Abstract [eng] |
This thesis was aimed to develop, investigate and optimize high power Nd:YAG laser system for OPCPA (Optical Parametric Chirped Pulse Amplifiers) pump. The particular attention is paid for the temporal characteristics of the Nd:YAG amplifies output pulse. Employment of Fabry-Perоt etalons in the cavities of two-stage Nd:YAG regenerative amplifier enables for amplified pulse stretching from 60 fs to ~ 100 ps pulse widths. The modulation of amplified pulse envelope is minimal when ration of thickness of the etalons is around 2. Envelope modulation can be controlled by changing the reflectivity of etalons. In order to improve amplified pulse contrast, we for the first time to our knowledge implemented second order intensity dependent filter, based on the effect of fundamental pulse polarization rotation in unbalanced second harmonic generators. By using this method, the contrast of the output pulses was improved by >102 times. We also demonstrated that Gaussian pulses from the output of Nd: YAG amplifiers can be transformed into flat–top pulses by using cascade second harmonic generation processes. The developed high output energy Nd:YAG amplifiers system for OPCPA pumping is optically synchronized with pulses of Yb:KGW oscillator and features two 532 nm outputs with pulse parameters: a) Gaussian pulse profile, ~ 300 mJ energy, 75 ps pulsewidth; b) hiper- Gaussian pulse profile, ~100 mJ energy, pulse width 100-150 ps. |