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Abstract. In the paper, the lower limit in the universality inequality for the Hurwitz zeta-function
is replaced by an ordinary limit. The cases of continuous and discrete universalities are considered.
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1 Introduction

The Hurwitz zeta-function ζ(s, α), s = σ + it, with the parameter α, 0 < α 6 1, is
defined for σ > 1 by the Dirichlet series

ζ(s, α) =

∞∑
m=0

1

(m+ α)s

and can be analytically continued to the whole complex plane, except for a simple pole at
the point s = 1 with residue 1. For α = 1, the function ζ(s, α) reduces to the Riemann
zeta function ζ(s).

It is well known that the function ζ(s, α), for some classes of the parameter α, is
universal in the Voronin sense, i.e., its shifts ζ(s+iτ, α), τ ∈ R, approximate a wide class
of analytic functions. For a precise statement of the universality theorem, we need some
notations. Let D = {s ∈ C: 1/2 < σ < 1}. Denote by K the class of compact subsets of
the strip D with connected complements and by H(K), K ∈ K, the class of continuous
functions on K which are analytic in the interior of K. Moreover, let measA stand for
the Lebesgue measure of a measurable set A ⊂ R. Then the universality property of the
Hurwitz zeta-function is contained in the following theorem.

Theorem A. Suppose that the parameter α is transcendental or rational 6= 1, 1/2. Let
K ∈ K and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0;T ]: sup

s∈K

∣∣ζ(s+ iτ, α)− f(s)
∣∣ < ε

}
> 0. (1)

c© Vilnius University, 2016

mailto:antanas.laurincikas@mif.vu.lt
mailto:laimonas.meska@mif.vu.lt


On the modification of the universality of the Hurwitz zeta-function 565

Theorem A was obtained in a slightly different form by Voronin [17], Gonek [4] and
Bagchi [1], see also [9]. We note that the case of algebraic irrational parameter α is an
open problem.

The inequality of the theorem shows that the set of shifts ζ(s + iτ, α), τ ∈ R,
approximating a given analytic function f(s) is infinite and even has a positive lower
density. The cases α = 1 and α = 1/2 are excluded because, as it was noted above,
ζ(s, α) = ζ(s), and

ζ

(
s,

1

2

)
=
(
2s − 1

)
ζ(s).

In these cases, the function ζ(s, α) remains universal, however, the approximated function
f(s) must be non-vanishing on K.

Let
L(α) =

{
log(m+ α): m ∈ N0

}
.

Then a joint universality theorem of [6] with r = 1 implies the following result.

Theorem B. Suppose that the set L(α) is linearly independent over the field of rational
numbers Q. Let K ∈ K and f(s) ∈ H(K). Then inequality (1) holds for any ε > 0.

A theorem of Cassels asserts [3] that if α, 0 < α 6 1, is algebraic irrational, then at
least 51 percent of elements of the setL(α) in the sense of density are linearly independent
over Q. Therefore, it is possible that the set L(α) is linearly independent over Q with
algebraic irrational α, and the function ζ(s, α) with this α is universal in the sense of
Theorem A.

Theorems A and B are the so-called continuous universality theorems, τ ∈ R in the
shifts ζ(s + iτ, α) is an arbitrary number. Also, the discrete universality of ζ(s, α) has
been considered. In this case, τ in ζ(s+iτ, α) takes values from the set {mh: m ∈ N0 =
N ∪ {0}}, where h > 0 is a fixed number. Here analytic functions are approximated by
shifts ζ(s+ ikh, α), k ∈ N0. The following discrete universality theorems for ζ(s, α) are
known.

Theorem C. Suppose that the parameter α is transcendental or rational 6=1, 1/2,K∈ K,
and f(s) ∈ H(K). In the case of rational α, let the number h > 0 be arbitrary, while
in the case of transcendental α, let h > 0 be such that exp{2π/h} is a rational number.
Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#
{
0 6 k 6 N : sup

s∈K

∣∣ζ(s+ ikh, α)− f(s)
∣∣ < ε

}
> 0. (2)

For rational α, Theorem C was obtained in [1] and, by a different method, in [16]. For
transcendental α, the theorem follows from a more general discrete universality theorem
proved in [10] for the periodic Hurwitz zeta-function.

In [8], the following version of Theorem C was obtained.

Theorem D. Suppose that the set

L(α, h, π)
def
=

{(
log(m+ α): m ∈ N0

)
,
π

h

}
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is linearly independent over Q. Let K ∈ K and f(s) ∈ H(K). Then inequality (2) holds
for any ε > 0.

The aim of this paper is to replace “lim inf” in Theorems A–D by “lim”. In the case
of the Riemann zeta-function, this was done in [12] and [14]. As an example, we state the
continuous version of a modified universality theorem for ζ(s) obtained in [12].

Theorem E. Let K ∈ K and f(s) be a continuous non-vanishing function on K which
is analytic in the interior of K. Then the limit

lim
T→∞

1

T
meas

{
τ ∈ [0;T ]: sup

s∈K

∣∣ζ(s+ iτ)− f(s)
∣∣ < ε

}
> 0

exists for all but at most countably many ε > 0.

Now we state the versions of Theorem E for the Hurwitz zeta-function.

Theorem 1. Suppose that the parameter α is transcendental or rational 6= 1, 1/2. Let
K ∈ K and f(s) ∈ H(K). Then the limit

lim
T→∞

1

T
meas

{
τ ∈ [0;T ]: sup

s∈K

∣∣ζ(s+ iτ, α)− f(s)
∣∣ < ε

}
> 0 (3)

exists for all but at most countably many ε > 0.

Theorem 2. Suppose that the set L(α) is linearly independent over Q. Let K ∈ K and
f(s) ∈ H(K). Then limit (3) exists for all but at most countably many ε > 0.

Theorem 3. Suppose that all hypotheses of Theorem C are satisfied. Then the limit

lim
N→∞

1

N + 1
#
{
0 6 k 6 N : sup

s∈K

∣∣ζ(s+ ikh, α)− f(s)
∣∣ < ε

}
> 0 (4)

exists for all but at most countably many ε > 0.

Theorem 4. Suppose that the set L(α, h, π) is linearly independent over Q. Let K ∈ K
and f(s) ∈ H(K). Then limit (4) exists for all but at most countably many ε > 0.

There exist two basic methods for proving universality theorems on approximation
of analytic functions by shifts of zeta and L-functions. The first of them dates back to
Voronin [17], Good [5] and Gonek [4], and is based on various approximation type results,
including an approximation by a finite Euler product, the Kronecker approximation theo-
rem, a rearrangement theorem in Hilbert spaces, the Hadamard three circles theorem, the
Mongomery method for large values, etc. The second method, proposed by Bagchi [1], is
of probabilistic type based on limit theorems for weakly convergent probability measures
in functional spaces. It is well known that the weak convergence of probability measures
has equivalents in terms of various type sets. For a long time, a more simple equivalent
in terms of open sets was exploited, and this gave universality results with “lim inf”.
In [12] and [14], it was observed that an equivalent in terms of continuity sets also can
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be applied, and this led to the inequality of universality with “lim” in place of “lim inf”.
However, some problems of probabilistic nature do not allow to obtain the accuracy of
approximation with every ε > 0, and the results obtained are valid only “for almost all
ε > 0”. In general, the latter approach can be applied for all zeta-functions defined by
Dirichlet series and satisfying some natural growth hypotheses. The case of Hurwitz zeta-
function is exceptional because of its dependence of the parameter α and non-existence
of the Euler product. The role of α in both the cases “lim inf” and “lim” is the same,
however, limit theorems are not known for all cases of α. The situation becomes more
complicated in the case of the discrete universality, when a new parameter h > 0 appears.
The type of h requires new limit theorems. The problem of h is essentially related to
limit theorems on the tori Ω and Ω1, see Section 2, and appears in the process of the
investigation, as N →∞, of the Fourier transforms

1

N + 1

N∑
k=0

exp

{
−ikh

∞∑
m=0

km log(m+ α)

}
(5)

in the case of non-rational α, and

1

N + 1

N∑
k=0

exp

{
−ikh

∞∑
m=0

kp log p

}

in the case of rational α, where only a finite number of integers km and kp are distinct
from zero.

We note that the hypothesis on h of Theorems C and 3, in the case of transcendental α,
implies that of Theorems D and 4. Thus, Theorems D and 4 extend the case of tran-
scendental α. Unfortunately, at the moment, we do not know any example of algebraic
irrational α with linearly independent set L(α, h, π).

The linear independence of the set L(α) is applied for the proof of a limit theorem of
continuous type for the Hurwitz zeta-function. More precisely, the role of L(α) is related
to the study of the Fourier transform

1

T

T∫
0

exp

{
−iτ

∞∑
m=0

km log(m+ α)

}

as T →∞. The details can be found in [6]. The linear independence of the set L(α, h, π)
is used in the proof of a discrete limit theorem for ζ(s, α), namely, for finding the asymp-
totics of (5). The details is given in [8].

2 Auxiliary results

For the proof of Theorems 1–4, we will apply a probabilistic approach based on limit
theorems for weakly convergent probability measures in the space of analytic functions.

Nonlinear Anal. Model. Control, 21(4):564–576



568 A. Laurinčikas, L. Meška

Let γ = {s ∈ C: |s| = 1} be the unit circle in the complex plane. Define the set

Ω =
∏
m∈N0

γm,

where γm = γ for all m ∈ N0. With the product topology and pointwise multiplication,
the infinite-dimensional torusΩ is a compact topological Abelian group. Denote by B(X)
the Borel σ-field of the space X . Then the compactness of Ω implies that, on (Ω,B(Ω)),
the probability Haar measure mH can be defined, and we obtain the probability space
(Ω,B(Ω),mH). Let ω(m) be the projection of ω ∈ Ω to the coordinate space γm,
m ∈ N0. Denote by H(G) the space of analytic functions on the region G ⊂ C equipped
with the topology of uniform convergence on compacta, and, on the probability space
(Ω,B(Ω),mH), define the H(D)-valued random element ζ(s, α, ω) by the formula

ζ(s, α, ω) =

∞∑
m=0

ω(m)

(m+ α)s
.

Let Pζ be the distribution of the random element ζ(s, α, ω), i.e.,

Pζ(A) = mH

(
ω ∈ Ω: ζ(s, α, ω) ∈ A

)
, A ∈ B

(
H(D)

)
.

Lemma 1. Suppose that the number α is transcendental. Then

PT (A)
def
=

1

T
meas

{
τ ∈ [0;T ]: ζ(s+ iτ, α) ∈ A

}
, A ∈ B

(
H(D)

)
,

converges weakly to Pζ as T →∞. Moreover, the support of the measure Pζ is the whole
of H(D).

The proof of the lemma can be found in [9], Theorem 5.2.3 and Lemma 6.1.7.
Now let α = a/b, (a, b) = 1, and let α 6= 1, 1/2. Then we have that 1 6 a < b with

b > 3 and, for σ > 1,

ζ

(
s,
a

b

)
=

∞∑
m=0

1

(m+ a
b )
s
= bs

∞∑
m=0

1

(mb+ a)s
= f1(s)f2(s), (6)

where f1(s) = bs and

f2(s) =

∞∑
m=0

1

(mb+ a)s

or, in a more convenient form,

f2(s) =

∞∑
m=0

m≡a (mod b)

1

ms
.

Denote by P the set of all prime numbers and define

Ω1 =
∏
p

γp,
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where γp = γ for all p ∈ P. Similarly as in the case of Ω, with the product topology and
pointwise multiplication, the torusΩ1 is a compact topological Abelian group. Therefore,
on (Ω1,B(Ω1)), the probability Haar measurem1H can be defined. This gives the proba-
bility space (Ω1,B(Ω1),m1H). Let ω1(p) be the projection of ω1 ∈ Ω1 to the coordinate
space γp, p ∈ P. Extend the function ω1(p) to the set N by the formula

ω1(m) =
∏
pl|m
pl+1-m

ωl(p), m ∈ N.

On the probability space (Ω1,B(Ω1),m1H), define the H(D)-valued random elements
f1(s, ω1) = ω1(b)b

s and

f2(s, ω1) =

∞∑
m=0

m≡a (mod b)

ω1(m)

ms
.

Moreover, let

ζ

(
s,
a

b
, ω1

)
= f1(s, ω1)f2(s, ω1), (7)

and Pζ be the distribution of the random element ζ(s, a/b, ω1), i.e.,

Pζ(A) = m1H

(
ω1 ∈ Ω1: ζ

(
s,
a

b
, ω1

)
∈ A

)
, A ∈ B

(
H(D)

)
.

Lemma 2. Suppose that the number α is rational 6= 1, 1/2. Then PT converges weakly
to Pζ as T →∞. Moreover, the support of the measure Pζ is the whole of H(D).

Proof. By a standard method, it can be proved similarly as in [9] that

1

T
meas

{
τ ∈ [0;T ]:

(
f1(s+ iτ), f2(s+ iτ)

)
∈ A

}
, A ∈ B

(
H2(D)

)
, (8)

converges weakly to the distribution of the H2(D)-valued random element (f1(s, ω1),
f2(s, ω1)) as T → ∞. Let u : H2(D) → H(D) be given by the formula u(g1, g2) =
g1g2. Then the function u is continuous. Therefore, using Theorem 5.1 of [2], the weak
convergence of (8) and equalities (6) and (7), we obtain that PT converges weakly to Pζ
as T →∞.

It remains to consider the support of Pζ . Since (a, b) = 1, we have that the random
variable ω1(b) and each random variable ω(m), m ≡ a(mod b), are independent. From
this, it follows that the random elements f1(s, ω1) and f2(s, ω1) are independent.

Define

am =

{
1 if m ≡ a (mod b),

0 otherwise.

Nonlinear Anal. Model. Control, 21(4):564–576
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Then {am: m ∈ N0} is a periodic sequence, and (m, b) = 1 when m ≡ a (mod b) since
(a, b) = 1. Therefore, for σ > 1,

f2(s) =

∞∑
m=1

(m,b)=1

am
ms

.

By a standard way, it follows that

1

T
meas

{
τ ∈ [0;T ]: f2(s+ iτ, α) ∈ A

}
, A ∈ B

(
H(D)

)
, (9)

converges weakly to the distribution Pf2 of the random element f2(s, ω1) as T → ∞. It
remains to find the support of Pf2 . Having in mind that non-vanishing of a polynomial
in a bounded region can be controlled by its constant term, we replace the strip D by
a bounded rectangle. Let V > 0 be an arbitrary number, and DV = {s ∈ C: 1/2<σ<1,
|t| < V }. Since the mapping u : H(D) → H(DV ) given by the formula u(g(s)) =
g(s)|s∈DV

is continuous, we find from the weak convergence of the measure (9) and
Theorem 5.1 of [2] that

PT,V (A) =
1

T
meas

{
τ ∈ [0;T ]: f2(s+ iτ, α) ∈ A

}
, A ∈ B

(
H(DV )

)
,

also converges weakly to Pf2,V as T →∞, where

Pf2,V (A) = m1H

(
ω1 ∈ Ω1: f2(s, ω1) ∈ A

)
, A ∈ B

(
H(DV )

)
.

We will prove that the support of Pf2,V is the whole of H(DV ). Denote by χ1, . . . , χv
all Dirichlet characters modulo b. Then there exist complex numbers c1, . . . , cv such that,
for 1 6 m 6 b, (m, b) = 1,

am =

v∑
l=1

clχl(m). (10)

Since am and χv(m) are periodic, equality (10) remains true for all m ∈ N, (m, b) = 1.
Hence,

f2(s) =

v∑
l=1

clL(s, χl), (11)

where L(s, χl) denotes the Dirichlet L-function. For A ∈ B(Hv(DV )), let

PL(A) = m1H

(
ω1 ∈ Ω1:

(
L(s, ω1, χ1), . . . , L(s, ω1, χv)

)
∈ A

)
,

where

L(s, ω1, χl) =
∏
p

(
1− ω1(p)χl(p)

ps

)−1
, l = 1, . . . , v.

Define
SV =

{
g ∈ H(DV ): g

−1(s) ∈ H(DV ) or g(s) ≡ 0
}
.
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Then, by Lemma 13 of [7], the support of the measure PL is the set SvV . Clearly, in (10), at
least two numbers cl, say c1 and c2, are non-zeros. The operator F : Hv(DV )→ H(DV )
given by the formula

F (g1, . . . , gv) =

v∑
l=1

clgl, g1, . . . , gv ∈ H(DV ),

is continuous. Moreover, for each polynomial q = q(s), there exists g1, . . . , gv ∈ SV
such that

F (g1, . . . , gv) = q.

For example, we may take that g1(s) = (q(s)+C)/C1, g2(s) = −(C+c3+ · · ·+cv)/c2,
g3(s) = · · · = gv(s) = 1, where |C| is rather large. Therefore, in view of (11) and
Lemma 16 of [7], we have that the support of Pf2,V is the whole of H(DV ). Here
V > 0 is an arbitrary number. Letting V → ∞, we obtain that H(DV ) coincides
with H(D), and Pf2,V becomes Pf2 . Thus, the support of the random element f2(s, ω1)
is the whole of H(D). Since f1(s, ω1) is not degenerated at zero and f1(s, ω1) and
f2(s, ω1) are independent random elements, this shows that the support of the product
f1(s, ω1)f2(s, ω1) is the whole of H(D). Therefore, in view of (7), the support of Pζ is
the whole of H(D).

Lemma 3. Suppose that the set L(α) is linearly independent overQ. Then PT converges
weakly to the measure Pζ as T →∞.

The lemma is a case of Theorem 4 from [6] with r = 1.

Lemma 4. Suppose that the parameter α is transcendental, and h > 0 be such that
exp{2π/h} is a rational number. Then

PN (A)
def
=

1

N + 1
#
{
0 6 k 6 N : ζ(s+ ikh, α) ∈ A

}
, A ∈ B

(
H(D)

)
,

converges weakly to the measure Pζ as N →∞.

Proof. Let a = {am: m ∈ N0} be a periodic sequence of complex numbers. The periodic
Hurwitz zeta-function ζ(s, α, a) is defined for σ > 1 by the series

ζ(s, α, a) =

∞∑
m=0

am
(m+ α)s

and can be analytically continued to the whole complex plane, except for a possible pole
at the point s = 1. Define the H(D)-valued random element ζ(s, α, ω, a) by the formula

ζ(s, α, ω, a) =

∞∑
m=0

amω(m)

(m+ α)s

Nonlinear Anal. Model. Control, 21(4):564–576
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and denote by Pζ,a its distribution. Then in [10], Theorem 6.1, it was proved that, under
hypotheses of the lemma,

1

N + 1
#
{
0 6 k 6 N : ζ(s+ ikh, α, a) ∈ A

}
, A ∈ B

(
H(D)

)
,

converges weakly to Pζ,a as N →∞. Obviously, if am ≡ 1, then the function ζ(s, α, a)
becomes the Hurwitz zeta-function ζ(s, α), and ζ(s, α, ω, a) becomes ζ(s, α, ω). There-
fore, the lemma is a partial case of Theorem 6.1 from [10].

Lemma 5. Suppose that the set L(α, h, π) is linearly independent over Q. Then PN
converges weakly to the measure Pζ as N →∞.

The proof of the lemma is given in [8], Theorem 2.1.
The number h > 0 is called of type 1 if exp{2πm/h} is an irrational number for

all m ∈ Z \ {0}, and of type 2 if there exists m ∈ Z \ {0} such that exp{2πm/h} is
a rational number. Let Ω1h be the closed subgroup of Ω1 generated by (p−ih: p ∈ P). It
is known [1] that if h is of type 1, then Ω1h = Ω1. Now suppose that h is of type 2. Then
there exists the least m0 ∈ N such that exp{2πm0/h} is rational. Let

exp

{
2πm0

h

}
=
u

v
, u, v ∈ N, (u, v) = 1.

It is known [1] that, in this case,

Ω1h =
{
ω1 ∈ Ω1: ω1(u) = ω1(v)

}
.

Denote by mh
1H the probability Haar measure on (Ω1h,B(Ω1h)), and, on the probability

space (Ω1h,B(Ω1h),m
h
1H), define the H(D)-valued random element

ζ1h

(
s,
a

b
, ω1

)
= f1(s, ω1)f2(s, ω1), ω1 ∈ Ω1h.

Let Pζ1h stand for the distribution of ζ1h(s, a/b, ω1).

Lemma 6. Suppose that α is rational 6= 1, 1/2, and h > 0 is an arbitrary number. Then
PN converges weakly to Pζ1h as N → ∞. Moreover, the support of Pζ1h is the whole of
H(D).

Proof. If h is of type 1, the proof, in view of the equality Ω1h = Ω1, coincides with that
of Lemma 2. Therefore, it remains to consider the case of h of type 2. For this, we will
apply the following assertion from [11, Lemma 2]:

QN,h(A)
def
=

1

N + 1
#
{
0 6 k 6 N :

(
p−ikh: p ∈ P

)
∈ A

}
, A ∈ B(Ω1h),

converges weakly to the Haar measure mh
1H as N → ∞. To prove this, as usual, the

method of Fourier transforms is applied. The main difficulty is to describe the characters
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of the group Ω1h. Define

P0 =

{
p ∈ P: αp 6= 0 in

u

v
=
∏
p∈P

pαp

}
.

Let Ω∗1 be the dual group of Ω1, χm0
∈ Ω∗1 be given by the formula

χm0(ω1) =
∏
p∈P0

ω
αp

1 (p) =
ω1(u)

ω1(v)
,

and Ω⊥1h = {χ ∈ Ω∗1 : χ(ω1) = 1, ω1 ∈ Ω1h}. If h is of type 2, then is not difficult to
see that

Ω⊥1h =
{
χlm0

: l ∈ Z
}
.

In view of [15, Thm. 27], we have that the factor group Ω∗1�Ω⊥1h is the dual group of
Ω1h. Hence, the characters of the group Ω1h are of the form

χ(ω1) =
∏

p∈P\P0

ω
kp
1 (p)

∏
p∈P0

ω
kp+lαp

1 (p), l ∈ Z,

where only finite number of integers kp are distinct from zero. Therefore, the Fourier
transform ϕN,h(k), k = (kp: p ∈ P), of QN,h is of the form

ϕN,h(k) =

∫
Ω1h

χ(ω1) dQN,h

=
1

N+1

N∑
k=0

∏
p∈P\P0

p−ikkph
∏
p∈P0

p−ikh(kp+lαp), l ∈ Z.

Now properties of αp and h imply that ϕN,h(k), as N → ∞, converges to the Fourier
transform of the measure m1H , and this prove the claim.

Further, by a standard method, it follows that

1

N+1
#
{
0 6 k 6 N :

(
f1(s+ikh), f2(s+ikh)

)
∈ A

}
, A ∈ B

(
H2(D)

)
,

and, for ω1 ∈ Ω1h,

1

N+1
#
{
0 6 k 6 N :

(
f1(s+ikh, ω1), f2(s+ikh, ω1)

)
∈ A

}
, A ∈ B

(
H2(D)

)
,

converges weakly to the same probability measure P on (H2(D),BH2(D)) as N →∞.
For the identification of the limit measure P , we apply Lemma 11 of [11] on the ergodicity
of the transformation ϕh of Ω1h defined by

ϕh(ω) =
(
p−ikh: p ∈ P

)
ω1, ω1 ∈ Ω1h.
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This application, together with the classical Birkhoff–Khintchine ergodic theorem, shows
that P is the distribution of the random element (f1(s, ω1), f2(s, ω1)), ω1 ∈ Ω1h. Hence,
it follows that PN converges weakly to Pζ1h as N →∞.

For the proof that the support of Pζ1h is the whole of H(D), we use arguments of
discrete type analogous to those applied in the proof of Lemma 2.

3 Proofs of universality theorems

Proofs of Theorems 1–4 are based on limit theorems for PT and PN and on the equivalent
of the weak convergence of probability measures in terms of continuity sets. We state this
equivalent as the following lemma. We recall that A ∈ B(X) is a continuity set of the
probability measure P on (X,B(X)) if P (∂A) = 0, where ∂A is the boundary of A.

Lemma 7. Let Pn, n ∈ N, and P be probability measures on (X,B(X)). Then Pn, as
n→∞, converges weakly to P if and only if, for every continuity set A of P ,

lim
n→∞

Pn(A) = P (A).

The lemma is a part of Theorem 2.1 of [2].
We also use the famous Mergelyan theorem [13] on the approximation of analytic

functions by polynomials which is contained in the next lemma.

Lemma 8. Let K ⊂ C be a compact subset with connected complement, and let g(s) be
a continuous function on K which is analytic in the interior of K. Then, for every ε > 0,
there exists a polynomial q(s) such that

sup
s∈K

∣∣g(s)− q(s)∣∣ < ε.

Proof of Theorem 1. Let

Gε =
{
g ∈ H(D): sup

s∈K

∣∣g(s)− f(s)∣∣ < ε
}
.

Then Gε is an open set in H(D), moreover,

∂Gε =
{
g ∈ H(D): sup

s∈K

∣∣g(s)− f(s)∣∣ = ε
}
.

Therefore, ∂Gε1 ∩ ∂Gε2 = ∅ for ε1 6= ε2, ε1 > 0, ε2 > 0. Hence, Pζ(∂Gε) > 0 for at
most a countably set of ε > 0, i.e., the set Gε is a continuity set of Pζ for all but at most
countably many ε > 0. Thus, in view of Lemmas 1, 2 and 7,

lim
T→∞

1

T
meas

{
τ ∈ [0;T ]: ζ(s+ iτ, α) ∈ Gε

}
= lim
T→∞

1

T
meas

{
τ ∈ [0;T ]: sup

s∈K

∣∣ζ(s+ iτ, α)− f(s)
∣∣ > ε

}
= Pζ(Gε) (12)
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for all but at most countably many ε > 0. By Lemma 8, there exists a polynomial q(s)
such that

sup
s∈K

∣∣f(s)− q(s)∣∣ < ε

2
. (13)

Since, by Lemmas 1 and 2, q(s) is an element of the support of the measure Pζ , we have
that Pζ(Ĝε) > 0, where

Ĝε =
{
g ∈ H(D): sup

s∈K

∣∣g(s)− q(s)∣∣ < ε

2

}
.

Clearly, for g ∈ Ĝε, by (13),
sup
s∈K

∣∣g(s)− q(s)∣∣ < ε.

Therefore, Ĝε ⊂ Gε. Hence, Pζ(Gε) > Pζ(Ĝε) > 0, and the theorem follows from
equality (12).

Proof of Theorem 2. We use Lemma 3 and follow the proof of Theorem 1.

Proof of Theorem 3. In virtue of similarity, we consider only the case of transcendental
parameter α. Also, we preserve the notation of the proof of Theorem 1. By Lemmas 4
and 7, we have that

lim
N→∞

1

N + 1
#
{
0 6 k 6 N : ζ(s+ ikh, α) ∈ Gε

}
= lim
N→∞

1

N + 1
#
{
0 6 k 6 N : sup

s∈K

∣∣ζ(s+ ikh, α)− f(s)
∣∣ < ε

}
= Pζ(Gε) (14)

for all but at most countably many ε > 0. Lemma 4 implies the inequality Pζ(Gε) > 0.
Since Pζ(Gε) > Pζ(Ĝε), (14) proves the theorem.

Proof of Theorem 4. The theorem follows from Lemma 5 in the same way as Theo-
rem 3.
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139, 2011.
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