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In many different fields of science, analysis of physical problems using analytical mathematical models can be 

difficult. Inclusion of every single possible interaction causes mathematical equations to become too complicated, even 
for the best supercomputers to this day. In spintronics, effects such as magnetoresistance (MR) heavily depend not only 
on the selection of materials, but also on the magnetisation process [1][2], latter of which can be quite difficult to grasp 
even utilizing quantum mechanics. To simplify the problem, one way to analyse microscopic magnetisation processes is 
by using the Ising model [3], where an arbitrary volume is divided into some number of unit cells that have quantized 
spin (in the most common case, having spin 1/2 or −1/2). These cells then interact with neighbouring cells and 
depending on the exchange coupling constant, cells either try to orient their spin in one direction or in opposite directions. 
Such model is usually solved using Monte Carlo methods, where the probability for a cell to change its spin value can be 
calculated using Boltzmann statistics. With this model one can analyse phase transition and magnetic hysteresis 
dynamically. The Ising model is also an approximation of the classical Heisenberg model and only one spin projection is 
considered. 

In this work, some common examples are analysed, such as defects in ferromagnets and artificial antiferromagnet 
configuration using the Ising model (Fig. 1). By changing exchange coupling, interacting neighbour count, volume size 
and adding macroscopic effects, such as demagnetizing field or anisotropy, changes in phase diagrams and magnetic 
hystereses are explored. 
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Fig. 1. Ising models for different kinds of magnetic structures. (A) – Ferromagnet with non-magnetic defect 
(crack). (B) – Normalized magnetisation vs temperature, normalized by Curie temperature, with and without the 

defect. (C) – Magnetic hystereses with and without the defect at two different temperatures (TC – Curie 
temperature). (D) – Alternating magnetisation structure (artificial antiferromagnet), where red layers have 3 

times stronger interaction than grey and both layers have antiferromagnetic coupling. (E) – Normalized 
magnetisation vs temperature, normalized by Neel point temperature. (F) – Magnetic hystereses at different 

temperatures (TN – Neel temperature). 
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