Abstract [eng] |
Space – time data modeling problem is analysed. Often spatial data sets are relatively small, and the points, where observations are taken, are located irregularly. When solving spatial task, usually we are interpolating or estimating the spatial average. Time series data usually are used to predict future values. Meanwhile, the space - time tasks combines both types of tasks. Few original modeling methods of spatial time series are proposed. The proposed methods firstly analyzes the univariate time series, and after removing temporal dependence, spatial dependence in the time series of residuals is measured. Aim of this dissertational work - to create time series model at new unobserved location by incorporating spatial interaction thru spatial interpolation of estimated time series parameters. Such a model is based on the spatial interpolation of time series parameters. |