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Abstract: A triplet (a, b, c) of positive integers is said to be product-feasible if there exist algebraic
numbers α, β and γ of degrees (over Q) a, b and c, respectively, such that αβγ = 1. This work
extends the investigation of product-feasible triplets started by Drungilas, Dubickas and Smyth.
More precisely, for all but five positive integer triplets (a, b, c) with a ≤ b ≤ c and b ≤ 7, we decide
whether it is product-feasible. Moreover, in the Appendix we give an infinite family or irreducible
compositum-feasible triplets and propose a problem to find all such triplets.
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1. Introduction

Following [1], we say that a triplet (a, b, c) ∈ N3 is sum-feasible (resp., product-feasible)
if there exist algebraic numbers α, β, γ of degrees a, b, c (over Q), respectively, such that
α + β + γ = 0 (resp., αβγ = 1). In [1], the problem of finding all sum-feasible triplets
was proposed. In the same paper and in its continuations [2–4], an analogous problem for
number fields was considered. Namely, we say that a triplet (a, b, c) ∈ N3 is compositum-
feasible if there exist number fields K and L of degrees a and b (over Q), respectively,
such that the degree of their compositum KL is c. All sum-feasible triplets (a, b, c) ∈ N3,
satisfying a ≤ b ≤ c, b ≤ 7, and all possible compositum-feasible triplets (a, b, c), satisfying
a ≤ b ≤ c, b ≤ 9, were determined in [1,2,4]. Moreover, it was proved in [1,4] that the
three feasibility problems are related in the following way: if C, S and P denote sets of all
possible compositum-feasible, sum-feasible and product-feasible triplets, respectively, then

C ( S ( P . (1)

Therefore all sum-feasible triplets that were found in the preceding papers are also
product-feasible, but they do not exhaust all possible product-feasible triplets (a, b, c) for
which a ≤ b ≤ c and b ≤ 7. There comes a natural motivation to investigate the case of the
product more closely.

In this paper, we consider product-feasible triplets (a, b, c) under the same restrictions
a ≤ b ≤ c, b ≤ 7. More precisely, we prove the following:

Theorem 1. All the triplets (a, b, c) ∈ N3 with a ≤ b ≤ c, b ≤ 7 that are product-feasible are
given in Table 1, with five possible exceptions that are circled.
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Table 1. Triplets (a, b, c), a ≤ b ≤ c, and b ≤ 7, which are product-feasible with 5 possible exceptions.

b\a 1 2 3 4 5 6 7

1 1

2 2 2, 4

3 3 3, 6 3, 6, 9

4 4 4, 8 6, 12 4, 6, 8,
12, 16

5 5 10 15 5, 10, 20 5, 10,
20, 25

6
6 6, 12 6, 9, 6, 8 10 , 15 6, 8, 9,

12, 18 12, 24 30 12, 15, 18,
24, 30, 36

7 7 14 21 7 , 14 35 7, 14, 7, 14, 21,
28 21, 42 28, 42, 49

Moreover, we obtain several results related to triplets that include prime components.

Theorem 2. The triplet (n− 1, n, n), n ≥ 2, is product-feasible if and only if n is a prime number.

In [1] (Theorem 8), it was proved that the triplet (2, t, t) ∈ N3 is product-feasible if and
only if 2|t or 3|t. We obtain an analogous result for triplets (p, t, t) ∈ N3, where p > 2 is a
prime number.

Theorem 3. Suppose a prime number p and a positive integer t satisfy t ≥ p > 2. Then, the
triplet (p, t, t) is product-feasible if and only if p|t.

The following theorem, taking d = 1, implies the sufficiency part of Theorem 2.

Theorem 4. For any prime number p and each divisor d of p − 1, the triplet (p − 1, p, pd) is
product-feasible.

It was conjectured in [1] that the set C of compositum-feasible triplets is a multiplicative
semigroup, i.e., if (a, b, c), (a′, b′, c′) ∈ C, then (aa′, bb′, cc′) ∈ C. This conjecture was proved
in [3] (Theorem 1.3) assuming the answer to the inverse Galois problem is positive, i.e., that
every finite group occurs as a Galois group of some normal field extension of Q. Therefore,
it is natural to consider irreducible elements of C. In Appendix A, we give an infinite family
of irreducible elements of C (see Proposition A1). Finally, at the end of Appendix A, we
propose a problem of finding all irreducible compositum-feasible triplets.

The paper is organized as follows. The proof of Theorem 1 is given in Section 3 and
is based on Theorems 2–4. In Section 2, we state some auxiliary results. Appendix A is
devoted to irreducible elements of C.

2. Auxiliary Results

Lemma 1 (Lemma 14, [1]). Suppose that a triplet (a, b, c) is product-feasible. Then, c| lcm(a, b) · t
for some positive t ≤ gcd(a, b).

Lemma 2 (Proposition 19, [1]). For any positive integers a and b, the triplet (a, b, ab) is compositum-
feasible and hence both sum-feasible and product-feasible.

Lemma 3 (Lemma 7, [4]). Suppose that positive integers a ≤ b ≤ c satisfy ab < 2c. Then, if the
triplet (a, b, c) ∈ N3 is not compositum-feasible, then it is neither sum-feasible nor product-feasible.
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Lemma 4 (Theorem 8, [1]). The triplet (2, t, t) ∈ N3 is product-feasible if and only if 2|t or 3|t.

Let p be a prime number and n ∈ N. Denote by ordp(n) the exponent to which p
appears in the prime factorization of n (if p - n set ordp(n) = 0). We say that a triplet
(a, b, c) satisfies the exponent triangle inequality with respect to a prime p if

ordp(a) + ordp(b) ≥ ordp(c), ordp(a) + ordp(c) ≥ ordp(b) and

ordp(b) + ordp(c) ≥ ordp(a).

Lemma 5 (Proposition 28, [1]). Suppose that the triplet (a, b, c) ∈ N3 satisfies the exponent
triangle inequality with respect to any prime number. Then, for any product-feasible triplet
(a′, b′, c′) ∈ N3, the triplet (aa′, bb′, cc′) is also product-feasible.

Lemma 6 (Proposition 21, [1]). Suppose that α and β are algebraic numbers of degrees m and
n over Q, respectively. Let α1 = α, α2, . . . , αm be the distinct conjugates of α, and let β1 =
β, β2, . . . , βn be the distinct conjugates of β. If β is of degree n over Q(α), then all the numbers
αiβ j, 1 ≤ i ≤ m, and 1 ≤ j ≤ n are conjugate over Q (although not necessarily distinct).

Let α1, α2, . . . , αn be the roots of a nonzero separable polynomial f (x) ∈ Q[x] of degree
n ≥ 2. A multiplicative relation between α1, α2, . . . , αn is a relation of the kind

n

∏
i=1

α
ki
i ∈ Q,

where all the k j ∈ Q. We call this multiplicative relation trivial if k1 = k2 = · · · = kn.

Lemma 7 (Theorem 1, [5]). Let p > 2 be a prime number and f (x) ∈ Q[x] an irreducible monic
polynomial 6= xp + a0 of degree p over Q. Then, there are no nontrivial multiplicative relations
between the roots α1, α2, . . . , αp of f (x).

Lemma 8 (Problem 6523, [6]). Suppose f (x) is an irreducible polynomial of degree d over the
field of rational numbers, and suppose f (x) has two roots α, β with α

β a primitive nth root of unity.
Then, ϕ(n) ≤ d.

Let G be a group acting transitively on a set S. If the cardinality of S equals n ∈ N, we
say G is a group of degree n. A nonempty subset ∆ ⊆ S is called a block for G if for each x ∈ G
either ∆x = ∆ or ∆x ∩ ∆ = ∅, here ∆x = {δx : δ ∈ ∆}. Every group acting transitively
on S has S and the singletons {α}, α ∈ S, as blocks. These are called the trivial blocks.
Any other block is called nontrivial. For example, the cyclic group G = 〈(1, 2, 3, 4, 5, 6)〉
acting on S = {1, 2, 3, 4, 5, 6} has nontrivial blocks {1, 4}, {2, 5}, {3, 6}, {1, 3, 5}, {2, 4, 6}
and in fact these are the only nontrivial blocks for G (see Exercise 1.5.2, [7]). We say that
a group G acting transitively on a set S is primitive if G has no nontrivial blocks on S. For
instance, the symmetric group Sn and the alternating group An acting on S = {1, 2, . . . , n}
are primitive for any n ∈ N. One more example—the cyclic group G = 〈(1, 2, 3, 4, 5)〉 acting
on S = {1, 2, 3, 4, 5} is primitive (see Lemma 9).

Lemma 9 (Theorem 8.3, [8]). A transitive group of prime degree is primitive.

Lemma 10 (Proposition 1, [4]). Suppose that n > 4 is a positive integer and p > 2 is a prime
number that is not a divisor of n− 1. Moreover, assume that p does not divide the order of any
transitive subgroup of the symmetric group Sn, except possibly for An and Sn. Then, for any positive
integer k > n divisible by p, the triplet (n, n, k) is not product-feasible.
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Lemma 11 (Theorem 3.3, [7]). Let G be a subgroup of the symmetric group Sn acting on the set
{1, 2, . . . , n}. Suppose that G is primitive and contains a cycle of length p, where p is a prime
number. Then, either G contains the alternating group An as a subgroup, or n ≤ p + 2.

Lemma 12 ([8] (Theorem 3.7) Special case of [8] (Theorem 3.7) taking any Sylow subgroup
U of G and any α ∈ fix U.). In a transitive group G, the normalizer of every Sylow subgroup Q
of G is transitive on the points left fixed by Q.

Lemma 13 (N/C theorem, see, e.g., Example 2.2.2, [7]). Let H be a subgroup of a group
G. Then, CG(H)C NG(H) and the qoutient NG(H)/CG(H) is isomorphic to some subgroup of
Aut H, here

NG(H) = {g ∈ G : gH = Hg} and CG(H) = {g ∈ G : gh = hg ∀h ∈ H}

are the normalizer and the centralizer of H in G, respectively.

3. Proofs

Proof of Theorem 2. Necessity. Suppose that the triplet (n − 1, n, n) is product-feasible.
Then, there exist algebraic numbers α and β, such that [Q(α) : Q] = n− 1 and [Q(β) : Q] =
[Q(αβ) : Q] = n. Since Q(α) and Q(β) are subfileds of Q(α, β), we find that [Q(α, β) : Q] is
divisible both by n− 1 and n. Then, gcd(n− 1, n) = 1 implies that [Q(α, β) : Q] is divisible
by (n− 1)n. On the other hand, [Q(α, β) : Q] ≤ [Q(α) : Q][Q(β) : Q] = (n− 1)n. Hence,
[Q(α, β) : Q] = (n− 1)n and we have the following diagram (see Figure 1):

Q(αβ)Q

Q(α)

Q(α, β)

Q(β)

n

n−
1

n

n

n− 1

n−
1

Figure 1. Diagram for (n− 1, n, n).

Let β1 := β, β2, . . . , βn be the distinct conjugates of β over Q. All the numbers

αβ1, αβ2, . . . , αβn

are pairwise distinct and, by Lemma 6, they all are conjugate over Q. Hence, these are all
the algebraic conjugates of αβ. Consequently the product

(αβ1) · · · (αβn) = αnβ1β2 · · · βn

is a nonzero rational number. On the other hand, β1β2 · · · βn ∈ Q \ {0} too. So, αn is
a non-zero rational number, say r. Therefore, α is a root of the polynomial xn − r. The
minimal polynomial of α is of degree n − 1 and divides the polynomial xn − r. Hence,
xn − r has a root that is a rational number, say r0. Then, r = rn

0 . Assume that n is not a
prime number. Then, there exist integers a > 1 and b > 1 such that n = ab. Note that

xn − r = xab − rab
0 = (xa − ra

0)(xa(b−1) + · · ·+ ra(b−1)
0 ).
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So, the minimal polynomial of α divides either xa − ra
0 or the polynomial xa(b−1) +

· · ·+ ra(b−1)
0 . However, this is impossible since the degree of either of these polynomials is

strictly less than n− 1. Therefore, n is a prime number.
Sufficiency. Assume n is a prime number. Let ζn be the primitive nth root of unity.

Then, the degree of α = 1
ζn

equals n− 1. The numbers β = n
√

2ζn and γ = 1
n√2

are of degree
n and αβγ = 1. Hence, the triplet (n− 1, n, n) is product-feasible.

Proof of Theorem 3. Necessity. Assume that the triplet (p, t, t) is product-feasible. Suppose
for the contrary, that p - t. We have that there exist algebraic numbers α and β such that
[Q(α) : Q] = p and [Q(β) : Q] = [Q(αβ) : Q] = t. Since gcd(p, t) = 1, we obtain similarly
as in the proof of Theorem 2 the following diagram (see Figure 2):

Q(αβ)Q

Q(α)

Q(α, β)

Q(β)

t

p

t

t

p

p

Figure 2. Diagram for (p, t, t).

Using Lemma 6 analogously as in the proof of Theorem 2, we find that αt ∈ Q. Hence,
α is a root of a binomial equation xt − a = 0, a ∈ Q \ {0}. On the other hand, deg α = p > 2
is a prime number. Therefore, Lemma 7 implies that the minimal polynomial of α over Q is
of the form xp − b, b ∈ Q \ {0}. We find that xt − a is divisible by xp − b. Let t = pq + r,
where q and r are non-negative integers and r < p. Since t ≥ p and p - t, we find that r > 0
and q > 0. Note that

xt − a = xpq+r − a = (xp − b + b)qxr − a ≡ bqxr − a (mod xp − b).

The remainder polynomial bqxr − a is of degree r > 0, which is strictly less than p.
Hence, xp − b does not divide the polynomial xt − a. A contradiction. Therefore, t is
divisible by p.

Sufficiency. Let t ≥ p > 2 and t = pk for some positive integer k. The triplet (1, k, k)
is obviously product-feasible, whereas the triplet (p, p, p) satisfies the exponent triangle
inequality. By Lemma 5, the triplet (p, t, t) = (p · 1, p · k, p · k) is product-feasible.

Proof of Theorem 4. If p = 2, the assertion is obvious. If d = p− 1, our triplet is product-
feasible by Lemma 2. Suppose that d < p− 1. Consider a field extension Q(ζ2p) : Q, here

ζ2p = e
2πi
2p . As a cyclotomic extension, it is normal for degree ϕ(2p) = p− 1 and its Galois

group G is isomorphic to the multiplicative group of the ring of residues modulo 2p (see,
e.g., [9]), which means G is cyclic (Recall a well-known fact that the multiplicative group of
the ring of residues modulo n > 1 is cyclic if and only if n = 2, 4, pα or 2pα where p > 2
is prime and α ∈ N (see, e.g., [10]).). Therefore, for every divisor d of |G| = p − 1, the
group G has a unique subgroup of order (p− 1)/d, say H. Let K be an intermediate field
that corresponds to the subgroup H in the Galois correspondence, i.e., K consists of all
elements of the field Q(ζ2p), which are left invariant by every automorphism in H. Then,
the degree of K over Q equals |G|/|H| = d. By the primitive element theorem K = Q(θ)
for some θ ∈ Q(ζ2p). Let g be a primitive root modulo 2p. Then, the automorphism σ ∈ G
defined by

σ : ζ2p 7→ ζ
g
2p
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generates G. We claim that deg(θζ2p) = p− 1. It suffices to show that all the numbers

σk(θζ2p), k = 1, 2, . . . , p− 1,

are distinct. Indeed, assume that σk(θζ2p) = σl(θζ2p) for some 1 ≤ k < l ≤ p− 1. So that

σk(θ)ζ
gk

2p = σl(θ)ζ
gl

2p and

σk(θ)

σl(θ)
= e

(gl−gk)πi
p .

Note that gl − gk = 2m, where p - m. Therefore, σk(θ)/σl(θ) is a primitive pth root of
unity, which contradicts Lemma 8 since d < p− 1. Hence, deg(θζ2p) = p− 1.

Finally, take

α = θζ2p, β =
p√2, γ =

( p√2e
πi
p θ

)−1.

We have αβγ = 1. It remains to show that deg γ = pd. Let θ = θ(1), θ(2), . . . , θ(d) be

all the conjugates of θ. Since the numbers deg( p
√

2e
πi
p ) = p and deg θ = d are coprime

Lemma 6, it implies that all the numbers

γ
(l)
k :=

( p√2e
πi
p e

2πik
p θ(l)

)−1, k = 0, 1, . . . , p− 1, l = 1, 2, . . . , d, (2)

are conjugate to γ. It suffices to show that all these numbers are distinct. Indeed, assume
that γ

(l1)
k1

= γ
(l2)
k2

, where k1, k2 ∈ {0, 1, . . . , p− 1}, l1, l2 ∈ {1, 2, . . . , d} and either k1 6= k2 or

l1 6= l2. Note that if k1 = k2, then l1 = l2. Therefore, k1 6= k2 and the equality γ
(l1)
k1

= γ
(l2)
k2

implies

e
2πi(k1−k2)

p =
θ(l2)

θ(l1)
.

Since e2πi(k1−k2)/p is a primitive pth root of unity, by Lemma 8, we find that p− 1 =
ϕ(p) ≤ deg θ = d. This is a contradiction. Hence, all the numbers in (2) are distinct, and
therefore deg γ = pd. This completes the proof of the theorem.

Proposition 1. The triplet (6, 6, 10) is not product-feasible.

Proof. The proof of [1] (Theorem 38) can be modified easily to the multiplicative case.
Using same notations, we finally obtain β6

6 ∈ Q, hence the minimal polynomial of β is of
the form x6 − r2, r2 ∈ Q. Interchanging α and β in the proof of [1] (Theorem 38), we find
that the minimal polynomial of α is also of the form x6 − r1, r1 ∈ Q. Hence, α = 6

√
r1ε6 and

β = 6
√

r2ε′6, here ε6 and ε′6 are some 6th roots of unity. This yields αβ = 6
√

r1r2ε6ε′6 as a root
of x6 − r1r2, thus deg(αβ) ≤ 6, a contradiction.

Proof of Theorem 1. Using Lemma 1, we determine all possible candidates to product-
feasible triplets (a, b, c) with a ≤ b ≤ c, b ≤ 7. They are listed in Table 2.

Blue-colored triplets are sum-feasible, as is proved in [1,2]. Therefore, all these triplets
are also product-feasible by (1).

Green-colored triplets are product-feasible too: (2, 3, 3) is product-feasible by Lemma 4,
the triplets (3, 6, 9), (3, 4, 6) and (6, 6, 8) by Lemma 5, (4, 5, 5) and (6, 7, 7) by Theorem 2,
whereas (4, 5, 10), (6, 7, 14), (6, 7, 21) are product-feasible by Theorem 4 taking (p, d) =
(5, 2), (7, 2) and (7, 3), respectively.

Red-colored triplets are not product-feasible: the triplets (3, 4, 4), (3, 5, 5), (3, 7, 7),
(5, 6, 6) and (5, 7, 7) are not product-feasible by Theorem 3, (2, 5, 5), (2, 7, 7) by Lemma 4,
(6, 6, 10) by Proposition 1, whereas (5, 5, 15) and (7, 7, 35) are not product-feasible by
Lemma 3 and [2] (Corollary 1.5).
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Table 2. Candidates to product-feasible triplets.

b\a 1 2 3 4 5 6 7

1 1

2 2 2, 4

3 3 3, 6 3, 6, 9

4 4 4, 8 4, 6, 12 4, 6, 8,
12, 16

5 5 5, 10 5, 15 5, 10, 20 5, 10, 15
20, 25

6
6 6, 12 6, 9, 6, 8 6, 10 , 6, 8, 9, 10

12, 18 12, 24 15 , 30 12, 15, 18,
24, 30, 36

7
7 7, 14 7, 21 7 , 14 7, 35 7, 14, 7, 14, 21,

28 21, 42 28, 35, 42,
49

The circled triplets have not been examined yet.

Let p and n be a prime number and a positive integer, respectively. Suppose that the
triplet (p, p, n) is product-feasible. If p - n, then, by Lemma 1, we find that n < p. Hence,
if n > p, then p | n. Finally, we give another result related to product-feasible triplets
containing prime components.

Proposition 2. Suppose p, q and w are prime numbers such that 2 < w < q < p, p = 2q + w
and w 6 |(q− 1). Then, both triplets (p, p, pq) and (p, p, 2pq) are not product-feasible.

For instance, none of the triplets (19, 19, 19 · 7k), (29, 29, 29 · 11k) and (31, 31, 31 · 13k),
k = 1, 2, are product-feasible. Moreover, suppose that p, q and w satisfy the conditions of
Proposition 2. Then, for any positive integer t ≥ 3, the triplet (p, p, pqt) is not product-
feasible, by Lemma 1.

Proof of the Proposition. Let G be a transitive subgroup of the symmetric group Sp such
that G 6= Ap and G 6= Sp. We will show that q cannot divide the order of G. Then,
Lemma 10 will imply that the triplets (p, p, pq) and (p, p, 2pq) both are not product-feasible.
(Note that from p = 2q + w, 2 < w < q < p, it follows that q 6 |(p− 1).).

Suppose for the contrary that the order of G is divisible by a prime q. Denote by Q
a Sylow q-subgroup of G. The order of Q equals q or q2 since Q is a subgroup of Sp and
ordq |Sp| = ord(p!) = q2. We claim that |Q| = q. Indeed, assume that |Q| = q2. Then, Q is
a Sylow q-subgroup of Sp, too. Take any cycle τ ∈ Sp of length q. Then, a cyclic subgroup
〈τ〉 is contained in some Sylow q-subgroup of Sp. Since any two Sylow q-subgroups are
conjugated and conjugate elements in Sp are of the same cyclic structure, we find that
the subgroup Q of G also contains a cycle of length q. However, Lemma 9 implies G is
primitive, therefore we obtain a contradiction by Lemma 11. Hence, |Q| = q, which means
Q is a cyclic subgroup generated by an element σ ∈ G of order q. If σ were a cycle of
length q, we would obtain a contradiction by Lemma 11. Since p = 2q + w < 3q, it follows
that σ must be a product of two disjoint cycles of length q, say, π and ρ ∈ G. Therefore,
|fix Q| = p− 2q = w, here fix Q := {n ∈ {1, 2, . . . , p} : nτ = n ∀τ ∈ Q}.

Note that Lemma 12 implies the order of the normalizer NG(Q) is divisible by |fix Q| =
w, which is prime. Hence, there exists an element τ ∈ NG(Q) of order w. We claim that in
fact τ ∈ CG(Q) ⊆ NG(Q). Indeed, if τ 6∈ CG(Q), then the order of τCG(Q) in the qoutient
group NG(Q)/CG(Q) equals w. Therefore, by Lemma 13, we find that ω divides the order
of Aut Q. However, |Aut Q| = ϕ(q) = q− 1 and ω - (q− 1) by our assumption (here ϕ
denotes the Euler’s totient function—a contradiction).
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We have proved Q = 〈π · ρ〉, where π, ρ ∈ Sp are two disjoint q-cycles. Let us denote
π = (i1, i2, . . . , iq) and ρ = (j1, j2, . . . , jq). Since

τ ∈ CG(Q) = {σ ∈ G : σ· η· σ−1 = η ∀η ∈ Q},

we obtain τ · (π· ρ)· τ−1 = π· ρ, i.e.,

(iτ
1 , iτ

2 , . . . , iτ
q )(jτ1 , jτ

2 , . . . , jτ
q ) = (i1, i2, . . . , iq)(j1, j2, . . . , jq).

By the uniqueness of the cycle decomposition, there are two possible cases: either

(iτ
1 , iτ

2 , . . . , iτ
q ) = (i1, i2, . . . , iq) and (jτ

1 , jτ
2 , . . . , jτq ) = (j1, j2, . . . , jq)

or
(iτ

1 , iτ
2 , . . . , iτ

q ) = (j1, j2, . . . , jq) and (jτ
1 , jτ2 , . . . , jτ

q ) = (i1, i2, . . . , iq).

In both cases, we find that

(iτ2

1 , iτ2

2 , . . . , iτ2

q ) = (i1, i2, . . . , iq) and (jτ2

1 , jτ2

2 , . . . , jτ2

q ) = (j1, j2, . . . , jq).

Denote η = τ2. We will show that η fixes every element of the set

{i1, i2, . . . , iq, j1, j2, . . . , jq}.

Firstly, note that η(i1) = i1. Indeed, suppose for the contrary that η(i1) = i1+k for
some k ∈ {1, . . . , q− 1}. Then,

ηl(i1) = i1+lk (mod q) = i1 ⇔ 1 + lk ≡ 1 (mod q)⇔ l ≡ 0 (mod q),

which implies that η has a cycle of length q in its cycle decomposition, but this is impossible
since the order of η equals w and gcd(w, q) = 1. Hence, η(i1) = i1, and therefore η(ik) = ik
for every k = 1, . . . , q. Analogously, η(jk) = jk for every k = 1, . . . , q.

Hence, there are at most p− 2q = w elements in the set {1, 2, . . . , p} that are not fixed
under η. Since the order of η equals ω, it follows that η is a cycle of length w, which leads
to a contradiction by Lemma 11. This completes the proof of the proposition.
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Appendix A

Drungilas, Dubickas and Smyth [1] proposed the following hypothesis:

Hypothesis A1 (Part of Conjecture 4, [1]). If (a, b, c), (a′, b′, c′) ∈ N3 are compositum-feasible,
then so is (aa′, bb′, cc′).

It was proved in [3] that this hypothesis is true if the answer to the inverse Galois
problem is positive. Recall that the inverse Galois problem asks whether every finite group
occurs as a Galois group of some Galois extension K over Q.

Theorem A1 (Theorem 1.3, [3]). If every finite group occurs as a Galois group of some Galois
extension K/Q, then the Hypothesis A1 is true.
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For (a, b, c), (a′, b′, c′) ∈ N3, let us denote

(a, b, c) · (a′, b′, c′) := (aa′, bb′, cc′). (A1)

In other words, Theorem A1 implies that, assuming an affirmative answer to the
inverse Galois problem, the set C of compositum-feasible triplets forms a semigroup with
respect to the multiplication defined by (A1). It is natural to ask which elements of C
are irreducble. We say that a triplet (A, B, C) ∈ C is irreducible if it cannot be written as
(A, B, C) = (a, b, c) · (a′, b′, c′), where (a, b, c), (a′, b′, c′) ∈ C \ {(1, 1, 1)}. Otherwise, we say
that the triplet (A, B, C) ∈ C is reducible. For instance, every triplet (p, p, pd) ∈ C, where
p is a prime number and 1 ≤ d < p, is irreducible, whereas for any positive integer n the
triplet (n, n, n2) = (n, 1, n) · (1, n, n) is reducible (It is known (see Lemmas 2.7 and 2.8, The-
orem 1.1, [2]) that for any prime p and for d = 1, 2, p− 1 the triplet (p, p, pd) is compositum-

feasible, whereas for p − 1+
√

4p−3
2 < d ≤ p − 2 it is not product-feasible, hence not

compositum-feasible, too. Meanwhile, the triplet (n, n, n2) is compositum-feasible for any
n ∈ N by Lemma 2). The following proposition gives one more family of irreducible triplets
in C.

Proposition A1. For any integer n ≥ 2 the compositum-feasible triplet (n, n, n(n− 1)) is irre-
ducible (In fact, it is known that for any n ≥ 2 the triplet (n, n, n(n− 1)) is compositum-feasible
(see Proposition 29, [1])).

Proof. Suppose on the contrary that

(n, n, n(n− 1)) = (a1, b1, c1)· (a2, b2, c2), (A2)

where (a1, b1, c1) and (a2, b2, c2) are compositum-feasible triplets that are both different
from (1, 1, 1).

For i = 1, 2 we can factor ci = d(n)i d(n−1)
i , where d(n)1 d(n)2 = n and d(n−1)

1 d(n−1)
2 = n− 1.

We assume that the triplet (a1, b1, c1) is compositum-feasible, thus a1 divides c1 = d(n)1 d(n−1)
1 .

Since gcd(a1, d(n−1)
1 ) = 1, it follows that a1|d

(n)
1 . Analogously, a2|d

(n)
2 . If a1 < d(n)1 , then

d(n)1 d(n)2 = n = a1a2 < d(n)1 a2 ⇒ d(n)2 < a2,

thus a2 - d(n)2 —a contradiction. Therefore, a2 = d(n)1 and a2 = d(n)2 . Analogously, b1 =

d(n)1 is b2 = d(n)2 . Thus, omitting superscripts (n) and instead of (n− 1) using ′ we can
rewrite (A2) as

(n, n, n(n− 1)) = (d1, d1, d1d′1) · (d2, d2, d2d′2).

Note that d′i < di, i = 1, 2. Indeed, for any compositum-feasible triplet, (a, b, c) holds
c ≤ ab, hence for i = 1, 2 did′i ≤ d2

i , i.e., d′i ≤ di. Moreover, gcd(d′i, di) = 1 and the numbers
d′i, di cannot be both equal to 1, thus d′i 6= di. Therefore,

d2d′2 =
n
d1
· n− 1

d′1
≥ n

d1
· n− 1

d1 − 1
>

(
n
d1

)2

= d2
2 ⇒ d′2 > d2,

since d1 < n, a contradiction. Hence, the triplet (n, n, n(n− 1)) is irreducible.

One can check by a routine calculation that among the compositum-feasible triplets
(a, b, c), a ≤ b ≤ c, b ≤ 9 (All such triplets are described in [1,2,4]), the only irreducible
triplets are of the form (1, p, p), (p, p, pd) and (n, n, n(n − 1)), where p is prime, 1 ≤
d < p and n ≥ 2. We finish our article by proposing the problem to find all irreducible
compositum-feasible triplets.
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