

Article **On the Degree of Product of Two Algebraic Numbers**

Lukas Maciuleviˇcius

Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; lukas.maciulevicius@mif.vu.lt

Abstract: A triplet (*a*, *b*, *c*) of positive integers is said to be product-feasible if there exist algebraic numbers *α*, *β* and *γ* of degrees (over \mathbb{Q}) *a*, *b* and *c*, respectively, such that $\alpha\beta\gamma = 1$. This work extends the investigation of product-feasible triplets started by Drungilas, Dubickas and Smyth. More precisely, for all but five positive integer triplets (a, b, c) with $a \leq b \leq c$ and $b \leq 7$, we decide whether it is product-feasible. Moreover, in the Appendix we give an infinite family or irreducible compositum-feasible triplets and propose a problem to find all such triplets.

Keywords: algebraic numbers; product-feasible; compositum-feasible; subgroups of symmetric groups

MSC: 11R04; 11R32

1. Introduction

Following [\[1\]](#page-9-0), we say that a triplet $(a, b, c) \in \mathbb{N}^3$ is *sum-feasible* (resp., *product-feasible*) if there exist algebraic numbers $α$, $β$, $γ$ of degrees a , b , c (over Q), respectively, such that $\alpha + \beta + \gamma = 0$ (resp., $\alpha\beta\gamma = 1$). In [\[1\]](#page-9-0), the problem of finding all sum-feasible triplets was proposed. In the same paper and in its continuations [\[2](#page-9-1)[–4\]](#page-9-2), an analogous problem for number fields was considered. Namely, we say that a triplet $(a, b, c) \in \mathbb{N}^3$ is *compositumfeasible* if there exist number fields *K* and *L* of degrees *a* and *b* (over Q), respectively, such that the degree of their compositum *KL* is *c*. All sum-feasible triplets $(a, b, c) \in \mathbb{N}^3$, satisfying $a \le b \le c$, $b \le 7$, and all possible compositum-feasible triplets (a, b, c) , satisfying $a \leq b \leq c$, $b \leq 9$, were determined in [\[1,](#page-9-0)[2,](#page-9-1)[4\]](#page-9-2). Moreover, it was proved in [1,4] that the three feasibility problems are related in the following way: if C , S and P denote sets of all possible compositum-feasible, sum-feasible and product-feasible triplets, respectively, then

$$
\mathcal{C} \subsetneq \mathcal{S} \subsetneq \mathcal{P}.\tag{1}
$$

Therefore all sum-feasible triplets that were found in the preceding papers are also product-feasible, but they do not exhaust *all* possible product-feasible triplets (*a*, *b*, *c*) for which $a \leq b \leq c$ and $b \leq 7$. There comes a natural motivation to investigate the case of the product more closely.

In this paper, we consider product-feasible triplets (*a*, *b*, *c*) under the same restrictions $a \leq b \leq c$, $b \leq 7$. More precisely, we prove the following:

Theorem 1. All the triplets $(a, b, c) \in \mathbb{N}^3$ with $a \leq b \leq c$, $b \leq 7$ that are product-feasible are *given in Table [1,](#page-1-0) with five possible exceptions that are circled.*

Citation: Maciulevičius, L. On the Degree of Product of Two Algebraic Numbers. *Mathematics* **2023**, *11*, 2131. <https://doi.org/10.3390/math11092131>

Academic Editor: Li Guo

Received: 13 March 2023 Revised: 25 April 2023 Accepted: 28 April 2023 Published: 2 May 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license [\(https://](https://creativecommons.org/licenses/by/4.0/) [creativecommons.org/licenses/by/](https://creativecommons.org/licenses/by/4.0/) $4.0/$).

$b\setminus a$	$\mathbf{1}$	$\overline{2}$	$\mathbf{3}$	$\bf 4$	5	6	7
$1\,$	$\mathbf{1}$						
$\overline{2}$	2	2,4					
3	3	3, 6	3, 6, 9				
$\bf 4$	$\overline{4}$	4, 8	6, 12	4, 6, 8, 12, 16			
5	5	$10\,$	15	5, 10, 20	5, 10, 20, 25		
$\boldsymbol{6}$	6	6, 12	6, 9, 12, 18	6, 8 12, 24	(10) , (15) $30\,$	6, 8, 9, 12, 15, 18, 24, 30, 36	
7	7	14	21	14 28	35	7, 14, 21, 42	7, 14, 21, 28, 42, 49

Table 1. Triplets (a, b, c) , $a \le b \le c$, and $b \le 7$, which are product-feasible with 5 possible exceptions.

Moreover, we obtain several results related to triplets that include prime components.

Theorem 2. The triplet $(n-1, n, n)$, $n \geq 2$, is product-feasible if and only if *n* is a prime number.

In [\[1\]](#page-9-0) (Theorem 8), it was proved that the triplet $(2, t, t) \in \mathbb{N}^3$ is product-feasible if and only if 2|*t* or 3|*t*. We obtain an analogous result for triplets $(p, t, t) \in \mathbb{N}^3$, where $p > 2$ is a prime number.

Theorem 3. *Suppose a prime number p and a positive integer t satisfy* $t \ge p > 2$ *. Then, the triplet* (p, t, t) *is product-feasible if and only if p|t.*

The following theorem, taking $d = 1$, implies the sufficiency part of Theorem [2.](#page-1-1)

Theorem 4. For any prime number p and each divisor *d* of $p-1$, the triplet $(p-1, p, pd)$ is *product-feasible.*

It was conjectured in [\[1\]](#page-9-0) that the set $\mathcal C$ of compositum-feasible triplets is a multiplicative semigroup, i.e., if (a, b, c) , $(a', b', c') \in C$, then $(ad', bb', cc') \in C$. This conjecture was proved in [\[3\]](#page-9-3) (Theorem 1.3) assuming the answer to the inverse Galois problem is positive, i.e., that every finite group occurs as a Galois group of some normal field extension of Q. Therefore, it is natural to consider irreducible elements of C . In Appendix [A,](#page-7-0) we give an infinite family of irreducible elements of C (see Proposition [A1\)](#page-5-0). Finally, at the end of Appendix [A,](#page-7-0) we propose a problem of finding all irreducible compositum-feasible triplets.

The paper is organized as follows. The proof of Theorem [1](#page-0-0) is given in Section [3](#page-3-0) and is based on Theorems [2](#page-1-1)[–4.](#page-1-2) In Section [2,](#page-1-3) we state some auxiliary results. Appendix [A](#page-7-0) is devoted to irreducible elements of C.

2. Auxiliary Results

Lemma 1 (Lemma 14, [\[1\]](#page-9-0)). *Suppose that a triplet* (a, b, c) *is product-feasible. Then,* $c | \text{ lcm}(a, b) \cdot t$ *for some positive t* \le gcd(*a*, *b*).

Lemma 2 (Proposition 19, [\[1\]](#page-9-0))**.** *For any positive integers a and b, the triplet* (*a*, *b*, *ab*) *is compositumfeasible and hence both sum-feasible and product-feasible.*

Lemma 3 (Lemma 7, [\[4\]](#page-9-2)). *Suppose that positive integers* $a \leq b \leq c$ *satisfy* $ab < 2c$. *Then, if the triplet* (*a*, *b*, *c*) ∈ N³ *is not compositum-feasible, then it is neither sum-feasible nor product-feasible.* **Lemma 4** (Theorem 8, [\[1\]](#page-9-0)). *The triplet* $(2, t, t) \in \mathbb{N}^3$ *is product-feasible if and only if* $2|t$ *or* $3|t$ *.*

Let *p* be a prime number and $n \in \mathbb{N}$. Denote by $\text{ord}_p(n)$ the exponent to which *p* appears in the prime factorization of *n* (if $p \nmid n$ set ord_{*n*}(*n*) = 0). We say that a triplet (*a*, *b*, *c*) satisfies the *exponent triangle inequality with respect to a prime p* if

$$
\operatorname{ord}_p(a) + \operatorname{ord}_p(b) \ge \operatorname{ord}_p(c), \, \operatorname{ord}_p(a) + \operatorname{ord}_p(c) \ge \operatorname{ord}_p(b) \text{ and }
$$

$$
\operatorname{ord}_p(b) + \operatorname{ord}_p(c) \ge \operatorname{ord}_p(a).
$$

Lemma 5 (Proposition 28, [\[1\]](#page-9-0)). *Suppose that the triplet* $(a, b, c) \in \mathbb{N}^3$ satisfies the exponent *triangle inequality with respect to any prime number. Then, for any product-feasible triplet* $(a', b', c') \in \mathbb{N}^3$, the triplet (aa', bb', cc') is also product-feasible.

Lemma 6 (Proposition 21, [\[1\]](#page-9-0))**.** *Suppose that α and β are algebraic numbers of degrees m and n over* \mathbb{Q} *, respectively.* Let $\alpha_1 = \alpha, \alpha_2, \ldots, \alpha_m$ be the distinct conjugates of α *, and let* $\beta_1 =$ *^β*, *^β*2, . . . , *^βⁿ be the distinct conjugates of ^β. If ^β is of degree ⁿ over* Q(*α*)*, then all the numbers* $\alpha_i\beta_j$, $1\leq i\leq m$, and $1\leq j\leq n$ are conjugate over $\mathbb Q$ (although not necessarily distinct).

Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be the roots of a nonzero separable polynomial $f(x) \in \mathbb{Q}[x]$ of degree *n* \geq 2. A *multiplicative relation* between $\alpha_1, \alpha_2, \ldots, \alpha_n$ is a relation of the kind

$$
\prod_{i=1}^n \alpha_i^{k_i} \in \mathbb{Q}
$$

where all the $k_j \in \mathbb{Q}$. We call this multiplicative relation *trivial* if $k_1 = k_2 = \cdots = k_n$.

Lemma 7 (Theorem 1, [\[5\]](#page-9-4)). Let $p > 2$ be a prime number and $f(x) \in \mathbb{Q}[x]$ an irreducible monic *polynomial* $\neq x^p + a_0$ *of degree p over* Q. Then, there are no nontrivial multiplicative relations *between the roots* α_1 , α_2 , ..., α_p *of f*(*x*).

Lemma 8 (Problem 6523, [\[6\]](#page-9-5))**.** *Suppose f*(*x*) *is an irreducible polynomial of degree d over the field of rational numbers, and suppose f*(*x*) *has two roots α, β with ^α β a primitive nth root of unity. Then,* $\varphi(n) \leq d$.

Let *G* be a group acting transitively on a set *S*. If the cardinality of *S* equals $n \in \mathbb{N}$, we say *G* is a group of *degree n*. A nonempty subset $\Delta \subseteq S$ is called a *block* for *G* if for each $x \in G$ either $\Delta^x = \Delta$ or $\Delta^x \cap \Delta = \emptyset$, here $\Delta^x = {\delta^x : \delta \in \Delta}$. Every group acting transitively on *S* has *S* and the singletons $\{\alpha\}$, $\alpha \in S$, as blocks. These are called the *trivial* blocks. Any other block is called *nontrivial*. For example, the cyclic group $G = \langle (1, 2, 3, 4, 5, 6) \rangle$ acting on $S = \{1, 2, 3, 4, 5, 6\}$ has nontrivial blocks $\{1, 4\}$, $\{2, 5\}$, $\{3, 6\}$, $\{1, 3, 5\}$, $\{2, 4, 6\}$ and in fact these are the only nontrivial blocks for *G* (see Exercise 1.5.2, [\[7\]](#page-9-6)). We say that a group *G* acting transitively on a set *S* is *primitive* if *G* has no nontrivial blocks on *S*. For instance, the symmetric group S_n and the alternating group A_n acting on $S = \{1, 2, \ldots, n\}$ are primitive for any $n \in \mathbb{N}$. One more example—the cyclic group $G = \langle (1, 2, 3, 4, 5) \rangle$ acting on $S = \{1, 2, 3, 4, 5\}$ is primitive (see Lemma [9\)](#page-2-0).

Lemma 9 (Theorem 8.3, [\[8\]](#page-9-7))**.** *A transitive group of prime degree is primitive.*

Lemma 10 (Proposition 1, [\[4\]](#page-9-2)). *Suppose that* $n > 4$ *is a positive integer and* $p > 2$ *is a prime number that is not a divisor of n* − 1*. Moreover, assume that p does not divide the order of any transitive subgroup of the symmetric group Sn, except possibly for Aⁿ and Sn. Then, for any positive integer* $k > n$ *divisible by p, the triplet* (n, n, k) *is not product-feasible.*

Lemma 11 (Theorem 3.3, [\[7\]](#page-9-6))**.** *Let G be a subgroup of the symmetric group Sⁿ acting on the set* {1, 2, . . . , *n*}*. Suppose that G is primitive and contains a cycle of length p, where p is a prime number. Then, either G contains the alternating group* A_n *as a subgroup, or* $n \leq p+2$ *.*

Lemma 12 ([\[8\]](#page-9-7) (Theorem 3.7) Special case of [\[8\]](#page-9-7) (Theorem 3.7) taking any Sylow subgroup *U* of *G* and any *α* ∈ fix *U*.)**.** *In a transitive group G, the normalizer of every Sylow subgroup Q of G is transitive on the points left fixed by Q.*

Lemma 13 (N/C theorem, see, e.g., Example 2.2.2, [\[7\]](#page-9-6))**.** *Let H be a subgroup of a group G. Then,* $C_G(H) \triangleleft N_G(H)$ *and the qoutient* $N_G(H)/C_G(H)$ *is isomorphic to some subgroup of* Aut *H, here*

$$
N_G(H) = \{ g \in G : gH = Hg \} \text{ and } C_G(H) = \{ g \in G : gh = hg \; \forall h \in H \}
$$

are the normalizer and the centralizer of H in G, respectively.

3. Proofs

Proof of Theorem [2.](#page-1-1) *Necessity.* Suppose that the triplet $(n - 1, n, n)$ is product-feasible. Then, there exist algebraic numbers α and β , such that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = n - 1$ and $[\mathbb{Q}(\beta) : \mathbb{Q}] =$ $[\mathbb{Q}(\alpha \beta) : \mathbb{Q}] = n$. Since $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\beta)$ are subfileds of $\mathbb{Q}(\alpha, \beta)$, we find that $[\mathbb{Q}(\alpha, \beta) : \mathbb{Q}]$ is divisible both by $n-1$ and n . Then, $gcd(n-1, n) = 1$ implies that $[\mathbb{Q}(\alpha, \beta) : \mathbb{Q}]$ is divisible by $(n-1)n$. On the other hand, $[\mathbb{Q}(\alpha,\beta):\mathbb{Q}] \leq [\mathbb{Q}(\alpha):\mathbb{Q}][\mathbb{Q}(\beta):\mathbb{Q}] = (n-1)n$. Hence, $[Q(\alpha, \beta) : Q] = (n-1)n$ $[Q(\alpha, \beta) : Q] = (n-1)n$ $[Q(\alpha, \beta) : Q] = (n-1)n$ and we have the following diagram (see Figure 1):

Figure 1. Diagram for $(n-1, n, n)$.

Let $\beta_1 := \beta, \beta_2, \ldots, \beta_n$ be the distinct conjugates of β over Q. All the numbers

$$
\alpha\beta_1, \alpha\beta_2, \ldots, \alpha\beta_n
$$

are pairwise distinct and, by Lemma 6 , they all are conjugate over $\mathbb Q$. Hence, these are all the algebraic conjugates of *αβ*. Consequently the product

$$
(\alpha\beta_1)\cdots(\alpha\beta_n)=\alpha^n\beta_1\beta_2\cdots\beta_n
$$

is a nonzero rational number. On the other hand, $\beta_1\beta_2\cdots\beta_n\in\mathbb{Q}\setminus\{0\}$ too. So, α^n is a non-zero rational number, say *r*. Therefore, *α* is a root of the polynomial *x ⁿ* − *r*. The minimal polynomial of α is of degree $n-1$ and divides the polynomial $x^n - r$. Hence, $x^n - r$ has a root that is a rational number, say r_0 . Then, $r = r_0^n$. Assume that *n* is not a prime number. Then, there exist integers $a > 1$ and $b > 1$ such that $n = ab$. Note that

$$
x^{n}-r = x^{ab} - r_{0}^{ab} = (x^{a} - r_{0}^{a})(x^{a(b-1)} + \cdots + r_{0}^{a(b-1)}).
$$

So, the minimal polynomial of *α* divides either $x^a - r_0^a$ or the polynomial $x^{a(b-1)}$ + $\cdots + r_0^{a(b-1)}$ $\frac{u(v-1)}{0}$. However, this is impossible since the degree of either of these polynomials is strictly less than $n - 1$. Therefore, *n* is a prime number.

Sufficiency. Assume *n* is a prime number. Let ζ_n be the primitive *n*th root of unity.
 ζ_n be degree of $\zeta_n = \frac{1}{n}$ expected and $\zeta_n = \frac{n}{\sqrt{2}} \zeta_n$ and $\zeta_n = \frac{1}{n}$ are of degree. Then, the degree of $\alpha = \frac{1}{\zeta_n}$ equals $n-1$. The numbers $\beta = \sqrt[n]{2}\zeta_n$ and $\gamma = \frac{1}{\sqrt[n]{2}}$ are of degree *n* and $\alpha\beta\gamma = 1$. Hence, the triplet $(n-1, n, n)$ is product-feasible. \square

Proof of Theorem [3.](#page-1-4) *Necessity.* Assume that the triplet (p, t, t) is product-feasible. Suppose for the contrary, that $p \nmid t$. We have that there exist algebraic numbers α and β such that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = p$ and $[\mathbb{Q}(\beta) : \mathbb{Q}] = [\mathbb{Q}(\alpha \beta) : \mathbb{Q}] = t$. Since $gcd(p, t) = 1$, we obtain similarly as in the proof of Theorem [2](#page-1-1) the following diagram (see Figure [2\)](#page-4-0):

Figure 2. Diagram for (p, t, t) .

Using Lemma [6](#page-2-1) analogously as in the proof of Theorem [2,](#page-1-1) we find that $\alpha^t \in \mathbb{Q}$. Hence, *α* is a root of a binomial equation $x^t - a = 0$, $a \in \mathbb{Q} \setminus \{0\}$. On the other hand, $\deg \alpha = p > 2$ is a prime number. Therefore, Lemma [7](#page-2-2) implies that the minimal polynomial of *α* over Q is of the form $x^p - b$, $b \in \mathbb{Q} \setminus \{0\}$. We find that $x^t - a$ is divisible by $x^p - b$. Let $t = pq + r$, where *q* and *r* are non-negative integers and $r < p$. Since $t \ge p$ and $p \nmid t$, we find that $r > 0$ and $q > 0$. Note that

$$
x^{t} - a = x^{pq+r} - a = (x^{p} - b + b)^{q}x^{r} - a \equiv b^{q}x^{r} - a \pmod{x^{p} - b}.
$$

The remainder polynomial $b^q x^r - a$ is of degree $r > 0$, which is strictly less than p . Hence, $x^p - b$ does not divide the polynomial $x^t - a$. A contradiction. Therefore, *t* is divisible by *p*.

Sufficiency. Let $t \ge p > 2$ and $t = pk$ for some positive integer *k*. The triplet $(1, k, k)$ is obviously product-feasible, whereas the triplet (p, p, p) satisfies the exponent triangle inequality. By Lemma [5,](#page-2-3) the triplet $(p, t, t) = (p \cdot 1, p \cdot k, p \cdot k)$ is product-feasible. \Box

Proof of Theorem [4.](#page-1-2) If $p = 2$, the assertion is obvious. If $d = p - 1$, our triplet is product-feasible by Lemma [2.](#page-1-5) Suppose that $d < p - 1$. Consider a field extension $\mathbb{Q}(\zeta_{2p}) : \mathbb{Q}$, here $\zeta_{2p}=e^{\frac{2\pi i}{2p}}.$ As a cyclotomic extension, it is normal for degree $\varphi(2p)=p-1$ and its Galois group *G* is isomorphic to the multiplicative group of the ring of residues modulo 2*p* (see, e.g., [\[9\]](#page-9-8)), which means *G* is cyclic (Recall a well-known fact that the multiplicative group of the ring of residues modulo $n > 1$ is cyclic if and only if $n = 2, 4$, p^{α} or $2p^{\alpha}$ where $p > 2$ is prime and $\alpha \in \mathbb{N}$ (see, e.g., [\[10\]](#page-9-9)).). Therefore, for every divisor *d* of $|G| = p - 1$, the group *G* has a unique subgroup of order $(p-1)/d$, say *H*. Let *K* be an intermediate field that corresponds to the subgroup *H* in the Galois correspondence, i.e., *K* consists of all elements of the field Q(*ζ*2*p*), which are left invariant by every automorphism in *^H*. Then, the degree of *K* over Q equals $|G|/|H| = d$. By the primitive element theorem $K = \mathbb{Q}(\theta)$ for some $\theta \in \mathbb{Q}(\zeta_{2p})$. Let *g* be a primitive root modulo 2*p*. Then, the automorphism $\sigma \in G$ defined by

$$
\sigma:\zeta_{2p}\mapsto \zeta_{2p}^g
$$

generates *G*. We claim that $deg(\theta \zeta_{2p}) = p - 1$. It suffices to show that all the numbers

$$
\sigma^k(\theta \zeta_{2p}),\ k=1,2,\ldots,p-1,
$$

are distinct. Indeed, assume that $\sigma^k(\theta\zeta_{2p})=\sigma^l(\theta\zeta_{2p})$ for some $1\leq k < l \leq p-1.$ So that $\sigma^{k}(\theta) \zeta_{2p}^{g^{k}} = \sigma^{l}(\theta) \zeta_{2p}^{g^{l}}$ $_{2p}^{\rm{z}}$ and

$$
\frac{\sigma^k(\theta)}{\sigma^l(\theta)} = e^{\frac{(g^l - g^k)\pi i}{p}}
$$

Note that $g^l - g^k = 2m$, where $p \nmid m$. Therefore, $\sigma^k(\theta) / \sigma^l(\theta)$ is a primitive p th root of unity, which contradicts Lemma [8](#page-2-4) since $d < p - 1$. Hence, deg($\theta \zeta_{2p}$) = $p - 1$.

Finally, take

$$
\alpha = \theta \zeta_{2p}, \ \beta = \sqrt[p]{2}, \ \gamma = \left(\sqrt[p]{2}e^{\frac{\pi i}{p}}\theta\right)^{-1}.
$$

We have $αβγ = 1$. It remains to show that deg $γ = pd$. Let $θ = θ⁽¹⁾, θ⁽²⁾, ..., θ^(d)$ be all the conjugates of θ . Since the numbers deg($\sqrt[p]{2e^{\frac{\pi i}{p}}}$) = *p* and deg $\theta = d$ are coprime Lemma [6,](#page-2-1) it implies that all the numbers

$$
\gamma_k^{(l)} := \left(\sqrt[p]{2}e^{\frac{\pi i}{p}}e^{\frac{2\pi i k}{p}}\theta^{(l)}\right)^{-1}, \ k = 0, 1, \ldots, p-1, \ l = 1, 2, \ldots, d,
$$
 (2)

.

are conjugate to *γ*. It suffices to show that all these numbers are distinct. Indeed, assume that $\gamma_{k_1}^{(l_1)}$ $\gamma_{k_1}^{(l_1)} = \gamma_{k_2}^{(l_2)}$ *k*₂ , where *k*₁, *k*₂ ∈ {0, 1, . . . , *p* − 1}, *l*₁, *l*₂ ∈ {1, 2, . . . , *d*} and either *k*₁ ≠ *k*₂ or $l_1 \neq l_2$. Note that if $k_1 = k_2$, then $l_1 = l_2$. Therefore, $k_1 \neq k_2$ and the equality $\gamma_{k_1}^{(l_1)}$ $\gamma_{k_1}^{(l_1)} = \gamma_{k_2}^{(l_2)}$ *k*2 implies

$$
e^{\frac{2\pi i (k_1 - k_2)}{p}} = \frac{\theta^{(l_2)}}{\theta^{(l_1)}}.
$$

Since $e^{2\pi i (k_1 - k_2)/p}$ is a primitive *p*th root of unity, by Lemma [8,](#page-2-4) we find that $p - 1 =$ $\varphi(p) \leq$ deg $\theta = d$. This is a contradiction. Hence, all the numbers in [\(2\)](#page-5-1) are distinct, and therefore deg $\gamma = pd$. This completes the proof of the theorem. \Box

Proposition 1. *The triplet* (6, 6, 10) *is not product-feasible.*

Proof. The proof of [\[1\]](#page-9-0) (Theorem 38) can be modified easily to the multiplicative case. Using same notations, we finally obtain $\beta_6^6 \in \mathbb{Q}$, hence the minimal polynomial of β is of the form *x*⁶ − *r*₂, *r*₂ ∈ ℚ. Interchanging *α* and *β* in the proof of [\[1\]](#page-9-0) (Theorem 38), we find that the minimal polynomial of α is also of the form $x^6 - r_1$, $r_1 \in \mathbb{Q}$. Hence, $\alpha = \sqrt[6]{r_1} \epsilon_6$ and that the minimal polynomial of α is also of the form $x^6 - r_1$, $r_1 \in \mathbb{Q}$. Hence, $\alpha = \sqrt[6]{r_1} \epsilon_6$ a $\beta = \sqrt[6]{r_2 \epsilon'_6}$, here ϵ_6 and ϵ'_6 are some 6th roots of unity. This yields $\alpha\beta = \sqrt[6]{r_1 r_2 \epsilon_6 \epsilon'_6}$ as a root of $x^6 - r_1 r_2$, thus $\deg(\alpha \beta) \leq 6$, a contradiction.

Proof of Theorem [1.](#page-0-0) Using Lemma [1,](#page-1-6) we determine all possible candidates to productfeasible triplets (a, b, c) with $a \le b \le c$, $b \le 7$. They are listed in Table [2.](#page-6-0)

Blue-colored triplets are sum-feasible, as is proved in [\[1,](#page-9-0)[2\]](#page-9-1). Therefore, all these triplets are also product-feasible by [\(1\)](#page-0-1).

Green-colored triplets are product-feasible too: $(2,3,3)$ is product-feasible by Lemma [4,](#page-1-7) the triplets $(3, 6, 9)$, $(3, 4, 6)$ and $(6, 6, 8)$ by Lemma [5,](#page-2-3) $(4, 5, 5)$ and $(6, 7, 7)$ by Theorem [2,](#page-1-1) whereas $(4, 5, 10)$ $(4, 5, 10)$ $(4, 5, 10)$, $(6, 7, 14)$, $(6, 7, 21)$ are product-feasible by Theorem 4 taking (p, d) = (5, 2), (7, 2) and (7, 3), respectively.

Red-colored triplets are not product-feasible: the triplets $(3, 4, 4)$, $(3, 5, 5)$, $(3, 7, 7)$, $(5, 6, 6)$ and $(5, 7, 7)$ are not product-feasible by Theorem [3,](#page-1-4) $(2, 5, 5)$, $(2, 7, 7)$ by Lemma [4,](#page-1-7) $(6, 6, 10)$ by Proposition [1,](#page-5-0) whereas $(5, 5, 15)$ and $(7, 7, 35)$ are not product-feasible by Lemma [3](#page-1-8) and [\[2\]](#page-9-1) (Corollary 1.5).

$b\setminus a$	$\mathbf{1}$	$\overline{2}$	3	4	5	6	7
$\mathbf{1}$	$\mathbf{1}$						
2	$\overline{2}$	2, 4					
3	3	3, 6	3, 6, 9				
$\boldsymbol{4}$	$\overline{\mathbf{4}}$	4, 8	4, 6, 12	4, 6, 8, 12, 16			
5	5	5, 10	5, 15	5, 10, 20	5, 10, 15 20, 25		
6	$\boldsymbol{6}$	6, 12	6, 9, 12, 18	6, (8) 12, 24	6, (10) (15) , 30	6, 8, 9, 10 12, 15, 18, 24, 30, 36	
7	7	7, 14	7, 21	(14) 28	7,35	7, 14, 21, 42	7, 14, 21, 28, 35, 42, 49

Table 2. Candidates to product-feasible triplets.

The circled triplets have not been examined yet. \Box

Let *p* and *n* be a prime number and a positive integer, respectively. Suppose that the triplet (p, p, n) is product-feasible. If $p \nmid n$, then, by Lemma [1,](#page-1-6) we find that $n < p$. Hence, if $n > p$, then $p \mid n$. Finally, we give another result related to product-feasible triplets containing prime components.

Proposition 2. *Suppose p*, *q* and *w* are prime numbers such that $2 < w < q < p$, $p = 2q + w$ *and w* $/(q - 1)$ *. Then, both triplets* (p, p, pq) *and* $(p, p, 2pq)$ *are not product-feasible.*

For instance, none of the triplets (19, 19, 19 · 7*k*), (29, 29, 29 · 11*k*) and (31, 31, 31 · 13*k*), $k = 1, 2$, are product-feasible. Moreover, suppose that *p*, *q* and *w* satisfy the conditions of Proposition [2.](#page-6-1) Then, for any positive integer $t \geq 3$, the triplet (p, p, pqt) is not productfeasible, by Lemma [1.](#page-1-6)

Proof of the Proposition. Let *G* be a transitive subgroup of the symmetric group *S^p* such that $G \neq A_p$ and $G \neq S_p$. We will show that q cannot divide the order of G. Then, Lemma [10](#page-2-5) will imply that the triplets (p, p, pq) and $(p, p, 2pq)$ both are not product-feasible. (Note that from $p = 2q + w$, $2 < w < q < p$, it follows that $q \nvert (p - 1)$.).

Suppose for the contrary that the order of *G* is divisible by a prime *q*. Denote by *Q* a Sylow *q*-subgroup of *G*. The order of *Q* equals *q* or *q* 2 since *Q* is a subgroup of *S^p* and $\text{ord}_q |S_p| = \text{ord}(p!) = q^2$. We claim that $|Q| = q$. Indeed, assume that $|Q| = q^2$. Then, *Q* is a Sylow *q*-subgroup of S_p , too. Take any cycle $\tau \in S_p$ of length *q*. Then, a cyclic subgroup $\langle \tau \rangle$ is contained in some Sylow *q*-subgroup of *S_p*. Since any two Sylow *q*-subgroups are conjugated and conjugate elements in S_p are of the same cyclic structure, we find that the subgroup *Q* of *G* also contains a cycle of length *q*. However, Lemma [9](#page-2-0) implies *G* is primitive, therefore we obtain a contradiction by Lemma [11.](#page-2-6) Hence, $|Q| = q$, which means *Q* is a cyclic subgroup generated by an element $\sigma \in G$ of order *q*. If σ were a cycle of length *q*, we would obtain a contradiction by Lemma [11.](#page-2-6) Since $p = 2q + w < 3q$, it follows that σ must be a product of two disjoint cycles of length q , say, π and $\rho \in G$. Therefore, $|\text{fix } Q| = p - 2q = w$, here $\text{fix } Q := \{ n \in \{1, 2, ..., p\} : n^{\tau} = n \,\forall \tau \in Q \}.$

Note that Lemma [12](#page-3-2) implies the order of the normalizer $N_G(Q)$ is divisible by $|\text{fix } Q| =$ *w*, which is prime. Hence, there exists an element $\tau \in N_G(Q)$ of order *w*. We claim that in fact $\tau \in C_G(Q) \subseteq N_G(Q)$. Indeed, if $\tau \notin C_G(Q)$, then the order of $\tau C_G(Q)$ in the qoutient group $N_G(Q)/C_G(Q)$ equals *w*. Therefore, by Lemma [13,](#page-3-3) we find that ω divides the order of Aut *Q*. However, $|\text{Aut } Q| = \varphi(q) = q - 1$ and $\omega \nmid (q - 1)$ by our assumption (here φ denotes the Euler's totient function—a contradiction).

We have proved $Q = \langle \pi \cdot \rho \rangle$, where $\pi, \rho \in S_p$ are two disjoint *q*-cycles. Let us denote $\pi = (i_1, i_2, \dots, i_q)$ and $\rho = (j_1, j_2, \dots, j_q)$. Since

$$
\tau \in C_G(Q) = \{ \sigma \in G : \sigma \cdot \eta \cdot \sigma^{-1} = \eta \,\,\forall \eta \in Q \},
$$

 \mathbf{w} e obtain $\tau \cdot (\pi \cdot \rho) \cdot \tau^{-1} = \pi \cdot \rho$, i.e.,

$$
(i_1^{\tau}, i_2^{\tau}, \ldots, i_q^{\tau})(j_1^{\tau}, j_2^{\tau}, \ldots, j_q^{\tau}) = (i_1, i_2, \ldots, i_q)(j_1, j_2, \ldots, j_q).
$$

By the uniqueness of the cycle decomposition, there are two possible cases: either

$$
(i_1^{\tau}, i_2^{\tau}, \ldots, i_q^{\tau}) = (i_1, i_2, \ldots, i_q)
$$
 and $(j_1^{\tau}, j_2^{\tau}, \ldots, j_q^{\tau}) = (j_1, j_2, \ldots, j_q)$

or

$$
(i_1^{\tau}, i_2^{\tau}, \dots, i_q^{\tau}) = (j_1, j_2, \dots, j_q)
$$
 and $(j_1^{\tau}, j_2^{\tau}, \dots, j_q^{\tau}) = (i_1, i_2, \dots, i_q).$

In both cases, we find that

$$
(i_1^{\tau^2}, i_2^{\tau^2}, \dots, i_q^{\tau^2}) = (i_1, i_2, \dots, i_q)
$$
 and $(j_1^{\tau^2}, j_2^{\tau^2}, \dots, j_q^{\tau^2}) = (j_1, j_2, \dots, j_q).$

Denote $\eta = \tau^2$. We will show that η fixes every element of the set

$$
\{i_1, i_2, \ldots, i_q, j_1, j_2, \ldots, j_q\}.
$$

Firstly, note that $\eta(i_1) = i_1$. Indeed, suppose for the contrary that $\eta(i_1) = i_{1+k}$ for some $k \in \{1, ..., q - 1\}$. Then,

$$
\eta^l(i_1) = i_{1+lk \pmod{q}} = i_1 \Leftrightarrow 1 + lk \equiv 1 \pmod{q} \Leftrightarrow l \equiv 0 \pmod{q},
$$

which implies that *η* has a cycle of length *q* in its cycle decomposition, but this is impossible since the order of η equals w and $gcd(w, q) = 1$. Hence, $\eta(i_1) = i_1$, and therefore $\eta(i_k) = i_k$ for every $k = 1, ..., q$. Analogously, $\eta(j_k) = j_k$ for every $k = 1, ..., q$.

Hence, there are at most $p - 2q = w$ elements in the set $\{1, 2, \ldots, p\}$ that are not fixed under *η*. Since the order of *η* equals *ω*, it follows that *η* is a cycle of length *w*, which leads to a contradiction by Lemma [11.](#page-2-6) This completes the proof of the proposition. \Box

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The author thanks P. Drungilas for useful advice.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Drungilas, Dubickas and Smyth [\[1\]](#page-9-0) proposed the following hypothesis:

Hypothesis A1 (Part of Conjecture 4, [\[1\]](#page-9-0)). *If* (a, b, c) , $(a', b', c') \in \mathbb{N}^3$ are compositum-feasible, $then so is (aa', bb', cc').$

It was proved in [\[3\]](#page-9-3) that this hypothesis is true if the answer to the *inverse Galois problem* is positive. Recall that the inverse Galois problem asks whether every finite group occurs as a Galois group of some Galois extension *K* over Q.

Theorem A1 (Theorem 1.3, [\[3\]](#page-9-3))**.** *If every finite group occurs as a Galois group of some Galois extension K*/Q*, then the Hypothesis [A1](#page-7-1) is true.*

For (a, b, c) , $(a', b', c') \in \mathbb{N}^3$, let us denote

$$
(a, b, c) \cdot (a', b', c') := (aa', bb', cc').
$$
 (A1)

In other words, Theorem [A1](#page-7-2) implies that, assuming an affirmative answer to the inverse Galois problem, the set $\mathcal C$ of compositum-feasible triplets forms a semigroup with respect to the multiplication defined by $(A1)$. It is natural to ask which elements of C are *irreducble*. We say that a triplet $(A, B, C) \in C$ is *irreducible* if it cannot be written as $(A, B, C) = (a, b, c) \cdot (a', b', c')$, where $(a, b, c), (a', b', c') \in C \setminus \{(1, 1, 1)\}$. Otherwise, we say that the triplet $(A, B, C) \in C$ is *reducible*. For instance, every triplet $(p, p, pd) \in C$, where *p* is a prime number and $1 \leq d < p$, is irreducible, whereas for any positive integer *n* the triplet $(n, n, n^2) = (n, 1, n) \cdot (1, n, n)$ is reducible (It is known (see Lemmas 2.7 and 2.8, The-orem 1.1, [\[2\]](#page-9-1)) that for any prime *p* and for $d = 1, 2, p - 1$ the triplet (p, p, pd) is compositumfeasible, whereas for $p - \frac{1+\sqrt{4p-3}}{2} < d \le p-2$ it is not product-feasible, hence not compositum-feasible, too. Meanwhile, the triplet (n, n, n^2) is compositum-feasible for any *n* ∈ N by Lemma [2\)](#page-1-5). The following proposition gives one more family of irreducible triplets in C.

Proposition A1. *For any integer* $n \geq 2$ *the compositum-feasible triplet* $(n, n, n(n-1))$ *is irreducible (In fact, it is known that for any* $n \geq 2$ *the triplet* $(n, n, n(n - 1))$ *is compositum-feasible (see Proposition 29, [\[1\]](#page-9-0))).*

Proof. Suppose on the contrary that

$$
(n, n, n(n-1)) = (a_1, b_1, c_1) \cdot (a_2, b_2, c_2), \tag{A2}
$$

where (a_1, b_1, c_1) and (a_2, b_2, c_2) are compositum-feasible triplets that are both different from $(1, 1, 1)$.

For $i = 1, 2$ we can factor $c_i = d_i^{(n)}$ $\binom{n}{i} d_i^{(n-1)}$ $a_i^{(n-1)}$, where $d_1^{(n)}$ $d_1^{(n)}d_2^{(n)} = n$ and $d_1^{(n-1)}$ $d_1^{(n-1)}d_2^{(n-1)} = n-1.$ We assume that the triplet (a_1, b_1, c_1) is compositum-feasible, thus a_1 divides $c_1 = d_1^{(n)}$ $d_1^{(n)}d_1^{(n-1)}$ $\frac{(n-1)}{1}$. Since $\gcd(a_1, d_1^{(n-1)})$ $\binom{(n-1)}{1}$ = 1, it follows that $a_1|d_1^{(n)}$ $\binom{n}{1}$. Analogously, $a_2|d_2^{(n)}$ $a_2^{(n)}$. If $a_1 < d_1^{(n)}$ j'' , then

$$
d_1^{(n)}d_2^{(n)} = n = a_1a_2 < d_1^{(n)}a_2 \Rightarrow d_2^{(n)} < a_2
$$

thus $a_2 \nmid d_2^{(n)}$ —a contradiction. Therefore, $a_2 = d_1^{(n)}$ $a_1^{(n)}$ and $a_2 = d_2^{(n)}$ $b_2^{(n)}$. Analogously, $b_1 =$ $d_1^{(n)}$ $j_1^{(n)}$ is $b_2 = d_2^{(n)}$ $\binom{n}{2}$. Thus, omitting superscripts (n) and instead of $(n-1)$ using $'$ we can rewrite [\(A2\)](#page-8-1) as

$$
(n, n, n(n-1)) = (d_1, d_1, d_1d'_1) \cdot (d_2, d_2, d_2d'_2).
$$

Note that $d'_i < d_i$, $i = 1, 2$. Indeed, for any compositum-feasible triplet, (a, b, c) holds $c \le ab$, hence for $i = 1, 2$ $d_i d'_i \le d_i^2$, i.e., $d'_i \le d_i$. Moreover, $gcd(d'_i, d_i) = 1$ and the numbers d'_i , d_i cannot be both equal to 1, thus $d'_i \neq d_i$. Therefore,

$$
d_2d_2' = \frac{n}{d_1} \cdot \frac{n-1}{d_1'} \ge \frac{n}{d_1} \cdot \frac{n-1}{d_1-1} > \left(\frac{n}{d_1}\right)^2 = d_2^2 \Rightarrow d_2' > d_2,
$$

since *d*₁ < *n*, a contradiction. Hence, the triplet $(n, n, n(n-1))$ is irreducible. □

One can check by a routine calculation that among the compositum-feasible triplets (a, b, c) , $a \le b \le c$, $b \le 9$ (All such triplets are described in [\[1,](#page-9-0)[2,](#page-9-1)[4\]](#page-9-2)), the only irreducible triplets are of the form $(1, p, p)$, (p, p, pd) and $(n, n, n(n - 1))$, where p is prime, $1 \leq$ $d < p$ and $n > 2$. We finish our article by proposing the problem to find all irreducible compositum-feasible triplets.

References

- 1. Drungilas, P.; Dubickas, A.; Smyth, C. A degree problem for two algebraic numbers and their sum. *Publ. Mat.* **2012**, *56*, 413–448. [\[CrossRef\]](http://doi.org/10.5565/PUBLMAT_56212_07)
- 2. Drungilas, P.; Dubickas, A.; Luca, F. On the degree of compositum of two number fields. *Math. Nachr.* **2013**, *286*, 171–180. [\[CrossRef\]](http://dx.doi.org/10.1002/mana.201200124)
- 3. Drungilas, P.; Dubickas, A. On degrees of three algebraic numbers with zero sum or unit product. *Colloq. Math.* **2016**, *143*, 159–167. [\[CrossRef\]](http://dx.doi.org/10.4064/cm6634-12-2015)
- 4. Drungilas, P.; Maciuleviˇcius, L. A degree problem for the compositum of two number fields. *Lith. Math. J.* **2019**, *59*, 39–47. [\[CrossRef\]](http://dx.doi.org/10.1007/s10986-019-09428-x)
- 5. Drmota, M.; Skał ba, M. On multiplicative and linear independence of polynomial roots. In *Contributions to General Algebra, 7 (Vienna, 1990)*; Hölder-Pichler-Tempsky: Vienna, Austria, 1991; pp. 127–135.
- 6. Cantor, D.G.; Isaacs, I.M. Problems and Solutions: Solutions of Advanced Problems: 6523. *Amer. Math. Monthly* **1988**, *95*, 561–562. [\[CrossRef\]](http://dx.doi.org/10.2307/2322773)
- 7. Dixon, J.D.; Mortimer, B. Permutation Groups. In *Graduate Texts in Mathematics*; Springer: New York, NY, USA, 1996; Volume 163, pp. xii+346. [\[CrossRef\]](http://dx.doi.org/10.1007/978-1-4612-0731-3)
- 8. Wielandt, H. *Finite Permutation Groups*; Translated from the German by R. Bercov; Academic Press: New York, NY, USA; London, UK, 1964; pp. x+114.
- 9. Narkiewicz, W.A.A. *Elementary and Analytic Theory of Algebraic Numbers*, 3rd ed.; Springer Monographs in Mathematics; Springer: Berlin, Germany, 2004; pp. xii+708. [\[CrossRef\]](http://dx.doi.org/10.1007/978-3-662-07001-7)
- 10. Vinogradov, I.M. *Elements of Number Theory*; Kravetz., S., Translater; Dover Publications, Inc.: New York, NY, USA, 1954; pp. viii+227.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.