

Article On the Degree of Product of Two Algebraic Numbers

Lukas Maciulevičius

Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; lukas.maciulevicius@mif.vu.lt

Abstract: A triplet (a, b, c) of positive integers is said to be product-feasible if there exist algebraic numbers α , β and γ of degrees (over \mathbb{Q}) a, b and c, respectively, such that $\alpha\beta\gamma = 1$. This work extends the investigation of product-feasible triplets started by Drungilas, Dubickas and Smyth. More precisely, for all but five positive integer triplets (a, b, c) with $a \leq b \leq c$ and $b \leq 7$, we decide whether it is product-feasible. Moreover, in the Appendix we give an infinite family or irreducible compositum-feasible triplets and propose a problem to find all such triplets.

Keywords: algebraic numbers; product-feasible; compositum-feasible; subgroups of symmetric groups

MSC: 11R04; 11R32

1. Introduction

Following [1], we say that a triplet $(a, b, c) \in \mathbb{N}^3$ is *sum-feasible* (resp., *product-feasible*) if there exist algebraic numbers α , β , γ of degrees a, b, c (over \mathbb{Q}), respectively, such that $\alpha + \beta + \gamma = 0$ (resp., $\alpha\beta\gamma = 1$). In [1], the problem of finding all sum-feasible triplets was proposed. In the same paper and in its continuations [2–4], an analogous problem for number fields was considered. Namely, we say that a triplet $(a, b, c) \in \mathbb{N}^3$ is *compositum-feasible* if there exist number fields K and L of degrees a and b (over \mathbb{Q}), respectively, such that the degree of their compositum *KL* is c. All sum-feasible triplets $(a, b, c) \in \mathbb{N}^3$, satisfying $a \le b \le c, b \le 7$, and all possible compositum-feasible triplets (a, b, c), satisfying $a \le b \le c, b \le 9$, were determined in [1,2,4]. Moreover, it was proved in [1,4] that the three feasibility problems are related in the following way: if C, S and \mathcal{P} denote sets of all possible compositum-feasible triplets, respectively, then

$$\mathcal{C} \subsetneq \mathcal{S} \subsetneq \mathcal{P}. \tag{1}$$

Therefore all sum-feasible triplets that were found in the preceding papers are also product-feasible, but they do not exhaust *all* possible product-feasible triplets (a, b, c) for which $a \le b \le c$ and $b \le 7$. There comes a natural motivation to investigate the case of the product more closely.

In this paper, we consider product-feasible triplets (a, b, c) under the same restrictions $a \le b \le c, b \le 7$. More precisely, we prove the following:

Theorem 1. All the triplets $(a, b, c) \in \mathbb{N}^3$ with $a \le b \le c$, $b \le 7$ that are product-feasible are given in Table 1, with five possible exceptions that are circled.

Citation: Maciulevičius, L. On the Degree of Product of Two Algebraic Numbers. *Mathematics* 2023, *11*, 2131. https://doi.org/10.3390/math11092131

Academic Editor: Li Guo

Received: 13 March 2023 Revised: 25 April 2023 Accepted: 28 April 2023 Published: 2 May 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

$b \setminus a$	1	2	3	4	5	6	7
1	1						
2	2	2, 4					
3	3	3,6	3, 6, 9				
4	4	4, 8	6, 12	4, 6, 8, 12, 16			
5	5	10	15	5, 10, 20	5, 10, 20, 25		
6	6	6, 12	6, 9, 12, 18	6, (<u>8</u>) 12, 24	$\underbrace{(10),(15)}_{30}$	6, 8, 9, 12, 15, 18, 24, 30, 36	
7	7	14	21	(7), (14) 28	35	7, 14, 21, 42	7, 14, 21, 28, 42, 49

Table 1. Triplets (a, b, c), $a \le b \le c$, and $b \le 7$, which are product-feasible with 5 possible exceptions.

Moreover, we obtain several results related to triplets that include prime components.

Theorem 2. The triplet (n - 1, n, n), $n \ge 2$, is product-feasible if and only if n is a prime number.

In [1] (Theorem 8), it was proved that the triplet $(2, t, t) \in \mathbb{N}^3$ is product-feasible if and only if 2|t or 3|t. We obtain an analogous result for triplets $(p, t, t) \in \mathbb{N}^3$, where p > 2 is a prime number.

Theorem 3. Suppose a prime number p and a positive integer t satisfy $t \ge p > 2$. Then, the triplet (p, t, t) is product-feasible if and only if p|t.

The following theorem, taking d = 1, implies the sufficiency part of Theorem 2.

Theorem 4. For any prime number p and each divisor d of p - 1, the triplet (p - 1, p, pd) is product-feasible.

It was conjectured in [1] that the set C of compositum-feasible triplets is a multiplicative semigroup, i.e., if $(a, b, c), (a', b', c') \in C$, then $(aa', bb', cc') \in C$. This conjecture was proved in [3] (Theorem 1.3) assuming the answer to the inverse Galois problem is positive, i.e., that every finite group occurs as a Galois group of some normal field extension of \mathbb{Q} . Therefore, it is natural to consider irreducible elements of C. In Appendix A, we give an infinite family of irreducible elements of C (see Proposition A1). Finally, at the end of Appendix A, we propose a problem of finding all irreducible compositum-feasible triplets.

The paper is organized as follows. The proof of Theorem 1 is given in Section 3 and is based on Theorems 2–4. In Section 2, we state some auxiliary results. Appendix A is devoted to irreducible elements of C.

2. Auxiliary Results

Lemma 1 (Lemma 14, [1]). Suppose that a triplet (a, b, c) is product-feasible. Then, $c | lcm(a, b) \cdot t$ for some positive $t \leq gcd(a, b)$.

Lemma 2 (Proposition 19, [1]). For any positive integers *a* and *b*, the triplet (*a*, *b*, *ab*) is compositum-feasible and hence both sum-feasible and product-feasible.

Lemma 3 (Lemma 7, [4]). Suppose that positive integers $a \le b \le c$ satisfy ab < 2c. Then, if the triplet $(a, b, c) \in \mathbb{N}^3$ is not compositum-feasible, then it is neither sum-feasible nor product-feasible.

Lemma 4 (Theorem 8, [1]). The triplet $(2, t, t) \in \mathbb{N}^3$ is product-feasible if and only if 2|t or 3|t.

Let *p* be a prime number and $n \in \mathbb{N}$. Denote by $\operatorname{ord}_p(n)$ the exponent to which *p* appears in the prime factorization of *n* (if $p \nmid n$ set $\operatorname{ord}_p(n) = 0$). We say that a triplet (a, b, c) satisfies the *exponent triangle inequality with respect to a prime p* if

$$\operatorname{ord}_p(a) + \operatorname{ord}_p(b) \ge \operatorname{ord}_p(c), \operatorname{ord}_p(a) + \operatorname{ord}_p(c) \ge \operatorname{ord}_p(b) \text{ and}$$

 $\operatorname{ord}_p(b) + \operatorname{ord}_p(c) \ge \operatorname{ord}_p(a).$

Lemma 5 (Proposition 28, [1]). Suppose that the triplet $(a, b, c) \in \mathbb{N}^3$ satisfies the exponent triangle inequality with respect to any prime number. Then, for any product-feasible triplet $(a', b', c') \in \mathbb{N}^3$, the triplet (aa', bb', cc') is also product-feasible.

Lemma 6 (Proposition 21, [1]). Suppose that α and β are algebraic numbers of degrees m and n over \mathbb{Q} , respectively. Let $\alpha_1 = \alpha, \alpha_2, \ldots, \alpha_m$ be the distinct conjugates of α , and let $\beta_1 = \beta, \beta_2, \ldots, \beta_n$ be the distinct conjugates of β . If β is of degree n over $\mathbb{Q}(\alpha)$, then all the numbers $\alpha_i \beta_j$, $1 \le i \le m$, and $1 \le j \le n$ are conjugate over \mathbb{Q} (although not necessarily distinct).

Let $\alpha_1, \alpha_2, ..., \alpha_n$ be the roots of a nonzero separable polynomial $f(x) \in \mathbb{Q}[x]$ of degree $n \ge 2$. A *multiplicative relation* between $\alpha_1, \alpha_2, ..., \alpha_n$ is a relation of the kind

$$\prod_{i=1}^n \alpha_i^{k_i} \in \mathbb{Q},$$

where all the $k_i \in \mathbb{Q}$. We call this multiplicative relation *trivial* if $k_1 = k_2 = \cdots = k_n$.

Lemma 7 (Theorem 1, [5]). Let p > 2 be a prime number and $f(x) \in \mathbb{Q}[x]$ an irreducible monic polynomial $\neq x^p + a_0$ of degree p over \mathbb{Q} . Then, there are no nontrivial multiplicative relations between the roots $\alpha_1, \alpha_2, \ldots, \alpha_p$ of f(x).

Lemma 8 (Problem 6523, [6]). Suppose f(x) is an irreducible polynomial of degree d over the field of rational numbers, and suppose f(x) has two roots α , β with $\frac{\alpha}{\beta}$ a primitive nth root of unity. Then, $\varphi(n) \leq d$.

Let *G* be a group acting transitively on a set *S*. If the cardinality of *S* equals $n \in \mathbb{N}$, we say *G* is a group of *degree n*. A nonempty subset $\Delta \subseteq S$ is called a *block* for *G* if for each $x \in G$ either $\Delta^x = \Delta$ or $\Delta^x \cap \Delta = \emptyset$, here $\Delta^x = \{\delta^x : \delta \in \Delta\}$. Every group acting transitively on *S* has *S* and the singletons $\{\alpha\}, \alpha \in S$, as blocks. These are called the *trivial* blocks. Any other block is called *nontrivial*. For example, the cyclic group $G = \langle (1,2,3,4,5,6) \rangle$ acting on $S = \{1,2,3,4,5,6\}$ has nontrivial blocks $\{1,4\}, \{2,5\}, \{3,6\}, \{1,3,5\}, \{2,4,6\}$ and in fact these are the only nontrivial blocks for *G* (see Exercise 1.5.2, [7]). We say that a group *G* acting transitively on a set *S* is *primitive* if *G* has no nontrivial blocks on *S*. For instance, the symmetric group S_n and the alternating group A_n acting on $S = \{1,2,3,4,5\}$ is primitive (see Lemma 9).

Lemma 9 (Theorem 8.3, [8]). A transitive group of prime degree is primitive.

Lemma 10 (Proposition 1, [4]). Suppose that n > 4 is a positive integer and p > 2 is a prime number that is not a divisor of n - 1. Moreover, assume that p does not divide the order of any transitive subgroup of the symmetric group S_n , except possibly for A_n and S_n . Then, for any positive integer k > n divisible by p, the triplet (n, n, k) is not product-feasible.

Lemma 11 (Theorem 3.3, [7]). Let G be a subgroup of the symmetric group S_n acting on the set $\{1, 2, ..., n\}$. Suppose that G is primitive and contains a cycle of length p, where p is a prime number. Then, either G contains the alternating group A_n as a subgroup, or $n \le p + 2$.

Lemma 12 ([8] (Theorem 3.7) Special case of [8] (Theorem 3.7) taking any Sylow subgroup U of G and any $\alpha \in \text{fix } U$.). In a transitive group G, the normalizer of every Sylow subgroup Q of G is transitive on the points left fixed by Q.

Lemma 13 (N/C theorem, see, e.g., Example 2.2.2, [7]). Let H be a subgroup of a group G. Then, $C_G(H) \triangleleft N_G(H)$ and the qoutient $N_G(H)/C_G(H)$ is isomorphic to some subgroup of Aut H, here

$$N_G(H) = \{g \in G : gH = Hg\}$$
 and $C_G(H) = \{g \in G : gh = hg \ \forall h \in H\}$

are the normalizer and the centralizer of H in G, respectively.

3. Proofs

Proof of Theorem 2. *Necessity.* Suppose that the triplet (n - 1, n, n) is product-feasible. Then, there exist algebraic numbers α and β , such that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = n - 1$ and $[\mathbb{Q}(\beta) : \mathbb{Q}] = [\mathbb{Q}(\alpha\beta) : \mathbb{Q}] = n$. Since $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\beta)$ are subfileds of $\mathbb{Q}(\alpha, \beta)$, we find that $[\mathbb{Q}(\alpha, \beta) : \mathbb{Q}]$ is divisible both by n - 1 and n. Then, gcd(n - 1, n) = 1 implies that $[\mathbb{Q}(\alpha, \beta) : \mathbb{Q}]$ is divisible by (n - 1)n. On the other hand, $[\mathbb{Q}(\alpha, \beta) : \mathbb{Q}] \leq [\mathbb{Q}(\alpha) : \mathbb{Q}][\mathbb{Q}(\beta) : \mathbb{Q}] = (n - 1)n$. Hence, $[\mathbb{Q}(\alpha, \beta) : \mathbb{Q}] = (n - 1)n$ and we have the following diagram (see Figure 1):

Figure 1. Diagram for (n - 1, n, n).

Let $\beta_1 := \beta, \beta_2, \dots, \beta_n$ be the distinct conjugates of β over \mathbb{Q} . All the numbers

$$\alpha\beta_1, \alpha\beta_2, \ldots, \alpha\beta_n$$

are pairwise distinct and, by Lemma 6, they all are conjugate over \mathbb{Q} . Hence, these are all the algebraic conjugates of $\alpha\beta$. Consequently the product

$$(\alpha\beta_1)\cdots(\alpha\beta_n)=\alpha^n\beta_1\beta_2\cdots\beta_n$$

is a nonzero rational number. On the other hand, $\beta_1\beta_2\cdots\beta_n \in \mathbb{Q}\setminus\{0\}$ too. So, α^n is a non-zero rational number, say r. Therefore, α is a root of the polynomial $x^n - r$. The minimal polynomial of α is of degree n - 1 and divides the polynomial $x^n - r$. Hence, $x^n - r$ has a root that is a rational number, say r_0 . Then, $r = r_0^n$. Assume that n is not a prime number. Then, there exist integers a > 1 and b > 1 such that n = ab. Note that

$$x^n - r = x^{ab} - r_0^{ab} = (x^a - r_0^a)(x^{a(b-1)} + \dots + r_0^{a(b-1)})$$

So, the minimal polynomial of α divides either $x^a - r_0^a$ or the polynomial $x^{a(b-1)} + \cdots + r_0^{a(b-1)}$. However, this is impossible since the degree of either of these polynomials is strictly less than n - 1. Therefore, n is a prime number.

Sufficiency. Assume *n* is a prime number. Let ζ_n be the primitive *n*th root of unity. Then, the degree of $\alpha = \frac{1}{\zeta_n}$ equals n - 1. The numbers $\beta = \sqrt[n]{2}\zeta_n$ and $\gamma = \frac{1}{\sqrt[n]{2}}$ are of degree *n* and $\alpha\beta\gamma = 1$. Hence, the triplet (n - 1, n, n) is product-feasible. \Box

Proof of Theorem 3. *Necessity.* Assume that the triplet (p, t, t) is product-feasible. Suppose for the contrary, that $p \nmid t$. We have that there exist algebraic numbers α and β such that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = p$ and $[\mathbb{Q}(\beta) : \mathbb{Q}] = [\mathbb{Q}(\alpha\beta) : \mathbb{Q}] = t$. Since gcd(p, t) = 1, we obtain similarly as in the proof of Theorem 2 the following diagram (see Figure 2):

Figure 2. Diagram for (*p*, *t*, *t*).

Using Lemma 6 analogously as in the proof of Theorem 2, we find that $\alpha^t \in \mathbb{Q}$. Hence, α is a root of a binomial equation $x^t - a = 0$, $a \in \mathbb{Q} \setminus \{0\}$. On the other hand, deg $\alpha = p > 2$ is a prime number. Therefore, Lemma 7 implies that the minimal polynomial of α over \mathbb{Q} is of the form $x^p - b$, $b \in \mathbb{Q} \setminus \{0\}$. We find that $x^t - a$ is divisible by $x^p - b$. Let t = pq + r, where q and r are non-negative integers and r < p. Since $t \ge p$ and $p \nmid t$, we find that r > 0 and q > 0. Note that

$$x^{t} - a = x^{pq+r} - a = (x^{p} - b + b)^{q} x^{r} - a \equiv b^{q} x^{r} - a \pmod{x^{p} - b}.$$

The remainder polynomial $b^q x^r - a$ is of degree r > 0, which is strictly less than p. Hence, $x^p - b$ does not divide the polynomial $x^t - a$. A contradiction. Therefore, t is divisible by p.

Sufficiency. Let $t \ge p > 2$ and t = pk for some positive integer k. The triplet (1, k, k) is obviously product-feasible, whereas the triplet (p, p, p) satisfies the exponent triangle inequality. By Lemma 5, the triplet $(p, t, t) = (p \cdot 1, p \cdot k, p \cdot k)$ is product-feasible. \Box

Proof of Theorem 4. If p = 2, the assertion is obvious. If d = p - 1, our triplet is productfeasible by Lemma 2. Suppose that $d . Consider a field extension <math>\mathbb{Q}(\zeta_{2p}) : \mathbb{Q}$, here $\zeta_{2p} = e^{\frac{2\pi i}{2p}}$. As a cyclotomic extension, it is normal for degree $\varphi(2p) = p - 1$ and its Galois group *G* is isomorphic to the multiplicative group of the ring of residues modulo 2p (see, e.g., [9]), which means *G* is cyclic (Recall a well-known fact that the multiplicative group of the ring of residues modulo n > 1 is cyclic if and only if $n = 2, 4, p^{\alpha}$ or $2p^{\alpha}$ where p > 2is prime and $\alpha \in \mathbb{N}$ (see, e.g., [10]).). Therefore, for every divisor *d* of |G| = p - 1, the group *G* has a unique subgroup of order (p - 1)/d, say *H*. Let *K* be an intermediate field that corresponds to the subgroup *H* in the Galois correspondence, i.e., *K* consists of all elements of the field $\mathbb{Q}(\zeta_{2p})$, which are left invariant by every automorphism in *H*. Then, the degree of *K* over \mathbb{Q} equals |G|/|H| = d. By the primitive element theorem $K = \mathbb{Q}(\theta)$ for some $\theta \in \mathbb{Q}(\zeta_{2p})$. Let *g* be a primitive root modulo 2p. Then, the automorphism $\sigma \in G$ defined by

$$\sigma:\zeta_{2p}\mapsto\zeta_{2p}^8$$

generates *G*. We claim that deg($\theta \zeta_{2p}$) = p - 1. It suffices to show that all the numbers

$$\sigma^k(\theta \zeta_{2p}), \ k = 1, 2, \dots, p-1,$$

are distinct. Indeed, assume that $\sigma^k(\theta\zeta_{2p}) = \sigma^l(\theta\zeta_{2p})$ for some $1 \le k < l \le p - 1$. So that $\sigma^k(\theta)\zeta_{2p}^{g^k} = \sigma^l(\theta)\zeta_{2p}^{g^l}$ and

$$\frac{\sigma^k(\theta)}{\sigma^l(\theta)} = e^{\frac{(g^l - g^k)\pi i}{p}}$$

Note that $g^l - g^k = 2m$, where $p \nmid m$. Therefore, $\sigma^k(\theta) / \sigma^l(\theta)$ is a primitive *p*th root of unity, which contradicts Lemma 8 since $d . Hence, <math>\deg(\theta\zeta_{2p}) = p - 1$.

Finally, take

$$\alpha = \theta \zeta_{2p}, \ \beta = \sqrt[p]{2}, \ \gamma = (\sqrt[p]{2}e^{\frac{\pi i}{p}}\theta)^{-1}.$$

We have $\alpha\beta\gamma = 1$. It remains to show that deg $\gamma = pd$. Let $\theta = \theta^{(1)}, \theta^{(2)}, \dots, \theta^{(d)}$ be all the conjugates of θ . Since the numbers deg $(\sqrt[p]{2}e^{\frac{\pi i}{p}}) = p$ and deg $\theta = d$ are coprime Lemma 6, it implies that all the numbers

$$\gamma_k^{(l)} := \left(\sqrt[p]{2}e^{\frac{\pi i}{p}}e^{\frac{2\pi i k}{p}}\theta^{(l)}\right)^{-1}, \ k = 0, 1, \dots, p-1, \ l = 1, 2, \dots, d,$$
(2)

are conjugate to γ . It suffices to show that all these numbers are distinct. Indeed, assume that $\gamma_{k_1}^{(l_1)} = \gamma_{k_2}^{(l_2)}$, where $k_1, k_2 \in \{0, 1, ..., p-1\}$, $l_1, l_2 \in \{1, 2, ..., d\}$ and either $k_1 \neq k_2$ or $l_1 \neq l_2$. Note that if $k_1 = k_2$, then $l_1 = l_2$. Therefore, $k_1 \neq k_2$ and the equality $\gamma_{k_1}^{(l_1)} = \gamma_{k_2}^{(l_2)}$ implies

$$e^{\frac{2\pi i(k_1-k_2)}{p}}=\frac{\theta^{(l_2)}}{\theta^{(l_1)}}.$$

Since $e^{2\pi i (k_1 - k_2)/p}$ is a primitive *p*th root of unity, by Lemma 8, we find that $p - 1 = \varphi(p) \le \deg \theta = d$. This is a contradiction. Hence, all the numbers in (2) are distinct, and therefore deg $\gamma = pd$. This completes the proof of the theorem. \Box

Proposition 1. *The triplet* (6, 6, 10) *is not product-feasible.*

Proof. The proof of [1] (Theorem 38) can be modified easily to the multiplicative case. Using same notations, we finally obtain $\beta_6^6 \in \mathbb{Q}$, hence the minimal polynomial of β is of the form $x^6 - r_2, r_2 \in \mathbb{Q}$. Interchanging α and β in the proof of [1] (Theorem 38), we find that the minimal polynomial of α is also of the form $x^6 - r_1, r_1 \in \mathbb{Q}$. Hence, $\alpha = \sqrt[6]{r_1 \varepsilon_6}$ and $\beta = \sqrt[6]{r_2 \varepsilon_6'}$, here ε_6 and ε_6' are some 6th roots of unity. This yields $\alpha\beta = \sqrt[6]{r_1 r_2 \varepsilon_6 \varepsilon_6'}$ as a root of $x^6 - r_1 r_2$, thus deg $(\alpha\beta) \leq 6$, a contradiction. \Box

Proof of Theorem 1. Using Lemma 1, we determine all possible candidates to product-feasible triplets (a, b, c) with $a \le b \le c, b \le 7$. They are listed in Table 2.

Blue-colored triplets are sum-feasible, as is proved in [1,2]. Therefore, all these triplets are also product-feasible by (1).

Green-colored triplets are product-feasible too: (2,3,3) is product-feasible by Lemma 4, the triplets (3,6,9), (3,4,6) and (6,6,8) by Lemma 5, (4,5,5) and (6,7,7) by Theorem 2, whereas (4,5,10), (6,7,14), (6,7,21) are product-feasible by Theorem 4 taking (p,d) = (5,2), (7,2) and (7,3), respectively.

Red-colored triplets are not product-feasible: the triplets (3,4,4), (3,5,5), (3,7,7), (5,6,6) and (5,7,7) are not product-feasible by Theorem 3, (2,5,5), (2,7,7) by Lemma 4, (6,6,10) by Proposition 1, whereas (5,5,15) and (7,7,35) are not product-feasible by Lemma 3 and [2] (Corollary 1.5).

	1		1				
$b \setminus a$	1	2	3	4	5	6	7
1	1						
2	2	2, 4					
3	3	3,6	3, 6, 9				
4	4	4, 8	4, 6, 12	4, 6, 8, 12, 16			
5	5	5, 10	5, 15	5, 10, 2 0	5, 10, <mark>15</mark> 20, 25		
6	6	6, 12	6, 9, 12, 18	6, ⑧ 12, 24	6, 10, 15, 30	6, 8, 9, 10 12, 15, 18, 24, 30, 36	
7	7	7, 14	7, 21	(7), (14) 28	7,35	7, 14, 21, 42	7, 14, 21, 28, <mark>35</mark> , 42, 49

Table 2. Candidates to product-feasible triplets.

The circled triplets have not been examined yet. \Box

Let *p* and *n* be a prime number and a positive integer, respectively. Suppose that the triplet (p, p, n) is product-feasible. If $p \nmid n$, then, by Lemma 1, we find that n < p. Hence, if n > p, then $p \mid n$. Finally, we give another result related to product-feasible triplets containing prime components.

Proposition 2. Suppose p, q and w are prime numbers such that 2 < w < q < p, p = 2q + w and $w \not| (q - 1)$. Then, both triplets (p, p, pq) and (p, p, 2pq) are not product-feasible.

For instance, none of the triplets $(19, 19, 19 \cdot 7k)$, $(29, 29, 29 \cdot 11k)$ and $(31, 31, 31 \cdot 13k)$, k = 1, 2, are product-feasible. Moreover, suppose that p, q and w satisfy the conditions of Proposition 2. Then, for any positive integer $t \ge 3$, the triplet (p, p, pqt) is not product-feasible, by Lemma 1.

Proof of the Proposition. Let *G* be a transitive subgroup of the symmetric group S_p such that $G \neq A_p$ and $G \neq S_p$. We will show that *q* cannot divide the order of *G*. Then, Lemma 10 will imply that the triplets (p, p, pq) and (p, p, 2pq) both are not product-feasible. (Note that from p = 2q + w, 2 < w < q < p, it follows that $q \not|(p - 1)$.).

Suppose for the contrary that the order of *G* is divisible by a prime *q*. Denote by *Q* a Sylow *q*-subgroup of *G*. The order of *Q* equals *q* or q^2 since *Q* is a subgroup of S_p and $\operatorname{ord}_q |S_p| = \operatorname{ord}(p!) = q^2$. We claim that |Q| = q. Indeed, assume that $|Q| = q^2$. Then, *Q* is a Sylow *q*-subgroup of S_p , too. Take any cycle $\tau \in S_p$ of length *q*. Then, a cyclic subgroup $\langle \tau \rangle$ is contained in some Sylow *q*-subgroup of S_p . Since any two Sylow *q*-subgroups are conjugated and conjugate elements in S_p are of the same cyclic structure, we find that the subgroup *Q* of *G* also contains a cycle of length *q*. However, Lemma 9 implies *G* is primitive, therefore we obtain a contradiction by Lemma 11. Hence, |Q| = q, which means *Q* is a cyclic subgroup generated by an element $\sigma \in G$ of order *q*. If σ were a cycle of length *q*, we would obtain a contradiction by Lemma 11. Since p = 2q + w < 3q, it follows that σ must be a product of two disjoint cycles of length *q*, say, π and $\rho \in G$. Therefore, $|\operatorname{fix} Q| = p - 2q = w$, here fix $Q := \{n \in \{1, 2, ..., p\}: n^{\tau} = n \,\forall \tau \in Q\}$.

Note that Lemma 12 implies the order of the normalizer $N_G(Q)$ is divisible by $|\operatorname{fix} Q| = w$, which is prime. Hence, there exists an element $\tau \in N_G(Q)$ of order w. We claim that in fact $\tau \in C_G(Q) \subseteq N_G(Q)$. Indeed, if $\tau \notin C_G(Q)$, then the order of $\tau C_G(Q)$ in the qoutient group $N_G(Q)/C_G(Q)$ equals w. Therefore, by Lemma 13, we find that ω divides the order of Aut Q. However, $|\operatorname{Aut} Q| = \varphi(q) = q - 1$ and $\omega \nmid (q - 1)$ by our assumption (here φ denotes the Euler's totient function—a contradiction).

We have proved $Q = \langle \pi \cdot \rho \rangle$, where $\pi, \rho \in S_p$ are two disjoint *q*-cycles. Let us denote $\pi = (i_1, i_2, \dots, i_q)$ and $\rho = (j_1, j_2, \dots, j_q)$. Since

$$\tau \in C_G(Q) = \{ \sigma \in G : \sigma \cdot \eta \cdot \sigma^{-1} = \eta \ \forall \eta \in Q \},\$$

we obtain $\tau \cdot (\pi \cdot \rho) \cdot \tau^{-1} = \pi \cdot \rho$, i.e.,

$$(i_1^{\tau}, i_2^{\tau}, \dots, i_q^{\tau})(j_1^{\tau}, j_2^{\tau}, \dots, j_q^{\tau}) = (i_1, i_2, \dots, i_q)(j_1, j_2, \dots, j_q).$$

By the uniqueness of the cycle decomposition, there are two possible cases: either

$$(i_1^{\tau}, i_2^{\tau}, \dots, i_q^{\tau}) = (i_1, i_2, \dots, i_q) \text{ and } (j_1^{\tau}, j_2^{\tau}, \dots, j_q^{\tau}) = (j_1, j_2, \dots, j_q)$$

or

$$(i_1^{\tau}, i_2^{\tau}, \dots, i_q^{\tau}) = (j_1, j_2, \dots, j_q) \text{ and } (j_1^{\tau}, j_2^{\tau}, \dots, j_q^{\tau}) = (i_1, i_2, \dots, i_q).$$

In both cases, we find that

$$(i_1^{\tau^2}, i_2^{\tau^2}, \dots, i_q^{\tau^2}) = (i_1, i_2, \dots, i_q) \text{ and } (j_1^{\tau^2}, j_2^{\tau^2}, \dots, j_q^{\tau^2}) = (j_1, j_2, \dots, j_q).$$

Denote $\eta = \tau^2$. We will show that η fixes every element of the set

$$\{i_1, i_2, \ldots, i_q, j_1, j_2, \ldots, j_q\}.$$

Firstly, note that $\eta(i_1) = i_1$. Indeed, suppose for the contrary that $\eta(i_1) = i_{1+k}$ for some $k \in \{1, ..., q-1\}$. Then,

$$\eta^{l}(i_{1}) = i_{1+lk \pmod{q}} = i_{1} \Leftrightarrow 1 + lk \equiv 1 \pmod{q} \Leftrightarrow l \equiv 0 \pmod{q},$$

which implies that η has a cycle of length q in its cycle decomposition, but this is impossible since the order of η equals w and gcd(w, q) = 1. Hence, $\eta(i_1) = i_1$, and therefore $\eta(i_k) = i_k$ for every k = 1, ..., q. Analogously, $\eta(j_k) = j_k$ for every k = 1, ..., q.

Hence, there are at most p - 2q = w elements in the set $\{1, 2, ..., p\}$ that are not fixed under η . Since the order of η equals ω , it follows that η is a cycle of length w, which leads to a contradiction by Lemma 11. This completes the proof of the proposition. \Box

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The author thanks P. Drungilas for useful advice.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Drungilas, Dubickas and Smyth [1] proposed the following hypothesis:

Hypothesis A1 (Part of Conjecture 4, [1]). If (a, b, c), $(a', b', c') \in \mathbb{N}^3$ are compositum-feasible, then so is (aa', bb', cc').

It was proved in [3] that this hypothesis is true if the answer to the *inverse Galois problem* is positive. Recall that the inverse Galois problem asks whether every finite group occurs as a Galois group of some Galois extension K over \mathbb{Q} .

Theorem A1 (Theorem 1.3, [3]). *If every finite group occurs as a Galois group of some Galois extension* K/\mathbb{Q} *, then the Hypothesis* A1 *is true.*

For $(a, b, c), (a', b', c') \in \mathbb{N}^3$, let us denote

$$(a, b, c) \cdot (a', b', c') := (aa', bb', cc').$$
 (A1)

In other words, Theorem A1 implies that, assuming an affirmative answer to the inverse Galois problem, the set C of compositum-feasible triplets forms a semigroup with respect to the multiplication defined by (A1). It is natural to ask which elements of C are *irreducble*. We say that a triplet $(A, B, C) \in C$ is *irreducible* if it cannot be written as $(A, B, C) = (a, b, c) \cdot (a', b', c')$, where $(a, b, c), (a', b', c') \in C \setminus \{(1, 1, 1)\}$. Otherwise, we say that the triplet $(A, B, C) \in C$ is *reducible*. For instance, every triplet $(p, p, pd) \in C$, where p is a prime number and $1 \leq d < p$, is irreducible, whereas for any positive integer n the triplet $(n, n, n^2) = (n, 1, n) \cdot (1, n, n)$ is reducible (It is known (see Lemmas 2.7 and 2.8, Theorem 1.1, [2]) that for any prime p and for d = 1, 2, p - 1 the triplet (p, p, pd) is compositum-feasible, whereas for $p - \frac{1+\sqrt{4p-3}}{2} < d \leq p - 2$ it is not product-feasible, hence not compositum-feasible, too. Meanwhile, the triplet (n, n, n^2) is compositum-feasible for any $n \in \mathbb{N}$ by Lemma 2). The following proposition gives one more family of irreducible triplets in C.

Proposition A1. For any integer $n \ge 2$ the compositum-feasible triplet (n, n, n(n-1)) is irreducible (In fact, it is known that for any $n \ge 2$ the triplet (n, n, n(n-1)) is compositum-feasible (see Proposition 29, [1])).

Proof. Suppose on the contrary that

$$(n, n, n(n-1)) = (a_1, b_1, c_1) \cdot (a_2, b_2, c_2), \tag{A2}$$

where (a_1, b_1, c_1) and (a_2, b_2, c_2) are compositum-feasible triplets that are both different from (1, 1, 1).

For i = 1, 2 we can factor $c_i = d_i^{(n)} d_i^{(n-1)}$, where $d_1^{(n)} d_2^{(n)} = n$ and $d_1^{(n-1)} d_2^{(n-1)} = n - 1$. We assume that the triplet (a_1, b_1, c_1) is compositum-feasible, thus a_1 divides $c_1 = d_1^{(n)} d_1^{(n-1)}$. Since $gcd(a_1, d_1^{(n-1)}) = 1$, it follows that $a_1 | d_1^{(n)}$. Analogously, $a_2 | d_2^{(n)}$. If $a_1 < d_1^{(n)}$, then

$$d_1^{(n)}d_2^{(n)} = n = a_1a_2 < d_1^{(n)}a_2 \Rightarrow d_2^{(n)} < a_2,$$

thus $a_2 \nmid d_2^{(n)}$ —a contradiction. Therefore, $a_2 = d_1^{(n)}$ and $a_2 = d_2^{(n)}$. Analogously, $b_1 = d_1^{(n)}$ is $b_2 = d_2^{(n)}$. Thus, omitting superscripts (n) and instead of (n - 1) using ' we can rewrite (A2) as

$$(n, n, n(n-1)) = (d_1, d_1, d_1d'_1) \cdot (d_2, d_2, d_2d'_2).$$

Note that $d'_i < d_i$, i = 1, 2. Indeed, for any compositum-feasible triplet, (a, b, c) holds $c \le ab$, hence for $i = 1, 2 d_i d'_i \le d^2_i$, i.e., $d'_i \le d_i$. Moreover, $gcd(d'_i, d_i) = 1$ and the numbers d'_i, d_i cannot be both equal to 1, thus $d'_i \ne d_i$. Therefore,

$$d_2d'_2 = \frac{n}{d_1} \cdot \frac{n-1}{d'_1} \ge \frac{n}{d_1} \cdot \frac{n-1}{d_1-1} > \left(\frac{n}{d_1}\right)^2 = d_2^2 \Rightarrow d'_2 > d_2,$$

since $d_1 < n$, a contradiction. Hence, the triplet (n, n, n(n-1)) is irreducible. \Box

One can check by a routine calculation that among the compositum-feasible triplets $(a, b, c), a \le b \le c, b \le 9$ (All such triplets are described in [1,2,4]), the only irreducible triplets are of the form (1, p, p), (p, p, pd) and (n, n, n(n - 1)), where p is prime, $1 \le d < p$ and $n \ge 2$. We finish our article by proposing the problem to find all irreducible compositum-feasible triplets.

References

- 1. Drungilas, P.; Dubickas, A.; Smyth, C. A degree problem for two algebraic numbers and their sum. *Publ. Mat.* **2012**, *56*, 413–448. [CrossRef]
- Drungilas, P.; Dubickas, A.; Luca, F. On the degree of compositum of two number fields. *Math. Nachr.* 2013, 286, 171–180. [CrossRef]
- 3. Drungilas, P.; Dubickas, A. On degrees of three algebraic numbers with zero sum or unit product. *Colloq. Math.* **2016**, *143*, 159–167. [CrossRef]
- 4. Drungilas, P.; Maciulevičius, L. A degree problem for the compositum of two number fields. *Lith. Math. J.* **2019**, *59*, 39–47. [CrossRef]
- 5. Drmota, M.; Skał ba, M. On multiplicative and linear independence of polynomial roots. In *Contributions to General Algebra*, 7 (*Vienna*, 1990); Hölder-Pichler-Tempsky: Vienna, Austria, 1991; pp. 127–135.
- Cantor, D.G.; Isaacs, I.M. Problems and Solutions: Solutions of Advanced Problems: 6523. Amer. Math. Monthly 1988, 95, 561–562. [CrossRef]
- Dixon, J.D.; Mortimer, B. Permutation Groups. In *Graduate Texts in Mathematics*; Springer: New York, NY, USA, 1996; Volume 163, pp. xii+346. [CrossRef]
- 8. Wielandt, H. *Finite Permutation Groups*; Translated from the German by R. Bercov; Academic Press: New York, NY, USA; London, UK, 1964; pp. x+114.
- 9. Narkiewicz, W.A.A. *Elementary and Analytic Theory of Algebraic Numbers*, 3rd ed.; Springer Monographs in Mathematics; Springer: Berlin, Germany, 2004; pp. xii+708. [CrossRef]
- 10. Vinogradov, I.M. *Elements of Number Theory*; Kravetz., S., Translater; Dover Publications, Inc.: New York, NY, USA, 1954; pp. viii+227.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.