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Abstract: The present paper considers a model of stalling in a queueing system (QS) with any
number of different capacities of heterogeneous servers. The state graph and the corresponding
linear system for steady-state probabilities are derived using the standard Markov chain technique.
The obtained solution of the steady-state probabilities model is numerically stable; the complexity
of the corresponding expressions does not depend on the number of QS states; thus, they enable us
to analytically study the QS characteristics. Optimization of a stalling buffer is considered as well,
and it is shown that stalling helps us to solve the slow server problem under an appropriate choice
of stalling buffer size, making the slow servers usable under various values of system load. The
asymptotic conditions of optimal query distribution in channels, when the ratio of the capacities
of the fast and slow servers is increasing, are also established. Moreover, some applications of the
developed model in heterogeneous server clusters and in work productivity modelling for forest
harvesting applications are discussed.
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1. Introduction

Queueing systems (QSs) with different capacity channels are often used in technology
and business. Usually, the theory of discrete Markov processes is used for QS modelling,
and the probabilities of steady states are calculated from a linear equations system; here,
the coefficients are equal to the rates of transition, while the order of the system is equal to
the number of states [1]. If all channels of the linear system have the same capacity, this
system has an analytical solution with a complexity that does not depend on the number
of states. However, in general, this system of equations for the state probabilities of a QS
with several heterogeneous channels can depend on the number of states, which might be
significant, and it can be unstable.

The queueing strategies in QSs with two or several different channels have been
analysed by many authors, see, for example [2–11]. Computer programs are developed
to determine the optimal allocation of storage spaces among three heterogeneous servers,
by calculating the bounds of sizes of finite sources for different traffic intensities [12].
Particular cases of the steady-state behaviour of a discrete-time queueing problem with S
heterogeneous groups with a discipline FCFS and a limited waiting space were analysed
in [13,14]; a set of heterogeneous and exponential servers were discussed in [15]. El-Taha
and Stidham [16], using deterministic (sample-path) analysis, generalized and extended the
fundamental properties of systems with “stationary deterministic flows”. They proved the
renewal–reward theorem and established a relationship that shows that the “operational
analysis” definition of average service times—when considered as the observation period
t → ∞ —coincides with the standard definition of average service times for all stable
queueing systems. Moreover, the equilibrium in a single-server queueing system with
retrials and strategic timing of the customers was analysed in [17]. The systems modelled by
M/M/n queues with heterogeneous servers and non-informed customers show that there
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is a value of arrival rate; below this, the slow server should not be used, and above which,
it should be used [18]. A multi-server controllable queueing system with heterogeneous
servers was considered in [19]; here, several monotonicity properties of optimal policies
for such a system were proved. Efrosinin and Rykov studied [7] the queuing system with
K heterogeneous servers using a heuristic approach. Efrosinin and Sctrik [20,21] showed
that, in an M/M/K queue, the optimal threshold levels may also depend on the states of
slower servers; however, this influence is negligible. In [22], a finite-source queueing system
serving one class of customers and consisting of heterogeneous servers with unequal service
intensities and of one common queue were investigated. The authors of [23] provided
an analysis of the dependence of the convergence of experimental results on the type of
distribution used by the system parameters in heterogeneous queueing resource system
with an unlimited number. In [24], a multi-server infinite buffer queueing system with
additional servers (assistants) providing help to the main servers when they encountered
problems was analysed through multi-dimensional Markov chains. The authors of [25]
analysed heterogeneous queues where servers differ not only in service rates but also in
operating costs; they presented a simple heuristic solution.

The proposed that the solutions for systems of heterogeneous services can also be
applied in specific tasks of computer networks and multiprocessor systems in addition to
solving social tasks and others. Heterogeneous server problems occur in multiprocessor
systems, which combine CPU and GPU processors [26–30]. Expressions of the queue
length distributions of the GPS and individual traffic flows were presented in [31]. The
Quality of Service (QoS) in different service classes with real-time and non-real-time traffic
integration is an important issue in WiMAX systems; therefore, the authors of [32,33] pro-
posed a cross-layer QoS support scheduling framework and a corresponding opportunistic
scheduling algorithm to provide QoS support to the heterogeneous traffic in a single-carrier
WiMAX point-to-multipoint (PMP) system. The presented model is applied to the uplink
transmission in the single-carrier WiMAX system as a multi-class priority TDMA queueing
system in order to analyse the average packet delays of different service classes. The
authors of [34] demonstrated that a processor’s fast cores may not be ideal for system
workloads and that less can be more in some situations. Furthermore, in [35], a novel fuzzy
testing technique, HFuzz, was proposed as a solution enabling efficient testing on real
heterogeneous architectures. Research results showed that such a system can perform well,
using much more constrained resources than are usually available.

This paper aims to show that stalling is an efficient approach for exploiting and
managing heterogeneous systems. The model of stalling in QSs with two heterogeneous
servers has been considered in [9] by the first two authors of this paper, where the explicit
probabilities of steady states were derived. The results showed that the appropriate choice
of stalling buffer size is helpful in solving the slow server problem. The asymptotic
approximations of optimal stalling buffer size, when the ratio of the capacities of fast
and slow servers is increasing, have also been established. The application of the model
developed in computer networks has been discussed as well. Investigation of the developed
model enables us to conclude that stalling is a universal solution which can be implemented
into any heterogeneous system.

The findings presented in this paper for several-server QSs might be useful for the
investigation of systems with any number of heterogeneous channels or servers with
different capacities. Since the analytical study of systems with heterogeneous channels is
rather complicated, a system with two types of servers, equipped with a stalling buffer and
a finite waiting line, is presented and analysed.

2. QS with Heterogeneous Channels and Stalling Buffer
2.1. State Graph of QS

Let us consider a queueing system consisting of m + n heterogeneous channels, where
m is the number of fast channels, n is the number of slow channels, K is the length of the
stalling buffer, and M is the length of the waiting line and the buffer (see Figure 1). Assume
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that the interarrival time to the system is distributed exponentially with parameter λ and
the service time is distributed also under this law with parameters µ1 and µ2, respectively,
for fast and low channels, i.e., µ1 > µ2; the queries are served in the FCFS discipline. If the
query—after being released into the system—finds a free fast channel, then it is served
immediately; otherwise, it goes to a stalling buffer of K length, where it waits until the
efficient channels become free. One query is served only by one channel without a break.
If all the places in the stalling buffer are occupied, then the arrived query transfers to the
slow channel. If the slow channel is occupied as well, then the application waits in the
queue at a waiting buffer of length M. If all the places in the waiting and stalling buffers
are occupied, then the query is rejected and it is deemed lost.
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Figure 1. Scheme of QS with stalling buffer.

The main parameter of the QS is the coefficient of utilization ρ = λ
m·µ1+n·µ2

. Note, if the
system is full (ρ > 1), then all the channels, i.e., slow and fast ones, should work because
the service is most efficient if the system works at maximal capacity. If some channels
work with idle time, then the system will process a smaller number of queries. If more
queries come in than the system can serve, then unserved queries will be deemed lost, if
the waiting line is finite.

2.2. Calculation of Steady-State Probabilities

Assume that the state of a QS with m + n heterogeneous channels, a stalling buffer of
capacity K, and waiting line length M, be defined by numbers: i, j, k, where i and j are
the numbers of queries served in fast and slow channels, respectively, and k is the number
of stalled or waiting queries—0 ≤ i ≤ m, 0 ≤ j ≤ n, 0 ≤ k ≤ K + M, m ≥ 1, n ≥ 0,
K ≥ 0, M ≥ 0. Denote the corresponding steady-state probabilities by Pi,j,k. Let us draw
the state graph of such a QS inn Figure 2; here, the vertexes denote the states connected by
arrows representing transitions with non-null probability from one state to the other [1].
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The states on the graph are specified as well:
P0,0,0—all channels and stalling buffers are free;
Pi,0,0—in the fast channels are the i queries, the slow channels and stalling buffer

are free;
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Pm,0,k—the fast channels are occupied with m queries, the slow channels are free, the
k queries are stalled in the stalling buffer;Pm,0,K—the fast channels are occupied with m
queries, the slow channels are free, the stalling buffer is full;

P0,j,0—in the slow channels are j queries, the fast channels and the stalling buffer
are free;

Pi,j,0—in the fast channels are i queries, in the slow channels are j queries, the stalling
buffer is free;

Pm,j,k —the fast channels are occupied with m queries, in the slow channels are j
queries, k queries are stalled in the stalling buffer;

Pm,j,K—the fast channels are occupied with m queries, in the slow channels are j queries,
the stalling buffer is full;

P0,n,0—only the slow channels are occupied with n queries;
Pi,n,0—in the fast channels are i queries, in the slow channels are n queries, the stalling

buffer is free;
Pm,n,k—the fast channels are occupied with m queries, the slow channels are occupied

with n queries, k queries are stalled in the stalling buffer;
Pm,n,k+K—the fast channels are occupied with m queries, the slow channels are occupied

with n queries, the stalling buffer is full, k queries are waiting in line;
Pm,n,K+M—the fast channels are occupied with m queries, in the slow channels are n

queries, the stalling buffer and the queue are full, and the next arrived query will be lost;
Typically, the probabilities of these states are calculated using a linear equation system

whose coefficients are equal to the rates of transition while the order of the system is equal
to the number of states [1]. Thus, one can derive steady-state equations according to the
steady-state graph in Figure 2. They are given in the following system (1):

P0,j,0·(λ + j·µ2) = P1,j,0·µ1 + P0,j+1,0·(j + 1)·µ2, 0 ≤ j < n,

Pi,j,0·(λ + i·µ1 + j·µ2) = Pi−1,j,0·λ + Pi+1,j,0·(i + 1)·µ1 + Pi,j+1,0·(j + 1)·µ2, 0 < i < m, 0 ≤ j < n,

Pm,j,0·(λ + m·µ1 + j·µ2) = Pm−1,j,0·λ + Pm,j,1·m·µ1 + Pm,j+1,0·(j + 1)·µ2, 0 ≤ j < n,

Pm,j,k·(λ + m·µ1 + j·µ2) = Pm,j,k−1·λ + Pm,j,k+1·m·µ1 + Pm,j+1,k·(j + 1)·µ2, 0 ≤ j < n, 0 < k < K,

Pm,0,K·(λ + m·µ1) = Pm,0,K−1·λ + Pm,1,K·µ2,

Pm,j,K·(λ + m·µ1 + j·µ2) = Pm,j,K−1·λ + Pm,j+1,K·(j + 1)·µ2 + Pm,j−1,K·λ, 0 < j < n,

P0,n,0·(λ + n·µ2) = P1,n,0·µ1,

Pi,n,0·(λ + i·µ1 + n·µ2) = Pi−1,n,0·λ + Pi+1,n,0·(i + 1)·µ1, 0 < i < m,

Pm,n,0·(λ + m·µ1 + n·µ2) = Pm−1,n,0·λ + Pm,n,1·m·µ1,

Pm,n,k·(λ + m·µ1 + n·µ2) = Pm,n,k−1·λ + Pm,n,k+1·m·µ1, 0 < k < K,

Pm,n,K·(λ + m·µ1 + n·µ2) = Pm,n,K−1·λ + Pm,n,K+1·(m·µ1 + n·µ2) + Pm,n−1,K·λ,

Pm,n,K+k·(λ + m·µ1 + n·µ2) = Pm,n,K+k−1·λ + Pm,n,K+k+1·(m·µ1 + n·µ2), 0 < k < M,

Pm,n,K+M·(m·µ1 + n·µ2) = Pm,n,K+M−1·λ.

(1)

The obtained linear equation system is homogeneous; thus, the normalization condi-
tion is needed to ensure the uniqueness of the following solution:

∑m
i=0 ∑n

j=0 Pi,j,0 + ∑K
k=1 ∑n

j=0 Pm,j,k+∑M
k=1 Pm,n,K+k = 1. (2)

The specific case of the steady-state system, when m = n = 1, is also given in [9].
Generally, the order of the linear equation system (1)–(2) is equal to the number of QS
states (m + K + 1) · (n + 1) + M. Note that solving this system using Cramer’s rule might
become numerically complicated, because the implementation of this rule requires a third-
order complexity algorithm from the number of states; in addition, this system is often is
ill-posed.

Looking for a more simple, explicit solution led us to apply the following parameters
to the characterization of a QS with a stalling buffer:
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• Coefficient of utilization of fast servers with switched-out slow channels q = λ
m·µ1

;

• Rate of capacity of fast and slow servers r = µ1
µ2

;

• Stalling buffer length K;
• Waiting queue length M.

Now, the coefficient of QS utilization is as follows:

ρ =
λ

m · µ1 + n · µ2
=

q
1 + n

m·r
.

Let us denote the polynomial functions and ratios that can be used to explicitly derive
the steady-state probabilities from systems (1) and (2):

Ri,j = ∑n
s=j

s!
j! · (s − j)!

Pmin(i,m),s,max(i−m,0) (3)

Ai,j =
Ri,j

R0,j
(4)

hj =
Rm+K,j

Rm+K,n
(5)

The explicit expressions of QS steady-state probabilities are given by Theorem A1.

Theorem A1. Steady-state probabilities of QS with stalling, defined by system (1)–(2), are as
follows, if q > 0, ρ > 0, m ≥ 1, n ≥ 0, K ≥ 0, M ≥ 0:

Pi,j,k = Pm,n,K·∑n
s=j hs·

Ai+k,s

Am+K,s

(−1)s−j·s!
(s − j)!·j! , 0 ≤ i ≤ m, 0 ≤ j ≤ n, 0 ≤ k ≤ K, (6)

Pm,n,k+K = Pm,n,K·ρk, 0 ≤ k ≤ M. (7)

Pm,n,K =
qK · p1

h0 · (1 + p1 · C1) + qK · p1 · S1
, (8)

where p1 =
(m·q)m

m!

∑m−1
0

(m·q)s

s!

, (9)

C1 = ∑K
s=0 qs =

1 − qM+1

1 − q
i f q ̸= 1, otherwise C1 = K + 1,

S1 = ∑M
s=1 ρs =

ρ − ρM+1

1 − ρ
i f ρ ̸= 1, otherwise S1 = M. (10)

Proof of Theorem A1 is given in Appendix A. For the proof of this theorem, we will
use two Lemmas given below. Their proofs are also given in Appendix A.

Lemma A1. The equalities exist as follows, if m ≥ 1, n ≥ 0, K ≥ 0:

A0,j = 1, A1,j = q · m +
j
r

, 0 ≤ j ≤ n,

Ai+1,j =

(
q · m + j

r + min(i, m)
)
· Ai−1,j

min(i + 1, m)
−

m · q · Ai−1,j

min(i + 1, m)
, 1 < i ≤ m + K, 0 ≤ j ≤ n.
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Lemma A2. The ratios in (5) satisfy the recursive relation:

hn = 1, hj−1 = hj·
(

Am+K+1,j

q·Am+K,j
− 1

)
+

n!
(j − 1)!·(n − j + 1)!

, 0 < j ≤ n.

Remark. Note that the sums Ri,0 = ∑n
j=0 Pmin(i,m),j,max(i−m,0), 0 ≤ i < m+K, according to the

definition, are the steady-state probabilities of several queries in fast channels and the stalling buffer
occupies both together. Using Lemma A1 and well-known formulas of steady-state probabilities
in a multi-channel queueing system with the finite queue [1], we can easily make sure that these
probabilities follow to the steady-state probabilities in an M/M/m/K system with a utilization
coefficient q and queue length K:

n

∑
j=0

Pi,j,0 =

(
q · m)i

i!
·

n

∑
j=0

P0,j,0, 0 < i ≤ m,

∑n
j=0 Pm,j,k =

(q · m)m

m!
· qk · ∑n

j=0 P0,j,0, 0 < k ≤ K.

3. Queuing Characteristics and Optimization
3.1. Queueing Characteristics

Probabilities (6)–(8) enable us to calculate the steady-state characteristics of multi-channel
QS with stalling as probabilities of various QS states and numbers of queries in these states.
Hence, one has at first to calculate the following, according to Lemmas A1 and A2: the
(m + K + 1)×(n + 1) matrix of auxiliary functions Ai,j; n + 1 components vector h, used to
find the steady-state probabilities according to Theorem A1; and the other characteristics.
Note, the obtained explicit expressions are numerically stable; in addition, their complexity
does not depend on the number of states, and is only linear with respect to the number of
fast channels and stalling buffer length. Some characteristics are given in Table 1, using the
following notation for simplicity:

p2=
p1

(1 − q) + p1
,

C2 =
K

∑
s=1

s · qsk
q − (K + 1) · qK+1 + K · qK+2

(1 − q)2 i f q ̸= 1, otherwise C2 =
K · (K + 1)

2
.

S2 = ∑M
s=1 s · ρs =

ρ − (M + 1) · ρM+1 + M · ρM+2

(1 − ρ)2 i f ρ ̸= 1, otherwise S2 =
M · (M + 1)

2
(11)

A key characteristic of QS is the occupancy probability of all channels and stalling
buffer only Pm,n,K, derived according to Theorem A1. For calculating the characteristics
using (6)–(10), the well-known Newton binomial formula is applied:

∑u
i=0

u!
i! · (u − i)!

qi · (1 − q)u−i = 1. (12)

The explicitly given characteristics help us to study various effects; for instance, the
effect of a query becoming stuck can be studied—the situation when the fast channels and
the stalling buffer are free, but the slow channels are busy by service of queries that arrived
before, etc.
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Table 1. Characteristics of QS with stalling, q > 0, ρ > 0, m ≥ 1, n ≥ 0, K ≥ 0, M ≥ 0.

Characteristics Denotation Formula

The occupancy
probability of all channels
and stalling buffer

Pm,n,K
qK ·p1

h0 ·(1+p1 ·C1)+qK ·p1 ·S1

Downtime probability P0,0,0 Pm,n,K ·
n
∑

s=0

(−1)s ·hs
Am+K,s

Occupancy probability of
only all slow channels P0,n,0

Pm,n,K
Am+K,n

Stuck probability Pstuck
n
∑

s=1
P0,s,0 Pm,n,K ·

n
∑

s=1

(−1)s−1 ·hs
Am+K,s

Number of stuck
queries Nstuck

n
∑

s=1
s·P0,s,0 h1·

Pm,n,K
Am+K,1

Probability of queries in
slow channels Pslow

m+K
∑

i=0

n
∑

s=1
Pmin(i,m),s,max(i−m,0)

+Pm,n,K ·
M
∑

s=1
ρs

1 − Pm,n,K ·
n
∑

s=0
hs·(−1)s·∑m+K

i=0 Ai,s
Am+K,s

Number of queries in
slow channels Nslow

n
∑

s=1

(
s

m+K
∑

i=0
Pmin(i,m),s,max(i−m,0)

)
+Pm,n,K ·n·

M
∑

s=1
ρs

Pm,n,K ·
(

h1 ·∑m+K
i=0 Ai,1

Am+K,1
+ n·S1

)

Probability of queries in
fast channels Pf ast

n
∑

s=0

m+K
∑

i=1
Pmin(i,m),s,max(i−m,0) + Pm,n,K ·

M
∑

s=1
ρs 1 − h0 ·Pm,n,K

qK · (q·m)m
m!

Number of queries in fast
channels N f ast

m−1
∑

i=1
i·

n
∑

s=0
Pi,s,0 + m·

K
∑

k=0

n
∑

s=0
Pm,s,k

+Pm,n,K ·m·
M
∑

s=1
ρs

m − m·h0 ·Pm,n,K
qK ·p2

Probability of stalling
Pstalling

K
∑

k=1

n
∑

s=0
Pm,s,k+Pm,n,K ·

M
∑

s=1
ρs

i f K > 0 otherwise 0
1 − h0 ·Pm,n,K(1+p1)

p1 ·qK

Number of queries in
stalling buffer Nstalling

∑n
s=0 ∑K

k=1 k·Pm,s,k+Pm,n,K ·K·∑M
s=1 ρs,

i f K ≥ 0, otherwise 0 K −
h0 ·Pm,n,K

(
K
p1

+C2

)
qK

Probability of queue Pw Pm,n,K ·
M
∑

s=1
ρs Pm,n,K ·S1

Number of queries in
waiting line Nw

Pm,n,K ·
M
∑

s=1
(s·ρs) Pn,m,KS2

Probability of queries
loss Ploss

Pm,n,K ·ρM Pm,n,K ·ρM

Average number of
queries in QS N

N f ast + Nslow + Nstalling + Nw =
m+K
∑

i=0

n
∑

s=0
(i + s)·Pmin(i,m),s,max(i−m,0)

+Pm,n,K ·
M
∑

s=1
(s + m + K + n)·ρs

q·m + p2 ·q
(1− q)2 − Pm,n,K

·(
(

K + m·(1 − q)− pm ·q
1−q

)
·
(

h0 ·q
1−q − S1

)
−h1·

∑m+K
i=0 Ai,1
Am+K,1

+

h0 ·q
(1− q)2 − S1·n − S2) if q ̸= 1, otherwise

m+Pm,n,K ·
(
(K + 1 − m)·h0 + h1·

∑m+K
i=0 Ai,1
Am+K,1

+ S2 + S1·(K + n)
)

3.2. Optimization of Stalling Buffer

An average number of queries in the system N is the most important characteristic
because it describes the whole system’s capacity and the efficiency of the chosen queueing
strategy. As obtained in the previous section, expression N can be explored analytically,
e.g., one can differentiate it in relation to the parameters. Further, following the findings
presented in [9], the technique of Chebyshev polynomials for the study of the asymptotic
behaviour of a heterogeneous multi-channel OS with stalling is developed. Denote by

zj =
q + 1 + j

m·r +

√(
q + 1 + j

m·r

)2
− 4 · q

2
, tj =

q + 1 + j
m·r −

√(
q + 1 + j

m·r

)2
− 4 · q

2
, 0 ≤ j ≤ n.
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We can easily see that zj + tj = q + 1 + j
r , zj · tj = q.

Moreover, it is easily to verify yet that if 0 < q < 1, r ≥ 1, then z > 1, t < 1. Assume
for simplicity that 0 < q < 1.

Note that ratios Ai,j are polynomial functions of q and 1
r .

Lema A3. Ratios Ai,j follow to recurrent presentation:

Ai,j = ∑i
s=0 bi,s ·

zj
i+1−s − tj

i+1−s

zj − tj
, 0 ≤ i ≤ m + K + 1, 0 ≤ j ≤ n,

where bi, j = 0 if i ≤ 0 or s < 0, except b0, 0 = 1, and other coefficients follow to recursive
relationship:

bi,s =
m · bi−1,s

min(i, m)
− (m − min(i − 1, m)) · bi−1,s−1

min(i, m)
+

m · q · (bi−1,s−2 − bi−2,s−2)

min(i, m)
, if i > 1, s ≥ 0.

Proof of Lemma A3 is given in Appendix A.

Corollary. We have

∑m+K
i=0

Ai,1

Am+K,1
=

z1

z1 − 1
+ o
(

qK
)

, and

Am+K+1,j

Am+K,j
= zj + O

(
qK
)

, 0 ≤ j ≤ n.

Theorem A2. Assume that 0 < q < 1, r ≥ 1, K ≥ 0, M ≥ 1. Then, the optimal stalling buffer
size, minimizing the average number of queries in QS, follows to approximate expressions:

(i) K0 =
h1
h0 ·

z1
z1−1+

n·S1+S2
h0 − q

(1−q)2

q
1−q −

S1
h0

+ q·p2
1−q − m · (1 − q)− 1

ln(q) + O
(
qK),

and

(ii) K0 = r · m · (1 − q)− 1+q
1−q +

pm ·q
(1−q)2 − m · (1 − q)− 1

ln(q) + O
(

1
r

)
.

where h h0 and h1 are the following:

h0 = ∑n
s=1

n!
s! · (n − s)!∏

s
j=1

( zj

q
− 1
)
+ 1,

h1 = ∑n
s=2

n!
s! · (n − s)!∏

s
j=2

( zj

q
− 1
)
+ n.

4. Applications
4.1. Modelling of Heterogeneous Server Cluster with Stalling Buffer

Compatibility problems of heterogeneous networks are solved by offering specialized
data maintenance solutions, evaluating their combining cases, and analysing errors, links,
etc. Optimization of the network node stalling buffer is important for combining networks
of different capacities [31]. Web hosting companies are forced to change old slow servers to
new fast servers, to serve an increasing flow of service. The optimal solution to this problem
is using both groups—fast and slow servers connected to one heterogeneous server cluster
using a stalling buffer (Figure 3).

Performance of servers’ W is calculated by using disks and disk arrays IOPS (in-
put/output operations per second) :

IOPSdisk =
MeXrpm

MeXseek
1000 +

MeXlatency
1000

,
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where MeXrpm—disk rotational speed per minute; MeXseek—disc seek time in milliseconds;
MeXlatency—disc latency in milliseconds. Disk array (RAID) IOPS is calculated as follows:

IOPSraid = IOPSdisk·
(

Ndisks − Drp
)
·DR% +

IOPSdisk·(N disks − Dwp
)
·Dw%

C
,

where Ndisks—the number of disks in an array; Drp—reading parity for disks array;
Dwp—writing parity for disks array; DR%—total percent of reading; Dw%—total percent of
writing; C—disks array overhead. Disk array RAID5 in slow and fast servers is used. For
RAID5: Drp = 1, Dwp = 0, DR% = 70, Dw% = 30, C = 4.
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Slow servers are HP Proliant DL180 G6 [36] width two Intel Xeon L5640@ 2.27 GHz proces-
sors (CPU Benchmarks 6358), with 128 GB DDR3 operating memory (read speed—13,887 MB/s;
write speed—10,076 MB/s; MiNr/wspeed = 11,982, MiNtype = 8); we used five disks (Ndisks = 5)
HP 3 TB 3.5” LFF 6 G Dual Port SAS 7.2 K RPM (MeXr/wdata = 97 Mb/s, data transferring
rate MeXrate = 6.0 Gb/sec, IOPSdisk = 57) connected to RAID5 (IOPSraid = 18,098).

Fast servers are HP ProLiant DL380 Gen9 [37] width two Intel Xeon E5-2699 v4 @ 2.20 GHz
processors (CPU Benchmarks 23200), with 128 GB DDR4 operating memory (read speed—
22,075 MB/s; write speed—16,842 MB/s; MiNr/wspeed = 19,458.5, MiNtype = 16); we used seven
disks (Ndisks = 7) HPE 2.4 TB SAS 12 G Enterprise 10 K LFF (MeXr/wdata = 195 Mb/s, data
transferring rate MeXrate = 12 Gb/s, IOPSdisk = 133) connected to RAID5 (IOPSraid = 62843).
Servers were divided into two synchronized clusters. The interarrival traffic time was
distributed under the exponential law with parameter λ and the length of service was also
distributed under this law with parameters µ1 and µ2. This was the case in systems using
M length waiting buffer and K length stalling buffer (see Figure 3).

Performance of servers in clusters are calculated using the following formula (Figure 4):

W =
U·MeXrate·MeXr/wdata·IOPSraid

MiNr/wspeed·MiNtype
,

where U—summarized performance processors of server controller (CPU Benchmarks);
MeXrate—number of input output transferring’s to array of disks; MeXr/wdata—amount of
data (bytes) transmitted per input/output operation; MiNr/wspeed—data transferring rate;
MiNtype—coefficient taking into account the type of memory [38]. Calculated coefficient of
performance for fast servers Wfast = 1190 and for slow server Wslow = 171.

The characteristics of the QS cluster with five fast and two slow servers are computed,
and the results are displayed in Table 2.
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Table 2. Characteristics of the server’s cluster with stalling.

Parameters Denotation Formula Value

Basic characteristics of clusters with stalling

Intensity of interarrival Λ - 0.58 (Gbps)

Capacity of fast server µ1 - 0.146 (Gbps)

Capacity of slow server µ2 - 0.045 (Gbps)

Number of fast servers m - 5

Number of slow servers n - 2

Coefficient of QS utilization ρ λ
m·µ1+n·µ2

0.71

Coefficient of utilization of fast server Q λ
m·µ1

= ρ ·
(
1 + n

m·r
)

0.751

Rate of capacity of fast and slow servers R r = µ1
µ2

6.959

Calculated characteristics of clusters with stalling

Characteristics Denotation Value

Occupancy probability of fast channel in
QS without slow channel and stalling P0 0.464

The occupancy probability of the fast
channels and stalling buffer and free

slow channels
Pm,n,K 0.981

Downtime probability P0,0,0 0.0185

Stuck probability Pstuck 0

Number of stuck queries Nstuck 0

Occupancy probability of all slow
channel with free fast channel with

stalling buffer
P0,n,0 0

Probability of queries in slow channels Pslow 0

Number of queries in slow channels Nslow 0

Probability of queries in fast channels m+K
∑

i=1

n
∑

s=0
pi,s + pm+K,n· ρ−ρM+1

1−ρ
0.9814

Number of queries in fast channels Pf ast 3.7561

Probability of stalling Pstalling 0.3486

Number of queries in stalling buffer Nstalling 1.4014

Probability of queue Pw 0

Number of queries in waiting line Nw 0

Probability of loss queries Pm+K,n·ρM 0

Average number of queries N 5.1575

4.2. Modelling of Harvesters and Chainsaws Work Productivity

Coordination of technologies, processes, or devices with different capacities arises very
often. Let us consider the problem of coordinated usage of harvesters (Timberjack 1270D)
and chainsaws in spruce stands using data of comparative work productivity analysis [39].
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Harvester (µ1) and chainsaw (µ2) work productivity have been compared in Table 3, taking
into account the volume of the tree trunk.

Table 3. Harvester and chainsaw work productivity comparison by volume of tree trunk [39].

Volume of Tree
Trunk (m3)

Harvester Chainsaw

Service
(Lumbering)
Time (h/m3)

Work Intensity
(µ1, m3/h)

Service
(Lumbering)
time (h/m3)

Work Intensity
(µ2, m3/h)

0.1 0.111 9 0.872 1.2

0.2 0.047 21.2 0.71 1.4

0.3 0.035 28.4 0.641 1.6

0.4 0.03 33.4 0.599 1.7

0.5 0.027 37.4 0.571 1.8

0.6 0.025 40.6 0.549 1.8

0.7 0.023 43.3 0.532 1.9

0.8 0.022 45.6 0.518 1.9

0.9 0.021 47.7 0.507 2

1 0.02 49.6 0.497 2

Figure 5 shows how many harvesters and chainsaws will be needed for optimal
systems work when the scope of forest harvesting is changed. We can see that, when using
one harvester (m = 1) and a system load of 50 m3 for optimal systems work, 10 chainsaws
are needed (Figure 5, graph on the left—see the yellow point on the graph and on the
chainsaw axis is showing a 10, and on load axis we can see a 50). In contrast, when using
two harvesters (m = 2) and a system load of 100 m3 for optimal systems work, 20 chainsaws
will be needed (Figure 5, graph on the right—see the yellow point on the graph and on
chainsaw axis is showing a 20, and on the load axis we can see a 100).
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5. Conclusions

In the paper, the model of stalling in a QS with heterogeneous channels and stalling
buffer is presented, deriving the explicit probabilities of steady states using Chebyshev
polynomials of the second order. The obtained expressions are numerically stable; their
complexity does not depend on the number of states, and they provide a way of analytically
studying QS characteristics. Moreover, the existence of a finite optimal size of the stalling
buffer is proved and a numerical approach for the optimization of buffer size is developed.

The results showed that the appropriate choice of stalling buffer size provides assis-
tance in solving the slow channel or server problem. The asymptotic conditions of optimal
query distribution in channels when the ratio of the capacities of the fast and slow servers
increases are also established. An application of the developed model in heterogeneous
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server clusters for work productivity modelling in the context of forest harvesting is also
discussed herein.

This investigation of the developed model enables us to conclude that stalling is
a universal solution that can be implemented into any heterogeneous system with any
number of heterogeneous channels or servers.
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Appendix A

Proof of Lemma A1. Let for 0 ≤ j ≤ n, denote A−1,j = 1. At first, note the easily
verifiable identity:

∑n
s=j

(s − j) · s!
j! · (s − j)!

Pmin(i−1,m),s,max(i−m,0) = ∑n−1
s=j

·(s + 1) · s!
j! · (s − j)!

Pmin(i−1,m),s+1,max(i−m,0). (13)

We can derive the relation between coefficients Ri,j, whenever 0 ≤ j ≤ n, 1 ≤ i ≤ m + K.
Using the Equality (A1), the respective equations of steady-state probabilities in (1) and
identities (3), we have

(λ + i · µ1 + j · µ2) · Ri,j =
n
∑

s=j

s!
j!·(s−j)! · (λ + i · µ1 + j · µ2) · Pmin(i,m),s,max(i−m,0)

= (λ + i · µ1 + n · µ2) · n!
j!·(n−j)! · Pmin(i,m),n,max(i−m,0)

+
n−1
∑

s=j

s!
j!·(s−j)! (λ + i · µ1 + s · µ2)·Pmin(i,m),s,max(i−m,0)

−
n
∑

s=j

(s−j)·s!
j!·(s−j)! · µ2 · Pmin(i,m),s,max(i−m,0)

=
(

Pmin(i+1,m),n,max(i+1−m,0) · max(i + 1, m) · µ1

+Pmin(i−1,m),n,max(i−m−1,0) · λ
)
· n!

j!·(n−j)!

+
n−1
∑

s=j

s!
j!·(s−j)! ·

(
Pmin(i+1,m),s,max(i+1−m,0) · (i + 1) · µ1

+Pmin(i+1,m),s,max(i−1−m,0) · (s + 1) · µ2+Pmin(i−1,m),s,max(i−1−m,0) · λ
)

−
n
∑

s=j

(s−j)·s!
j!·(s−j)! · µ2·Pmin(i,m),s,max(i−m,0)

=
n
∑

s=j

s!
j!·(s−j)! · Pmin(i+1,m),s,max(i+1−m,0) · max(i + 1, m) · µ1

+
n
∑

s=j

s!
j!·(s−j)! · Pmin(i+1,m),s,max(i+1−m,0) · max(i + 1, m) · µ1

+
n
∑

s=j

s!
j!·(s−j)! · Pmin(i−1,m),s,max(i−1−m,0) · λ

= max(i + 1, m) · µ1 · Ri+1,j + λ · Ri−1,j
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Established relationship and definition (3) imply the Lemma.□

Proof of Lemma A2. Indeed, hn = 1. Hence, according to (5),

hj =
Rm+K,j

Rm+K,n
=

∑n
s=j

s!
j!·(s−j)! Pm,s,K

Pm,n,K
, 0 ≤ j ≤ n.

After elementary steps by virtue of latter relationship and Lemma 1, one can make
sure that

hj ·
( Am+K+1,j

Am+K,j
− 1
)
+ n!

(j−1)!·(n−j+1)!

=
(

j
r·m·q +

1
q

)
·

n
∑

s=j

s!
j!·(s−j)! ·

Pm,s,K
Pm,n,K

−
n−1
∑

s=j

s!
j!·(s−j)! ·

Pm,s,K−1
Pm,n,K

− n!
j!·(n−j)! ·

Pm,n,K−1
Pm,n,K

+ n!
(j−1)!·(n−j+1)!

=
(

j
r·m·q +

1
q

)
·

n
∑

s=j

s!
j!·(s−j)! ·

Pm,s,K
Pm,n,K

−
n−1
∑

s=j

s!
j!·(s−j)! ·

Pm,s,K−1
Pm,n,K

− n!
j!·(n−j)! ·

Pm,n,K−1
Pm,n,K

+ n!
(j−1)!·(n−j+1)!

=
(

j
r·m·q +

1
q

)
·

n
∑

s=j

s!
j!·(s−j)! ·

Pm,s,K
Pm,n,K

−
n−1
∑

s=j

s!
j!·(s−j)!

·
Pm,s,K ·

(
1+ 1

q +
s

r·m·q

)
−Pm,s−1,K−Pm,s+1,K · s+1

r·m·q
Pm,n,K

− n!
j!·(n−j)! ·

Pm,n,K ·
(

1
q +

n
r·m·q

)
−Pm,n−1,K

Pm,n,K

+ n!
(j−1)!·(n−j+1)!

=
n−1
∑

s=j

s!
j!·(s−j)! ·

Pm,s−1,K−Pm,s,K
Pm,n,K

− n!
j!·(n−j)! ·

Pm,n,K−1
Pm,n,K

+ n!
(j−1)!·(n−j+1)!

=
n−1
∑

s=j

s!
(j−1)!·(s−j+1)! ·

Pm,s,K
Pm,n,K

+ n!
(j−1)!·(n−j+1)! = hJ−1□

Proof of Theorem A1. Let us consider Equation (1), for 0 ≤ i < m + K,1 ≤ j ≤ n, or for
i = m + K, 1 ≤ j < n, and assume that the waiting line is empty. Respectively, define,
P−1,j,0 = 0, and Pi,−1,k = 0, Pi,n+1,k = 0. Then, according to (6), we have that(

q + min
(

i
m , 1

)
+ j

r·m

)
· Pmin(i,m),j,max(i−m,0)

=
(

q + min
(

i
m , 1

)
+ j

r·m

)
· Pm,n,K ·

n
∑

s=j
hs ·

Ai,s
Am+K,s

(−1)s−j ·s!
j!·(s−j)! ·

= Pm,n,K ·
n
∑

s=j
hs ·

Ai,s
Am+K,s

(j−s)
r·m

(−1)s−j ·s!
j!·(s−j)! + Pm,n,K

·
n
∑

s=j
hs ·

(
q + min

(
i
m , 1

)
+ s

r·m

)
· Ai,s

Am+K,s

(−1)s−j ·s!
j!·(s−j)!

(14)

In addition, in virtue of Lemma 1,

n
∑

s=j
hs ·

(
q + min

(
i
m , 1

)
+ s

r·m

)
· Ai,s

Am+K,s

(−1)s−j ·s!
j!·(s−j)!

= q ·
n
∑

s=j
hs ·

Ai−1,s
Am+K,s

(−1)s−j ·s!
j!·(s−j)! +

n
∑

s=j
hs ·

Ai+1,s
Am+K,s

(−1)s−j ·s!
j!·(s−j)!

=
(

Pmin(i−1,m),j,max(i−1−m,0) · q + Pmin(i+1,m),j,max(i+1−m,0)

)
/Pm,n,K

(15)
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Thus, (A2) and (A3) imply that relations among steady-state probabilities in (6) satisfy
Equation (1), if 0 ≤ i < m + K,1 ≤ j ≤ n, or i = m + K, 1 ≤ j < n, and the waiting line
is empty.

Next, it is easy to see that Equation (7) is equivalent to recursive relation
Pm,n,K+k = ρ · Pm,n,K+k−1, which easily follow from respective Equation (1).

The expression of probability Pm,n,K for state in which both channels and stalling buffer
are only full, is derived after elementary manipulations using Equation (2) and following it
remark, Newton binomial theorem and convinced that ∑n

j=0 P0,j,0 =
Pm,n,K
(q·m)m

m!

· qK. □

Proof of Lemma A3. We can easily see that

bi,0 = ∏i
t=1 max

(m
t

, 1
)

, bi,1 = ∏i
t=1 max

(m
t

, 1
)

, i ≥ 1, bi,j+1 = 0.

Indeed, Lemma is true at i = 0, 0 ≤ j ≤ n. Now the relationship for 0 < i < m,
0 ≤ j ≤ n, follows by virtue of respective equality of Lemma 1:

Ai+1,j,0 =

(
q·m+

j
r +i

)
·Ai,j,0

i+1 − m·q·Ai−1,j,0
i+1 =

(
q·m+

j
r +i

)
·∑i

s=0 bi,s ·
zj

i+1−s−tj
i+1−s

zj−tj
i+1 −

m·q·∑i−1
s=0 bi−1,s ·

zj
i−s−tj

i−s

zj−tj
i+1 =

(m·(zj+tj )+i−m)·
i

∑
s=0

bi,s ·
zi+1−s

j −ti+1−s
j

zj−tj

i+1 −
m·q·∑i−1

s=0 bi−1,s ·
zi−s

j −ti−s
j

zj−tj
i+1 =

m·(zj+tj)·∑i
s=0 bi,s ·

zj
i+1−s−tj

i+1−s

zj−tj
i+1 −

(m−i)·∑i
s=0 bi,s ·

zj
i+1−s−tj

i+1−s

zj−tj
i+1 −

m·q·∑i−1
s=0 bi−1,s ·

zj
i−s−tj

i−s

zj−tj
i+1 =

m·∑i
s=0 bi,s ·

zj
i+2−s−tj

i+2−s

zj−tj
i+1 −

(m−i)·∑i
s=0 bi,s ·

zj
i+1−s−tj

i+1−s

zj−tj
i+1 +

m·q·∑i−1
s=0 (b1,s−bi−1,s)·

zj
i−s−tj

i−s

zj−tj
i+1 =

m·∑i+1
s=0 bi,s ·

zj
i+2−s−tj

i+2−s

zj−tj
i+1 −

(m−i)·∑i+1
s=1 bi,s−1·

zj
i+2−s−tj

i+1−s

zj−tj
i+1 +

m·q·∑i+1
s=2 (b1,s−2−bi−1,s−2)·

zj
i+2−s−tj

i+2−s

zj−tj
i+1 =

m·∑i+1
s=0 bi,s ·

zj
i+2−s−tj

i+2−s

zj−tj
i+1 −

(m−i)·∑i+1
s=0 bi,s−1·

zj
i+2−s−tj

i+1−s

zj−tj
i+1 +

m·q·∑i+1
s=0 (b1,s−2−bi−1,s−2)·

zj
i+2−s−tj

i+2−s

zj−tj
i+1 =

∑i+1
s=0 (m·bi,s−(m−i)·bi,s−1+m·q·(b1,s−2−bi−1,s−2))·

zj
i+2−s−tj

i+2−s

zj−tj
i+1 = ∑i+1

s=0 bi+1,s ·
zj

i+2−s−tj
i+2−s

zj−tj
.□

Proof of Theorem A2. The expected number of queries in the QS by means of Lemma A3
is approximated as follows:

N̄ = q·m +
pm·q(

1 − q)2
− qK · pm

((
K + m·(1 − q)− pm ·q

1−q

)
·
(

h0·q
1−q − S1

)
− h1·z1

z1−1 + h0·q
(1− q)2 − S1·n − S2

)
h0 + qK · pm ·

(
S1 − h0·q

1−q

) + O
(

q2K
)

.

Then, differentiating it with respect to parameter K, equating the obtained derivative
to zero and solving this equation, the approximate expression (i) of optimal stalling buffer
size follows.

The approximate expression (ii) of optimal stalling buffer size is obtained in the same
way using the expansion with the appropriated number of terms:

zj = 1 +
j

r·m·(1 − q)
− q·j

(r·m·(1 − q))2 + O
(

1
r3

)
.□
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