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Introduction

Research context and motivation

Various auxiliary equipment items are being constantly created, mod-
ified and applied to improve the quality of life. The use of mechanical,
electronic, biochemical and other devices is an inseparable part of every-
days life of humanity. Biosensors play an integral part in medicine, ecology
and environmental monitoring [1].

Biosensors are sensing devices that transform a biological recognition
into a detectable signal [2, 3]. During the biosensor operation the substrate
to be analysed is biochemically converted to a product. The biosensor
response, in most cases, is directly proportional to the concentration of the
reaction product [4].

According to the report by Global Industry Analysts, the global de-
mand for biosensors in medical devices is forecasted to reach US$16.5 billion
by the year 2017 [5]. The largest market for biosensors globally is in the
US, followed by Europe, with the largest growing market (expected to be,
due arising health-related concerns) in Asia-Pacific.

Various types of biosensors are currently being developed and used.
The most common of them are potentiometric, optical and amperometric [6–
8]. This research concentrates on the investigation of enzymatic ampero-
metric biosensors, which have proved to be reliable and low-cost in various
analytical systems with applications in medicine, food technology and the
environmental industry [9–11]. The response of such biosensors is measured
as anodic or cathodic current [12].

However, amperometric biosensors possess a number of serious draw-
backs. One of the main reasons restricting wider use of the biosensors is
a relatively short linear range of the calibration curve [4, 11]. Increasing
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the concentration range of detectable substrate and the sensitivity of the
detection event improves the prospects for commercializing biosensors [13,
14].

One way of overcoming those problems is to use intermediate sub-
stances. Due to the appropriate combination of substances used for
biochemical reaction, the biosensor sensitivity may be considerably en-
hanced [15, 16]. The context of this research is optimization and research
of new possibilities for the development of biosensors by using intermediate
substances (either by using mediators, either by coupling enzymes to use
additional substrates as intermediates) [17–19].

The understanding of the kinetic peculiarities of the biosensors is of
crucial importance for their design and optimization. In order to optimize
the biosensor configuration the mathematical modelling is rather often used
instead of expensive physical experiments [20–23]. For almost half a century
the mathematical modelling is successfully used to study the characteristics
of the biosensors and to optimize their configuration [24–28]. The digi-
tal simulation of more general reaction-diffusion systems began as early as
1969 [29, 30].

In many cases analytical solutions of the developed mathematical mod-
els exist only for specific conditions, due the non-linear term in governing
equations [28, 31]. Computational modelling is the only way to solve the
problem in general case [32, 33]. However this is a complicated and time-
consuming task [33–35]. In most cases the finite difference technique is
employed and the software implementing the computational model is cre-
ated [33, 36].

Various finite difference schemes have been analysed and compared to
model the behaviour of the classical Michaelis-Menten biosensor [37, 38].
The improvement of the finite difference schemes to solve related biochemi-
cal problems was presented by Bieniasz in the 16 part series from [39] to [40]
and Britz [41, 42]. The mathematical models developed in this work are
solved by using finite difference technique [43–46] with calculations being
carried out in a computational grid [47] to improve their performance.
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Aim and objectives of the thesis

The aim of this work was to develop an algorithms and a software tool,
which would simulate the behaviour of the biosensors utilizing intermediate
substances and to investigate the peculiarities of analysed biosensors.

The aim is further divided into the following tasks:

1. Develop and investigate practical mathematical models of the biosen-
sor with chemically modified electrode and the biosensor utilizing par-
allel substrates conversion.

2. Suggest improvements to the mathematical and computational mod-
els, which would increase calculation speeds for a specific model con-
figurations.

3. Develop a tool to automate the process of the biosensors peculiarities
investigation by using parameter sweep approach on a computational
grid.

4. Investigate kinetic peculiarities of both biosensors utilizing intermedi-
ate substances by using developed tool.

Research approach and method

Mathematical models presented in this thesis are formulated by non-
linear reaction-diffusion partial differential equations of parabolic type.
Models were approximated by using finite difference technique by applying
explicit and Cranck-Nicolson computational schemes. Software tools im-
plementing computational schemes were developed in C++ programming
language. Computational grid was used to improve the speed of calculations
by applying parameter sweep approach.

Scientific novelty and results

1. An existing mathematical model with quasi-steady-state assumption
of biosensor with chemically modified electrode was generalized. Pro-
posed transient mathematical model was proved to be more accurate
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than the existing one at a practically meaningful set of parameter va-
lues.

2. Mathematical model with application of catalase and peroxidase re-
alizing parallel substrates conversion was developed. The simulated
results of this model significantly approached the ones received in the
experiments with the suggested application of the partition of com-
pounds between the layers.

3. Parameter values were determined under which the efficient diffusion
coefficient can be used to merge the dialysis and diffusion layers of
the biosensor utilizing parallel substrates conversion and the biosensor
with chemically modified electrode.

4. The half-maximal effective concentration signifying the efficiency of
the analysed biosensors was determined for various parameter values
of both analysed biosensors.

5. Computational grid was used to efficiently investigate the biosensor
behaviour by applying parameter sweep approach.

Practical significance of the results

The mathematical models presented in this thesis describe real-life
biosensors action. The developed and implemented computational mod-
els can be used to numerically investigate the behaviour of the biosensors.
The conditions were determined, when the calculations can be done faster
with desired loss of accuracy by applying quasi-steady-state assumption (for
biosensor with chemically modified electrode) and effective diffusion coeffi-
cient (for both analysed biosensors).

By using developed tool to model biosensor action on a computational
grid, the dependency of half maximal concentration on various parameters
was investigated. The obtained results show the optimal configuration of
both analysed biosensors at various physical conditions.

The investigation of various other peculiarities described in this thesis
can be applied for creation and development of biosensors utilizing inter-
mediate substances.

Some of the results obtained during the research presented in this
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thesis [A5] were already used when analysing biosensors behaviour experi-
mentally [A7].

The results presented in this thesis were used in reaching the goals of
the following projects:

• “Development of bioelectrocatalysis for synthesis and analysis
(BIOSA)” funded by a grant (No. PBT-04/2010) from the Research
Council of Lithuania (2008-2010).

• “Developing computational techniques, algorithms and tools for effi-
cient simulation and optimization of biosensors of complex geometry”
(project no. VP1-3.1-ŠMM-07-K-01-073/MTDS-110000-583) funded
by the European Social Fund under measure VP1-3.1-ŠMM-07-K
“Support to Research of Scientists and Other Researchers (Global
Grant)”(2011-2015).

Statements promoted to defend

1. The quasi-steady-state assumption (QSSA) can be applied to compu-
tational modelling and investigating the peculiarities of the biosensor
with chemically modified electrode. The assumption affects response
the most for the relatively small diffusion module and relatively large
Biot number.

2. Three-layered one-dimensional in space mathematical model can be
successfully applied to investigate the kinetic peculiarities of the
biosensor with parallel substrates conversion. The most efficiently op-
erating biosensor configuration is at the relatively low ratio of the
catalase to the peroxidase and the relatively high concentrations of
hydrogen peroxide.

3. The partition coefficient should be included when describing the
biosensor behaviour mathematically. The partition coefficient impacts
the response and sensitivity, but does not change general tendencies
in the biosensor behaviour.

4. Effective diffusion coefficient can be successfully applied to merge two
diffusion-based regions into one for both analysed mathematical mod-
els. Numerical investigation showed that in most cases the error of the
merger is less than 10%.
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Results approbation

Three articles were published in the journals with citation index in
Thomson Reuters Web of Knowledge database [A5, A7, A8]. The contribu-
tion of the thesis author in the published papers covers the development of
numerical models and the software solving these models, validation of the
models, digital investigation processes, analysis of the results and varying
in scope text preparation process.

Additionally, results were presented in five conference proceedings [A1–
A4, A6].

Contributed talks were given at six international and five national
conferences:

1. KODI 2013 (Šiauliai, Lithuania): Kompiuterininkų dienos – 2013. 19-
21st September, 2013.

2. DSL 2013 (Madrid, Spain): 9th International Conference on Diffusion
in Solids and Liquids. 24-28th June, 2013.

3. NUMTA 2013 (Falerna, Italy): Numerical Computations: Theory and
Algorithms. International Conference and Summer School. 17-23rd
June, 2013.

4. ECCOMAS 2012 (Vienna, Austria): 6th European Congress on Com-
putational Methods in Applied Sciences and Engineering. 10-14th Sep-
tember, 2012.

5. LMD 2012 (Klaipėda, Lithuania): Lietuvos Matematikų Draugijos 53-
oji konferencija. 11-12th June, 2012.

6. MMA 2012 (Talin, Estonia): Mathematical Modelling and Analysis
2012. 6-9th June, 2012.

7. KODI 2011 (Klaipėda, Lithuania): Kompiuterininkų dienos – 2011.
22–24th September, 2011.

8. MMA 2011 (Sigulda, Latvia): Mathematical Modelling and Analysis
2011. 25–28th May, 2011.

9. LMA 2011 (Vilnius, Lithuania): LMA pirmoji jaunųjų mokslininkų
konferencija. 25th May, 2011.

10. ECCOMAS CFD 2010 (Lisbon, Portugal): V European Conference on
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Computational Fluid Dynamics. 14–17th June, 2010.

11. KODI 2009 (Kaunas, Lithuania): Kompiuterininkų dienos – 2009.
25–26th September, 2009.

Structure of the thesis

Thesis consists of four chapters. In the first chapter overview of the
researched area is presented: an introduction to the biosensors, their pe-
culiarities and classification, an overview of the mathematical possibilities
to model their behaviour, as well as methods and tools used to carry out
the simulation processes. Chapter 2 presents the mathematical models of
the biosensors utilizing intermediate substances: biosensor with chemically
modified electrode and biosensor utilizing parallel substrates conversion.
Solving of these mathematical models are presented in Chapter 3. Analyti-
cal solutions, utilization of variable time step in the computational schemes
as well as the use of computational grid are presented. In Chapter 4 the pe-
culiarities of the biosensors utilizing intermediate substances are presented,
with a special emphasis on the comparison with the experimental data (for
the biosensor utilizing parallel substrates conversion) and the half maximal
effective concentration.
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Chapter 1

Theoretical framework

1.1. Biosensors

Leland C. Clark published an article on what became known as the
Clark’s Electrode in 1953 [48]. The first demonstration of the biosensor
concept, as we understand it today, was given by the same Leland C. Clark
Jr. in 1962 [49]. Since then various biosensors have been developed and ap-
plied in point-of-care testing, home diagnostics, environmental monitoring,
research laboratories, process industry, security and biodefense and oth-
ers [11, 50]. In the medical field, a majority of biosensors are included in
glucose meters, blood gas analysers, electrolyte analysers, metabolite anal-
ysers and various drug detectors [1–4].

Biosensors are widely applied in the above mentioned areas, because
they are relatively cheap to construct, reliable and highly sensitive devices.
Biosensor consist of three major parts: sensitive biological element (biore-
ceptor), element that transforms the signal of interaction between substrate
and biological element into another signal (transducer element) and as-
sociated electronic device which displays the result. As a result of this
separation by parts, biosensors are classified according to bioreceptor and
transducer elements.

Three classes of bioreceptors are distinguished: biocatalytic, bioaffinity
and hybrid receptors. Biocatalytic receptors are systems containing enzyme
(single or multiple enzymes might be used), whole cells (bacteria, fungi,
eukaryotic cells, yeast), cells organelles and tissues (plant or animal) [51].
Enzyme biosensors, analysed in this research, work by immobilization of the
enzyme system onto a transducer. The enzymes used in the biosensors are
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1.1. Biosensors

specifically chosen for the desired molecules and catalyze generation of the
product, which is then directly determined using the transducer element.

According to the transducer type, biosensors are classified into elec-
trochemical, electrical, optical, piezoelectric, thermometric. In the electro-
chemical biosensors, analysed in this thesis, chemical reactions between im-
mobilized bioreactors and target substrate produce or consume ions or elec-
trons, which affects measurable electrical properties of the solution, such an
electric current (for amperometric biosensors) or potential (for potentiomet-
ric biosensors) [52]. Amperometric biosensors are simple, have an extensive
variety of redox reaction for construction of the biosensors, and facility for
miniaturize [10]. They are widely applied to detect glucose, galactose, lac-
tate, sucrose, aspartame, acetic acid, glycerides, biological oxygen demand,
cadaverine, histamine, etc. Two of the most serious drawbacks are their low
sensitivity and short linear parts of the calibration curves. The application
of intermediate substances is investigated in this thesis as a perspective way
to minimize these disadvantages of enzymatic amperometric biosensors.

In the following sections of this chapter, a physical processes taking
place inside the biosensor are presented. Methods and tools used for the
investigation of these processes are analysed.

1.1.1. Enzymatic processes in biosensor systems

Two physical phenomenons are unusually analysed when investigating
the behaviour of the enzymatic biosensors: enzyme kinetics and diffusion.
One of the simplest and best-known approaches to model the kinetic action
is the Michaelis-Menten kinetics, described in 1913 [53]. The assumption
is made, that enzyme binds the substrate to form an intermediate complex
ES,

E + S
k1

GGGGGBFGGGGG

k−1
ES

k2
GGGAE + P, (1.1)

where substrate S binds reversibly to an enzyme E to form an enzyme-
substrate complex ES (reaction rate constants denoted as k1 and k−1), which
then reacts irreversibly to generate a product P and to regenerate the free
enzyme E (with reaction rate constant of k2). Some degree of reversibility in
the product formation in many biochemical reactions might be noticeable,
however in most cases (including Michaelis-Menten kinetics) it is neglected.

The quasi-steady-state assumption (QSSA) was presented in 1925 [54]
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Chapter 1. Theoretical framework

and is widely used up to this day. Concentration of complex ES will not
change significantly after an initial burst phase, until a significant amount
of substrate has been consumed,

∂es
∂t

= k1es− (k2 +k−1)es = 0, (1.2)

where s and es are concentrations of S and ES.

By extracting es from (1.2) and multiplying it by reaction rate of k2

and by substituting e= e0−es (e0 is the initial concentration of the enzyme),
the rate v of the product formation can expressed as follows:

∂p

∂t
= v = k2es = k2e0s

k−1+k2
k1

+ s
= VMs

KM + s
, (1.3)

where VM = k2es (when es = e0) is the reaction velocity at saturating sub-
strate concentration, KM = (k−1 +k2)/k1 is the Michaelis-Menten constant,
unique for each enzyme-substrate pair. One can notice, that when s=KM ,
then v = VM/2, meaning that KM can be interpreted as the substrate con-
centration, at which the half-maximal reaction rate is achieved. The lower
the values of KM represent more effective enzyme at low substrate concen-
trations.

Free substrate concentration, represented by s in (1.3), is usually as-
sumed to be close to the total substrate concentration present in the system
(s≈ s0). This assumption (as well as the whole quasi-steady-state assump-
tion) is valid when e0� s0 +KM [55].

1.1.2. Diffusion processes

The diffusion is the second physical phenomenon taking place in the
analysed biosensors. It is described as one of the several transport mecha-
nisms (alongside with convection and advection) that occur in nature. An
overview of diffusion is presented in this section with accordance to the
related research works of the biosensor mathematical modelling.

1.1.2.1. Diffusion of compounds in multi-layered domain

Diffusion is described by a partial differential equation, describing den-
sity dynamics in a material in which diffusion processes take place. In case
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1.1. Biosensors

of diffusion in two or more dimensions, a diffusion of mass during time can
be described by generalized Fick’s Second Law (which is analogous to the
heat equation):

∂c

∂t
=D∇2c, (1.4)

where t is time, ∇ represents the differential operator which generalises the
first spatial derivative, c is the concentration of compound C in dimensions
of [(amount of substance) × length−3], D is the diffusion coefficient of com-
pound C in dimensions of [length2× time−1]. In more general case a diffusion
coefficient can be a function, but in case of biosensors, it is considered to
be a constant, which depends on the molecule size, temperature, pressure
and other properties of the diffusing substance. Larger diffusion coefficient
represents better diffusivity (for example gas diffusion in gas medium would
have relatively large diffusion coefficient), while the lower diffusion coeffi-
cient represents greater resistance (e.g. gas diffusion in liquid media).

When biosensor action is described in one dimensional space, the fol-
lowing diffusion equation is used:

∂c

∂t
=D

∂2c

∂x2 , (1.5)

where x is space coordinate. One-dimensional in space diffusion is analysed
in this thesis, as it is known to be accurate enough for the most biosensor
models. Therefore further equations and definitions are provided in the
same manner.

In most of the mathematical models found in the literature, a multi-
layered approach of biosensor is usually taken. Different regions are rep-
resented by distinct diffusion coefficients for different compounds, meaning
that physical diffusion processes in various layers are different.

In case neighbouring layers are non-reflective to the analysed com-
pound (the compound is able to diffuse from one layer to another), it is
considered, that the flux of compound C entering from l+ 1-th layer to l

layer (see boundary x= al in Fig. 1.1) is equal to the corresponding flux of
the same compound entering the surface of layer l,

D(l)
c

∂c(l)

∂x

∣∣∣∣∣∣
x=al

= D(l+1)
c

∂c(l+1)

∂x

∣∣∣∣∣∣
x=al

, (1.6)

c(l)|x=al
= c(l+1)|x=al

, (1.7)
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Chapter 1. Theoretical framework

where D(l)
c , D(l+1)

c are the diffusion coefficients and c(l), c(l+1) are the con-
centrations of compound C in layers l and l+ 1.

Figure 1.1. The graphical illustration of the diffusion through different
layers. Equations in rounded boxes describe the diffusion inside the layers,
while boxed ones display the diffusion processes at the boundaries.

If the concentration of compound C is kept constant (with a value of
c(l+1) = c0) in layer l+1, and transport direction is from layer l+1 to layer
l, then Dirichlet boundary condition is applied at the boundary of x= al+1,

c(l)|x=al+1 = c0. (1.8)

If the compound does not diffuse from layer l−1 to layer l−2 (at the
boundary of x= al−1) because of the non-permeability, Neumann boundary
condition is applied,

D(l−1)
s

∂s(l−1)

∂x

∣∣∣∣∣∣
x=al−1

= 0. (1.9)

Illustrations of the described conditions are presented in Fig. 1.1: con-
centration c of compound C in layer l+ 1 is constant, while in layers l and
l− 1 it is described by the diffusion equation (1.5) with according diffu-
sion coefficients. Direchlet boundary condition is applied at the boundary
x = al+1, the equation (1.6) describing the steadiness of fluxes is applied
at boundary x = al and Neumann boundary condition is applied at the
boundary of x= al−1, which results concentration of c(l−2) = 0 for the layer
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1.1. Biosensors

l−2.

1.1.2.2. Partition coefficient

Partition coefficient commonly refers to the equilibrium partition of a
single compound between two solvent and immiscible phases separated by a
boundary and is a measure of hydrophobic/hydrophilic properties of a given
molecule. Water and octanol are typically the solvents in the context of drug
detection. Partition coefficient, sometimes referred as partition constant or
partition ratio, depends on the temperature and pressure, but should not
vary with composition [56].

The partition coefficient K(l),(l+1)
c between layers l and l+ 1 at x = al

is calculated by the following ratio [57]:

K(l),(l+1)
c = c(l)|al

c(l+1)|al

, (1.10)

where c(l) and c(l+1) are concentrations of compound C in corresponding
layers l and l+ 1 near the boundary of x = al. The logarithm of the con-
centrations ratio (1.10) in the solvents is frequently expressed as logarithm
of K. The log K value (more often denoted as log P) is also known as a
measure of lipophilicity [58].

The partition coefficient sometimes is called as a distribution coeffi-
cient, however, while not differing drastically, two coefficients have different
meanings [58]. A ratio of the concentrations of the non-ionised compound
between two different solutions is displayed by the partition coefficient, while
the distribution coefficient is the ratio of the sum of the concentrations for
both forms of the compound (ionised and non-ionised).

The partition coefficient was applied in analysis of various diffusion-
related researches [59, 60] and when analysing the behaviour of the biosen-
sors [61–63]. However the impact of the partition coefficient on the biosensor
response was not analysed exclusively. Therefore, the impact of the parti-
tion coefficient was extensively analysed in this thesis for biosensor utilizing
parallel substrates conversion while comparing digitally obtained results to
the experimental ones.
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Chapter 1. Theoretical framework

1.1.2.3. Effective diffusion coefficient

In order to minimize the number of the model parameters, the effective
diffusion coefficient might be applied to merge some of the model layers,
where only the mass transport by diffusion takes place. An efficient diffusion
coefficient D(ij) can be used to merge two neighbouring layers (enumerated
as i-th and j-th layers), with diffusion coefficients D(i) and D(j) [64–66],

D(i)D(j)

vijD(j) + (1−vij)D(i) ≤D
(ij) ≤ vijD(i) + (1−vij)D(j), (1.11)

where vij is the relative thickness of the i-th layer as compared to the sum
of both layer thicknesses,

v = di/(di+dj). (1.12)

The effective diffusion coefficient was successfully applied to model the
biosensors with a perforated membrane, by considering the right side of the
(1.11) equation to be accurate expression of the efficient diffusion coefficient
for two neighbouring areas [67, 68],

D(ij) = vijD
(i) + (1−vij)D(j). (1.13)

By using the efficient diffusion coefficient (1.13), the one-dimensional
mathematical model with two or more diffusion-based layers can be sim-
plified by merging those layers. The diffusion coefficient of the merged
layer is D(ij) and thickness is dij = di +dj. When analysing mathematical
models described in two-dimensional or three-dimensional space, the same
approach can be applied not only for a flat layers, but for an areas with a
more complex geometry.

In this research the application of the efficient diffusion coefficient was
investigated for the biosensor with chemically modified electrode (Section
4.1), as well as for the biosensor utilizing parallel substrates conversion
(Section 4.2).
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1.2. Mathematical modelling of biosensors

1.2. Mathematical modelling of biosensors

Mathematical modelling is widely used in various research areas nowa-
days, especially in the area of applied applications [69], as the emergence
of new fields of research after the sixties expanded even more [70]. One of
the many areas, where mathematical modelling can be applied is solving
various systems of differential equations [71]. Biochemistry and electro-
chemistry are areas, where mathematical modelling also found it’s rightful
mark [24, 72].

Various mathematical models of biosensors were developed and later
investigated digitally in Vilnius University since 2000: a biosensor with
partially blocked electrodes [73], a sensor with array of enzyme micro-
reactors [74, 75], a carbon nanotube based biosensor [76], a biosensor based
on synergistic substrates determination [77], a synergistic action of laccase-
based biosensor [78] and many others.

Mathematical modelling is also widely applied outside Vilnius Univer-
sity, as various research works are done by quite a few researchers: a layer
by layer assembling approach of glucose biosensor modelling was presented
in [62], another glucose biosensor is modelled in [79]. Models of a biosensors
with modified [80] and bienzyme [81] electrodes, based on bioluminescent
E.Coli [21] and cantilever [82], microbioreactor-based [63], working under
flow injection [83] and many others [31, 84–87] were developed.

A research group in Dublin Institute of Technology is working in the
same area of mathematical models and methods of biosensor action investi-
gation, as two dissertations [88, 89] were recently defended as well as several
articles were published [90, 91].

An overview of modelling biosensor responses is given in [92] and
overview of the mathematical modelling of biosensors is presented in [33].

1.2.1. Development of biosensor mathematical model

Michaelis-Menten kinetics [53] is a most common fundamental base
for the mathematical modelling of biosensors [7, 22, 87–90, 93–99]. Com-
monly, the domain describing the geometry of a mathematical model of the
biosensor is divided into a physically meaningful regions: enzymatic region,
diffusion-based region, dialysis and selective membranes, etc.
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Chapter 1. Theoretical framework

1.2.1.1. Governing equations

In case of enzymatic biosensors, one of the regions is an enzymatic
layer, and in presence of the Michelis-Menten kinetics the region is described
by combining enzymatic reaction rate (1.3) and diffusion equation (1.5). A
classical system of non-linear reaction-diffusion equations is obtained for
layer l = 1,

∂s(1)

∂t
=D(1)

s

∂2s(1)

∂x2 −
VMs

(1)

KM + s(1) ,
∂p(1)

∂t
=D(1)

p

∂2p(1)

∂x2 + VMs
(1)

KM + s(1) , (1.14)

where s(1)(x,t) denotes concentration of the substrate S and p(1)(x,t) de-
notes the concentration of the product P in layer l= 1 (marked as (1) in su-
perscript). If the model is not analysed according to the Michaelis-Menten
kinetics, reaction term is replaced by a corresponding reduction reaction
term.

Various multiple layers might be added to the mathematical model,
by using other reaction equations as well as diffusion equations presented in
Section 1.1.2.1. A diffusion limiting region, where only the mass transport
by diffusion takes place is usually added when modelling biosensors working
under bath regime. A convective region is located outside the diffusion
layer, where the substrate concentration is maintained constant with a help
of stirring.

The thickness of the diffusion layer is inversely proportional to the
intensity of stirring of the solution. The more intense stirring corresponds
to the thinner diffusion layer. This diffusion layer, also known as the Nerst
layer, practically does not depend upon the enzyme membrane thickness.
The Nerst layer may be practically minimized up to 2 ×10−6 m, but no zero
thickness can be achieved [100].

1.2.1.2. Initial, boundary and matching conditions

In order for the mathematical model to be a well-posed problem, a
sufficient amount of boundary, governing and matching conditions must be
described:

• Initial conditions describe the initial state of the biosensor, by describ-
ing the concentrations of all compounds at time moment t= 0.

• Boundary conditions describe the concentrations at the boundaries of
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1.2. Mathematical modelling of biosensors

the domain during the biosensor operation (t > 0). Direchlet (1.8) and
Neumann (1.9) conditions are used in most analysed cases.

• Matching conditions describe the mass transport between the layers
during the biosensor operation (t > 0). In most cases they are described
using (1.6) and (1.7) equations.

1.2.1.3. Biosensor response

The anodic or cathodic current is assumed as the response of the am-
perometric biosensor [92] and is, in one way or another, the main interest
of the researchers. In this research, electrode is placed below the enzymatic
layer, at the boundary of x = a0. The current density i(t) is obtained ac-
cording to Fick’s and Faraday’s laws [4], and is proportional to the gradient
of product concentration p at the electrode surface (x= a0),

i1(t) = neFD
(1)
p

∂p(1)

∂x

∣∣∣∣∣∣
x=a0

, (1.15)

where F is Faraday’s constant (F = 96.485×106 CM−1m−3), ne is a number
of electrons involved in the electrochemical reaction.

Mathematical model approaches the steady-state as t→∞,

is = lim
t→∞

i(t). (1.16)

Analytical solution for the mathematical model with a non-linear re-
action term (marked as v in (1.3)) exists when this term can be linearised.
In case of Michaelis-Menten kinetics (described by the governing equations
(1.14)), the linearisation is possible in two cases:

1. s0�KM , then v ≈ VMs/KM .

2. s0�KM , then v ≈ VM .

Analytical solutions in most cases are used only for the validation
purposes, as they solve the model only for the very limited set of parameter
values. Analytical expressions of concentrations for one-layered and two-
layered models for some cases with linear reaction term also exist [12, 28].
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1.2.2. Dimensionless mathematical models

Dimensionless parameters and dimensionless mathematical modelling
describing various real-life systems are used quite often [101–103].

The non-dimensioning approach in the area of enzyme kinetics was ap-
plied as early as 1967 [104]. The same approach was used in 1989 to study
quasi-steady-state assumption (QSSA) in biochemistry [55]. By deriving
the dimensionless model the main governing parameters impacting the be-
haviour of the biosensor can be determined [33]. The dimensionless model
approach is applied not only to model biosensor action [89, 105, 106], but
to model other biochemical [107–111] and non-biochemical [69] processes as
well.

When non-dimensioning the mathematical model of the biosensor, the
parameters of spatial and time coordinates, as well as diffusion coefficients
are nondimensionalized in the following manner:

X = x

d1
, T = t

D(1)
s

d2
1
, Φ(l)

C = D(l)
c

D
(1)
g

, (1.17)

where X and T are dimensionless space and time parameters, Φ(l)
C is di-

mensionless diffusion coefficient of compound C in layer l and D(1)
g is freely

chosen diffusion coefficient of compound g in layer l = 1.

However, no universal solution exists describing how to obtain the
remaining dimensionless parameters (concentrations of the compounds and
reaction-related parameters). By extracting the corresponding dimensional
parameters from (1.17) and by inserting them to the governing equations
(e.g. 1.14) one will obtain the equations needed for further derivation of the
dimensionless parameters.

In case of Michaelis-Menten kinetics, the remaining concentrations are
normalized by KM , and equations (1.14) take the following dimensionless
form:

∂S(1)

∂t
= ∂2S(1)

∂X2 −σ
2 S(1)

1 +S(1) ,
∂P (1)

∂t
= Φ(1)

P

∂2P (1)

∂X2 +σ2 S(1)

1 +S(1) , (1.18)

where σ2 = VMd
2
1/D

(1)
s KM is also a dimensionless parameter, known as the

diffusion modulus (see Section 1.2.3).
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1.2.3. Parameters used for the investigation

The sensitivity is a characteristic indicating how properly the biosensor
responds to the concentration changes of the substance to be analysed [1,
11]. The sensitivity is defined as the gradient of the steady-state current is
(1.16) with respect to the concentration (s0) of the substrate to be deter-
mined [2, 33],

bs = dis(s0)
ds0

. (1.19)

Since substrate concentration and steady-state response usually varies
in few orders of magnitude, the dimensionless sensitivity sometimes is pre-
ferred [106, 112, 113],

Bs = s0

is(s0)×
dis(s0)
ds0

. (1.20)

In case of a sensitive biosensor, a relatively small increase in the sub-
strate concentration leads to a relatively large alteration in the biosensors
response.

When analysing two-layered mathematical model, the thicknesses of
the enzymatic and diffusion layers highly affect the biosensor behaviour in
a complex manner [112, 114]. The Biot number includes the thicknesses of
both layers and is widely used to investigate the behaviour of the biosensor
action [28, 60, 93, 115–117],

Bi= d1

D
(1)
s

×D
(2)
s

d2
, (1.21)

where D(1)
s and D(2)

s are the diffusion coefficients of substrate in enzymatic
and diffusion layers. As one can see the Biot number Bi expresses the ratio
of the internal mass transfer resistance to the external one. The thickness
d2 of the diffusion layer, which is treated as the Nernst layer, is practically
independent upon the enzyme membrane thickness d1 [34].

The steady-state current might be normalized in the following manner,
because of high sensitivity of the maximal biosensor current to the thickness
of the enzyme layer:

IN = is(Bi)
is(∞) , (1.22)

where Bi is the Biot number described in (1.21), is(Bi) is the steady-state
current, calculated at given Bi and is(∞) is the steady-state current, calcu-
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lated when the Bi→∞ (when analysing the thicknesses it usually means
slightly increasing d1 and decreasing d2 as much as possible [115, 118]).

Dialysis membrane and external diffusion layer can be merged using ef-
fective diffusion coefficient as described in Section 1.1.2.3. The relative error
of the two-layered mathematical model response is expressed as follows:

η = |is3− is2|
is3

, (1.23)

where is3 is the steady-state current of the tree-layered model (considered
as the accurate one), and is2 is the steady-state current of the two-layered
model.

Figure 1.2. The graphical illustration of C50 concentration.

The half maximal effective concentration C50 of the substrate to be
determined is also important characteristic of the biosensor [119]. A
greater value of C50 corresponds to a longer linear part of the calibra-
tion curve (see Fig. 1.2). In some cases (especially when exhibiting the
Michaelis–Menten kinetics [99, 120]), the concentration C50 is called the
apparent Michaelis–Menten constant, denoted as Kapp

M [121, 122]. The half
maximal effective concentration is expressed as follows:

C50 =
{
s∗0 : is(s∗0) = 0.5 lim

s0→∞
is(s0)

}
, (1.24)

where is(s0) is the steady-state current (1.16) achieved at the concentration
s0 of the substrate S.

Diffusion module (sometimes referred as diffusion modulus [97] or
Damköhler number [11]) is another important characteristic. The parame-
ter is derived from dimensionless mathematical models (see section 1.2.2),
but with a significant physical meaning [87, 123, 124]. In case of Michaelis-
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Menten kinetics, the diffusion module is expressed as follows:

σ2 = VMd
2
1

D
(1)
s KM

. (1.25)

As one can see, diffusion module essentially compares the rate of
enzyme reaction (VM/KM) with the diffusion through the enzyme layer
(D(1)

s /d1).

1.3. Computational modelling of the biosensors

The computational modelling is applied in various scientific areas, in-
cluding more theoretical ones (alternating direction method for solving Pois-
son [125] and parabolic equations [126, 127]) as well as for solving applied
problems when modelling blood glucose dynamics [128], anisotropic me-
dia [129], moisture diffusion in wood [130], piezoelectric and ultrasound
actuators [131, 132], protein spot detection [133] and others.

Computational modelling is the only way to solve the problems pre-
sented by the mathematical models of the biosensors (see Section 1.2.1),
since the analytical solutions exist only at extreme set of parameter val-
ues. Most of the mathematical models overviewed in Section 1.2 are solved
numerically in one way or another.

1.3.1. Numerical approximation

In order to solve the problem presented by the mathematical model
of the biosensor, numerical approximation must be applied. Finite vol-
ume method [134] and finite element method [85, 135] are applicable in
the research area, as they are capable of solving complex geometries in an
integrated fashion, making it perspective for the two-dimensional and three-
dimensional models. However, in most cases one-dimensional in space ge-
ometry is sufficient enough to investigate the behaviour of the biosensor,
thus finite difference method can be used [43, 44, 46].

In one-dimensional biosensor with L layers, space and time variables
x and t are defined in domain Ω = {a0 ≤ x ≤ aL,0 ≤ t ≤ T}, where T is
the total simulated time. One of the most commonly used solutions is to
replace the continuous domain of Ω with a discrete uniform mesh [33, 43,
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45, 46],

Ωhτ = {(x(l)
i , tj) : x(l)

i = hli+
l−1∑
ii=1

aii; tj = jτ ; i= 1, ...,Nl, j = 1, ...,M},

(1.26)
where hl and τ are constant mesh sizes in space and time directions, M is
the total time step count τM = T and Nl is the space step count in layer l,
that hlNl = dl, l = 1,2, ...,L.

To solve the problem in the numerical manner, the functions s(l)(x,t)
and p(l)(x,t) of the continuous arguments introduced in (1.14), need to
be replaced by the functions of the discrete arguments mesh points, e.g.
s(l)(x(l)

i , tj) = s
(l)
i,j and p(l)(x(l)

i , tj) = p
(l)
i,j .

In case of finite difference method, finite differences are used to ap-
proximate the derivatives in the mathematical models. Various orders of
accuracy can be applied using finite difference approximations [136], how-
ever, first-order accuracy is considered as sufficiently accurate when mod-
elling biosensor behaviour. For the first space derivative, left-sided and
right-sided approximations are described as follows (c= s,p):

∂c(l)

∂x

∣∣∣∣∣
x=x−

i

≈
c

(l)
i,j− c

(l)
i−1,j

hl
,

∂c(l)

∂x

∣∣∣∣∣
x=x+

i

≈
c

(l)
i+1,j− c

(l)
i,j

hl
. (1.27)

Both expressions are used for the approximation of boundary and
matching conditions defined in Section 1.1.2.1. First time derivative is ap-
proximated in the same manner as in (1.27). Left-handed time derivative
is used for explicit schemes, while right-handed is used for implicit ones.

First order accuracy central finite difference of the second order space
derivative is used to approximate the diffusion term,

∂2c(l)

∂x2 ≈
c

(l)
i+1,j−2c(l)

i,j + c
(l)
i−1,j

h2
l

. (1.28)

By applying approximations (1.27) and (1.28) to the derivatives in
the mathematical model and by replacing the remaining occurrences of the
functions with continuous arguments s(l)(x,t) and p(l)(x,t) with the ones of
discrete arguments mesh points s(l)

i,j and p
(l)
i,j , mathematical model is com-

pletely discretized. The computations are started by applying the initial
conditions at time t = 0 and then by calculating inner points of the mesh
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for governing equations and boundary conditions for the boundary of the
mesh for each new time step (t= jτ, j = 1,2, ...,M).

Various finite difference methods exist, but the most commonly used in
the computational modelling of biosensors are explicit, implicit and Crank-
Nicolson. Explicit finite difference scheme is obtained by applying left-
handed approximation of the first time derivative. It is simple to implement
(therefore, it is error-free compared to the implicit methods) and has low
computational cost, because it gives value of the solution for the new time
step explicitly in terms of values at the previous time step. Method is
recommended for the problems where accuracy is not a significant factor
but the speed is [38].

The convergence of the finite difference scheme is a compulsory fea-
ture, and it has to be implemented in order for one to apply the scheme
practically [43, 45, 46]. The scheme is convergent if

lim
τ,hl→0

|c(l)(x(l)
i , tj)− c

(l)
i,j |= 0. (1.29)

The convergence of a difference scheme depends on the smoothness
of a solution of the differential problem, the choice of a mesh grid and
the stability of a difference scheme [33]. The scheme is called stable if
initial errors are not magnified by the ones arising during the course of the
calculation. The explicit scheme for the diffusion equation (1.5) is only
conditionally stable, as the time step is restrained be the space step,

τ <
h2
l

2D(l)
c

, ∀l = 1,2, ...,L, c= s,p. (1.30)

In case of implicit method the variables in the upper time step can not
be explicitly calculated from the lower time step. When reaction term is
linear, the reaction-diffusion equation approximated by implicit scheme can
be solved by solving the system of linear equations. Since the equations form
tridiagonal matrix, the system is efficiently solved by tridiagonal matrix
algorithm [43, 46]. However, in case of non-linear reaction term, the values
of the upper time step variables can only be calculated by the method of
iterations or by linearising the non-linear term. Usually, as it is also the
case for this thesis, the later option is applied.

Crank-Nicolson method is based on average in time of explicit and
implicit schemes, therefore it is second order accurate space and in time (for
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the diffusion equation it is O(h2 + τ 2)), compared to the implicit method,
which is only first order accurate in time: O(h2 + τ).

While implicit and Crank-Nicolson methods applied for the diffusion
equation are unconditionally stable, reaction terms add stability limitations.
However no analytical expression for the stability inequality for such ap-
proximations can be obtained, therefore initial time step is usually defined
experimentally. Since the biosensor reaches the steady-state when t→∞,
an increasing step size in the time direction can be applied.

1.3.2. Steady-state response detection

Time tr is used to describe the time when the response reaches the
steady-state with accuracy of ε:

tr = min
i(t)>0

{
t : t

i(t)

∣∣∣∣∣di(t)dt

∣∣∣∣∣< ε

}
, i(tr)≈ is, (1.31)

where tr is the assumed response time at the steady-state of the second
operational phase of the biosensor. The decay rate ε highly influences the
response time, when ε→ 0, tr→∞.

1.3.3. Computational improvements

Bieniasz sixteen part series (from [39] to [40]) entitled “Use of dynam-
ically adaptive grid techniques for the solution of electrochemical kinetic
equations” focuses on moving computational grid points. Various examples
are analysed, as most of the problems solved in the series are for linear re-
action terms and few with non-linear ones. However, techniques presented
in the series are strongly complicated and requires additional investigation
for each newly presented mathematical problem.

A less complicated approach was used to model the behaviour of the
biosensor with chemically modified electrode [112]. Instead of using a dis-
crete uniform mesh, the space step size away from the boundaries was in-
creased. However, the efficiency of variable time step was not analysed,
as well as the accuracy issue was not investigated. The investigation of
the variable space step calculation accuracy to model the biosensor with
chemically modified electrode is analysed in Chapter 3 of this thesis.
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Another possible improvement of computations is to use existing par-
allel methods in order of performing single calculation in parallel [137–140]
as they were successfully applied to solve heat equation [141] and biochem-
ical processes [142]. Explicit finite difference method can be easily paral-
lelized by dividing the domain of concentration points and solving them
separately, as no intersections occur. Wang’s algorithm can be effectively
used to parallelize the solving of tridiagonal equations appearing in implicit
finite difference methods [143]. Parallel computational methods were not
researched or applied in this dissertation, as the computational grids were
used to parallelize the simulations.

1.4. Tools and environments

Various tools and environments exist to solve numerical problems,
starting with Maple and MatLab [144] and finishing with a problem-specific
software tools [145]. Efficiency of the tool to be used always raises a ques-
tion, as what can be done to improve it’s performance. Parallelization is
one of the most common approaches to improve the performance of calcula-
tions, as it can be applied on a local machine for a single simulation task (as
it was described in previous section) or by using computational grids [47].

1.4.1. Tools for automated modelling of biosensors

The digital investigation processes of various biosensors and biosensor
systems can be summarized in the following steps:

1. Gathering of information on the biochemical background and struc-
ture.

2. Development of the mathematical model.

3. Development of the computational model according to the mathemat-
ical one.

4. Building a software tool, which solves the problem presented by the
mathematical model.

5. Using the developed tool to investigate the peculiarities of the biosen-
sor.
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Various approaches can be taken when trying to automate the above
mentioned processes. An automated generation of computer model code
in JAVA is described in [146]. The model is described by SBML (Systems
Biology Markup Language) document [147], which is considered standard
for representing computational models in systems biology [148]. However,
SBML language lacks depth in the description of geometric properties, as
the proposed geometry representation [149] was not implemented since the
last release (Level 3 Version 1) of SBML language in 2010 [150].

A solution for the problem of geometric representation was presented
in [151]. By using XML language various biosensor geometries can be de-
scribed in one-dimensional and two-dimensional Cartesian coordinate sys-
tem, as well as in cylindrical coordinate system [152].

A tool for automated modelling of biosensors based on substrate syn-
ergy and inhibition effects is presented in [153]. The tool is based on the
universal mathematical and corresponding computational models presented
in the mentioned thesis.

Before-mentioned approaches and tools aim to build a mathematically
described model in an automated way, e.g. automate the Steps 2-4 described
in the beginning of this Section. However, when simulating the biosensors,
building the model is only the part of the big picture. The tedious processes
take place after the model is already developed, as the investigation of the
biosensor peculiarities (marked as Step 5) is carried out by changing various
model parameter values in various ways. The single simulation process, with
one set of parameter values can take up to few days of time when simulating
two-dimensional biosensor [68]. However, there is always a possibility, that
the results obtained by the simulation must be recalculated.

One of the approaches is to visualise intermediate calculation results
and let the researcher decide, whether to continue the simulation or to
start a new one. A tool called FDVis with interactive visualization and
steering environment for the computational processes using the finite dif-
ference method is presented in [154]. Through a user-friendly interface a
researcher can submit simulation parameters and the intermediate results
are presented in the graphical output panel, leaving the researcher with the
final decision to make according to the received visual data.

However, since thousands of different computations with various sets
of the parameter values might be needed to properly investigate biosensor
behaviour, one could not relate only to the visualisations when determin-
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ing the significance of the received results. The following approaches can
be used to improve, speed-up and automate the investigation processes of
biosensor behaviour:

1. Use improved formation of the computational scheme grid mesh points
(described in the first part of Section 1.3.3).

2. Solve the equations presented by the computational schemes quicker
by using various parallel algorithms [137, 138]. One of the most com-
mon is Wang’s algorithm used to parallelize the tridiagonal matrix
algorithm [143].

3. Employ the computational grids.

4. Automate the analysis of transitional results obtained with lower or-
ders of accuracy.

In the further research presented in this thesis, approaches 1, 3 and 4
are analysed in Chapter 3 in different details and scopes.

1.4.2. Usage of the computational grids

The computational grid is a system that coordinates resources that
are not subject to centralized control using standard, open, general-purpose
protocols and interfaces to deliver non-trivial qualities of service [155]. The
computer software designed to solve problems of parametrized computer
modelling already exists [156–159].

The computational grids are used in a wide variety of scientific re-
searches – molecular physics, thermodynamics, cosmology and other areas.
Usually, analysed characteristic’s dependency on the initial parameters dur-
ing simulation process can be described as follows [160]:

y = f(p1,p2, ...,pN), (1.32)

where y stands for the above mentioned specific characteristic, N – the num-
ber of parameters, Q= p1,p2, ...,pn – the parameter queue where values p1,
p2,..., pn affects the investigated characteristic y, f denotes the simulation
process.

In many cases of the comprehensive analysis the simulations are car-
ried out with different sets of parameters called the parameter sweep - a
collection of different parameter queues [158]. The parameter sweep can be
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created by enumerating particular values of parameters or can be generated.
When generating the parameter sweep of parameter queues the following
values must be specified [161]:

• The interval of parameter values,

pA ≤ pi ≤ pB, (1.33)

where pA stands for the starting value of the concrete parameter, pB
– last value, and pi – any parameter from the parameter queue, i = 1,
2, ..., N .

• The progression type to define whether arithmetic or geometric pro-
gression is used to generate the parameter. Plain enumeration of the
parameter values or keeping them constant are other possibilities.

1.5. Research and modelling of the biosensors
utilizing intermediate substances

A comprehensive review on the modelling of amperometric biosen-
sors has been presented in [28, 33]. Numerous intermediate substances can
be used to increase biosensors sensitivity and selectivity (thus their over-
all quality) [15, 16]. In this thesis the behaviour of two biosensors utiliz-
ing intermediate substances is analysed digitally: biosensor with chemically
modified electrode and biosensor utilizing parallel substrates conversion.

1.5.1. Biosensor with chemically modified electrode

Various chemically modified electrodes (CME) have been proposed
more than three decades ago [17, 19]. Mathematical modelling has been
also successfully applied for specific sensors based on the CME [122, 162,
163]. A mathematical model of a generic amperometric biosensor based on
the CME has been proposed in 2008 [112]. The biosensor was considered
as a flat electrode with a thin layer of the low soluble mediator and covered
with an enzyme membrane. The biosensor response was numerically mod-
elled under quasi-steady-state assumption, which usually holds, as it was
proved mathematically [164].

One of the tasks in this thesis was to develop a transient mathematical
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1.5. Research and modelling of the biosensors utilizing intermediate substances

and corresponding numerical models of the biosensor based on the CME,
where no quasi-steady-state assumption is applied. By using the devel-
oped models conditions were evaluated at which the biosensor action can
be simulated under quasi-steady-state approximation (QSSA) for an accu-
rate prediction of the biosensor response.

The initial model of CME biosensor proposed in [112] consists of two
layers (enzymatic and diffusion), with a dialysis membrane not present in
that research. In this work, the missing layer of the dialysis membrane is
added to the mathematical model. By using effective diffusion coefficient,
two outer layers (dialysis membrane and diffusion layer) are merged in the
mathematical model. The task was to determine at which parameter values
three layered model (3L) can be replaced with two-layered model (2L) and
to determine the accuracy of the 2L model.

The impact of the mediator concentration on the half maximal effective
concentration is investigated, as well as the impact of the Biot number.

1.5.2. Biosensor utilizing parallel substrates conversion

Medicine industry is one of the significant areas, where biosensors are
applied, as the detection and distinction of various chemical drugs in blood is
needed. As an example, one of the analgetics, i.e. acetaminophen (N-acetyl-
paminophenol or paracetamol) is used to reduce fever and as a pain-killer
for backache, headache and arthritis [165].

An acetaminophen overdose, however, can lead to accumulation of
toxic metabolites, which may cause severe or fatal hepatotoxicity and
nephrotoxicity related to renal failure [166, 167]. The use of acetaminophen
for children is limited due to a possible increase in rhino conjunctivitis,
asthma and eczema [168]. Therefore, the control of this compound in phar-
maceutical formulations and real biological liquids is topical. Usually, a
rather unspecific electrochemical method is used for the determination of
this compound [169, 170].

Catalase and peroxidase biosensor, designed to detect acetaminophen
is analysed in this thesis. The application of these enzymes allows to con-
struct the biosensor realizing parallel substrate conversion and this dual
biocatalytical system has some interesting possibilities. At first, the prod-
uct of catalase reaction (i.e. dioxygen) can be detected with an exception-
ally selective Clark-type electrode [48]. Second, redox active drugs, e.g.
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psychotropic drugs, analgesics and others are substrates of peroxidase and
there still exists interest for selective determination of these compounds.

Acetaminophen was used as a model compound for measurements of
biosensor parameters [A7]. A mathematical model of the newly created
physical biosensor with dual catalase-peroxidase bioelectrode was created.
This mathematical model was used to prove a concept of biosensor analytical
application of such configuration. Experimental results of the biosensor
response were compared with calculated results and presented in this thesis.

A specific dual biosensor with parallel substrates conversion was ex-
tensively summarized in the collaborated paper [A5]. In order to define the
main governing parameters of the model, the corresponding dimensionless
mathematical model was derived in this work (see Section 2.2.3).

1.6. Summary

Numerous biosensors and biosensor systems are used today to detect
and analyse the concentrations of diverse compounds. Biosensors are clas-
sified according to bioreceptor and transducer elements. Enzymatic amper-
ometric biosensors, analysed in this thesis, are amongst the most reliable
ones, and are attractive because of their miniature size and structural sim-
plicity. Low sensitivity as well as short linear parts of the calibration curves
are the most serious drawbacks of this type biosensors and is the target of
the research for two concrete models presented in this thesis.

The main processes taking place in enzymatic biosensors are the dif-
fusion of the compounds and the kinetic reactions, described by reaction-
diffusion equations. A multi layered approach to construct a mathematical
model of biosensor is usually applied, with enzymatic reactions taking place
only in the enzymatic layer, and diffusion processes present in most of the
layers.

In most cases exact analytical solutions exist only for a specific set of
parameter values and numerical simulation is the only way to investigate
biosensor behaviour. Computational analysis of the biosensors is attractive
and cost-saving solution to replace actual physical experiments. However,
one of the most serious drawbacks of computational modelling is time con-
sumption, as the digital simulations can take up to weeks and months to
complete.
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1.6. Summary

Distinct methods are proposed in the literature to automate and im-
prove the creation of the biosensor modelling software and is not analysed in
this thesis. Improvements to the mathematical models and computational
schemes, as well as automated simulation management was employed to
investigate the peculiarities of the analysed biosensors.

A mathematical model of the biosensor with chemically modified elec-
trode acting under quasi-steady-state assumption was investigated in related
literature. A generalized transient mathematical model is developed in this
thesis and compared to the one found in the literature.

Various biosensors were created for the detection of psychotropic drugs,
including acetaminophen (paracetamol). However, most of the existing
biosensors are limited due the electrode restrictions, thus a biosensor with
fundamental Clark type electrode is perspective. A mathematical model
based on the application of catalase-peroxidase system utilizing parallel sub-
strates conversion is presented in this thesis.
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Mathematical models of biosen-
sors utilizing intermediate sub-
stances

As it was described in Section 1.2, mathematical modelling can be
efficiently used to improve the process of new biosensors creation, as well
as the improvement of the existing ones. Two mathematical models of the
biosensors utilizing intermediate substances are presented in this chapter:

1. Biosensor with chemically modified electrode [A1].

2. Biosensor utilizing parallel substrates conversion [A5].

2.1. Biosensor with chemically modified elec-
trode

Two mathematical models of the biosensor with chemically modified
electrode are presented in this section [A1]. The quasi-steady-state assump-
tion can be applied to simplify the mathematical model by reducing the
number of governing equations. However, quasi-steady-state assumption
must be used with precaution. A transient mathematical model originally
presented here is analysed without a quasi-steady-state assumption (2.1.2)
which is used in [112]. Both mathematical models are later compared (see
Section 4.1.2.3) to investigate the accuracy of the quasi-steady-state ap-
proximation.
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2.1. Biosensor with chemically modified electrode

2.1.1. Biochemical background and structure

A scheme of an enzyme catalyzed substrate (S) conversion in a presence
of a mediator (M) was considered,

Eox + S
k1

GGGGGBFGGGGG

k−1
ES

k2
GGGAEred + P1, (2.1)

Ered + M
k3

GGGGGGAEox + P, (2.2)

where Eox, Ered and ES stand for the oxidized enzyme, the reduced enzyme
and the enzyme substrate, respectively, P and P1 are the reaction prod-
ucts [112, 162]. The biosensor is considered as a flat electrode with a thin
layer of the low soluble mediator and covered with an enzyme membrane,
which is attached to electrode by using dialysis membrane (see Fig. 2.1).

Figure 2.1. The structural scheme of the biosensor with the CME.

The model involves four regions in one dimensional space (Fig. 2.1):

1. The enzyme layer (a0 < x < a1) where the biochemical reactions (2.1)
and (2.2) as well as the mass transport by diffusion takes place.

2. A dialysis membrane (a1 < x < a2) used to prevent the enzyme from
being washed out.

3. A diffusion limiting region (a2 <x< a3) where only the mass transport
by diffusion takes place.

4. A convective region (x>a3) where the substrate concentration is main-
tained constant.
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2.1.2. A transient mathematical model

2.1.2.1. Governing equations

Assuming a symmetrical geometry of the electrode and a homogeneous
partition of the immobilized enzyme in the enzyme layer, the mathematical
model of the biosensor action can be defined in a one-dimensional-in-space
domain [28, 112]. Enzyme catalysed reactions (2.1) and (2.2) coupled with
the one-dimensional-in-space diffusion, described by Fick’s law, lead to the
following equations of the reaction–diffusion type (t > 0, a0 < x < a1):

∂s(1)

∂t
=D(1)

s

∂2s(1)

∂x2 +k−1es−k1eoxs
(1), (2.3a)

∂m(1)

∂t
=D(1)

m

∂2m(1)

∂x2 −k3eredm
(1), (2.3b)

∂p(1)

∂t
=D(1)

p

∂2p1

∂x2 +k3eredm
(1), (2.3c)

∂eox
∂t

= k3eredm
(1) +k−1es−k1eoxs

(1), (2.3d)
∂ered
∂t

= k2es−k3eredm
(1), (2.3e)

∂es
∂t

= k1eoxs
(1)−k−1es−k2es, (2.3f)

where x and t stand for space and time, respectively, s(1)(x,t), m(1)(x,t),
p(1)(x,t), ered(x,t), eox(x,t) and es(x,t), are the molar concentrations of the
substrate S, the mediator M, the product P, the oxidized enzyme Eox, the
reduced enzyme Ered and the enzyme substrate ES, respectively, d1 is the
thickness of the enzyme layer (d1 = a1− a0), and D(1)

s , D(1)
m , D(1)

p are the
diffusion coefficients of corresponding substances in the enzyme (l= 1) layer.
The enzyme and the formed ES complex are immobilized, and therefore
there are no diffusion terms in the corresponding equations. The reaction
product P1 has no influence to the biosensor response and therefore is not
described in the mathematical model.

Outside the enzyme layer only the mass transport by diffusion of the
substrate, the mediator and the product takes place (enzyme does not dif-
fuse through dialysis membrane). It was assumed that the external mass
transport obeys a finite diffusion regime (t > 0,al < x < al+1, l = 2,3),

∂c(l)

∂t
=D(l)

c

∂2c(l)

∂x2 , c= s,m,p, l = 2,3, (2.4)
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2.1. Biosensor with chemically modified electrode

where s(l)(x,t),m(l)(x,t) and p(l)(x,t) stand for the molar concentrations of
the substrate, the mediator and the product in the dialysis and diffusion
layers (l= 2,3), al is the according boundary of the layer (Fig. 2.1), D(l)

s ,D
(l)
m

and D(l)
p are the diffusion coefficients of substrate, product and mediator in

layer l.

The diffusion layer (a2 < x < a3) is treated as the Nernst diffusion
layer [34]. According to the Nernst approach the thickness d3 = a3− a2

remains unchanged with time. Away from it the buffer solution is in motion
and uniform in concentration.

2.1.2.2. Initial conditions

The biosensor operation starts when some substrate appears in the
bulk solution (t= 0),

c(l)(x,0) = 0, c= s,m,p, al−1 < x < al, l = 1,2,3, (2.5a)
s(1)(a0,0) = 0, s(3)(a3,0) = s0, (2.5b)
m(1)(a0,0) =m0, m(3)(a3,0) = 0, (2.5c)
p(1)(a0,0) = 0, p(3)(a3,0) = 0, (2.5d)

where m0 is the concentration of the mediator at the boundary between the
electrode and the enzyme layers, s0 is the concentration of the substrate in
the bulk solution.

Only oxidized enzyme is present and only in the enzymatic membrane
(l = 1),

eox(x,0) = e0, ered(x,0) = 0, es(x,0) = 0, a0 < x < a1, (2.6)

where e0 is the concentration of the enzyme in the enzyme membrane.

2.1.2.3. Boundary conditions

During the biosensor operation the concentrations of the substrate,
mediator and product in the bulk solution remain constant. The concentra-
tion p(1) of the reaction product at the electrode surface (x = a0) is being
permanently reduced to zero due to the electrode polarization. Following
the scheme (2.1), (2.2), the substrate is an electro-inactive substance. The
constant concentration m0 of the mediator covering the electrode surface
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is achieved by permanent dissolution of the adsorbed mediator. This is
described by the following boundary conditions (t > 0):

D(1)
s

∂s(1)

∂x

∣∣∣∣∣∣
x=a0

= 0, s(3)(a3, t) = s0, (2.7a)

m(1)(a0, t) =m0, m(3)(a3, t) = 0, (2.7b)
p(1)(a0, t) = 0, p(3)(a3, t) = 0. (2.7c)

2.1.2.4. Matching conditions

On the boundary between two adjacent regions having different diffu-
sivities, the matching conditions are defined (t > 0),

D(l)
c

∂c(l)

∂x

∣∣∣∣∣∣
x=al

= D(l+1)
c

∂c(l+1)

∂x

∣∣∣∣∣∣
x=al

, c= s,m,p, l = 1,2, (2.8a)

c(l)(al, t) = c(l+1)(al, t), c= s,m,p, l = 1,2. (2.8b)

These conditions mean that fluxes of the substrate, mediator and prod-
uct through the analysed layer l are considered to be equal to the corre-
sponding fluxes entering the surface of the layer l+ 1 (as it was described
in Section 1.1.2.1). The partition coefficients (described in Section 1.1.2.2)
of the substrate, mediator and product in all the compartments are consid-
ered to be equal (K(1),(2)

c =K(2),(3)
c = 1 for c= s,m,p) and therefore are not

introduced in the mathematical model.

2.1.2.5. Biosensor response

The electric current is measured as a response of a biosensor in a
physical experiment. The current depends on a flux of the reaction product
at an electrode surface. Thus the density i(t) of the current at time t is
proportional to the gradient of the product at the electrode surface (x= a0),
as described in (1.15).

It is assumed that the system (2.3a)-(2.8b) approaches a steady-state
as t→∞ (1.16)
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2.1. Biosensor with chemically modified electrode

2.1.3. Mathematical model with quasi-steady-state as-
sumption

Reactions in the network (2.1) and (2.2) are of the different rates [2,
162, 171]. The large difference of the timescales in the reaction network cre-
ates difficulties for simulating the temporal evolution of the network and for
understanding the basic principles of the biosensor operation. To sidestep
these problems, the QSSA is often applied [55, 164],

∂eox
∂t
≈ ∂ered

∂t
≈ ∂es

∂t
≈ 0. (2.9)

Applying the QSSA leads to a reduction of the system (2.3a)-(2.3f),
presented in [112]:

∂s(1)

∂t
=D(1)

s

∂2s(1)

∂x2 −v(s(1),m(1)), (2.10a)

∂m(1)

∂t
=D(1)

m

∂2s(1)

∂x2 −v(s(1),m(1)), (2.10b)

∂p(1)

∂t
=D(1)

p

∂2s(1)

∂x2 +v(s(1),m(1)), (2.10c)

v(s(1),m(1)) = e0k1k2k3s
(1)m(1)

k1k3s(1)m(1) +k1k3s(1) +k3(k−1 +k2)m(1) . (2.11)

The total sum e0 of the concentrations of all the enzyme forms is
assumed to be constant in the entire enzyme layer, e0 = eox + ered + es.
In the simplest case of the biosensor operation (when only the enzyme-
substrate reaction (2.3a) takes place) the sufficient condition for the QSSA
to be valid is e0� s0 +(k−1 +k2)/k1 [55, 164]. The conditions at which the
CME operation can be simulated under QSSA for accurate calculation of the
biosensor response are investigated numerically in Section 4.1.2.3. Assuming
the transient mathematical model as a precise (true) mathematical model
of the CME action, QSSA of the model can be validated. The relative error
EQSSA of the biosensor response arose due to the QSSA is defined as:

EQSSA =
∣∣∣∣∣
∫ ∞

0
ifull(t)dt−

∫ ∞
0
iQSSA(t)dt

∣∣∣∣∣
/∫ ∞

0
ifull(t)dt, (2.12)

where ifull is the density of the biosensor current calculated by the transient
mathematical model of the CME, and iQSSA is the density of the biosensor
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current calculated by the corresponding model derived from the transient
model by applying QSSA. The error EQSSA can also be called the relative
error of QSSA.

2.1.4. Parameters used for investigation

Since the reaction term depends on the concentrations s0 and m0 of
the substrate S and the mediator M, the following dimensionless relation
between these concentrations and their respective reaction rate constants
can be used [112]:

Σ = s0

m0

kred
kox

. (2.13)

Two diffusion modules (see Section 1.2.3) for the biosensor with chem-
ically modified electrode were obtained by deriving the dimensionless math-
ematical model in [112]. The first diffusion module is expressed as follows:

σ2
1 = e0d

2
1k1k2

D
(1)
s (k−1 +k2))

, (2.14)

defining the ratio between enzymatic reaction (e0k1k2/(k−1 +k2)) with the
diffusion rate (d2

1/D
(1)
s ).

Similarly, the second diffusion module is defined,

σ2
2 = e0k3d

2
e/D

(1)
s . (2.15)

2.2. Biosensor with parallel substrates conver-
sion

A mathematical model of the newly created physical biosensor with
dual catalase-peroxidase bioelectrode is presented in this section [A5]. Cre-
ated mathematical model was used to prove a concept of bioelectrode an-
alytical application of such configuration. The application of catalase and
peroxidase allows to construct a biosensor realizing parallel substrates con-
version and apply it in pharmaceutical environment. A rather unspecific
electrochemical method is usually used [169, 170] for the determination ac-
etaminophen, therefore a specifically designed biosensor is relevant.
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2.2. Biosensor with parallel substrates conversion

2.2.1. Biochemical background

The biosensor containing catalase (E1) and peroxidase (E2) converts
hydrogen peroxide (H2O2). The catalase catalyses hydrogen peroxide split-
ting with oxygen (O2) production in the following process:

2H2O2→ 2H2O+O2. (2.16)

The peroxidase catalyses a variety of substrates (S2) oxidation in the
following peroxidase-catalysed process:

2H2O2 + 2S2 + 2H+→ 2H2O+P2. (2.17)

Further S1 denotes H2O2, and P1 - O2. The remarkable feature of this
conjugated system is molecular oxygen production, which can be selectively
determined by Clark type electrode [172, 173].

Catalase (E1) and peroxidase (E2) catalyses S2 conversion in a more
complex scheme and typically includes intermediates [174]. In case of hydro-
gen peroxide (S1) catalisation process (2.16), intermediate C1 is introduced:

E1 + S1
k11

GGGGGGAC1 + H2O, (2.18a)

C1 + S1
k12

GGGGGGAE1 + P1. (2.18b)

The change of E1 and C1 in time t can be described as follows:

dE1

dt
=−k11E1S1 +k12C1S1, (2.19a)

dC1

dt
= k11E1S1−k12C1S1. (2.19b)

By adding (2.19a) with (2.19b):

dC1

dt
+ dE1

dt
= 0, e.g. E1 +C1 = E10. (2.20)

where E10 is the initial concentration of the first enzyme.

By inserting the expression of E1 from (2.20) into (2.19b) and equalling
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it to zero (by applying quasi-steady-state approximation [2, 3, 175]), C1 can
be expressed as follows:

C1 = k11E10

k11 +k12
= E10

2 , (2.21)

when k11 = k12 = k1.

The change of hydrogen peroxide (S1) and oxygen (P1) concentrations
can be written as follows:

dS1

dt
=−k11E1S1−k12C1S1 =−k1(E1 +C1)S1 =−k1E10S1, (2.22a)

dP1

dt
= k12C1S1 = k12

E10

2 S1 = 0.5k1E10S1. (2.22b)

In case of acetaminophen (S2) catalisation process (2.17), intermediate
C2 is introduced:

E2 + S1
k21

GGGGGGAC2, (2.23a)

C2 + S2
k22

GGGGGGAE2 + P2. (2.23b)

The change of E2 and C2 in time t can be described as follows:

dE2

dt
=−k21E2S1 +k22C2S2, (2.24a)

dC2

dt
= k21E2S2−k22C2S2. (2.24b)

By applying the same approach as when deriving the reactions for
the first enzyme (2.20), (2.24a) is summed up with (2.24b), to obtain the
following:

dC2

dt
+ dE2

dt
= 0, e.g. E2 +C2 = E20. (2.25)

where E20 is the initial concentration of the second enzyme.

By inserting the expression of E2 from (2.25) into (2.24b) and equalling
it to zero (again, by applying the quasi-steady-state approximation), C2 can
be expressed:

C2 = k21E20S1

k21S1 +k22S2
. (2.26)
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The change of acetaminophen (S1) and the second reaction product
(P2) concentrations in time t can be written as follows:

dS2

dt
=−k22C2S2 =−k21k22E20S1S2

k21S1 +k22S2
, (2.27a)

dP2

dt
= k22C2S2 = k21k22E20S1S2

k21S1 +k22S2
. (2.27b)

A following simplified kinetic scheme, utilizing two substrates (S1 and
S2), two enzymes (E1 and E2) and two reaction products (P1 and P2) can
be used for definition of the biosensor behaviour:

S1
E1

GGGGGGAP1, S1 + S2
E2

GGGGGGAP2. (2.28)

A wide variety of electrodes are used in practice for the determination
of the product concentrations [95]. The molecular oxygen (P1) can be ef-
fectively detected by applying an oxygen-sensitive electrode. A Clark-type
electrode (CE) measures oxygen on a catalytic platinum surface, while the
oxygen itself is not consumed to generate current [172].

In the first phase of the biosensors action, only hydrogen peroxide (S1)
is present in the solution. At the end of the first phase when the biosensor
response reaches steady-state, the second substrate (S2) is poured into the
solution, and the second phase of the biosensor action starts. The relative
change between the responses in the both phases is measured as the final
response of the biosensor. This relative response indicates the concentration
of the second substrate. The first phase is only used for the determination of
the first substrate concentration and is not decisive when the concentration
is known before the experiment.

2.2.2. Mathematical model with partition coefficient

Mathematical model of the biosensor utilizing parallel substrates con-
version was analysed in one dimensional space, having the same three layers
as CME model (see Fig. 2.1): the layer of both enzymes (a0 < x < a1), the
dialysis membrane (a1 < x < a2), and the diffusion layer (a2 < x < a3).
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2.2.2.1. Governing equations

Coupling the catalase (2.22) and peroxidase (2.27) catalysed reac-
tions in the enzymatic layer with the one-dimensional-in-space diffusion,
described by Fick’s law, leads to the following reaction–diffusion equations
describing the biosensor operation in the enzymatic layer (a0 <x<a1, t > 0):

∂s
(1)
1
∂t

=D(1)
s1

∂2s
(1)
1

∂x2 − r1− r2,
∂s

(1)
2
∂t

=D(1)
s2

∂2s
(1)
2

∂x2 − r2, (2.29a)

∂p
(1)
1
∂t

=D(1)
p1

∂2p
(1)
1

∂x2 + 1
2r1,

∂p
(1)
2
∂t

=D(1)
p2

∂2p
(1)
2

∂x2 + r2, (2.29b)

r1 = k1e1s
(1)
1 , r2 = k21k22e2s

(1)
1 s

(1)
2

k21s
(1)
1 +k22s

(1)
2
, (2.29c)

where x and t stand for space and time, respectively, s(1)
1 (x,t), s(1)

2 (x,t),
p

(1)
1 (x,t) and p

(1)
2 (x,t) are the molar concentrations of the substrates S1,

S2 and the products P1, P2 in the enzyme layer of the thickness d1 = a1−
a0, respectively, and D(1)

s1 , D(1)
s2 , D(1)

p1 and D(1)
p2 are the constant diffusion

coefficients.

Outside the enzyme layer, in the dialysis membrane (a1 <x<a2, t > 0)
and in the diffusion layer (a2 < x< a3, t > 0) only the mass transport of all
the species by the diffusion takes place,

∂c(l)

∂t
=D(l)

c

∂2c(l)

∂x2 , c= s1, s2,p1,p2, l = 2,3, (2.30)

where c(l)(x,t) are the molar concentrations of both substrates and both
products in the dialysis (l = 2) and diffusion (l = 3) layers, with the thick-
nesses dl = al−al−1, and diffusion coefficients D(l)

c .

2.2.2.2. Initial conditions

At the beginning of the biosensor operation (t= 0) only the first sub-
strate is present in the solution. No concentrations of other substances are
present in the enzymatic (l = 1), dialysis (l = 2) and diffusion (l = 3) layers:
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2.2. Biosensor with parallel substrates conversion

c(l)(x,0) = 0, c= s1, s2,p1,p2, al−1 < x < al l = 1,2,3, (2.31a)

s
(1)
1 (a0,0) = 0, s

(3)
1 (a3,0) = s10, (2.31b)

s
(1)
2 (a0,0) = 0, s

(3)
2 (a3,0) = 0, (2.31c)

p(1)
z (a0,0) = 0, p(3)

z (a3,0) = 0, z = 1,2, (2.31d)
(2.31e)

where s10 is the concentration of the first substrate in the bulk.

2.2.2.3. Boundary conditions

Boundary conditions on the boundaries between the electrode and the
enzymatic layer (x = a0), between the diffusion layer and bulk solution
(x = a3) have to be defined. At the beginning (t = 0) of the biosensor
operation some of the first substrate appears in the bulk.

In case of the Clark electrode (CE) the molecular oxygen is not con-
sumed at the electrode surface, therefore the boundary condition for the
first product is (t > 0):

D(1)
p1

∂p
(1)
1
∂x

∣∣∣∣∣∣
x=a0

= 0. (2.32)

The substrates and the second product are also considered to be electri-
cally inactive materials. This is defined by the following boundary condition
(t > 0) at the electrode surface (x= a0):

D(1)
c

∂c(1)

∂x

∣∣∣∣∣∣
x=a0

= 0, c= s1, s2,p2. (2.33)

In the bulk the concentrations of both substrates are considered to be
constant, while the concentrations of the reaction products are constantly
reduced to zero,

s
(3)
1 (a3, t) = s10, (2.34a)

s
(3)
2 (a3, t) =

 0, if t < t2
s20, if t≥ t2

, (2.34b)

p(3)
z (a3, t) = 0, z = 1,2, (2.34c)
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Chapter 2. Mathematical models of the biosensors

where s20 is the concentration of the second substrate in the buffer solution,
and t2 is the time moment when the second substrate S2 appears in the
solution.

2.2.2.4. Matching conditions

Matching conditions are defined for the boundaries between the en-
zymatic layer and the dialysis membrane (x = a1), between the dialysis
membrane and the diffusion layer (x= a2).

The fluxes of the substrates and the products entering the enzymatic
layer are considered to be equal to the outgoing ones. This is defined by
the following matching conditions (t > 0):

D(l)
c

∂c(l)

∂x

∣∣∣∣∣∣
x=al

= K(l),(l+1)
c D(l+1)

c

∂c(l+1)

∂x

∣∣∣∣∣∣
x=al

, (2.35a)

c(l)(al, t) =K(l),(l+1)
c c(l+1)(al, t), c= s1, s2,p1,p2, l = 1,2. (2.35b)

where K(l),(l+1)
c is the partition coefficient (described in section 1.1.2.2)

between the neighbouring layers (l and l+ 1) of corresponding substances
(c = s1, s2,p1,p2). When K(l),(l+1)

c > 1, the solubility of the compound c in
layer l is larger than in layer l+1. For the opposite case (when K(l),(l+1)

c < 1)
the solubility of substance c is larger in layer l+1. When no partitioning of
the compounds between two neighbouring layers takes place it is considered
that K(l),(l+1)

c = 1.

2.2.2.5. Biosensor response

In case of the Clark electrode the current density is measured as the
biosensor response, which is directly proportional to the product concentra-
tion at the electrode surface, and can be obtained according to Faraday’s
law [2],

iCE(t) = ksFp
(1)
1

∣∣∣∣
x=a0

, (2.36)

where F is Faraday’s constant (F = 96.485×106 CM−1m−3), ne is a number
of electrons involved in the electrochemical reaction, and ks is the hetero-
genic constant calculated experimentally. In all of the simulations ne = 2
was used.
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2.2. Biosensor with parallel substrates conversion

2.2.3. Dimensionless mathematical model

In order to define the main governing parameters of the model, the
dimensionless mathematical model was derived in this work following the
similar approach presented in section 1.2.2. The list of the dimensionless
parameters is presented in Table 2.1.

Table 2.1. Dimensionless model parameters.

Parameter Dimensional Dimensionless
Distance from electrode x, m X = x/d1
Boundary coordinate l = 0, 1, 2, 3 al, m Al = al/d1
Thickness of the layer l = 1, 2, 3 dl, m δl = dl/d1
Time t, s T = t(D(1)

s1 /d
2
1)

Time when s20 appears t2, s T2 = t2(D(1)
s1 /d

2
1)

Substrate concentrations s1, M S1 = s1/s10
s10, M S10 = s10/s10 = 1
s2, M S2 = s2(k22/k21)/s10
s20, M S20 = s2(k22/k21)/s10

Product concentrations p1, M P1 = p1/s10
p2, M P2 = p2(k22/k21)/s10

Diffusion coefficients of c = s1, s2,
p1, p2, in layers l = 1, 2, 3

D(l)
c , m/s2 Φ(l)

C =D(l)
c /D

(1)
s1

As one can see from Table 2.1, the dimensionless thickness of the en-
zyme membrane equals one (δ1 = 1) and the partition coefficients are not
included as they are already dimensionless parameters.

The governing equations (2.29) for the enzymatic (l = 1) layer in di-
mensionless coordinates are expressed as follows (A0 <X <A1,T > 0):

∂S
(1)
1

∂T
= Φ(1)

S1

∂2S
(1)
1

∂X2 −R1−R2,
∂S

(2)
2

∂T
= Φ(1)

S2

∂2S
(1)
2

∂X2 −R2, (2.37a)

∂P
(1)
1

∂T
= Φ(1)

P1

∂2P
(1)
1

∂X2 + 1
2R1,

∂P
(1)
2

∂T
= Φ(1)

P2

∂2P
(1)
2

∂X2 +R2, (2.37b)

R1 = σ2
1S

(1)
1 , R2 = σ2

2
S

(1)
1 S

(1)
2

S
(1)
1 +S

(1)
2
, (2.37c)

where σ2
1 = k1e1d

2
1/D

(1)
s1 , σ2

2 = k21e2d
2
1/D

(1)
s1 are the dimensionless factors

known as the diffusion modulus (or Damkö̈hler number) as defined in (1.25).

The governing equation (2.30) describing the action in diffusive-only
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layers (l = 2, 3) take the following form :

∂C(l)

∂T
= Φ(l)

C

∂2C(l)

∂X2 , C = S1,S2,P1,P2, l = 2,3. (2.38)

The initial conditions (2.31) take the following form (T = 0):

C(l)(X,0) = 0, C = S1,S2,P1,P2, Al−1 <X <Al, l = 1,2,3, (2.39a)

S
(1)
1 (A0,0) = 0, S

(3)
1 (A3,0) = S10, (2.39b)

S
(1)
2 (A0,0) = 0, S

(3)
2 (A3,0) = 0, (2.39c)

P
(1)
Z (A0,0) = 0, P

(3)
Z (A3,0) = 0, Z = 1,2. (2.39d)

Boundary conditions (2.32)-(2.34) are rewritten as follows (T > 0):

Φ(1)
P1

∂P
(1)
1

∂X

∣∣∣∣∣∣
X=A0

= 0. (2.40a)

Φ(1)
C

∂C(1)

∂X

∣∣∣∣∣∣
X=A0

= 0, C = S1,S2,P2. (2.40b)

S
(3)
1 (A3,T ) = S10, (2.40c)

S
(3)
2 (A3,T ) =

 0, if T < T2

S20, if T ≥ T2
, (2.40d)

P
(3)
Z (A3,T ) = 0, Z = 1,2. (2.40e)

Finally, matching conditions (2.35) are expressed by the following
equations (T > 0):

Φ(l)
C

∂C(l)

∂X

∣∣∣∣∣∣
X=Al

= K
(l),(l+1)
C Φ(l+1)

C

∂C(l+1)

∂X

∣∣∣∣∣∣
X=Al+1

, (2.41a)

C(l)(Al,T ) =K
(l),(l+1)
C C(l+1)(Al,T ), C = S1,S2,P1,P2, l = 1,2.

(2.41b)

2.2.4. Parameters used for investigation

The mathematical model of the biosensor with parallel substrates con-
version and Clark-Type electrode involves (2.29), (2.30), (2.31), (2.32)-
(2.34), (2.36) equations and it approaches the steady-state as t→∞ (as
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2.2. Biosensor with parallel substrates conversion

defined in (1.16)).

A difference id is measured in order to evaluate the concentration s20

of the second substrate S2:

id = is10− is20, (2.42)

where is10 is the steady-state response at zero concentration of the second
substrate, is20 is the steady-state response with a presence of the second
substrate in the solution. The difference of the steady-state responses with
the current is10 was normalized as follows:

Ir = id
is10

= is10− is20

is10

, (2.43)

where Ir is the relative steady-state biosensor current or the relative re-
sponse.

As it was mentioned in (Section 1.2.3), the sensitivity (1.19) is one
of the most important characteristics of biosensor. In case of the catalase-
peroxidase biosensor, the dimensionless sensitivity (1.20) was analysed,

Brs = did(s20)
ds20

× s20

id(s20) = dIr(s20)
ds20

× s20

ir(s20) . (2.44)

The half-time of the steady-state can be used to investigate the be-
haviour of the response time [176–180]. The half-time of the second opera-
tional phase steady-state is described as follows:

th = min
t>t2

{
t : i(t)< i(t2)− i(t2)− i(tR)

2

}
− t2, (2.45)

where th is the time difference between the time when the reaction-diffusion
process reaches the medium in the second operational phase and the time
when the second substrate is poured into the bulk (t2). It is the time
moment of occurrence of the half of the steady-state current in the second
phase of the biosensor action. The half-time of the response was investigated
extensively in [A8].

The influence of both enzymes on the relative response was investi-
gated. The following dimensionless reaction rate ξ1 between the concen-
trations of the catalase and peroxidase and their kinetic reaction rates was
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Chapter 2. Mathematical models of the biosensors

introduced:
ξ1 = k1e1

k21e2
. (2.46)

In some cases, only the ration between the enzyme concentrations can
be used, excluding the kinetic reaction rates, as they usually remain constant
during the calculations:

ξ2 = e1

e2
. (2.47)

In case of the biosensors with parallel substrates conversion, diffusion
module (1.25) is defined according to the dimensionless mathematical model
(see Section 2.2.3) as follows:

σ2
1 = k1e1d

2
1

D
(1)
s1

, σ2
2 = k21e2d

2
1

D
(1)
s1

. (2.48)

The diffusion modules σ1 and σ2 compare the rates of the enzymatic
reactions k1e1 and k21e2, respectively, with the diffusion rate D(1)

s1 /d
2
1.

The half-maximal effective concentration (1.24) was defined as the
concentration s20 of the second substrate S2 at which the response of the
biosensor reaches half of the maximal steady-state response keeping the
concentration s10 of S1 constant,

C50 =
{
s∗20 : is20(s∗20) = 0.5 lim

s20→∞
is20(s20)

}
=

=
{
s∗20 : Ir(s∗20) = 0.5 lim

s20→∞
Ir(s20)

}
,

(2.49)

where Ir(s20) is the relative current (2.43) at the steady-state achieved with
the concentration s20 of the second substrate S2.

2.3. Summary

Two mathematical models (transient and based on the quasi-steady-
state assumption) were presented for the biosensor with chemically modified
electrode. Mathematical model of the biosensor utilizing parallel substrates
conversion was presented by introducing partition coefficient for the neigh-
bouring layers. A dimensionless mathematical model was derived in order
to determine the main governing parameters. The derivation of the reac-
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2.3. Summary

tion terms describing the kinetic biosensor action was provided based on
the quasi-steady-state assumption.

The parameters usually used for the investigation of the biosensor ac-
tion (see Section 1.2.3) were customized for both analysed biosensors. The
developed mathematical models were later successfully used to investigate
the peculiarities of the biosensor action (see Chapter 4).
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Chapter 3

Solving the mathematical models

Analytical solutions of one and two compartment models of ampero-
metric biosensors are known only for a specific set of parameter values. To
solve the problems presented by the mathematical models in Chapter 2 in
general case, a computational modelling is used. The results of this chapter
were presented in papers [A1, A2, A6].

3.1. Biosensor with chemically modified elec-
trode

A mathematical model of the biosensor with chemically modified elec-
trode is solved numerically in this section. To validate the achieved results,
numerically obtained solutions are compared to known analytical solutions,
as well as to the existing results [112]. The possibility of the variable space
step usage in the computational scheme is investigated and evaluated. The
results presented in this section were published in [A2].

3.1.1. Analytical solution

The analytical solutions of the mathematical model with quasi-steady-
state assumption exist when non-linear term v (2.11) becomes linear. When
the dimensionless ratio Σ, defined in (2.13) is relatively small (Σ� 1), the
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3.1. Biosensor with chemically modified electrode

steady-state response is calculated as follows [28]:

is1 =
neFD

(1)
p s0

(d1 +d2)(D(2)
p d1 +D

(1)
p d2)

×
(
d1 +d2

(D(2)
s −σ1D

(1)
s sinh(σ1)/cosh(σ1)

D
(2)
s +σ1D

(1)
s (d2/d1)sinh(σ1)/cosh(σ1)

)
×

(
σ1D

(1)
s

d2

d1
× sinh(σ1)

cosh(σ1) +
D(1)
s D(2)

p

D
(1)
p

(
1− 1

cosh(σ1)

))
,

(3.1)

where σ2
1 is the first diffusion module defined in Section 2.1.4.

When Σ � 1, the steady-state current is known for single-layered
biosensor:

is2 = neFD
(1)
p m0(σ2coth(σ2)−1), (3.2)

where σ2
2 is the second diffusion module defined in Section 2.1.4.

3.1.2. Numerical solution

A rectangular mesh of intersecting lines in space and time is used
to cover the domain of the solved problem when using a finite difference
scheme. A following uniform mesh is defined according to (1.26) with L= 3,
for the problem (2.3a)-(2.8b) in the domain [a0,a3]× [0,T ], where T is the
total time of biosensor action:

Ωhτ = {(x(l)
i , tj) : x(l)

i = hli+
l−1∑
ii=1

aii; tj = jτ ; i= 1, ...,Nl, j = 1, ...,M}, (3.3)

where Nl - space step count in layer, hl =Nl/dl - the size of time step in layer
l (l = 1,2,3). To have an accurate and stable result, it is required to use a
very small step size in x direction at the boundaries where boundary and
matching conditions are defined. Assumption was made in [112] that further
from all these peculiar boundaries, the step size may increase. However, the
efficiency of the variable space step was not analysed, as well as the accuracy
issue was not investigated. When using variable space step a total amount
of space points is decreased by R%,

R = Nconst−Nvar

Nconst
×100%, (3.4)
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Chapter 3. Solving the mathematical models

where Nvar is the total amount of space points when using the variable space
step, Nconst - when using a constant one.

When reaching the middle ((al+1−al)/2) of each layer l, the space step
is increased exponentially,

h
(l)
i =

 hlq
i−1
l , i= 1,2, ...,(Nvar,l−1)/2,

hlq
Nvar,l−i
l , i= (Nvar,l−1)/2 + 1,(Nvar,l−1)/2 + 2, ...,Nvar,l,

(3.5)
where Nvar,l is the variable space step count in layer l, and ql is the experi-
mentally chosen scale values of geometric progression, that for each analysed
layer l the following condition would be satisfied:

dl =
Nvar,l∑
i=1

h
(l)
i , l = 1,2,3. (3.6)

Explicit scheme was chosen because of it’s simplicity and low computa-
tional cost for the investigation of the variable space step. It was numerically
proved in [A6] that the errors of the variable space step usage for implicit,
explicit and Crank-Nicolson finite difference methods are totally the same.

For the explicit scheme to be numerically stable, requirement for the
time step must be satisfied. By changing size of the space step exponentially,
the stability condition (1.30) takes the following form:

τ < min

(
h

(l)
1 h

(l)
2

D
(l)
c

)
=min

(
h

(l)2

1 q

D
(l)
c

)
, l = 1,2,3, c= s,m,p. (3.7)

When using the variable space step the requirement for the time step
is weakened q times, comparing to the constant space step scheme. This
difference affects the speed of calculations (presented in Section 3.1.2.2)
noticeably.

During the digital simulation, the response was considered to have
reached a steady-state current (1.16) when the change in current was rela-
tively low compared to the change in time. Time tr defining a moment in
time, when the sufficient enough response change is detected was used as
defined in (1.31). In the calculations ε= 10−3 was used.
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3.1. Biosensor with chemically modified electrode

3.1.2.1. Comparison of the schemes with variable and constant
space steps

Time used to calculate the steady-state response is directly propor-
tional to the nod count in finite difference scheme, independently of the
space step selection algorithm complexity [44],

SK =M ×N, N =Nvar, Nconst, (3.8)

where M is total count of the time steps defined in (3.3), N – total count
of space steps.

Calculation error, occurring because of the variable space step is eval-
uated by the following formula:

εR = |isA− is,var|
isA

×100%, isA =


is1, from (3.1), Σ� 1,
is2, from (3.2), Σ� 1,
is,const, Σ≈ 1,

(3.9)

where is,const is the digitally calculated steady-state response with a constant
space step, and is,var is calculated with a variable space step.

The accuracy of the computational model with variable space step
size (when Nconst = 1000 and R = 0%) was investigated with a two-layered
mathematical model, with a membrane thicknesses d23 = d1 = 10−4m, the
diffusion coefficient were D(23) = 2 × D(1) = 6 × 10−10 m2s−1 and other pa-
rameter values as defined in Table 4.1. The computed steady-state response
with a constant space step size was compared to the analytical solutions
(3.1) and (3.2). The extended information regarding models validity is pro-
vided in Section 4.1.1.2. For both cases the relative error of the computed
response was less than 2%.

3.1.2.2. Effectiveness of variable space step

Efficiency of the variable step use was investigated by changing the
total amount of space points Nconst for the constant space step. The re-
sults presented in this section were published in [A2]. The similar research
regarding the application of the variable space step on the biosensor based
on the Michaelis-Menten kinetics was presented in [A6]. The total amount
of space points (3.8) needed to calculate the response with a desired ac-
curacy εR (3.9) was evaluated. The analysis were carried out for different
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concentrations e0 of enzyme E and different decrease sizes R (3.4).

The dependency of the total points used in the simulation (3.8) on
the desired calculation accuracy is presented in Fig. 3.1. The substrate
concentration s0 was relatively low compared to the mediator concentration
m0 (Σ� 1), while the other parameter values were the same as in Table
4.1.

Figure 3.1. The dependency of the total points count SK on the desired
accuracy εR, when Σ� 1, for different concentrations e0 of enzyme: 10−6M
(1, 2, 3), 10−5M (4, 5, 6), and different decrease sizes R: 0% (3, 6), 60% (2,
5) and 90% (1, 4).

It is noticeable in Fig. 3.1 that for the higher concentrations of the
enzyme (e0 = 10−5M, curves 4-6) with a loss of εR = 0.5% the variable space
step calculations can be improved approximately 1000 times.

Both decreased counts of the space steps (because of the variable size)
and the time steps (because of the changed stability requirement (3.7))
play a role in such an increased calculation performance. For the relatively
high enzyme concentrations variable step size calculations have an improved
performance of at least 100 times for all the analysed accuracies εR, therefore
it is highly recommended.

However, for the lower concentrations of the enzyme (e0 = 10−6M,
curves 1-3) the variable space step calculations can only be used for ap-
proximate calculations (when εR > 1%) and for the large decrease in space
steps (R = 90%).

For the relatively low concentrations of the mediator (m0 = 10−6M) and
relatively high concentrations of the substrate (s0 = 0.1M) (when Σ� 1, Fig.
3.2), the variable space step predetermines lower amount of computational
points (3.8). To achieve the same accuracy with a constant space step, at
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3.1. Biosensor with chemically modified electrode

Figure 3.2. The dependency of the total points count SK on the desired
accuracy εR, when Σ� 1. Values of e0 and R are the same as in Fig. 3.1.

least 10 times increased SK is needed, therefore the use of the variable time
step assures more efficient computational modelling when Σ� 1. For the
highest analysed values of R = 90% (curves 1 and 4) an impact of enzyme
concentration can be noted: for the lower concentrations lesser amount of
the computational points is needed.

Figure 3.3. The dependency of the total points count SK on the desired
accuracy εR, when Σ = 1. Values of e0 and R are the same as in Fig. 3.1.

When Σ = 1 the values of the substrate and mediator concentration
were s0 = 10−3 M, m0 = 10−6 M (Fig. 3.3). One can see, that the variable
space step assures more efficient calculations as in (Fig. 3.2). The steady-
state response calculated with a constant space step (calculated at Nconst =
1000) was considered to be accurate when evaluating the error. A direct
influence of the enzyme concentration also can be noted, the same as for
the second case (Σ� 1). However, when Σ = 1, the speed-up provided by
the variable step calculations is approximately 10 for the most values of εR.

The following mathematical model parameters were used as input pa-
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rameters in developed software tool:

D(l)
s ,D

(l)
m ,D

(l)
p ,dl, l = 1,2,3,

k−1,k1,k2,k3,m0, s0.
(3.10)

3.2. Biosensor utilizing parallel substrates con-
version

3.2.1. Analytical solution

The analytical solutions of the mathematical model of biosensor utiliz-
ing parallel substrates conversion (see Section 2.2.2) exist when the second
reaction term r2 in equation (2.29c) becomes linear, e.g.:

1. When s20 = 0, then non-linear reaction term r2 (2.29c) is equal to zero
and the concentration of the first reaction product at the electrode sur-
face (x= a0) can be calculated analytically, as the system approaches
a steady-state at t→∞,

p
(1)
1 =s10×

D(1)
s1

2D(1)
p1

×

σ1sinh(σ1)(d2/d1)(D(1)
p1 /D

(2)
p1 ) + cosh(σ1)−1

σ1sinh(σ1)(d2/d1)(D(1)
s1 /D

(2)
s1 ) + cosh(σ1)

.

(3.11)

2. When k21s10� k22s20, then r2 = k21e1s
(1)
1 and the solution is obtained

by the following formula:

p
(1)
1 =s10×

D(1)
s1

2D(1)
p1

× k1e1

k1e1 +k21e2
×

σ1sinh(σ1)(d2/d1)(D(1)
p1 /D

(2)
p1 ) + cosh(σ1)−1

σ1sinh(σ1)(d2/d1)(D(1)
s1 /D

(2)
s1 ) + cosh(σ1)

,

(3.12)

additionally, when k1e1� k21e2 the solution (3.12) becomes the same
as (3.11).

3. When k21s10 � k22s20 and k1e1s10 � k21e2s20, the solution is again
obtained by (3.11).
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3.3. Single calculation processing

3.2.2. Numerical solution

Mathematical model of the biosensor utilizing parallel substrates con-
version (defined in Section 2.2.2) was solved in the similar numerical manner
as described in previous Section. A uniform in space and time dimensions
mesh was used when constructing a computational scheme. Explicit and
Crank-Nicolson methods were used for the calculations, with their process-
ing being described in the following Section.

The following mathematical model parameters were used as input pa-
rameters in developed software tool:

k1,k21,k22, e10, e20, s10, s20,

D(l)
c ,dl, l = 1,2,3,

K(1),(2)
c ,K(2),(3)

c , c= s1, s2,p1,p2.

(3.13)

3.3. Single calculation processing

For each single calculation a set of parameter values must be provided.
Since the simulation process might take place in various environments, in-
cluding remote ones (e.g. computational grid), a software tool implementing
computational models was built to work in a command-line interface, with
parameter values being provided through the input file. The provided input
parameters might be divided by their origin into three following groups:

1. Parameters of the mathematical model. Parameters defined in (3.10)
are used for model of biosensor with chemically modified electrode
and in (3.13) - for the model of biosensor utilizing parallel substrates
conversion.

2. Parameters of the computational model. These are: space step sizes Nl

of l layers, the accuracy of calculations εR defined in (1.31), parameter-
flag, showing if the merger of two diffusive-only layers is needed and
decrease of space step count R defined in (3.4) for the variable space
step calculations.

3. Simulation parameters. These parameters are used to define the be-
haviour of the software tool, including: time intervals defining how
often to write currents and concentrations to the output, simulation
number, simulation accuracy (for the early calculations, defined in Fig.
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3.5), etc.

Computational results are written to output file, with output param-
eters being divided in the similar manner, except the computational model
parameters:

1. Governing parameters of the mathematical model. These parameters
include half-time of the response, the response itself, sensitivity, half
maximal effective concentration, etc.

2. Simulation parameters. Two parameters are used as simulation result:
simulation number, used to match input parameter values with out-
put parameter values, and parameter-flag, determining weather the
simulation was successful.

The computational model is solved according to the UML activity
diagram scheme presented in Fig. 3.4.

Figure 3.4. Solving of the computational model.

The solution starts by applying initial conditions at time moment t= 0.
Mesh points at the time row j = 0 are calculated according to the discretized
initial conditions of the mathematical model. Time step is increased, and
new row of the concentration values is calculated according to the approx-
imated governing, boundary and matching conditions. In case of the ex-
plicit finite difference scheme, new values are calculated explicitly, while for
Crank-Nicolson method the coefficients for tridiagonal matrix algorithm are
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calculated on the first step (forward sweep) and the solution of concentra-
tions is later solved by back substitution. When the concentrations for all
the compounds at all mesh points of the new time step are calculated, val-
idation of the concentrations is executed. For the analysed mathematical
models, validation of concentrations is carried out by checking if the concen-
trations do not contain any sudden spikes in the inner sections of the layer.
Additionally, the transient mathematical model of biosensor with chemically
modified electrode, was validated by ensuring the following restriction:

∀x ∈ [al−1,al], l = 1,2,3,t ∈ [0,M ] :

e
(l)
red(x,t) + e(l)

ox(x,t) +p(l)
s (x,t) = e0.

(3.14)

This additional check of the concentrations might not seem necessary
because of the stability condition (1.30). However, the stability condition is
not sufficient enough, as it is accurate only for the diffusion equation. If the
validation of concentrations does not fail (as it is a mandatory requirement),
the calculations are continued. If the newly calculated current does not
satisfy condition (1.31), the time step is increased again repeatedly, while
the condition (1.31) is satisfied.

When computationally analysing newly developed mathematical
model, large sets of input parameter values are varied. In the beginning
of the investigations, more often than not, no high accuracy is needed. In
that case, calculations are carried out as displayed in Fig. 3.5. Term “ac-

Figure 3.5. Simulation process in the beginning of investigations.

curacy” here is used to describe the group of ε (described in (1.31)) and Nl

(the space step count for numerical approximation) values. This approach
is not reasonable for final and accurate results (and therefore, it was not
used for any of the figures displaying biosensor behaviour), however, it was
highly useful when determining dependencies in general sense. Sometimes
accurate calculation (e.g. with relatively small ε and relatively large space
step countsNl) is not needed, as the solution obtained with less accurate cal-
culations does not change by increasing the accuracy. After calculating two
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solutions of the computational model, the relative difference between them
is analysed. If relative difference is less than desired, than ε is decreased
and group of Nl is increased correspondingly. After the third solution is cal-
culated, the same relative difference is checked for desired accuracy. This
process is repeated until desired accuracy of the results is obtained.

The scheme presented in Fig. 3.5 was especially useful when calculat-
ing dimensionless sensitivity (2.44) displayed in Figs. 4.10b and 4.12b, as
the relative sensitivities of Brs = 1 and Brs = 0 are calculated at relatively
low calculation accuracy, and does not change upon increasing it.

3.4. Using computational grids to model the be-
haviour of the biosensors

A parameter sweep approach was used to model the behaviour of the
biosensor by using computational grids. The developed technique is pre-
sented in Section 3.4.2. Efficiency of BalticGrid computational grid usage
is presented in Section 3.4.3. The results presented in this section were
published in [A1].

3.4.1. Parameter sweep approach

Computer modelling software has to meet specific requirements in or-
der to ensure the efficient and convenient usage of grid computing. The
most important requirements for passing parameters and the environment
of software are the following ones:

• Data input and output. The ability to change model’s parameters
without changing model itself is crucial. The most efficient way to
assure this requirement is to develop the software which would read
modelling data from a file defined in models parameters. Data input
and output must be independent of the operating system.

• Operation of the software. Computer models have to operate in com-
mand line mode as in the computational grids they are executed au-
tomatically. Occurring mistakes should be logged to the error log file
because it is the only way to assure that no information is lost during
the process.
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The parameter sweep approach, described in Section 1.4.2 was applied
for the investigation of the biosensors behaviour, since computer models
designed to investigate the peculiarities of biosensors are parametrized as
well.

To perform the parametrized simulation in the computational grid a
group G of total NG tasks is submitted to the grid:

G= {M,PSi}, (3.15)

where G stands for a group of tasks, M is the software implementing com-
putational model, PSi is the smaller parameter sweep, i = 1, 2, ..., NG.
Each of these smaller parameter sweeps consist of parameter queues with
parameters p1, p2,..., pN in each queue.

Utilization of grid computing to solve the parametrized tasks can be
defined by the following steps:

• The rules to form parameter sweep are defined. The parameter sweep
can be enumerated by hands, generated using progression or both ways
can be used at the same time. In such case, a part of the parameter
queues are generated and part of them are enumerated manually.

• The main parameter sweep is prepared according to the defined rules.

• Produced parameter sweep is divided into NG amount of smaller
sweeps. It is recommended to seek that smaller sweeps would be sim-
ilar in size.

• The group of tasks (3.15) is submitted to the computational grid.

• The results are retrieved after the simulation is finished.

3.4.2. Computational grid usage scheme

It is commonly required that some parameter values would be enumer-
ated, some to be generated and some to remain constant in all parameter
queues. In order to meet this requirement, a method for the parameter
sweep generation was developed. Directions for the generation of parame-
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ters are provided in the parameter description file in the following syntax:

MPQ

Type;Guidelines;
...

T ype;Guidelines;

NP ,
(3.16)

where MPQ stands for the number of the desired parameter queues in the
main parameter sweep (which also equals to the total number of simula-
tions), NP is the total number of parameters, Type defines the type of pa-
rameter generation and Guidelines define an additional information needed
for the current parameter. Values allowed for Type and Guidelines are de-
fined in Table 3.1.

Table 3.1. Parameter values defined in the description file.

Type Type descrip-
tion

Guidelines Guidelines description

0 Parameter is not
changed during
the simulations.

ConcreteV alue; A single value with semicolon
at the end.

1 Parameter is
changed by
enumerating its
values.

ListOfV alues; The enumerated list of
parameter values sepa-
rated by semicolons. If
ListOfV alues count is less
than MPQ, then the last
value of the given list is used
for the remaining parameter
queues, if ListOfV alues
count is more than MPQ,
then the remaining values
are ignored.

2 Parameter is
generated us-
ing arithmetic
progression.

StartingV alue;
EndV alue;

StartingV alue stands for
the first value in desired in-
terval of parameter’s values;
EndV alue is the final value
(number MPQ) in mentioned
interval.

3 Parameter is
generated us-
ing geometric
progression.

StartingV alue;
EndV alue;

StartingV alue stands for
the first value in desired in-
terval of parameter’s values;
EndV alue is the final value
(number MPQ) in mentioned
interval.

A computer program was developed to generate the main parameter
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sweep using parameter description file. Entire scheme of computational grid
usage was implemented as follows:

• The main parameter sweep is generated using the above mentioned
syntax.

• The main parameter sweep of MPQ parameter queues is divided into
NG smaller parameter sweeps. An average amount of parameter
queues in the smaller parameter sweep is found:

Navg =MPQ/NG. (3.17)

Let Navg,int be the integer part of the average Navg. Then a total
number of A parameter sweeps will have Navg,int parameter queues. A
total number of B parameter sweeps will have Navg,int + 1 parameter
queues. A and B stands for integer numbers satisfying the following
equation:

MPQ = ANavg,int+B(Navg,int+ 1). (3.18)

In accordance with the equation (3.18) it is assured that every smaller
parameter sweep would be similar in the size.

• The group of NG tasks (3.15) is submitted to the computational grid.

• The modelling software writes results to the output file independently
in its own computing node.

• The output files from different computing nodes are collected and
joined after the separate modelling tasks are completed.

3.4.3. Efficiency of computational grid usage

The recommendations for an efficient and convenient usage of the grid
computing were developed and presented in [A1]. By applying the devel-
oped technique to model chemically modified biosensors, the computing
time required to complete specific simulation locally was compared with
the time consumed in the BalticGrid. Local simulations were carried out
on a computer with the processor of 2 GHz speed and a memory of 1 GB
of RAM. The acceleration R of the simulations in the computational grid
is described as follows:

R = (MPQTS−T )/T ×100%, (3.19)
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where TS stands for duration of simulation with a single parameter queue
in local computer, T is the duration of the calculations with all parame-
ter queues in the computational grid. T was measured as time between
submission of groups of tasks G and the receiving of the results.

Comparisons were carried out by changing the amount of total tasks
NG submitted to the grid between 2 and 15 as well as with different dura-
tions MPQ×TS = 30, 40, 60, 120, 240 and 480 minutes. Accelerations R
dependency on NG is displayed in Fig. 3.6a.

The efficiency of simulations in the computational grid was measured
by submitting the same tasks and by calculating the average durations. In
some cases, values of T were much larger than the calculated average and
it caused some non-monotonicity as it is seen in the Fig. 3.6a. This can be
attributed to the constantly changing load of the grid environment.

Figure 3.6. Acceleration R dependence on total count of tasks NG (a) and
on calculations durations on local computer MPQ× TS (b). For (a) six
values of calculations durations on local computer were used: MPQ×TS =
30 (1), 40 (2), 60 (3), 120 (4), 240 (5) and 480 (6) min. For (b) five total
count of tasks NG were used: 3 (1), 4 (2), 5 (3), 8 (4) and 13 (5).

As one can see in Fig. 3.6a, the efficiency of the developed technique of
computational grid usage depends on the volume of the task. The smallest
task efficiently solved in BalticGrid was with a duration of MPQ× TS =
40 minutes. Calculations were faster than in the local computer but the
task was divided into three parts and three remote computers were used
instead of one local computer. By dividing the same task into more parts
calculations were even slower than in the local computer because the time
required to assign concrete task to its node increases more that decreases the
time of calculations. The task in local computer solved in 120 minutes was
efficiently solved in BalticGrid environment with all analysed total count
of tasks NG. The task of 480 minutes was also solved efficiently with all
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analysed total number NG of tasks, but the most efficiently when NG is
between 9 and 13 (curve 6, Fig. 3.6a).

Fig. 3.6b shows that the larger is the taskMPQ×TS the larger becomes
optimal count of tasks submitted to the grid NG. 60 minutes duration task
was solved most efficiently when NG is 3, 4 and 5. Larger, 8 hours task,
was solved most efficiently when NG is 13. Accelerations differ slightly for
the tasks with durations between 1 and 4 hours, when NG is between 3 and
8 (curves 1–4, Fig. 3.6b).

Relatively small division size NG and acceleration R can be attributed
to the fact that resource broker used in BalticGrid environment is central-
ized. The centralized resource brokers can cause a noticeable delay. It was
noticed during the studies that the delay is caused mainly by two reasons:

• The time required for middleware to assign concrete task to its compu-
tational node. This delay remains roughly constant during the exper-
iments and is caused by the configuration of the computational grid
and the middleware itself.

• Random time when one or more computational tasks are finished later
than the others. This delay depends on the load of the computational
grid and the difference in capacities of computational nodes.

3.5. Summary

The efficiency of the finite difference scheme with the variable space
step usage was investigated depending on the biosensor with chemically
modified electrode parameters. The variable space step can be used in most
cases, however the restrictions are dependant on the biosensor parameters.

The scheme presented for the early investigation process of the math-
ematical models of biosensors was effectively used when determining main
tendencies of the biosensor dynamics. Parameter sweep calculations pre-
sented in this Chapter were successfully applied to investigate the behaviour
of both biosensors.
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Chapter 4

Investigation of the biosensor pe-
culiarities

By using developed software the peculiarities of the biosensors utilizing
intermediate substances are investigated in this chapter:

1. Biosensor with chemically modified electrode.

2. Biosensor utilizing parallel substrates conversion.

The dependencies of the biosensor characteristics, including the sensitivity
(1.20) and the half maximal effective concentration (1.24) on the various
parameters presented in Sections 1.2.3, 2.1.4 and 2.2.4 are analysed in this
Chapter. Possible modifications of the presented mathematical models are
explored and analysed. The presented results can be applied for the creation
of the new biosensors as well as for the optimization of the existing ones.

4.1. Peculiarities of the biosensor with chemi-
cally modified electrode

A transient mathematical model (see Section 2.1.2) and the mathemat-
ical model with quasi-steady-state assumption (defined in Section 2.1.3) of
the biosensor with chemically modified electrode are analysed in this section
digitally. The results presented in this section are presented in two arti-
cles [A1, A2]. The results of digital simulation are compared to the known
analytical solutions as well as to the pre-existing research results. A possi-
bility to use the effective diffusion coefficient to simplify the mathematical
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model is investigated. Accuracy of the quasi-steady-state approximation is
analysed and proved digitally to be accurate in most cases.

4.1.1. Digital simulation

A software implementing the computational scheme described in Sec-
tion 3.1.2 was developed. By using a total number of N = 900 space points
in the majority of the calculations and ε= 10−3 (as defined in (1.31) equa-
tion) the behaviour of the biosensor with chemically modified electrode was
investigated digitally.

Digital simulation was carried out by implementing the schemes de-
fined in Section 3.3 to compare both models as well as to investigate the
dependency of half maximal effective concentration on the mediator con-
centration. A computational grid was used by applying parameter sweep
approach described in Section 3.4.2.

4.1.1.1. Parameters used for simulation

The sizes of the substrate, mediator and product molecules are consid-
ered to be in similar sizes. Therefore the diffusion coefficients are considered
equal in the respective layers, in order to decrease the large number of the
parameters,

D(l)
c =D(l), c= s,m,p, l = 1,2,3. (4.1)

The values of the parameters used in the digital investigation process are
provided in Table 4.1.

4.1.1.2. Model validation

The accuracy of the two-layered mathematical model with quasi-
steady-state assumption (defined in Section 2.1.3) was compared with two
analytical solutions for known parameter values. When the dimension-
less ratio Σ, defined in (2.13) is relatively small (Σ� 1), the steady-state
response is calculated as defined in (3.1) for a two-layered mathematical
model. By changing the values of layer thicknesses d1 and d2 between 10−6

and 10−3m, and keeping the concentrations m0 = 10−4M, s0 = 10−5M and
e0 = 1−6M, while other parameter values the same as in Table 4.1, the
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Table 4.1. Model parameter values.

Description Notation Value Dimension
Diffusion coefficient in the enzyme
layer

D(1) 3.4×10−10 m2s−1

Diffusion coefficient in the dialysis
membrane

D(2) 4.4×10−11 m2s−1

Diffusion coefficient in the diffusion
layer

D(3) 6.3×10−10 m2s−1

Reaction rate of Eox reduction k−1 1.0×104 s−1

Reaction rate of Eox oxidation k1 1.1×105 M−1s−1

Reaction rate of ES conversion k2 1.0×103 s−1

Reaction rate of the enzyme interac-
tion with the mediator

k3 1.0×107 M−1s−1

Number of electrodes ne 1 -
Enzyme concentration e0 1.0×10−6 M

largest relative difference between analytical and simulated responses was
less than 2%.

When Σ� 1, the steady-state current is calculated by (3.2) for the
single layered biosensor. By keeping the thickness of the enzymatic layer
relativelly large (d1 = 10−3) and the values of concentrations constant at m0

= 10−6M, s0 = 1M and e0 = 1−6M, while lowering the thickness of diffusion
layer, the relative difference lowers to zero.

Additionally, the transient mathematical model was validated compu-
tationally by ensuring that the sum of all enzyme concentrations would be
equal at all time moments as defined in (3.14).

4.1.1.3. Biosensor response

The dependency of the biosensor response on time was investigated
at five different values of the dimensioneless rate (2.13), Σ = 10−4, 10−2,
1, 102, 104. The responses of the two-layered (2L) and three-layered (3L)
mathematical models are displayed in the Fig. 4.1.

Values of Σ were calculated by changing mediator and substrate con-
centrations in the bulk solution: s0 = 10−4, 10−3, 10−2, 10−1, 1M and
m0 = 10−7, 10−6, 10−5, 10−4, 10−3M. The thickness of the enzyme and
diffusion layers were d1 = d3 = 10−4m, dialysis membrane thickness was
d2 = 5×10−5m, other values were kept as in Table 4.1.

As one can see from Fig. 4.1, the higher values of Σ correspond to the
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Figure 4.1. The dependency of the biosensor response on time at five dif-
ferent values of Σ = 10−4 (1, 6), 10−2 (2, 7), 1 (3, 8), 102 (4, 9) and 104 (5,
10). Solid lines (1-5) show the dependence calculated for 3L model and the
dashed ones (6-10) shows the results for the 2L model.

shorter times when steady-state is achieved. The smallest and the largest
analysed values of Σ represent the smallest overall responses, as the largest
response is reached when Σ ≈ 1. The difference between the responses of
3L and 2L models is larger when Σ< 1, compared to those when Σ> 1. For
the smallest analysed value of Σ = 10−4 the difference between the steady-
state responses of 3L and 2L models was the largest and calculated to be
approximately 20%.

4.1.2. Results and discussion

4.1.2.1. The application of effective diffusion coefficient

To further investigate the possibility of the two layers merger by ap-
plying the effective diffusion coefficient approach (see Section 1.1.2.3), the
normalized concentration profiles were analysed. The impact of the di-
mensionless rate Σ on the steady-state response and the accuracy of the
simplified 2L model response were evaluated.

The concentrations were normalized as follows:

sN = s/s0, mN =m/m0, pN = p/s0. (4.2)

The simulation results of the normalized concentration profiles are dis-
played in Fig. 4.2. The thickness of the enzymatic layer was d1 = 10−4m,
the thicknesses of the outer layers were equal, at d2 = d3 = 5×10−5m. The
substrate concentration in the bulk solution was s0 = 10−5M, the mediator
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concentration was m0 = 10−4M, other parameter values as in Table 4.1.

Figure 4.2. The profiles of the normalized substrate (1, 3), mediator (2, 5)
and product (3, 6) concentrations for three-layered (1-3) and two-layered
(4-6) models.

As it is seen from Fig. 4.2, two-layered approximation has the biggest
impact on the substrate concentration (curves 1 and 4), where a difference
of approximately 40% is noticeable at the boundary of x= a1 = 10−4m. The
difference between mediator concentrations at the same coordinate is ap-
proximately 30%. The difference between normalized profiles of the product
concentration is mostly noticeable at the boundary of x= a2 = 1.5×10−4m.
However this difference does not significantly affect the accuracy of 2L model
in the enzyme layer (a0 < x< a1), as the concentrations in this layer do not
differ more than 10% at any point in space (curves 3 and 6). The concen-
tration profiles of the product are the most important, since the product
is directly included in the response equation. The impact of the dialysis
membrane relative thickness v (defined in (1.12)) on the 2L approximation
was less than 1% at all analysed parameter values, therefore it is not pre-
sented. A relative error of less than 10% is considered accurate enough
when analysing dependencies of the various biosensors [33, 67].

The impact of the dimensionless concentration rate (2.13) is crucial
when designing new biosensors and improving existing ones. The depen-
dency of the biosensor steady-state response on the rate Σ is displayed in
Fig. 4.3a with a calculations carried out using 3L model. The relative error
(1.23) of the calculations carried out using 2L model, compared to those
carried out in 3L model is displayed in Fig. 4.3b.

By changing the concentration s0 of substrate S in the bulk solution
between 10−4M and 1M and mediator concentration m0 between 10−7M and
10−3M, the rate Σ changes in nine orders of magnitude. The simulation was
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carried out at four different values of the dimensionless diffusion module
σ2

1 = 10−4, 10−2, 1 and 100. The values of the diffusion module were varied
by changing enzyme concentration and enzymatic layer thickness.

Figure 4.3. The steady-state response is versus the dimensionless concen-
tration ratio Σ of 3L model calculations (a) and the relative error of 2L
calculations (b) at four different values of the diffusion module σ2

1 = 10−4,
10−2, 1 and 100. Other parameter values were as in Fig. 4.1 and Table 4.1.

As one can see from Fig. 4.3b, when the diffusion module is less than
unity (σ2

1 < 1), the relative error of 2L model approximation is less than
10% for all the analysed values of rate Σ (Fig. 4.3b, curves 1 and 2). For the
lowest analysed diffusion module of σ2

1 = 10−4 the relative error is more than
10% for any value of Σ, with a noticeable breaking point at Σ = 3×10−1.
A sudden change of 2L model approximation error appears because of the
modulus in (1.23) equation. When σ2

1 = 10−2 and Σ < 0.1, the relative error
is η > 10% (curve 3, Fig. 4.3b). However, the error considerably lowers
when Σ > 1 and is less than 3%.

When Σ < 1, the steady-state current is approximately steadily in-
creasing function of Σ (Fig. 4.3a) for all the analysed values of the diffusion
modules – a result corresponding with the result discussed in [112] , Fig.
10. However, when Σ > 1, the steady-state response is decreasing func-
tion of Σ – the feature not noticeable in [112]. This could be attributed to
the fact, than in [112], the values of Σ were varied by changing only the
concentrations s0, but keeping m0 concentration constant.

There is also a noticeable difference in the absolute values of steady-
state response in Fig. 4.3a and Fig. 10 in [112], as the lowest values in
Fig. 4.3a are less than 10−7Am−2 – more than 1000 times less than in the
discussed paper. The way of varying diffusion module corresponds to such
a large difference: in this research, values of the diffusion modulus σ2

1 were
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calculated by varying enzymatic layer thickness d1 and the concentration
e0 of enzyme, while in [112] only the values of the thickness d1 were varied.
The relative thickness v (1.12) of the dialysis membrane affects the accuracy
of 2L model calculations less than by 1%, therefore it is not presented in
this paper.

4.1.2.2. Half maximal effective concentration

The influence of the mediator concentration on the half maximal
effective concentration (described in Section 1.2.3) was investigated. A
two-layered mathematical model (with diffusion and dialysis layers being
merged) was used. Enzymatic membrane thickness was d1 = 10−4m, and
the diffusion coefficient was D(1) = 3 × 10−10 m2s−1. The merged layer was
of the same thickness (d23 = d1) with twice as big diffusion coefficient D(23)

= 2 × D(1). The calculations were carried out for four different enzymatic
concentrations e0: 10−8 (1), 10−7 (2), 10−6 M (3) and 10−5M (4). Other
parameters were the same as in Table 4.1. The results are displayed in Fig.
4.4.

Figure 4.4. The dependency of the half maximal effective concentration
C50 on the mediator concentration m0 at different values of the enzymatic
concentration: e0: 10−8 (1), 10−7 (2), 10−6 (3) and 10−5M (4).

A monotonic dependency of the half maximal effective concentration
on the mediator concentration is noticeable in Fig. 4.4: the larger mediator
concentration corresponds to the larger values of C50. By changing the
mediator concentration in three orders of magnitude, C50 increases 1000
times.

The influence of the enzymatic concentration is minimal, as the differ-
ence between C50 values for the smallest and the largest values of e0 is less
than 10 times, and remains constant for all analysed values of m0.
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The largest values of C50 are achieved at the largest mediator concen-
trations m0 and the smallest enzymatic concentrations e0. One can notice,
that the dependency of half maximal effective concentration on the mediator
concentration is influenced by diffusion modulus:

• when σ2
1 < 1 (curves 1, 2 and 3), the values of C50 decreases while

decreasing the values of σ2
1, at the same m0 concentration;

• when σ2
1 > 1 (curve 4), the values of the half maximal effective con-

centration increases by increasing the diffusion modulus.

4.1.2.3. The accuracy of quasi-steady-state approximation

Two-layered mathematical model was used for the investigation of
QSSA approximation, keeping the same parameter values as in previous
section, except for mediator and substrate concentrations: m0 = 1 × 10−5,
s0 = 10−4m. The normalized steady-state current (1.22) versus the Biot
number Bi was calculated at the following six values of the thickness d1 of
the enzyme layer: 17.3 × 10−5, 24.4 × 10−5, 34.6 × 10−5, 48.9 × 10−5, 69.2
× 10−5 and 97.9 × 10−5m and six values of the enzyme concentration e0

in the enzyme membrane: 10−8, 5 × 10−8, 2.5 × 10−7, 1.25 × 10−6, 6.25
× 10−6, 3.125 × 10−5M. At each value of d1 as well as e0 the Biot number
Bi was changed from 0.1 up to 100. At these values of d1 and e0, keeping
other parameters unchanged, the diffusion modules (σ2

1 and σ2
2) change in

five orders of magnitude. Thus, the behaviour of the biosensor response was
calculated at different limitations of the response.

One can see in Fig. 4.5a that the normalized steady-state biosensor
current IN (defined in Section 2.1.4) is a monotonous increasing function of
the Biot number Bi when σ2

1 ≥ 1. IN is non-monotonous when σ2
1 ≤ 1. The

normalized steady-state current only slightly varies for different diffusion
modules when Bi > 10.

The dependence of error (2.12) on the dimensionless Biot number Bi
is shown in Fig. 4.5b. The responses were calculated by changing the values
of d1 and e0 in the same way as in Fig. 4.5a. There can be seen an effect of
the dimensionless Biot number Bi on the modeling error EQSSA. The larger
Biot number corresponds to the larger error of QSSA calculations. The error
of the QSSA may be neglected with all the values of diffusion module except
the case of small diffusion module for relatively large Biot number (curve
1). When σ2

1 = 10−4 and Bi > 30 the error of QSSA calculations is bigger
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Figure 4.5. The normalized steady-state current IN versus the Biot number
Bi (a) and versus the error of the QSSA (b) at six values of the diffusion
module σ2

1: 10−4 (1), 10−3 (2), 10−2 (3), 0.1 (4), 1 (5) and 10 (6), σ2
2 = 1000

σ2
1.

than 1% with even bigger EQSSA for larger Biot numbers.

4.1.3. Efficiency of the used tool

The parameters affecting the error of the mathematical model based on
QSSA were calculated using computational grid by applying the parameter
sweep approach described in Section 3.4.2. The same problem with different
sets of parameter-values was solved more than 1000 times by comparing two
models in the computational grid. The analysis carried out in Section 4.1.2.3
was solved more than 10 times faster by using the computational grid than it
would be solved on a local computer. The efficiency of the parameter sweep
calculations on BalticGrid environment for lower simulation amounts was
presented in Section 3.4.3.

4.2. Peculiarities of the biosensor with parallel
substrates conversion

A mathematical model (see Section 2.2.2) of biosensor utilizing parallel
substrates conversion is analysed in this section. The results of the digital
simulation are compared to the known analytical solutions as well as to the
experimental data [A7]. A possibility to use effective diffusion coefficient to
simplify the mathematical model is investigated [A3]. Half maximal effective
concentration is determined at various model parameter values [A5]. The
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impact of the diffusion modulus [A8] and Biot number [A4] on the biosensor
response and sensitivity is investigated.

4.2.1. Digital simulation

A software implementing the computational schemes described in Sec-
tion 3.2.2 was developed and used to investigate the biosensor with parallel
substrates conversion. A total number of N = 900 space points was used
in majority of the calculations and ε= 10−3 was used as defined in (1.31).

A software tool for automated calculations described in Chapter 3 was
used to investigate the biosensor behaviour.

4.2.1.1. Parameters used for simulation

Constant parameter values used in validation and simulation processes
are listed in Tables 4.2 and 4.3. The diffusion coefficients of the second prod-
uct (D(1)

p2 , D(2)
p2 , D(3)

p2 ) does not play any role in the investigated peculiarities,
therefore the values of the first reaction product were used. The values of
the reaction constants k1 and k22 were obtained by physical experiments.

The value of heterogenic constant ks was obtained in the experiments.
Due the presence of oxygen in the solution at the initial state, a response of
the biosensor is non-zero. In the experiments, the initial condition of oxygen
was p1 = 2.5 ×10−4M and it corresponded to the current of i≈ 0.85µA By
dividing these values heterogenic constant was obtained.

4.2.1.2. Model validation

Analytical solutions (3.11) and (3.12) are known only for the two-
layered mathematical model. By keeping the diffusion coefficients of the
dialysis and the diffusion layers equal for corresponding compounds and
by considering the partition coefficients of all substances to be equal to
unity, and by choosing the values of the substrate concentrations (s10 and
s20) as well as enzyme concentrations (e1 and e2) as defined in Table 4.3,
so that the analytical solutions would exist, and keeping other parameters
constant as listed in Table 4.2, and changing the remaining parameter values
as displayed in Table 4.3, the relative difference between the analytical
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Table 4.2. Constant values of the biosensor parameters.

Parameters Notation Value Dimension Ref.
Diffusion coefficient of S1
in enzymatic membrane

D(1)
s1 3.1×10−10 m2s−1 [57]

Diffusion coefficient of S1
in dialysis membrane

D(2)
s1 9.8×10−11 m2s−1 [181]

Diffusion coefficient of S1
in diffusion layer

D(3)
s1 1.4×10−9 m2s−1 [57]

Diffusion coefficient of S2
in enzymatic membrane

D(1)
s1 3.4×10−10 m2s−1 [182]

Diffusion coefficient of S2
in dialysis membrane

D(2)
s1 4.4×10−11 m2s−1 [181]

Diffusion coefficient of S2
in diffusion layer

D(3)
s1 6.3×10−10 m2s−1 [181]

Diffusion coefficient of P1
in enzymatic membrane

D(1)
p1 1.4×10−9 m2s−1 [183]

Diffusion coefficient of P1
in dialysis membrane

D(2)
p1 1.43×10−11 m2s−1 [184]

Diffusion coefficient of P1
in diffusion layer

D(3)
p1 2.12×10−9 m2s−1 [183]

Diffusion coefficient of P2
in enzymatic membrane

D(1)
p2 1.4×10−9 m2s−1 this

work
Diffusion coefficient of P2
in dialysis membrane

D(2)
p2 1.43×10−11 m2s−1 this

work
Diffusion coefficient of P2
in diffusion layer

D(3)
p2 2.12×10−9 m2s−1 this

work
Heterogenic constant ks 3.4×10−3 AM−1 this

work
e1 reaction rate k1 1.3×106 M−1s−1 this

work
e2 reaction rate k21 7.1×106 M−1s−1 [185]
e2 reaction rate k22 6.0×106 M−1s−1 this

work

and computational steady-state current densities was less than 1% for the
mathematical model defined in Section 2.2.2.

Additionally, the model was validated computationally by ensuring
that at the steady-state the sum of all the concentrations would be equal
to the sum of initial concentrations of both substrates in the bulk solution:

∀x ∈ [al−1,al], l = 1,2,3,t→∞ :

s
(l)
1 (x,t) + s

(l)
2 (x,t) + 2p(l)

1 (x,t) + 2p(l)
2 (x,t) = s10 + s20.

(4.3)
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Table 4.3. Variable values of the biosensor parameters.

Parameters Notation Interval Dimension
First substrate concentra-
tion

s10 [10−4,10−2] M

Second substrate concen-
tration

s20 [10−6,10−1] M

First enzyme concentra-
tion

e1 [3×10−8,3×10−5] M

Second enzyme concentra-
tion

e2 [3×10−8,3×10−5] M

Enzyme layer thickness d1 [5×10−6,5×10−4] m
Dialysis membrane thick-
ness

d2 [1×10−5,5×10−5] m

Diffusion layer thickness d3 [5×10−6,1.9×10−4] m

4.2.2. Comparison with the experimental results

The addition of hydrogen peroxide increased the bioelectrode current
that is associated with oxygen production (see Fig. 4.6). The increase of
the current depends on the hydrogen peroxide concentration. The exper-
imentally measured half-time of the steady-state current was 36.3s for all
analysed hydrogen peroxide concentrations.

Figure 4.6. The dynamics of the biosensor response to the first substrate.
Comparison of experimental data (curves 1-4) against the simulated results
(curves 5–8). The concentration of s10 was 3.4 ×10−4 (curves 1 and 5), 6.8
×10−4 (2, 6), 10−3 (3, 7) and 1.36 ×10−3 (4, 8)M. The concentrations of
enzymes were e1 = e2 = 3.2 ×10−5M, the thickness of enzymatic membrane
was d1 = 2.66 ×10−4m.

The calculated steady-state response of the biosensor to hydrogen per-
oxide (of concentration s10) was is ≈ 0.38µA for the smallest concentration
of s10 = 3.4 ×10−4M (5 curve) and is≈ 1.49µA for the largest concentration
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of s10 = 1.36 ×10−3M (8 curve). The value of is ≈ 1.49µA is just 11% less
in comparison to the experimentally determined one (Fig. 4.6), while the
difference for the lowest concentrations of the first substrate is even smaller
and non-existing for the smallest one (s10 = 3.4 ×10−4M).

The simulation of the dynamics of the biosensor response gave a half-
time value of 55s for all hydrogen peroxide concentrations. The calculated
half-time is 53% higher in comparison to the experimentally determined.
The increase of the half-time can be explained by the decrease of the bio-
catalytical membrane thickness under dialysis membrane. The additional
calculations showed that at the high concentrations of catalase and per-
oxidase the decrease of the membrane thickness of 19% can decrease the
half-time by almost 53%. It has been discovered, that by lowering the diffu-
sion coefficient of the external diffusion layer (or, alternatively, by enlarging
the thickness of this layer), a steady-state response can be manipulated in
various ways [186]. The diffusion coefficients of hydrogen peroxide in all
three layers were taken from different sources (see Table 4.2), so this might
effect the difference noticeable in Fig. 4.6. Additionally, the impact of the
diffusion layer peculiarities on the half-time of the steady-state response is
known to be non-monotonous (see [186], Figs. 4 and 5).

The steady-state response is less sensitive to the membrane thickness,
but the decrease of it will cause an almost proportional decrease of the
steady-state response, if the biosensor is acting under internal diffusion lim-
itation, as it was investigated in [A5] (Fig. 5, parts a and b).

The addition of S2 decreased the steady-state response (Fig. 4.7). Four
approximately equal portions of the second substrate were added to the so-
lution at time moments of 585, 750, 945 and 1135s during the conducted
experiment (represented by curve 1). The total concentration of the second
substrate at the mentioned time moments was increased to s20 = 4 × 10−5,
8 × 10−5, 1.19 × 10−4 and 1.57 × 10−4M. The thickness of the enzymatic
membrane was d1 = 2.66 × 10−6m, the concentrations of catalase and per-
oxidase were, correspondingly e1 = 3.18 × 10−6M and e2 = 3.2 × 10−6M.
The concentration of hydrogen peroxide was s10 = 6.6 × 10−4M.

The digitally simulated response (curve 2, Fig. 4.7) was larger for all
analysed time domain. The relative difference of 13% between the simulated
and experimental steady-state responses to the hydrogen peroxide (S1, t <
600s) is noticeable. However, the difference of this magnitude can be ignored
because of the error in the experiment, as the curves 1 and 2 in Fig. 4.7 are
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Figure 4.7. The dynamics of the biosensor response to both substrates.
Solid curve (1) shows the experimental data, dotted curve (2) shows digi-
tal simulation without the partition approach, dashed curve (3) shows the
results with partition coefficients K(1),(2)

s1 = 0.5 and K(1),(2)
s1 = 4. The con-

centration s10 was 6.6 ×10−4M, concentration s20 was increased for times
by approximately 4 × 10−5M. The concentrations of enzymes were e1 = e2
= 3.2 ×10−5M, the thickness of the enzymatic membrane was d1 = 2.66
×10−4m.

achieved at the same parameter values as curves 2 and 6 in Fig. 4.6, where
the experimentally obtained response is higher than the computed one.

The other issue can be noted in Fig. 4.7: by increasing concentration
of S2 at four different time moments, the difference between the simulated
and experimental data is increasing at each step.

The comparison of the experimental and simulation results revealed
that the partition of compounds in the membranes should be considered
during simulations of the biosensor action [A7]. The application of the
partition coefficients K(1),(2)

s2 = 0.5 and K(2),(3)
s2 = 4, while keeping the par-

tition coefficients of other compounds equal to unity at both boundaries is
displayed by curve 3, Fig. 4.7.

The values of the partition coefficients K(1),(2)
s2 = 0.5 and K(2),(3)

s2 = 4
were chosen to have a best matching with the experimental result. The
partition coefficient of acetaminophen in enzymatic layer (K(1),(2)

s2 ) is with
slight accordance to [61], as in this article values of 0.85 and 0.9 are ana-
lysed. However, partition coefficient is unique for each analysed system, and
physically accurate partition coefficient can be obtained only by physical
experiments [187].
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4.2.3. Results and discussion

4.2.3.1. Influence of partition coefficient

The influence of the partition coefficient was investigated extensively,
by analysing its impact on the biosensors normalized concentration profiles,
response and sensitivity. The calculations were carried out for the first
operational phase of the biosensor, when only the first substrate was present
in the solution. The concentrations of first substrate and first product were
normalized as follows:

s1,N = s1/s10, p1,N = p1/s10. (4.4)

The partition coefficient K(l),(l+1)
s1 of the first substrate was investigated

for both boundaries, while always keeping the partition coefficient of p1

constant at K(l),(l+1)
p1 = 1 (l = 1,2). The results displayed in Fig. 4.8 are for

three different combinations of K(l),(l+1)
s1 :

1. K(1),(2)
s1 = 1 and K(2),(3)

s1 = 1 (non-existing partitioning)
(curves 1S and 1P in Fig. 4.8a and curve 1R in Fig. 4.8b).

2. K(1),(2)
s1 = 0.5 and K(2),(3)

s1 = 4 (increasing partitioning)
(curves 2S and 2P in Fig. 4.8a and curve 2R in Fig. 4.8b).

3. K(1),(2)
s1 = 2 and K(2),(3)

s1 = 2 (constant partitioning)
(curves 3S and 3P in Fig. 4.8a and curve 3R in Fig. 4.8b).

Figure 4.8. The normalized concentration profiles (a) and biosensor re-
sponse (b) at three different combinations of first substrate partition coef-
ficient.
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As one can see from Fig. 4.8a, the partition coefficient of the first
substrate affects not only s1 concentrations, but p1 as well. The constant
partitioning configuration (curves 3S and 3P) has the largest impact on the
biosensor response (curve 3R, Fig. 4.8b). The increase of the response, as
well as the reaction product, is approximately proportional to the partition
coefficient for S1 in the enzymatic layer, as by enlarging the partition co-
efficient from K(1),(2)

s1 = 1 to K(1),(2)
s1 = 4, the response increases from is =

0.44 to is = 1.76 (curves 1R and 3R, Fig. 4.8b).

To further investigate the impact of both partition coefficients, influ-
ence of their ratio is analysed,

Kc =K(1),(2)
c /K(2),(3)

c , c= s1, s2,p1,p2. (4.5)

The impact of the dimensionless partition coefficient of the first sub-
strate (Ks1) on the steady-state response is displayed in Fig. 4.9. The
investigation was carried out for two different concentrations of the first
substrate (s10: 3.4 ×10−4M and 1.36 ×10−3M) and two different concen-
trations of the first enzyme (s10: 3.2 ×10−8M and 3.2 ×10−5M), other
parameter values were the same as in Table 4.2 and Fig. 4.6. By changing
the partition coefficients K(1),(2)

s1 and K(2),(3)
s1 between 0.5 and 5, the dimen-

sionless partition coefficient (4.5) changes in two orders of magnitude from
0.1 and 10.

Figure 4.9. The impact of the dimensionless partition coefficient on the
steady-state response of the first phase of the biosensor action at two differ-
ent concentrations of the first substrate s10: 3.4 ×10−4M (curves 1 and 3)
and 1.36 ×10−3M (2, 4) and two different concentrations of the first enzyme
e1: 3.2 ×10−8M (1, 2) and 3.2 ×10−5M (3, 4).
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The steady-state response is monotonically increasing non-linear func-
tion of dimensionless partition coefficient (4.5) for all the analysed param-
eter values (Fig. 4.9). The largest increase of approximately five times is
achieved for the largest analysed concentrations of e1 = 3.2 ×10−5M and s10

= 1.36 ×10−3M (curve 4), while the smallest of approximately two times is
for the smallest concentrations.

The concentrations of the first substrate are more sensitive to the par-
tition coefficient change, than the concentrations of the first enzyme. For
the largest value of Ks1 = 1, the increase of e1 by 1000 times leads to
slight change (the pairs of curves 1 with 3, and 2 with 4). By changing
the concentration of the first substrate 4 times, and keeping the enzymatic
concentration constant, the increase is much more noticeable (the pairs of
curves 1 with 2, and 3 with 4).

The dependency of the relative biosensor response (2.43) and relative
sensitivity (2.44) on the second substrate concentration is displayed in Fig.
4.10. The calculations were carried out for three different dimensionless
enzymatic concentrations (2.47). Modelling approach with a partition coef-
ficient equal to unity (K(1,2)

s1 = K(2,3)
s1 = 1, curves 2, 4 and 6) was compared

to the one, where partition coefficient is present (K(1,2)
s1 = 0.5 K(2,3)

s1 = 2,
curves 1, 3 and 5). The concentration of the first substrate was s10 = 1.36
× 10−3M, while other parameter values were the same as in Table 4.2 and
Fig. 4.6.

Figure 4.10. The relative response (a) and relative sensitivity (b) of the
biosensor for three different values of ξ2 = 10−3 (curves 1 and 2), 10−2 (3
and 4), 10 (5 and 6) and with (1, 3 and 5) and without (2, 4 and 6) the
partitioning of compounds approach.

As one can see in Fig. 4.10a, the values of the steady-state relative
current Ir are less than 0.1 when ξ2≤ 10−1 (curves 3–6). This applies to both
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4.2. Peculiarities of the biosensor with parallel substrates conversion

cases: with and without the partition approach applied. The steady-state
biosensor response varies in several orders of magnitude for the opposite
case (curves 1–2).

It is noticeable that the concentration s10 of the first substrate highly
affects the calibration curves. When s20 > s10, the steady-state response
of the biosensor is practically independent from the concentration s20 of
the second substrate, while for s20 < s10 this dependence is approximately
linear. The highest biosensor sensitivity Brs is achieved at the smallest
enzymatic ratio ξ2 (curves 1 and 2, in Fig. 4.10b). The ratio between
the substrates concentrations s10 and s20 is also very important for the
biosensor sensitivity. In case of the relatively large concentrations of the
second substrate (s20 > s10), the biosensor sensitivity Brs is relatively small
for all the concentrations of both enzymes (Fig. 4.10b). In the opposite
case (when s20 < s10) the biosensor sensitivity increases with decreasing the
ratio s20/s10.

For all the analysed values of ξ2, the addition of the partition coefficient
decreases the relative response (Fig. 4.10a), but increases the relative sen-
sitivity (Fig. 4.10b). The impact of the partition coefficient on the relative
response is more noticeable when s20 < s10.

4.2.3.2. The application of effective diffusion coefficient

The effective diffusion coefficient approach (see Section 1.1.2.3) was
applied for external diffusion layers of the biosensor utilizing parallel sub-
strates conversion. In the simulations, the concentrations of both enzymes
were considered equal at e1 = e2 = 10−5M, other parameter values were the
same as in Table 4.2, except no partition coefficient was applied and in order
of simplicity the diffusion coefficients for all the materials were considered
equal in corresponding layers:

D(l)
c =D(l), c= s1, s2,p1,p2, l = 1,2,3, (4.6)

having D(1) = 3.1×10−10 m2s−1, D(2) = 9.8×10−11 m2s−1 and D(3) = 1.4×
10−9 m2s−1.

The impact of the enzymatic layer thickness d1 and the second sub-
strate S2 concentration s20 on the two-layered model accuracy and relative
response is displayed in Fig. 4.11. The results presented in this Section
were published in [A3].
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In the calculations, the dimensionless reaction rate ξ2 = 1000 was used,
as it corresponded to the largest errors of two-layered model as investigated
in [A3]. It was also determined, that the effective diffusion coefficient ap-
plication on the dialysis and diffusion layers is possible whenever ξ2 < 10.

The thicknesses of diffusion and dialysis layers were considered to be
equal, at d2 = d3 = 3×10−5 m.

Figure 4.11. The dependency of the relative error of two-layered model
calculations (a) as well as the relative response (b) on the enzymatic layer
thickness d1 and second substrate concentration s20.

As one can see from Fig. 4.11a, the relative error is a non-monotonous
function of the second substrate concentration, reaching the maximal values
when 10−4M < s20 < 10−3M and d1 = 3×10−4m. The maximal value of η
= 27% is reached when the concentrations s20 of the second substrate are
approximately equal to the first ones (s10).

The relative response is the increasing function of the second substrate
concentration, with the largest alteration in the above mentioned interval
(10−4M < s20 < 10−3M, Fig. 4.11b).

4.2.3.3. Impact of the Biot number

Two-layered mathematical model was used to investigate the impact
of the Biot number on the relative response and sensitivity [A4]. Fig. 4.12a
shows the influence of the Biot number at eight concentrations (s20) of the
second substrate: 1 ×10−6, 3.2 ×10−6, 10−5, 3.2 ×10−5, 10−4, 3.2 ×10−4,
10−3 and 0.1M. The Biot number Bi was varied by changing the thickness
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d23 of the merged diffusion layer between 2 ×10−6m and 2×10−3m. The
concentration of catalase was kept constant at e1 = 10×10−9M . The mag-
nitude of Bi is directly proportional to the intensity of solution stirring as
described in Section 1.2.3: the greater values correspond to more intensive
stirring and vice versa.

Figure 4.12. The dependence of the relative response (a) and relative sen-
sitivity (b) on the Biot number Bi at eight concentrations of the second
substrate: 10−6 (1), 3.2 ×10−6 (2), 10−5 (3), 3.2 ×10−5 (4), 10−4 (5), 3.2
×10−4 (6), 10−3 (7) and 0.1M (8).

As seen from Fig. 4.12a, the normalized steady-state current is an
increasing function of the concentration s20 of the second substrate S2 and
is a monotonous decreasing function of the Biot number Bi. The decrease
is mostly noticeable for the smaller concentrations of the second substrate.
The relative response for the smallest value of analysed concentration (s20 =
1 ×10−6M, curve 1) of the second substrate changes approximately tenfold
by changing the intensity of the stirring. The normalised current Ir becomes
practically stagnant at high values of s20 (curves 7 and 8).

As it is seen from Fig. 4.12b, the biosensor sensitivity Brs is higher at
greater values of Bi rather than at lower ones, meaning that the sensitiv-
ity can be increased by increasing the intensity of the stirring in the bulk
solution. However, at extremely low concentrations of S2 (curves 1 and 2),
Brs becomes slightly non-monotonous function of Bi. The sensitivity de-
creases with the increase of s20 concentration. The dimensionless sensitivity
is less than 0.2 in the whole domain of analysed Biot numbers for the largest
concentrations (s20 > 10−3M) of the second substrate S2.
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4.2.3.4. Half maximal effective concentration

As it was mentioned in section 1.2.3, the half-maximal effective con-
centration C50 is one of the most important parameters, describing the
selectivity of the analysed biosensor. The dependence of C50 for the biosen-
sor utilizing parallel substrates conversion (as defined in Section 2.2.4)
on the dimensionless reaction rate ξ1 and enzymatic layer thickness d1

was investigated with two layered mathematical modelc̃iteAseris2012. The
diffusion coefficients were considered equal (4.6) for all the substances,
D(1) = 3.0× 10−10 m2s−1, D(23) = 6.0× 10−10 m2s−1. The merged layer
thickness was considered to be d23 = 10−4m, while other parameters were
as defined in Table 4.2.

Fig. 4.13 shows the half maximal effective concentration C50 versus
the dimensionless reaction rate ξ1 (a) as well as the enzymatic membrane
thickness d1 (b). The following three concentrations s10 of the first substrate
were analysed: 10−3, 3.16 × 10−3 and 10−2M. The dimensionless reaction
rate ξ1 was varied in seven orders of magnitude by changing the values of
e1 and e2 as defined in 4.3.

Figure 4.13. The half maximal effective concentration C50 versus the di-
mensionless reaction rate ξ1 (a) and versus the enzyme layer thickness d1
(b). Changed values were: s10 (a): 10−3 (1, 4), 3.16 × 10−3 (2, 5) and 10−2

(3, 6)M, d1 (a): 10−6 (1-3) and 10−3 (4-6) m. and ξ1 (b): 10−3 (1), 10−1

(2), 1 (3), 10 (4), 102 (5) and 103 (6).

As one can see from Fig. 4.13a, the half maximal effective concentra-
tion is slightly non-monotonous function of the dimensionless reaction rate
for the smaller values of the enzyme thickness (d1 = 10−6 m, curves 1-3).
The highest value of the half maximal effective concentration C50 ≈ 5 ×
10−3M is reached with the smallest value of the enzyme thickness d1 and
the largest concentration of the first substrate (curve 3) at ξ1 = 1 dimen-
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sionless reaction rate. The relative difference between the values of C50 for
any of the two neighbouring curves remains the same in all the interval of
the dimensionless reaction rate.

The dimensionless reaction rate affects the half maximal effective con-
centration when ξ1 > 0.1 for all the analysed concentrations of the first
substrate. The greater dimensionless reaction rate represents smaller val-
ues of C50. When ξ1 ∈ [1; 103] the values of the half maximal effective
concentration lowers by one order of magnitude for the smaller thickness of
enzyme layer (d1 = 10−6m, curves 1-3) and by more than 2 orders of mag-
nitude for the larger one (d1 = 10−3m, curves 4-6). For the smaller values
of the dimensionless reaction rate (ξ1 < 1) and both analysed enzyme layer
thicknesses d1, C50 remains almost constant.

The results displayed in Fig. 4.13b confirm the results shown in Fig.
4.13a: the largest half maximal effective concentration C50 can be reached
by choosing the thinnest possible enzyme layer. The maximal effective
concentration C50 is practically invariant to changes in the thickness d1 of
the enzyme layer at low values of the dimensionless reaction rate (ξ1 < 1)
as well as when the biosensor response is under diffusion limitation (σ2

1 �
1 and σ2

2� 1). Otherwise, the concentration C50 increases with decreasing
the thickness d1.

4.2.3.5. Impact of the diffusion modulus

The influence of the second diffusion module on the relative response
(Fig. 4.14a) and the relative sensitivity (Fig. 4.14b) was investigated at
three different concentrations s20 of the second substrate (10−6, 10−4 and
10−2M) and three different concentrations e1 of the first enzyme (10−8,
5×10−7 and 10−6M) for the biosensor utilizing parallel substrates conver-
sion [A8]. By changing the thickness of the enzymatic layer between 5
×106m and 5 ×106m and the concentration of the second substrate as de-
fined in Table 4.3, the values σ2

2 of the second diffusion module changes in
7 orders of magnitude.

As one can see from Fig. 4.14a, the relative response is a monotonous
increasing function of the second diffusion module for all the analysed values
of the biosensor parameters. The smallest concentrations (s20 = 10−6M) of
the second substrate (curves 1-3) correspond to the lowest relative responses
of the biosensor without any considerable effect of the first enzyme concen-
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Figure 4.14. The dependence of the relative response (a) and relative sensi-
tivity (b) on the second diffusion module σ2

2 at three different concentrations
s20 of the second substrate: 10−6 (1-3), 10−4 (4-6), 10−2 (7-9)M. The con-
centration e1 of the first substrate was 10−8 (1,4,7), 5× 10−7 and 10−6M.
The other parameters were as in Table 4.2.

tration. For the largest analysed concentrations (s20 = 10−2M) of the second
substrate (curves 7-9) the relative responses are considerably larger, with
a noticeable impact of the first enzyme concentration. The lowest anal-
ysed concentration e1 = 10−8M of the first enzyme (curve 7) corresponds to
the largest possible response (Ir ≈ 1), when σ2

2 > 10. The increase of the
first enzyme concentration leads to the lower values of the relative response
(curves 7-9 corresponding to e1 = 10−8,5×10−7,10−5M). The biggest rela-
tive difference between the responses for s20 = 10−2 is approximately 100,
reached at σ2

2 = 1 for the largest and smallest concentrations of the first
enzyme (curves 7 and 9).

However, for the largest relative responses the sensitivities are the
lowest (curves 7-9, Fig. 4.14b), with a small increase for the larger values
of the diffusion module. The sensitivity Brs is more than 0.4 when s20 ≤
10−4 M and σ2

2 > 1 (curves 1-5). For the smallest concentrations of the
first enzyme (e1 = 10−8M) and the smallest concentrations of the second
substrate (s20 ≤ 10−4 M) largest overall sensitivity is achieved (curves 1 and
4). A non-monotonicity is noticeable at σ2

2 ≈ 100 for the mentioned curves,
as the point of extrema corresponds to the unity of the first diffusion module
σ2

1.

4.3. Summary

The mathematical models provided in Chapter 2 were solved numer-
ically in this section. Most of the simulations were performed by applying
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schemes and algorithms provided in Chapter 3. The adequacy of the simu-
lation results were validate in different manners.

The transient and quasi-steady-state mathematical models of the
biosensor with chemically modified electrode were compared by using com-
putational grids and applying parameter sweep approach. The biosensor
action was analysed in stirred and non-stirred solutions. The parameters
affecting the error of quasi-steady-state modelling were determined. The
dependency of the half maximal effective concentration was investigated
based on the concentration of the mediator.

The simulation results of mathematical model of biosensor with paral-
lel substrates conversion presented in Section 2.2.2 were relatively close to
the experimental ones. A partition coefficient between neighbouring layers
was analysed. It was digitally proved, that partition coefficient can be used
to improve the accuracy of the mathematical model. The impact of the en-
zymatic membrane thickness, enzyme concentrations and Biot number on
the biosensor response, sensitivity and half-maximal effective concentrations
was investigated.

A possibility to apply an effective diffusion coefficient to mathematical
models of both biosensors was analysed. The parameters affecting the error
of modelling with such an approach were determined.
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Conclusions

1. The transient mathematical model of biosensor with chemically mod-
ified electrode is more accurate than one with a quasi-steady-state
assumption (QSSA) for a practically meaningful set of parameter val-
ues. The error of the QSSA is the largest for relatively small diffusion
module and relatively large Biot number. A quasi-steady-state as-
sumption can be applied for other parameter values with relative error
being less than 1%.

2. The developed mathematical model of the biosensor with parallel sub-
strates conversion can be successfully used to investigate the kinetic
peculiarities of the biosensor behaviour. Only the concentrations of
the substrate to be determined (the second substrate) less than the
concentration of the hydrogen peroxide (the first substrate) can be
suitably recognised. The largest half-maximal effective concentrations
are achieved at the largest concentrations of first substrate and the
lowest ratio of the catalase to the peroxidase.

3. The partition coefficient is a response altering parameter for the math-
ematical model of biosensor utilizing parallel substrates conversion.
The involvement of the partition coefficient impacts the relative re-
sponse and relative sensitivity, but does not change general tendencies
of the biosensor behaviour.

4. Effective diffusion coefficient can be successfully applied to merge two
diffusion-based regions into one for both analysed mathematical mod-
els. Numerical investigation showed that in most cases the error of the
merger is less than 10%.
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