66TH INTERNATIONAL

OPEN READINGS CONFERENCE FOR STUDENTS OF PHYSICS AND NATURAL SCIENCES

ANNUAL ABSTRACT BOOK 2023

Vilnius University

VILNIUS UNIVERSITY PRESS

Editors

Martynas Keršys Šarūnas Mickus

Cover and Interior design Milda Stancikaitė

Vilnius University Press 9 Saulėtekio Av., III Building, LT-10222 Vilnius info@leidykla.vu.lt, www.leidykla.vu.lt/en/ www.knygynas.vu.lt, www.journals.vu.lt

Bibliographic information is available on the Lithuanian Integral Library Information System (LIBIS) portal ibiblioteka.lt. ISBN 978-609-07-0883-5 (ePDF) DOI: https://doi.org/10.15388/IOR2023

Copyright © 2023 [Authors]. Published by Vilnius University Press This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

SYNTHESIS OF AROMATIC N-OXIDES AND EPOXIDES BY BIOCATALYTIC METHODS

Greta Mačiuitytė^{1,2}, Vytautas Petkevičius¹

¹Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Lithuania ²Faculty of Chemistry and Geosciences, Vilnius University, Lithuania greta.maciuityte@chgf.stud.vu.lt

Oxygenation reactions are widely used in industry, however, organic chemistry methods usually require metal catalysts or peroxides. Therefore, more environmentally friendly methods are needed, and as a result, more attention is shifting to the enzymes that catalyse such reactions - various oxygenases. Non-heme diiron monooxygenase PmlABCDEF possesses a broad substrate specificity and can oxidize different chemical groups, including ring heteroatoms and C=C double bonds [1].

N-oxides can be applied in the agriculture, and pharmacy industries. They have increased reactivity compared to regular *N*-heteroaromatic compounds [2]. Oxiranes, also known as epoxides, are important intermediates in organic chemistry and they bear the capacity of wide–ranging ring–opening reactions, which usually occur with predictable regioselectivity and stereospecificity [3]. However, it is a challenging task to selectively oxidize chemical groups of different reactivity (e. g. *N*-oxidation versus epoxidation) in a single molecule, therefore diverse synthesis strategies are employed with multiple reaction steps [4].

In this work, we investigated the selectivity of PmlABCDEF monooxygenase with substrates bearing two possible reaction sites – terminal C=C double bond and nitrogen atom in the pyridine ring. Hence, alkenyl-substituted pyridine compounds having different lengths of carbon chains were synthesized from 3-pyridinol and appropriate alkenyl bromides. Produced compounds were used in the bioconversion reactions with *Pseudomonas putida* KT2440 producing recombinant PmlABCDEF monooxygenase. Reaction products were identified as *N*-oxides and epoxides (the reaction scheme is shown in Fig. 1). The efficiency of the conversion as well as the ratio of different oxidation products depended on the length of the alkenyl chain.

The reaction products were extracted and purified using column chromatography on a silica gel. The obtained compounds were analysed with nuclear magnetic resonance (NMR), thin-layer chromatography (TLC), and high-performance liquid chromatography – mass spectrometry (HPLC-MS).

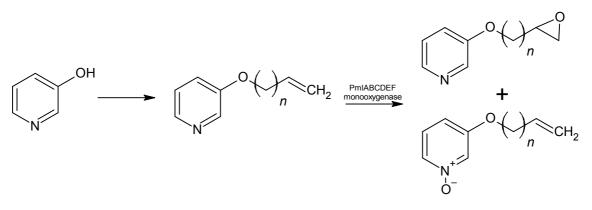


Fig. 1. Substrate synthesis and conversion to oxiranes and N-oxides. n is 1-6

^[1] Petkevicius, V. *et al.* The versatility of non-heme diiron monooxygenase PmIABCDEF: a single biocatalyst for a plethora of oxygenation reactions. *Catal Sci Technol* **12**, 7293–7307 (2022).

^[2] Petkevičius, V., Vaitekūnas, J., Gasparavičiūtė, R., Tauraitė, D. & Meškys, R. An efficient and regioselective biocatalytic synthesis of aromatic N-oxides by using a soluble di-iron monooxygenase PmlABCDEF produced in the *Pseudomonas* species. *Microb Biotechnol* 14, 1771–1783 (2021).

^[3] Hodgson, D. M., Stent, M. A. H., Reilly, M. K. & Gras, E. Oxiranes and Oxirenes: Fused-ring Derivatives. in *Reference Module in Chemistry, Molecular Sciences and Chemical Engineering* (Elsevier, 2014). doi:10.1016/B978-0-12-409547-2.11428-3.

^[4] Kocak, A., Kurbanli, S., & Malkondu S. Synthetic Access to New Pyridone Derivatives through the Alkylation Reactions of Hydroxypyridines with Epoxides, Synthetic Communications, 37:21, 3697-3708, (2007).