
, AZd

, P ).

Denote τh,h ∈ Zd the group of translations,

(τhx)t = xt+h, h ∈ Zd, x ∈ Ω.

Let I be σ-algebra of translation invariant Ω subsets: I = {A ∈ B : τhA = A}.

A random field {ξt, t ∈ Zd} with distribution P is called a stationary if for

any A ∈ I and h ∈ Zd

P (τhA) = P (A).

We define the lexicographical order on Zd as follows: if i = (i1, i2, . . . , id) and

j = (j1, j2, . . . , jd) are distinct elements of Zd, the notation i <lex j means that

either i1 < j1 or for some p in {2, 3, . . . , d}, ip < jp and iq = jq for 1 � q < p. The

lexicographical order provides a total ordering of Zd.

Let the sets {V k
i : i ∈ Zd, k ∈ N} be defined as follows:

V 1
i = {j ∈ Zd : j <lex i},
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Chapter 2. CLT for linear martingale difference random fields

and for k � 2:

V k
i = V 1

i ∩ {j ∈ Zd : |i− j| � k} where |i− j| = max
1�k�d

|ik − jk|.

For any Γ in Zd, let FΓ be the σ-algebra defined by FΓ = σ(xi : i ∈ Γ) and set

E|k|(xi) = E(xi|FV
|k|

i
), k ∈ V 1

i .

Let Γ be any finite subset of Zd. Cardinality of Γ will be denoted by |Γ| and

∂Γ = {i ∈ Γ: ∃j /∈ Γ such that |i− j| = 1}.

For a finite subset Γ of Zd we define partial sum of random field by

SΓ =
∑
i∈Γ

Xi. (2.4.1)

A sequence (Γn)n∈N of finite subsets of Zd, throughout the paper will satisfy

lim
n→∞ |Γn| = ∞ and lim

n→∞
|∂Γn|
|Γn| = 0. (2.4.2)

In this paper we shall consider Γn only of the form

Γn = [−n, n]d ∩ Zd. (2.4.3)

This set clearly satisfy condition (2.4.2).

Dedecker [16] established the central limit theorem for any stationary square-

integrable random field (εk)k∈Zd which satisfy the condition:

∑
k∈V 1

0

|εkE|k|(ε0)| ∈ L1. (2.4.4)

We are interested in special case of a stationary random field: martingale difference

random field. In this section we shall use the following definition of a martingale

difference random field.

Definition 11. A real random field (εk)k∈Zd is said to be martingale difference

random field if E|εk| < ∞, k ∈ Zd and for any n ∈ Zd, E(εn|σ(εk,k <lex n)) = 0

a.s.
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2.4. CLT for linear r.f. with martingale differences defined in [16]

As it was mentioned in [42] martingale difference fields satisfy (2.4.4).

The Lemma 2.3.4 will be used in the proof of the main result of this section,

for solving problems, which rises because of the linear filter.

In this section again we use BN decomposition introduced in Section 1.3.1

which enables sum Sn = ∑
i∈Γn

Xi of random fields (1.0.2) analyze as

Sn = µ1
∑
i∈Γn

εi + Rn, (2.4.5)

where µ1 = ∑
k�0 ϕk, and Rn is a remainder which exact expression depend on

region Γn. We use indirect method of application of BN decomposition, that is

we shall show that limn→∞ ωn = 0 in probability where

ωn = Sn − µ1
∑
i∈Γn

εi = Sn − µ1Zn. (2.4.6)

2.4.2 Results and proofs

The main result of the work is based on Dedecker [16] result. In order to formulate

it we need to introduce the notation of stable convergence.

Definition 12. Let (Yn)n∈N be a sequence of real random variables, and let Y

be defined on some extension of the underlying probability space (Ω, A, P ). Let

U ⊂ A be a σ-algebra of A. Then (Yn)n∈N is said to converge U -stably to Y if for

any continuous bounded function ψ and any bounded and U -measurable variable

Z, limn→∞ E(ψ(Yn)Z) = E(ψ(Y )Z).

Remark 2.4.1. Definition 12 is equivalent to 6. We presented 12 there because it

was used in [16].

Theorem 2.4.1. ([16]) Let (εi)i∈Zd be strictly stationary random field with Eε0 =

0, Eε20 < +∞, (Γn)n∈N is a sequence of finite subsets of Zd satisfying (2.4.2).

Assume that condition (2.4.4) is satisfied and set

η =
∑

k∈Zd

E(ε0εk|I).

The following results hold
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Chapter 2. CLT for linear martingale difference random fields

• The random variable |Γn|−1/2SΓn converges I-stably to ζη1/2, where ζ is a

standard Gaussian random variable independent of η.

• For any N in N, denote GN = {(i, j) ∈ Γn × Γn : |i − j| � N}. Let

ρn be a sequence of positive integers satisfying limn→∞ ρn = +∞ and

limn→∞ ρ3d
n E(X2

0(1 ∧ |Γn|−1X2
0)) = 0. Then

An = 1
|Γn| max

(
1,

∑
(i,j)∈Gρn

εiεj

)
→P η.

From this result the following corollary can be derived:

Corollary 2.4.2. Assume that condition (2.4.4) is satisfied. Then with the

same notation as in Theorem 2.4.1, (|Γn|−1/2SΓn , An) converges in distribution

to (ζη1/2, η). Assume moreover that P (η > 0) = 1. Then (An|Γn|)−1/2SΓn con-

verges in distribution to ζ.

Using Corollary 2.4.2 we prove the following theorem for linear random fields.

Theorem 2.4.3. Let (εt)t∈Zd be strictly stationary martingale difference random

field Eε0 = 0, Eε20 < ∞, (Γn)n∈N is a sequence of finite subset of the form (2.4.3).

Assume that condition (2.4.4) is satisfied {ϕk} satisfies L2,2. Denote

η =
∑

k∈Zd

E(ε0εk|I).

Then the sequence of random variables SΓn/(µ1
√

|Γn|) converges in distribution

to ζη1/2, where ζ is a standard Gaussian random variable independent of η.

Proof. The proof is based on showing that ωn, defined in (2.4.6), tends to 0 when

n → ∞.

The random linear field {εt, t ∈ Zd} satisfy Theorem 2.4.1. Therefore, after

normalization, according corollary (2.4.2), we have convergence in distribution

and CLT is valid for Zn.

We need to show that
ωn

µ1
√

|Γn|
P−→ 0.
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This will follow from the relation

P (ωn > εµ1
√

|Γn|) � 1
ε2µ21|Γn|Eω2

n → 0. (2.4.7)

Here we will use Lemma 2.3.4. In order to apply it we set ϕk = 0 when

min1�i�d(ki) < 0 and b0 = ϕ0 − µ1, bj = ϕj when i = (i1, . . . , id) 	= (0, . . . , 0) = 0.

We have

SΓn =
∑

t∈Γn

∑
k∈Zd

ϕkεt−k =
∑

m∈Zd

( ∑
t∈Γn

ϕt−m

)
εm,

and

ωn = SΓn − µ1Zn =
∑

m∈Zd

( ∑
t∈Γn

ϕt−m

)
εm − µ1

∑
m∈Γn

εm

=
∑

m∈Γn

( ∑
t∈Γn

ϕt−m − µ1

)
εm +

∑
m/∈Γn

( ∑
t∈Γn

ϕt−m

)
εm

=
∑

m∈Zd

( ∑
t∈Γn

bt−m

)
εm.

Thus we get

ωn =
∑
i∈Zd

∑
t∈Γn

bt−iεi.

Coefficients bj satisfy conditions of Lemma 2.3.4.

Now we evaluate Eω2
n:

Eω2
n = E

( ∑
k∈Zd

( ∑
t∈Γn

bt−k

)
εk

)2

�
∑

k∈Zd

( ∑
t∈Γn

bt−k

)2

Eε2k

+
∑

k, m∈Zd, m	=k

( ∑
t∈Γn

bt−k

)( ∑
s∈Γn

bs−m

)
Eεkεm. (2.4.8)

Separately we consider second member of the sum (2.4.8) and denote

A =
∑

k,m∈Zd, m	=k
c
(k)
1 c

(m)
2 Eεkεm, (2.4.9)

where c
(k)
1 c

(m)
2 are constants which depend on k,m and have the form respectively∑

t∈Γn
bt−k and ∑

s∈Γn
bs−m.

Now we have

Eεkεm = EE|k−m|(εkεm) = E(εk(E|k−m|εm)), (2.4.10)
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where E|k−m|εm = E(εm|F
V

|k−m|
m

). If k <lex m then we take E|k−m|εm and when

m <lex k then E|k−m|εk. By using martingale differences property we get that

E|k−m|εm = 0 in (2.4.10). Coefficients cn
i , i = {1, 2}, are finite because ∑

k�0 ϕk <

∞. Thus we get that A = 0 in (2.4.9). Taking into account that innovations of

random field are stationary, the expression (2.4.8) can be written as:

Eω2
n = Eε20

( ∑
k∈Zd

( ∑
t∈Γn

bt−m

)2)
.

Applying Lemma 2.3.4 we get that

Eω2
n

|Γn| → 0.

and (2.4.7) is true. The theorem is proved.
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Chapter 3

Some remarks on SLLN for

random linear fields

3.1 Introduction

In this chapter, once again, we consider the random linear field Xt defined by

(1.0.2). We assume that random linear field is generated by i.i.d. random variables

{εt, t ∈ Zd}. Our goal is to prove SLLN for sums ∑
t∈Dn Xt, where Dn is some

subset of Zd by using ergodic theory and to compare with results, which give the

application of BN decomposition. In the application of ergodic theory the key

result is classical ergodic theorem of Zygmund–Fava [34].

The BN decomposition for linear random fields was applied in [55] to prove

SLLN. In [55] it was stressed that in the case d = 2 and sets Dn = [1, n]2 ∩Z2 this

approach leads to very simple proofs, but at the same time moment conditions

for innovations εt and conditions for coefficients ϕk are not optimal (this is the

price which we pay for simplicity of proofs). In this chapter we consider SLLN on

rectangles

Dn = {t ∈ Zd : 1 � ti � ni, i = 1, 2, . . . , d}. (3.1.1)

and our goal is to obtain generalization of the classical SLLN for multi-indexed

sums of i.i.d. random variables (see [63]). The main message is that the application

of the ergodic theory to prove SLLN for linear fields gives much more general and

stronger results comparing with ones obtained by using BN decomposition and

even the proofs, based on application of ergodic theorems, are very simple.



Chapter 3. Some remarks on SLLN for random linear fields

Before formulation of our results we introduce some notions from the ergodic

theory. Let Y = {Yt, t ∈ Zd} be a strictly stationary random field. Let H = RZd

denote a space of all real-valued functions on Zd with a σ-algebra H, generated

by cylindrical sets. Denote by {Uh, h ∈ Zd} the group of translations:

Uhxt = xt−h, x ∈ H, t,h ∈ Zd.

Let P stand for a distribution of a random field Y in H. Strict stationarity of Y

means that P is invariant with respect to translations:

PU−1
h = P.

Let T denote σ-algebra of invariant sets:

T = {A ∈ H : Uh(A) = A, ∀h ∈ Zd}.

A random field is ergodic if σ-algebra T is trivial:

∀A ∈ T P(A) = 0 or 1. (3.1.2)

From the ergodic theory it follows that relation (3.1.2) is equivalent to the follow-

ing relation:

∀ A, B ∈ H n−d
∑

0�h�n̄−1
P(A ∩ U−1

h (B)) → P(A)P(B), (3.1.3)

as n → ∞, here n̄ = (n, . . . , n). For more information on ergodic theory see [23]

or [71].

We say that a random field Y is mixing if

∀A, B ∈ H P(A ∩ U−1
h (B)) → P(A)P(B), (3.1.4)

as ||h|| → ∞, here || · || stands for any norm in Rd. It is clear that (3.1.4) implies

(3.1.3), thus, mixing implies ergodicity of a random field. Such definitions for

measure-preserving transformations (but in case d = 1) can be found in [71].

While using BN decomposition approach we consider linear fields of the form

(1.0.2), the ergodic theory approach allows us to consider more general linear
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random fields with summation extended not over positive quadrant but over all

Zd. Namely, let

Yt =
∑

k∈Zd

ϕkεt−k, t ∈ Zd. (3.1.5)

We consider sums

Sn =
∑

t∈Dn

Yt, (3.1.6)

and let us denote |n| := ∏d
i=1 ni. We say that SLLN holds for Sn, if

|n|−1Sn
a.s.−→ 0, (3.1.7)

when n tends to infinity. There are several interpretations of the growth of n. In

our paper we shall use two possibilities. We shall write n → ∞ if

ni → ∞, i = 1, . . . , d. (3.1.8)

The second possibility of growth of n is to assume that

|n| → ∞. (3.1.9)

Evidently, (3.1.9) follows from (3.1.8), but not converse.

Let us denote by Lq,p condition

∑
k∈Zd


 d∏

i=1
(|ki| + 1)




q

|ϕk|p < ∞.

If a random variable X satisfies

E |X| (ln(1 + |X|))d−1 < ∞, (3.1.10)

we shall write X ∈ L logLd−1.

3.2 Convergence theorems

3.2.1 Results and comments

Theorem 3.2.1. Let εt, t ∈ Zd, be a strictly stationary ergodic random field with

Eε0 = 0 and ε0 ∈ L logLd−1. Suppose that condition L0,1 holds and Sn is defined

in (3.1.6). Then, if n → ∞, the relation (3.1.7) holds.
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In particular, the result holds for the case where εt, t ∈ Zd, are i.i.d. random

variables satisfying the same moment conditions. Therefore in the case where

Yt = εt (this will be if ϕ0 = 1, ϕk = 0 for all k 	= 0) we get the generalization of

the result of [63] where it is shown that if εt, t ∈ Zd, are i.i.d. random variables,

then SLLN for Sn = ∑
t∈Dn εt holds if and only if (3.1.10) is satisfied. If we

consider the class of all strictly stationary ergodic random fields, which includes

a random field εt, t ∈ Zd, with i.i.d. random variables εt, therefore moment

condition ε0 ∈ L logLd−1 in our theorem is necessary, too. But as results of

[59] show, for particular types of dependent stationary sequences situation with

necessary conditions can be different, the same can be said about random fields.

If we require stronger condition on initial random field εt, t ∈ Zd, we get a

stronger result.

Theorem 3.2.2. Let εt, t ∈ Zd, be a strictly stationary mixing random field with

Eε0 = 0 and ε0 ∈ L logLd−1. Suppose that condition L0,1 holds. Then the relation

(3.1.7) holds if |n| → ∞.

Both formulated theorems rely on the classical ergodic theorem of Zygmund–

Fava.

Theorem A. Let εt, t ∈ Zd be a strictly stationary ergodic random field with

Eε0 = 0 and ε0 ∈ L logLd−1. Then

Vn = |n|−1
∑

t∈Dn

εt
a.s.−→ 0,

as n → ∞.

As it is formulated here, Theorem A is an easy corollary from Theorem 1.1 in

[34], p. 196, where it is formulated in more general setting – for some operators

(contractions), acting on finite measure space. Reduction to probability space and

shift operators is standard, and that the limit is zero (in [34] the existence of a

limit is stated) follows from ergodicity of the random field under consideration.

Having these two results on SLLN for linear random fields it is clear that by

using BN decomposition we cannot get such general and strong results. Thus,
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application of BN decomposition to prove SLLN for linear random fields (the

same remark can be applied for linear processes, too) can be justified only from

methodological point of view: if one wants (for some reasons) to avoid ergodic

theory, one can reduce the problem of SLLN for linear random fields to the case

of SLLN for multi-indexed sums of i.i.d. random variables and use (comparatively

elementary) [63] result and elementary moment inequalities to estimate remainder

term appearing in BN decomposition (as it was done in [55]). We formulate one

more such result in the case d = 2 in the next proposition. In all aspects this result

is weaker comparing with theorems formulated above, only the moment condition

is very little stronger than (3.1.10), but it is necessary to note that to achieve

such condition instead of the moment inequality we used a result from ergodic

theory. The obtained result is stronger than results in [55], and, in a sense, it

demonstrates the limits of the BN decomposition approach in the problem. Now

we return to a linear random field defined in (1.0.2) and we denote

S(1)
n =

∑
t∈Dn

Xt. (3.2.1)

Proposition 3.2.3. Let εt, t ∈ Z2, be i.i.d. random variables with Eε0 = 0.

Suppose that for some 1 < p � 2 moment condition E |ε0|p < ∞ and condition

Lp,p (with summation only over positive quadrant ) holds. Then, under (3.1.9),

SLLN for S(1)
n holds.

3.2.2 Proofs

The main tool in the proofs of theorems will be BN decomposition formulated in

Section 1.3.1. Also we shall need the following simple result.

Lemma 3.2.4. Let Yt be a random field defined in (3.1.5), d � 2, a random field

εt satisfies conditions of Theorem 3.2.1 and the condition L0,1 holds. Then for all

t ∈ Zd

E |Yt| (ln(1 + |Yt))d−1 < ∞. (3.2.2)
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Proof Let us denote g(x) = |x|(ln(1 + |x|))d−1. This function is convex and

increasing for x � 0, therefore using obvious inequality (1 + cx) � (1 + x)(1 + c)

we have for all c > 0, x > 0

g(cx) � 2d−2(cg(x) + xg(c)).

We must prove the boundedness of Eg(Yt). Let us denote c = ∑
k∈Zd |ϕk|, then,

using the fact that g is convex and increasing, we have

Eg(Yt) = Eg

(∣∣∣∣∣
∑

k∈Zd

ϕkεt−k

∣∣∣∣∣
)
� Eg

( ∑
k∈Zd

|ϕk||εt−k|
)

= Eg

(
c

∑
k∈Zd

|ϕk|
c

|εt−k|
)

� 2d−2
{

cEg

( ∑
k∈Zd

|ϕk|
c

|εt−k|
)
+ g(c)E

∑
k∈Zd

|ϕk|
c

|εt−k|
}

� 2d−2
{

cE
∑

k∈Zd

|ϕk|
c

g(|εt−k|) + g(c)
∑

k∈Zd

|ϕk|
c

E|εt−k|
}

� 2d−2{cEg(|ε0|) + g(c)E|ε0|} < ∞.

The lemma is proved.

Proof of Theorem 3.2.1. Theorem 3.2.1 directly follows from Theorem A.

Namely, the random field {Yt} is strictly stationary and ergodic (as a function of

a random field {εt}), EY0 = 0, from Lemma 3.2.4 it follows that Y0 ∈ L logLd−1.

Hence we can apply Theorem A.

Proof of Theorem 3.2.2. Let, for simplicity, agree to write [0,n]c for a set

of those k ∈ (Z+)d, which satisfy k � n. It is easy to see that the relation

Tn := |n|−1Sn
a.s.−→ 0,

when |n| → ∞, is equivalent to the following condition: for each ε > 0 there

exists n(ε) = (n(ε)1 , . . . , n
(ε)
d ) such that

P{|Tn| < ε, ∀n ∈ [0,n(ε)]c} = 1.
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At first we prove the theorem in the case d = 2. From Theorem 3.2.1 it follows

that

Tn
a.s.−→ 0,

as n → ∞, that is, ni → ∞, i = 1, 2. Let Ω0, P (Ω0) = 1, be a set of those

ω, for which this relation holds. (Here (Ω, F , P ) is a probability space on which

all random variables under consideration are defined.) Let us fix ε > 0. Then

∀ω ∈ Ω0, there exists n(ε) = (n(ε)1 , n
(ε)
2 ) such that, ∀n � n(ε), |Tn| < ε. Let us take

some 1 � m � n
(ε)
2 − 1 and consider sums

T(n1,m) =
1

n1m

∑
k�(n1,m)

Yk = 1
m

m∑
j=1

(
1
n1

n1∑
k=1

Y(k,j)

)
.

The random field {Yn, n ∈ Z2}, as a function (under very mild conditions on a

function; in our case it is linear function) of a mixing field {εn,n ∈ Z2}, is mixing,

too. Therefore for any fixed j a random process {Y(k,j), k ∈ Z} is also mixing,

hence it is ergodic, and we get

T(n1,m)
a.s.−→ 0 as n1 → ∞.

Let Ω1,m, P (Ω1,m) = 1 be a set of those ω for which this relation holds. Taking

the same ε > 0 we can find nε,m such that for n1 � nε,m and all ω ∈ Ω(1,m), we

have |T(n1,m)| < ε. Now for some 1 � r � n
(ε)
1 −1 in a similar way we consider sums

T(r,n2), and (for the same ε) we introduce a set Ω2,r, P (Ω2,r) = 1, and number nr,ε

such that, for all ω ∈ Ω(2,r), and all n2 � nr,ε, we have |T(r,n2)| < ε. Let us take

n̄(ε) = (n̄(ε)1 , n̄
(ε)
2 ) with

n̄
(ε)
1 = max{n

(ε)
1 , nε,m, m = 1, . . . , n

(ε)
2 − 1},

n̄
(ε)
2 = max{n

(ε)
2 , nr,ε, r = 1, . . . , n

(ε)
1 − 1}.

Let us denote

Ω̄ = Ω0 ∩
(n

(ε)
2 −1⋂
m=1

Ω1,m

)
∩

(n
(ε)
1 −1⋂
r=1

Ω2,r

)
.
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It is clear that P (Ω̄) = 1, and from construction it follows that for all ω ∈ Ω̄ and

for all n ∈ [0, n̄(ε)]c,

|Tn| < ε.

Thus, we have proved the theorem in the case d = 2.

Now, using mathematical induction, we shall prove the general case d > 2.

Let us assume that the statement of the theorem is true for all dimensions

k � d − 1, d � 3. We prove then that the statement of the theorem holds

for dimension d. The proof is similar to that in the case d = 2, only nota-

tions are more complicated. Let us denote n(k) = (n1, . . . , nk−1, nk+1, . . . , nd) and

(n(k), m) = (n1, . . . , nk−1, m, nk+1, . . . , nd), k = 1, . . . , d. Again, by using Theo-

rem 3.2.1, we have that SLLN is valid for Sn as n → ∞. Let Ω0, P (Ω0) = 1, be

a set of those ω, for which this relation holds. Let us fix ε > 0. Then, ∀ ω ∈ Ω0,

there exists n(ε) = (n(ε)1 , . . . , n
(ε)
d ) such that, ∀ n � n(ε),

|Tn| < ε.

Fix some 1 � k � d and take some 1 � m � n
(ε)
k − 1. Consider sums

T(n(k),m) = 1
|n(k)|m

∑
r�(n(k),m)

Yr

= 1
m

m∑
j=1

1
|n(k)|

∑
r(k)�n(k)

Y(r(k),j),

where |n(k)| = |n|/nk. Then, by using the same argument as in the proof of

the case d = 2, we get that {Y(n(k),j),n(k) ∈ Zd−1}, for a fixed j, is also mixing.

Therefore, from the induction assumption for a fixed m we get,

T(n(k),m)
a.s.−→ 0 as |n(k)| → ∞.

Denote by Ω(k,m), P (Ω(k,m)) = 1, the set where this convergence for T(n(k),m)

holds. Taking the same ε > 0, which we fixed at the beginning of the proof, we

will find n(k)(ε,m) = (n(ε,m)
1 , . . . , n

(ε,m)
k−1 , n

(ε,m)
k+1 , . . . , n

(ε,m)
d ) such that for all n(k) ∈

[0,n(k)(ε,m)]c and for all ω ∈ Ω(k,m), |T(n(k),m)| < ε. Then by applying the same
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argument to the other coordinates we will get the set of pairs:

{(Ω(1,m1),n(1)(ε,m1)) . . . , (Ω(d,md),n(d)(ε,md)), 1 � mk � n
(ε)
k − 1}.

To finish the proof we must find Ω̄, for which P (Ω̄) = 1, and n̄ε such that, for all

n ∈ [0, n̄ε]c and ω ∈ Ω̄, |Tn| < ε. This can be easily done, namely

Ω̄ = Ω0

d⋂
k=1


nε

k−1⋂
mk=1

Ω(k,mk)


.

and

n̄ε = (n̄ε
1, . . . , n̄ε

d), n̄ε
k = max

(
nε

k,max
j 	=k

nε
j,k

)
,

nε
j,k = max

m�n
(ε)
j −1

n
(ε,m)
j .

The theorem is proved.

Proof of Proposition 3.2.3. Applying (1.3.3) to the sum in (3.2.14) we get

S(1)
n = µ1Zn + Rn, Zn =

∑
t∈Dn

εt, (3.2.3)

where

Rn = ξn1,n2 − ξn1,0 − ξ0,n2 + ξ0,0

+ ηn1,n2 − η0,n2 + ζn1,n2 − ζn1,0, (3.2.4)

ξt = Φ∗(L)εt =
∑
k�0

ϕ∗
kεt−k,

ηt1,n2 =
n2∑

t1=1
ε̄t1,t2 , ε̄t1,t2 = B(L1)εt1,t2 =

∑
l�0

blεt1−l,t2 ,

ζn1,t2 =
n1∑

t1=1
ε̂t1,t2 , ε̂t1,t2 = D(L2)εt1,t2 =

∑
l�0

dlεt1,t2−l.

Zn is a sum of i.i.d. mean zero random variables εt with E |ε0|p < ∞, for some

1 < p � 2, therefore SLLN for Zn holds. Then, in order to prove the proposition,

we must prove that

|n|−1Rn
a.s.−→ 0 as |n| → ∞. (3.2.5)
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We have

Rn = R1
n + R2

n + R3
n, (3.2.6)

where R1
n = ξn1,n2 − ξn1,0 − ξ0,n2 + ξ0,0, R2

n = ηn1,n2 − η0,n2 , R3
n = ζn1,n2 − ζn1,0,

therefore we must prove the relation (3.2.5) for each Ri
n, i = 1, 2, 3. We start with

R1
n and prove that ∑

n�1
P (||n|−1ξn| > ε) < ∞. (3.2.7)

Since εt are i.i.d. and Eεt = 0, the moment inequality for ξt =
∑

k�0 ϕ∗
kεt−k yields

E |ξt|p � C
∑
k�0

|ϕ∗
k|p E |εt−k|p � C

∑
k�0

|ϕ∗
k|p < ∞. (3.2.8)

Therefore, ∑
n�1

P (||n|−1ξn| > ε) � E|ξ1|p
∑
n�1

ε−p|n|−p < ∞, (3.2.9)

thus we get

|n|−1ξn
a.s.−→ 0. (3.2.10)

Clearly, the same relation holds for ξn1,0, ξ0,n2 , ξ0,0, and we get that

R1
n

a.s.−→ 0. (3.2.11)

Unfortunately, the moment inequality is too rough for other two terms R2
n

and R3
n (this was noted in [55]), since, using low order moments for ζt and ηt,

we get divergent series in (3.2.7), or we must require existence of moment of the

order 2 + δ, δ > 0. Therefore we shall use one result from ergodic theory. Let us

consider random variable ηt and let us denote

Kn = 1
|n|ηn = 1

n1n2

n2∑
t2=1

ε̄n1,t2 . (3.2.12)

Taking into account the definition of ε̄t, we have

Kn = 1
n1n2

n2∑
t2=1

(∑
l�0

blεn1−l,t2

)
= 1

n1n2

n2∑
t2=1


 n1∑

k=−∞
bn1−kεk,t2




= 1
n1

n1∑
k=−∞

bn1−k


 1

n2

n2∑
t2=1

εk,t2


. (3.2.13)
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Therefore, denoting fk = supn2 |n−1
2

∑n2
t2=1 εk,t2|, we get

|Kn| � 1
n1

n1∑
k=−∞

|bn1−k| sup
n2

∣∣∣∣∣∣
1
n2

n2∑
t2=1

εk,t2

∣∣∣∣∣∣ =
1
n1

n1∑
k=−∞

|bn1−k| fk. (3.2.14)

Applying Proposition 50.2 from [54] we get E |fk| < ∞. Here it is worth to note

that the same conclusion we can get under weaker moment condition ε0 ∈ L logL

using Exercise 50.4 from the same book, but this moment condition is insufficient

in order to get (3.2.10) by means of the moment inequality. Note that (fk) is a

sequence of i.i.d. random variables, since for different k sequences (εk,t2 , t2 ∈ Z)

are independent. Let us denote Xn1 = ∑n1
k=−∞ |bn1−k| fk. From Lemma 11 in [55]

we know that ∑
l�0 |bl| < ∞, therefore

E |Xl| �
l∑

k=−∞
|bl−k| E |fk| � C

l∑
k=−∞

|bl−k| < ∞. (3.2.15)

Sequence {Xn, n � 1} is a stationary, ergodic (since it is generated by a

sequence of i.i.d. random variables) and with finite mean, thus we can write

1
n1

Xn1 = 1
n1


 n1∑

1
Xl −

n1−1∑
1

Xl


 = 1

n1

n1∑
1

Xl − 1
n1 − 1

n1−1∑
1

Xl
n1 − 1

n1

a.s.−→ 0,

(3.2.16)

when n1 → ∞. From (3.2.14) we get that, for all n2,

Kn
a.s.−→ 0 as n1 → ∞. (3.2.17)

Since we need to show that Kn
a.s.−→ 0 as |n| → ∞, it remains to consider the case,

where n2 → ∞ and n1 stays bounded. If |n| → ∞ in a such way that n1 is fixed

and n2 → ∞, then
1
n2

n2∑
t2=1

ε̄n1,t2
a.s.−→ 0.

If a sequence nk = (n1,k, n2,k), k � 1, is such that 1 � n1,k � k0, k0 is some fixed

number and n2,k → ∞, then the sequence Knk
can be divided into k0 subsequences

in a such way, that in each subsequence the first index of summands is fixed. Then

we apply the argument used above and get the convergence to zero a.s. of each
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subsequence, therefore the sequence itself also converges to zero a.s. Thus we have

proved (3.2.17), if |n| → ∞.

It is easy to see that the convergence to zero a.s. of (n1n2)−1η0,n2 can be proved

in the same way, therefore we have

R2
n

a.s.−→ 0. (3.2.18)

Due to symmetry the same consideration could be applied to ζt and we get

R3
n

a.s.→ 0. (3.2.19)

Collecting (3.2.6), (3.2.11), (3.2.18), (3.2.19) we get (3.2.5), and the proposi-

tion is proved.
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Conclusions

The aims of the thesis were formulated in the introduction. In general, it is the

extension of limit results for sums of random linear fields using BN decomposition.

At the end we can state the following findings:

• The known results of application of BN decomposition to discrete index ran-

dom linear fields were analyzed and the conclusion that the best application

of BN decomposition is for the proof of CLT for sums of random linear fields

has been made.

• The main advantage of BN decomposition is that the limit results proved for

the sums of random fields of innovations can be easily applied to the sums of

random linear fields. The only required condition is that the expression of

the remainders are not very complicated. The complexity of the remainder

term in BN decomposition depends on the summation sets and properties

of innovations.

• Although BN decomposition method is quite flexible method it does not

allow to analyze long memory processes since the essential conditions on the

linear filter restrict the investigation of short processes only.

• Different discrete index martingale definitions in the plane and higher di-

mensions were analyzed. The definitions are caused by choice of σ-algebras.

Three types of martingale differences were analyzed in more details.

• Based on the choice of martingale difference definition three CLT were for-

mulated and proved for sums of random linear field generated by martingale

difference innovations, by using BN decomposition

• The poofs via BN decomposition are quite simple, but, as it was shown in

Chapter 3, ergodic theory for SLLN gives stronger results and the proofs

are also not complicated.
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In the future it would be interesting to analyze and to prove limit theorems for

sums of random linear fields by using M. Gordin martingale-coboundary repre-

sentation.

62



Appendix

A.1 Publication of the results

The main results of the thesis are published in the following papers:

1. P. Banys, Yu. Davydov, and V. Paulauskas. Remarks on the SLLN for

linear random fields. Statist. Probab. Lett., 80:489–496, 2010.

2. P. Banys and V. Paulauskas. CLT for linear random fields with martingale

increments. Lith. Math. J., accepted, to appear in 2011(4).

3. P. Banys. CLT for linear random fields with stationary martingale-difference

innovations. Lith. Math. J., accepted, to appear in 2011(3).

A.2 Presentation of the results

Several presentations at conferences were given on the topics of the thesis

1. P. Banys. CLT for linear random fields with martingale increments. In-

ternational Conference “Modern Stochastics: Theory and Applications II”

held at Kiev University on 7–11 September, 2010 in Kiev, Ukraine.

2. P. Banys. CLT for linear random fields with martingale increments. 10th

International Vilnius Conference on Probability and Mathematical Statistics

held at Vilnius University on 28 June – 2 July, 2010 in Vilnius, Lithuania.

3. P. Banys, V. Paulauskas. CLT for linear random fields with martingale

increments. LI Conference of the Lithuanian Mathematical Society held at

Šiauliu̧ University on 17–18 June 2010 in Šiauliai, Lithuania.

4. P. Banys, V. Paulauskas. Remarks on the SLLN for linear random fields.

L Conference of the Lithuanian Mathematical Society held at Institute of

Mathematics and Informatics on 18–19 June 2009 in Vilnius, Lithuania.



Appendix

Also at the seminar of Departments of Financial Insurance Mathematics and

Econometrical Analysis at Vilnius University:

1. Remarks on the SLLN for linear random fields, 28 April 2009,

2. CRT tiesiniams laukams su martingaliniais prieaugiais, 9 September 2010,

3. Limit theorems for linear random fields, 12 April 2011.
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