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Abstract

With the coming of smart grid comes new analytical possibilities and challenges for com-
panies. Increased quantities of data open new possibilities for customer analytics like tracking
power consumption behaviors of customers or customer classification according to their electric-
ity consumption patterns or identification of pricing effect on electricity usage. Understanding
the impact of pricing structures on consumer energy usage at different times of the day can
be instrumental for energy providers and policymakers in understanding and designing pricing
strategies that not only encourage more efficient energy use but also effectively manage the
demand on the energy grid.

This paper investigates possibility to identify price sensitivity of user just from their elec-
tricity usage habits and construct segmentation model to classify them into one of load patterns

from historic electricity consumption data.

Keywords: Functional Analysis, Smart metering, Clustering, Utilities, Price Sensitivity,
FCM, CART

Santrauka

Su iSmaniyjy skaitikliy atéjimu atsiranda naujy analitiniy galimybiy ir isSukiy energetikos
jmonéms. Didéjan¢ios duomeny apimtys atveria naujas galimybes duomeny analizei, pavyzdZziui,
stebéti klienty elektros energijos suvartojimo jprocius, klasifikuoti tuos pacius klientus pagal jy
elektros energijos suvartojimo jprocius, ar identifikuot kainos poky¢io poveikj elektros energijos
naudojimui. Sios informacijos turéjimas gali buti naudingas tiek nepriklausomiems tiekéjams,
formuojant kainodaros strategijas, tiek rinkos reguliatoriams formuojant principus ir gaires skati-
nant efektyvesnj energijos naudojimg ir valdyma.

Siame darbe tiriamos galimybés nustatyti vartotojo kainy jautruma tik is jy elektros en-
ergijos suvartojimo istoriiy duomeny ir bandoma sukurti segmentavimo modelj, kuris galéty

vartotojus suklasifikuoti j grupes reiantis elektros energijos vartojimo jprociais.

Raktazodziai: Funkciniy duomeny analizé, ISmanieji skaitikliai, Energetika, Klasterizavi-
mas, jautrumas kainai, FCM, CART



1 Introduction

The energy sector in Lithuania is currently undergoing significant transformation, which,
should bring couple of changes to end users. The most substantial change is the liberalization
of the market which allows the entry of private companies into the market. This change breaks
up monopolized energy supply and empowers consumers with the choice to select their electricity
provider. As the project already reached third stage according to Lithuania’s Energy Agency
as of end of year over 1.2m users were subject to market liberalization and had picked energy
provider [I]

Concurrently, the country is advancing with the installation of a smart grid, which will bring
new possibilities and challenges for data analysis. Newest press release by countries distribution
system operators (DSO) stated that over 700 thousand smart meters were installed throughout
the country and by 2026 this number should reach 1.2 million [12]. With market liberalization
and smart grid on the way this creates new issues to energy providers, with abundance of data
and customer, with freedom to move between providers this transformation necessitates that
companies develop methods to swiftly classify and evaluate customer data.

In the wake of these developments, personalized pricing strategies can become a pivotal
approach. This strategy, which moves away from the conventional one-size-fits-all model, ac-
counts for the unique energy needs and consumption patterns of individual customers. By
adopting these personalized strategies, utilities can foster energy-saving behaviors, redistribute
consumption to off-peak periods to ease grid stress, and enhance overall energy efficiency. This
customer-centric methodology not only improves customer satisfaction and engagement but also
supports sustainable energy consumption. The latter is especially critical in the context of global
energy challenges and the imperative transition toward a more sustainable energy economy.

As it was mentioned in [5] successful implementation of personalized dynamic pricing hinges
on the development of effective customer segmentation and pricing strategies for retail electricity
consumers.Such strategies are integral for aligning pricing models with the diverse consumption
patterns and preferences of individual users, ultimately driving more efficient and equitable
energy use. One of the primary obstacles for a deep understanding of customer is gauging their
price sensitivity and willingness to pay. In the same paper [5] it was referenced that depending
on the market there might be customers who would be "willing" to pay up to 1.5 times more.
These elements are crucial for shaping pricing strategies that consumers are likely to accept
and adhere to, ensuring that dynamic pricing fulfills its potential in managing demand and
promoting, for example, sustainability. Utilities, therefore, must employ innovative approaches
to infer these critical factors, utilizing advanced data analytics tools and customer engagement
techniques to bridge the knowledge gap.

However, investigation of price sensitivity identification from load pattern proved to be futile.

Academic papers were mainly focused more on identification of macro level price elasticity,



or focused on use of quantitative data. For example in [7] household-level panel data was
used and found strong evidence that consumers respond to average rather than marginal price.
Other study in Denmark [13] used panel data from Danish Building and Housing Register and
investigated price elasticity of residential district heating demand and found significant evidence
that price elasticity varies across household groups. On the other hand there are more research
done on broader price elasticity topic. [II] conducted research on French price elasticity of
electricity expenditure of private households, or [2] did very similar analysis of price elasticity
for residential electricity consumers in Poland.

In contrast, methods to recognise and classify load profile have been researched in numerous
studies over the last 20 years. Number of papers were reviewed which took different approaches
for the same problem. The researches in [0] and [4] used a self organizing mapping neural
network to obtain the possible number of load pattern clusters, which later were used in other
supervised methods. In [I0] a bit more practical implementation was described, a Fuzzy Cmeans
(FCM) algorithm was used for load pattern recognition and Classification And Regression Tree
(CART) together with Load Characteristics Index (LCI), introduced in [3], was used for Load
profile prediction. Each of the above method has its own limitation. For example majority of
the reviewed research papers indicated different algorithms that can be used for load profile
classification, however, at the end focused on same clustering method like k-means [6]. Only
two of the reviewed papers [14] and [15] did comparison of few clustering algorithms. In [14]
number of different algorithms were examined, however, it did not managed to provide any
detailed summary of the results. On the other hand [15] compared only two algorithms, k-
means and FCM and did not find any significant differences between the received results. Some
newer papers provided more insights in using wider models such as [8] where they used spectral
clustering for feature-based pricing.

Due to all this complexity and raising need for companies to be able to classify and eval-
uate customer on the spot, for example in digital channels to offer price quote, in most cases
companies can rely only on customer’s historic energy consumption patterns. With that in
mind this paper investigates if any observable link between consumption and price sensitivity
can be identified and proposes two-way clustering method to better understand users’ electric-
ity consumption behavior. By applying this method, the research aims to identify resembling
consumption patterns and discern customers who would be subject to higher price sensitivity.
The goal of this research is not only to identify if such patterns exist but also to provide a
robust framework through which utilities can leverage consumption data for strategic customer
segmentation. This could have significant implications for the future of dynamic pricing in the
retail electricity sector, facilitating a more data-driven, customer-centric approach to energy

management.



2 Data and methodology

2.1 Data set

The data-set used in research originates from the Low Carbon London initiative [[9]], a
project spearheaded by UK Power Networks. This project, which ran from November 2011 until
February 2014, gathered detailed energy consumption data from a sample of 5,567 households
within London. The comprehensive data-set contains around 167 million observations, each
recorded at 30-minute intervals. Due to constraints related to data processing and performance,
a smaller subset consisting of 30 million observations was utilized for in-depth analysis.

The study primarily focused on households participating in a Dynamic Time of Use (ToU)
electricity pricing scheme. Participants in this scheme were informed a day in advance about the
varying electricity prices, tariffs were categorized into three levels: High, priced at 67.20 pence
per kilowatt-hour (p/kWh); Low, at 3.99 p/kWh; and Normal, at 11.76 p/kWh. In contrast,
households not enrolled in the Time of Use program were charged a consistent flat rate of 14.228

p/kWh, regardless of their time of consumption.

2.2 Pre-processing

Due to the sophisticated nature of its collection methods the data-set required pre-processing.

The initial phase of pre-processing involves a cleansing of the data to rectify any discrep-
ancies that may have arisen from malfunctions in the smart meters or from anomalies in data
transmission across the network. Notably, there were identified several instances where meters
unexpectedly reported 'null” values. These missing values are presumed to be outliers, poten-
tially resulting from technical issues such as the meter detecting unexpected voltage fluctuations
or there being a network issues etc. Because there were no information provided on the actual
smart meters used by household there was no means to validate possible causes of missing
values. To ensure the data-set’s accuracy and reliability, these null values were removed

Data-set can be expressed like this:

U=[Uy,Us ..U, ..., UN]" (1)

Ui = [tin, Wig, ooy Wiy -, Uiss)] (2)

Here U - observed household, U; - number of observations at household and N - number of
observed households.

Following the cleansing stage, the data-set is subject to a observation reduction. Given
the extensive amount of data collected over multiple days, it was necessary to condense this
information into a more manageable form. This was achieved by calculating the average daily

energy consumption for each household per time observation. Specifically, this involved taking



the mean of all the readings for each household at each 30-minute interval throughout the day.

2.3 Data Analysis and Observations
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Figure 1: Mean analysis

Each of observed households were randomly assigned to one of 12 groups and for each group
average consumption for each tariff category were calculated resulting in 48 observations. Then
B-Spline smoothing with order 6 and smoothing parameter 0.32 were applied to convert data
into functional data. As a result the Root Mean Square (RMS) variated between 0.01 and 0.02.
Further analysis of the data provided additional insights that were used further in research.
Mean and variation revealed that the highest variations in energy usage tended to occur around
the middle of the day. Interestingly, this pattern of variation was observed to varying degrees
across each of the tariff categories. The distinct trends and variations uncovered through this
analysis are visually represented in Figure

The derivative analysis conducted as part of this research served to reaffirm the trends

observed in the mean consumption graphs - Figure [T}
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Figure 2: Derivative tests



The findings from the derivative test revealed two major turning points in energy usage pat-
terns: one at the start of the day and another at the end. The start of the day is characterized
by a marked increase in energy consumption which is then followed by a period of relatively sta-
ble usage throughout midday, indicating a plateau in consumption levels. As the day progresses
towards the night, a significant drop in energy consumption is observed. Following observation
is to be expected following general cycle of humans’ activity through the day.

Interestingly Principal Component Analysis (Figure [3) showed that majority of the variabil-
ity in household energy consumption occurs primarily in the early morning hours and disappears
almost entirely by mid-day. This pattern suggests that morning energy use is a key determining
household’s overall daily energy consumption. Additionally, a Varimax Rotation provided the
same results concluding that the power consumption at the start has biggest impact explaining

general tendency of household’s average power consumption throughout the day.

PCA function 1 (Percentage of variability 99 ) PCA function 1 (Percentage of variability 97.2)
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Figure 3: Principal Component Analysis (PCA)

These insights are particularly valuable as they highlight the morning period as a critical target
for energy-saving initiatives and can guide energy providers in designing more effective energy

management strategies.

2.4 Price Sensitivity analysis

As stated before the prior knowledge of price sensitivity among consumers offers additional
strategic advantages to energy providers. By comprehending how different customer segments
respond to price changes, energy companies can tailor their pricing strategies more effectively.
This knowledge is crucial in designing dynamic pricing models, such as Time of Use (ToU)
tariffs, which can influence consumer behavior and lead to more efficient energy usage patterns.
Purpose of all these analysis was to understand if knowing electricity prices in advance has

impact on consumer behavior and their power consumption in general.



To do so the following hypothesis was derived to be tested:

Ho = p(t) = pa(t) = ps(t) = pa(?)

H, : The means are not all equal

Here each p; represent mean consumption of each tariff category
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Figure 4: fANOVA group comparison

For the purpose of analyzing variances across the means of different pricing indication groups,

functional ANOVA model was selected. Interestingly, the most pronounced differences in
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variance were observed at two key points of the day. The first significant variation occurs at the
very start/end of the day, suggesting that the initial energy usage behaviors vary considerably
under high /normal and low tariff conditions. The second notable observation of variance occurs
over lunchtime up to the end of working day. (Figure |4))

To validate the results obtained from the functional ANOVA analysis, two-sample pointwise
tests were conducted. Two-sample pointwise test, like fANOVA, designed to compare two groups
at each point in time, providing a detailed examination of the differences in variance between
them. The pointwise testing reconfirmed the findings of the fANOVA, specifically regarding
the variance between the High/Low and Normal/Low tariff groups (Figure |5). By applying
these pointwise tests, the study was able to reinforce the earlier observations that significant
differences in energy consumption patterns exist between these groups and rule out uncertain
groups (High/None, High /Normal). This additional layer of analysis strengthens the confidence
in the original fANOVA results, providing robust evidence that the price changes significantly

impacts household energy usage patterns.



3 Clustering and Results

For the purpose of identifying distinct usage patterns within the data-set, Fuzzy C-Means
clustering algorithm was employed. This method is particularly effective in partitioning the
observations into clusters, where each observation is grouped based on its proximity to the
nearest cluster mean. Unlike traditional clustering methods which assign each observation to
a single cluster, Fuzzy C-Means allows for a degree of uncertainty, enabling each observation
to belong to multiple clusters to varying extents. This soft clustering technique is especially
useful in scenarios where data points are not distinctly separable or when there is an overlap in
characteristics among different groups. In the classification aspect of the analysis, the CART
(Classification and Regression Tree) algorithm was utilized. CART is a versatile decision tree
technique that can be used for both classification and regression tasks. In this context, it serves
to classify different households based on their energy usage patterns. The algorithm works
by recursively dividing the data-set into subsets based on the attributes that most effectively
differentiate the observations. This results in a tree-like model of decisions, which can be
particularly insightful for understanding the factors that influence different energy consumption
behaviors.

Based on findings of data analysis the following characteristics were introduced for clas-

sification and regression trees (Table . The first characteristic, Load Factor, measures the

Description Time Index Definition
Load factor  0:00-24:00 al =Poygperiod/ Pmaz
0:00-24:00 a2 =Prin/ Praz
Day start 0:00-6:00 a3 =Poygperiod/ Pmaz
6:00-9:00, B
Peak wsage y7.00.91.00 4 ~Fovareriod/ Poug
9:00-17:00, B
Off-peak usage 91:00-24:00 ab =Pyugperiod/ Pavg

Table 1: Characteristics index

efficiency of electrical energy usage. A high load factor suggests more efficient and stable use of
the electric system. This metric is particularly useful in assessing how consistently electricity is
consumed. Range Ratio, quantifies the difference between the highest and lowest usage points
and provides insight into the variability of consumption, indicating the extent to which con-
sumption levels fluctuate. Additionally, Day Start usage was selected based on findings from
the Principal Component Analysis (PCA), focusing on fluctuations in electricity usage during
the early morning hours. This aspect helps in understanding the initiation of daily consumption
patterns. Lastly, the model considers Peak and Off-Peak Usage, examining fluctuations during

times of high and low electricity demand. This helps in understanding how consumption varies
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with respect to different times of the day, which is crucial for identifying usage patterns and
potential areas for efficiency improvements.

The integration of Fuzzy C-Means for clustering and CART (Classification and Regression
Tree) for classification, as applied in this research, has demonstrated noteworthy efficiency in
terms of performance. This effectiveness is particularly significant as it opens up promising
opportunities for these methods to be implemented in practical, real-world applications.

The combination of these two methods not only enhances the accuracy of the analysis but
also ensures a level of computational efficiency that makes them viable for large-scale application.
This could have significant implications in areas such as energy management, policy-making, and
customer segmentation in the energy sector. The potential for these techniques to contribute to
more efficient and sustainable energy use in real-life settings is substantial, marking an exciting

development in the field of energy data analysis.

3.1 Load Pattern Clustering
3.1.1 Data preparation

Before proceeding with clustering data had to be normalized. This process is essential for en-
abling accurate and meaningful comparisons across different households. Normalization adjusts
the data to a uniform scale, thereby facilitating a more straightforward and effective analysis
ensuring that the data-set is both manageable and primed for detailed analytical examination,
maintaining its integrity and enhancing its value for research and insights.

Simple normalization method, described in previous research [10], was chosen () - to nor-
malize data each observation from U; is divided by max U; of each U.

Thus normalized observations then can be expressed as follows:
where the max U; is the highest household consumption value observed throughout the day.

3.1.2 Clustering and Results

The determination of the optimal number of clusters for analysis presented somewhat of a
challenge, as different methods yielded varying results (Figure@. The Elbow method, a popular
method used to determine the number of clusters in a data-set, suggested the use of two clusters.
In contrast, the Gap Statistic, another widely used technique recommended to use up to ten
clusters. This discrepancy between the Elbow method and Gap Statistic results highlights a
common issue in cluster analysis - the lack of a one-size-fits-all approach to determining the
optimal number of clusters. The Elbow method, which involves plotting the explained variance

against the number of clusters and looking for a point where diminishing returns are offset by
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Figure 6: Cluster analysis

additional cost, suggested a simpler model with two clusters. However, the Gap Statistic, which
compares the total within intra-cluster variation for different numbers of clusters with their
expected values under null reference distribution of the data, indicated a more complex model
with ten distinct groups. After validating all in between options it was decided to proceed
further analysis with three clusters as it provided reasonable amount of differentiation without

adding unnecessary complexity.
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Figure 7: FCM clusters.

Fuzzy C-means cluster center plot provided promising results, as it can be seen from Figure
[7 there is clear separation between three clusters. The lack of significant overlapping regions
in the cluster plot is a key observation. When using Fuzzy C-Means clustering, some degree of
overlap is common due to the algorithm’s nature of allowing data points to belong to multiple
clusters to varying extent. However, the clear separation observed in this case suggests that

the energy consumption patterns of households in each cluster are distinct. This distinction is
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Figure 8: Clusters means.

essential for accurately categorizing households based on their energy usage behaviors.

The cluster mean plot, as shown in Figure [§] offers further insight into the distinctiveness
of the three clusters identified by the Fuzzy C-Means algorithm. Despite all three clusters ex-
hibiting somewhat similar usage patterns, they each possess distinguishable mean values. This
observation aligns with the findings from the cluster center plot, reinforcing the conclusion that
each cluster is distinguishable despite similarity in usage patterns across the clusters that can
be explained by commonalities in how energy is consumed by household consumers. However,
the differences in the mean values of each cluster highlight variations in the intensity or volume

of energy usage among them. Proceeding with CART model values from characteristics index

a1 ={P HR52 a1 =(} HR52

Figure 9: Classification and Regression Tree

(Figure [3) were used as inputs for classification tree. Classification tree was pruned with a

complexity parameter of 0.0055. This pruning process reduces the tree’s complexity without
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significantly compromising its predictive power. The resulting Figure [9] indicates that only two
characteristics from the index were significant enough to be used in the pruned classification
tree. The use of a small number of characteristics suggests that these factors are highly in-
dicative of the classification categories and that additional data points may not significantly

improve the model’s performance. The performance of the CART model was evaluated by com-

1 2 3 %

11347128 |0 92.5%
2|8 261 | 25 | 88.8%
310 2 337 | 98.5%

Table 2: Classification Results

paring the predicted results from the classification tree to the actual clustering results for each
household. Based on the results seen in Table [2| prediction accuracy for clusters 1 and 3 was
above 92% and cluster 2 was just a bit behind with almost 89%. In overall the CART model
with Characteristics Index performance in classifying households into the correct groups based

on their energy consumption patterns can be seen as highly effective.

3.2 Price Sensitivity Clustering
3.2.1 Data Preparation

For the Price Sensitivity Clustering the same pattern was used as in Load Pattern Clustering.
The objective was to validate the presence of price sensitivity among users by examining whether
the variance between electricity usage at High and Low tariff points at a given time could reveal
distinct behavioral patterns. This approach assumes that households exhibiting greater variance
in usage between the High and Low tariff times are more likely to be sensitive to price changes
and opposite to that, those with less variance may be less responsive to such pricing dynamics.
To this end, the variance for each observation point was calculated, creating a unique variance
pattern, depicted in Figure [I2] for each household.
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Figure 10: Cluster number validation
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3.2.2 Clustering and Results

Cluster plot
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Figure 11: FCM cluster center plot.

To ascertain whether a household is price sensitive, a binary classification approach was
adopted, simplifying the clustering into two distinct groups. Subsequent analyses using the
Elbow and silhouette methods (Figure confirmed the suitability of a two-cluster solution.
From Fuzzy C-means cluster center plot two cluster separation can clearly be observed (Figure

, however, higher degree of cluster overlapping is present. The cluster mean plot, as shown in
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Figure 12: Clusters means.

Figure[12] offers further insight into the distinctiveness of two clusters identified by the clustering

algorithm. Despite both clusters exhibiting similar variance patterns throughout the time, they

15



each possess distinguishable range differences. This observation aligns with the findings from
the cluster center plot, reinforcing the conclusion that each cluster is distinguishable despite
similarity in variance patterns across the clusters. This differentiation is crucial for further steps
in identifying households that exhibit price-sensitive behaviors in response to price changes.

As before conjunction of CART model and Characteristics Index (Table |3) were used to
classify households into clusters. Performance of classification was evaluated by comparing the
predicted results from the classification tree to the actual clustering results for each household.
Based on the results seen in Table [3| prediction accuracy was above 90% indicating that the
CART model performed very effectively.

1 |2 | %
1146742 | 91.7%
2111 |485]97.8%

Table 3: Classification Results

3.2.3 Result Validation

To validate whether the clustering results accurately identified households that were price-
sensitive, a part of functional data analysis was conducted. To do so, once again normalized
average daily consumption for two price tariffs for each household were calculated. To validated
clustering results pointwise ANOVA analysis were conducted for both clusters separately with
objective to investigated whether there were significant mean differences in the usage patterns

between the two tariff rates within each cluster.

Pointwise ANOVA p-values Pointwise ANOVA p-values
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Time Time

Figure 13: Clusters ANOVA analysis
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The findings from the pointwise ANOVA analysis (Figure revealed significant differences
in variance in one of the clusters. This variance indicates that the households in this particular
cluster exhibited notable differences in their energy consumption patterns when subjected to
different tariff rates. This outcome suggests that these households are responsive to price

changes, thereby validating the clustering approach.

Cluster1 Cluster2

Z statistics
0
]

Z statistics

Time Time

Figure 14: Two point test.

As in functional analysis to strengthen the findings from the pointwise ANOVA analysis,
additional verification was carried out using two-sample pointwise tests. The results of these
two-sample pointwise tests are presented in Figure[I4] The testing process reaffirmed the initial
conclusions drawn from the pointwise ANOVA analysis that significant variance observed in one

of the clusters was not a result of random variation but a consistent pattern across the data-set.
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4 Conclusions

4.1 Results

This paper presents an efficient two-stage customer segmentation methodology for electricity
customer’s classification based on load pattern recognition and customers’ behaviour suscepti-
bility to price changes.

The initial phase of the study validated the concept that users’ electricity usage patterns
can be indicative of price sensitivity. Concluded results provided interesting and somewhat
unexpected results. Contrary to the logical presumption that the financial incentives would
most significantly impact consumer behavior during peak energy consumption times, such as
early morning or evening hours post-work, the significant deviations were determined at off
peak hours. These observations indicate a variable price elasticity of electricity among con-
sumers. The notable variations in consumption during off-peak times imply that customers’
responsiveness to pricing is more multifaceted and less predictable than previously thought.

Building on these insights, the study introduces two-stage customer segmentation method-
ology. First stage provides and efficient way to classify customers into three different groups
based on their load pattern and average electricity usage. Second stage introduced innovative
way how to determine if customer’s electricity sage is susceptibility to price changes, or in other
words determine is price sensitive just from historical electricity usage data. This approach
contrasts with numerous existing studies which have predominantly relied on qualitative data
collected through surveys, or focused on macro-level patterns across the general population.

This paper shed light on the intricacies and dynamics of energy consumption behavior,
underscoring the importance for energy providers and policymakers of considering the diverse
and nuanced patterns of customer response to electricity pricing. This knowledge can be crucial
when designing more effective and tailored pricing and policy strategies for either commercial

interests and regulatory bodies.

4.2 Limitations and Further work

Looking ahead, the study opens possibilities for future research, particularly in exploring
the broader implications of these findings on energy policy and market structuring. Further
investigation could delve into how different demographic factors and regional characteristics or

seasonality influence price elasticity and consumption patterns.
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5 Appendix A

#libraries
library(fclust)
library(ppclust)
library(reshape2)
library(e1071)
library(imputeTS)
library(dplyr)
library(factoextra)
library(caret)
library(rpart)
library(ggplot2)
library(tidyr)
library(readr)
library(fda)
library(fds)
library(fda.usc)
library (£dANOVA)

library(mlr3misc)

#Data Load

#xxxx need to change to folder path where files are stored

base_path = "xxxx/LCL-June2015v2_"
file_number = 135:164

for (i in file_number) {

file_name <- paste(base_path, i, ".csv", sep = "")

var_name <- paste("suvart", i - (file_number[1]-1), sep = "")

assign(var_name, read_csv(file_name,
col_types = cols(
DateTime = col_datetime(format = "}Y-%m-%d %H:%M:%S"),
‘KWH/hh (per half hour)‘ = col_number()
)))

#Data aggregation to one data frame

#if using more than 30 files, please manually add data frame names to binding

#and removal scripts

suvart <-rbind(suvartl, suvart2, suvart3, suvart4, suvartb5, suvart6, suvart7, suvart$8,
suvart9, suvartl0, suvartll, suvartl2, suvartl3, suvartl4, suvartil5,

suvartl16, suvartl7, suvartl8, suvartl9, suvart20, suvart2l, suvart22,
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suvart23, suvart24, suvart25, suvart26, suvart27, suvart28, suvart29,

suvart30)

#Remove separate frames

rm(base_path, file_name, file_number, i, var_name, suvartl, suvart2, suvart3, suvart4,
suvartb, suvart6, suvart7, suvart8, suvart9, suvartlO, suvartll, suvartl2, suvartil3,
suvartl4, suvartlb, suvartl6, suvartl7, suvartl8, suvartl9, suvart20, suvart2i,

suvart22, suvart23, suvart24, suvart25, suvart26, suvart27, suvart28, suvart29, suvart30)

#Load Tariff Data
#xxxx need to change to folder path

tariff <- read_csv("xxxx/Tariffs.csv",
col_types = cols(TariffDateTime = col_datetime(format = "%m/%d/%Y %H:%M"),

‘Tariff¢ = col_character() ))

#Data rename and data type conversion
colnames (suvart) [1] <-"0OBJ_ID"
colnames (suvart) [3] <-"DATE_ID"
colnames (suvart) [4] <-"CONSUMP"

colnames (tariff) [1] <-"DATE_ID"
colnames (tariff) [2] <-"PRICE"

suvart$TIME_ID <- format (suvart$DATE_ID,"%H:%M:%S")
suvart$DATE_ID <- as.Date(suvart$DATE_ID)

tariff$TIME_ID <- format(tariff$DATE_ID,"%H:%M:%S")
tariff$DATE_ID <- as.Date(tariff$DATE_ID)
tariff$stdorToU <- as.character("ToU")

#Data prep for random cluster assignation
#Aggregating data to object(household) level and averaging data usage

#for observations at specific time

Ccluster<-1:12

#Random cluster number assigned for each household
#Aggregation for each household group
nmlSUM = suvart %>

group_by(0BJ_ID, TIME_ID) %>%
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summarise_at ("CONSUMP", list(mean))

dfX = dcast(nmlSUM, OBJ_ID ~ TIME_ID, value.var = "CONSUMP")

mapID = dfX[1]
mapID$Ccluster<-print(sample(Ccluster,nrow(mapID) ,replace=TRUE))

#Data set prepared with tariffs and random clusters
suvart2 <- left_join(suvart, tariff, by=c("stdorToU", "DATE_ID","TIME_ID"))
suvart2 <- left_join(suvart2, mapID, by=c("0BJ_ID"))
suvart2$PRICE = suvart2$PRICE %>/, replace_na(’None’)

#Aggregation for each cluster + tariff group
nmlSUM = suvart2 %>%
group_by(TIME_ID, PRICE, Ccluster) %>%
summarise_at ("CONSUMP", list(mean))
nmlSUM$PRICE = nmlSUM$PRICE %>% replace_na(’None’)
nmlSUM <- na.omit(nmlSUM)

dfX = dcast(amlSUM, TIME_ID ~ Ccluster + PRICE, value.var = "CONSUMP")

dfX = na_replace(dfX, 0)

B o
#Price sensitivity analysis

H e o e
#Smoothing

monRng <- c(1,48)

bspl <- create.bspline.basis(monRng, norder=6)
Lfdobjelect = int2Lfd(6)

monfdPar <- fdPar(bspl, Lfdobjelect, 0.32)
plot(bspl, lwd=2)

monMatr <- as.matrix(dfX[,-1])

elect_fda <- smooth.basis(1:48, monMatr, monfdPar)

plot(elect_fda)
plot (monMatr)

plotfit.fd(monMatr, 1:48, elect_fda$fd)

#mean Variation
vid <- mean.fd(elect_fda$fd)
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std <- sd.fd(elect_fda$fd)

plot(elect_fda, lwd=1)

lines(vid, col = 2, 1lwd = 3)
lines(vid+std, col = "blue", 1lty=2, 1lwd=3)
lines(vid-std, col = "blue", lty=2, lwd=3)

#Derivartives
#derivative 1
vel <- deriv.fd(elect_fda$fd, 1)
acc <- deriv.fd(elect_fda$fd, 2)

plot(vel, main = "First derivative")

#derivative 2

plot(acc, main = "Second derivative")

#PCA

nharm = 2

elect_pca <- pca.fd(elect_fda$fd, nharm)
plot(elect_pca$harmonics, lwd=3)

plot.pca.fd(elect_pca, xlab=’Time’)

elect_V_pca <- varmx.pca.fd(elect_pca)

plot.pca.fd(elect_V_pca, xlab=’Time’)

#data frames split according to price groups

elect_fdaH <- Data2fd(1:48, monMatr[,c(1,5,9,13,17,21,25,29,33,37,41,43)],
basisobj=bspl)

elect_fdal <- Data2fd(1:48, monMatr[,c(2,6,10,14,18,22,26,30,34,38,42)],
basisobj=bspl)

elect_fdaX <- Data2fd(1:48, monMatr[,c(3,7,11,15,18,23,27,31,35,39,43)],
basisobj=bspl)

elect_fdaN <- Data2fd(1:48, monMatr[,c(4,8,12,16,20,24,28,32,36,40,44)],
basisobj=bspl)

opar2 <- par(mfrow=c(2,2))
plot(elect_fdaH, xlab = "High")
plot(elect_fdalL, xlab = "Low")
plot(elect_fdaN, xlab = "Normal")
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plot(elect_fdaX, xlab = "None")

#£ANOVA

dta.A <- elect_fdaH
t.sq <- seq(1,48, length=501)

#fAnova analysis
#assign groups

a <- c(’High’,’Low’, ’None’, ’Normal’)

gr <- factor(c(rep(a, 12)))
t.sq <- seq(1,48, length=48)

fANOVA.pointwise(data=monMatr, groups=gr, t.seq=t.sq, alpha=0.05)

plotFANOVA(x = monMatr, group.label = as.character(gr), int = c(0, 1), means = TRUE)

#Two sample pointwise-test

opar2 <- par(mfrow=c(2,3))

stat <- Ztwosample(x=elect_fdaH, y=elect_fdal, t.seq = t.sq, namesH = "High-Low")
stat <- Ztwosample(x=elect_fdaH, y=elect_fdaX, t.seq = t.sq, namesH = "High-None")
stat <- Ztwosample(x=elect_fdaH, y=elect_fdaN, t.seq = t.sq, namesH = "High-Normal")
stat <- Ztwosample(x=elect_fdaN, y=elect_fdalL, t.seq = t.sq, namesH = "Normal-Low")
stat <- Ztwosample(x=elect_fdaN, y=elect_fdaX, t.seq = t.sq, namesH = "Normal-None")
stat <- Ztwosample(x=elect_fdal, y=elect_fdaX, t.seq = t.sq, namesH = "Low-None")

nmlSUM = suvart %>%
group_by(0BJ_ID, TIME_ID) %>%
summarise_at ("CONSUMP", list(mean))
nmlSUM <- na.omit (nml1SUM)

dfX dcast (nmlSUM, OBJ_ID ~ TIME_ID, value.var = "CONSUMP")
dfX = na_replace(dfX, 0)

#checking for cluster center number
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# Elbow method

fviz_nbclust(dfX[-1], kmeans, method = "wss") +
#theme (text = element_text(size = 16)) +
geom_vline(xintercept = 2, linetype = 2)+
labs(subtitle = "Elbow method")

# Silhouette method
fviz_nbclust(dfX[-1], kmeans, method = "silhouette")+
#theme (text = element_text(size = 16)) +

labs(subtitle = "Silhouette method")

# Gap statistic - advised: very long run time
fviz_nbclust(dfX[-1], kmeans, method = "gap_stat", nboot = 50)+
#theme (text = element_text(size = 16)) +
labs(subtitle = "Gap statistic method")

#Clustering

sumData = dfX

#normalizing data
sumDatal,-1] = t(apply(dfX[, -1], 1, function(x) (x)/(max(x))))

sumData = na.omit(sumData)

#Data split into training and test (sample_frac - proportion)
trData <- sumData %>’ dplyr::sample_frac(1)
#tstData <- dplyr::anti_join(sumData, trData, by = ’0BJ_ID’)

#FCM, 3 clusters. 100-iteracions more info
#https://www.rdocumentation.org/packages/el071/versions/1.7-3/topics/cmeans
xdf = cmeans(trDatal[,-1], 3, 100, FALSE,"euclidean", "cmeans", 2)

#Cluster center graph
fviz_cluster(list(data = trDatal[-1], cluster=xdf$cluster),
ellipse.type = "norm",

ellipse.level = 0.6,

palette = "jco",

ggtheme = theme_minimal())
trData$cluster = xdf$cluster

trData_long = gather(trData, time, measure, 2:49, factor_key=TRUE)
trData = trDatal,-50]
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#Cluster mean graph

ggplot(trData_long, aes(time, measure, group = 0BJ_ID)) +
facet_wrap(trData_long$cluster, ncol = 1, scales = "free_y") +
geom_line(color = "greyl0", alpha = 0.25) +
geom_line(data = trData_long, aes(time, measure),

color = "grey50", alpha = 0.60, size = 0.2) +

stat_summary (fun.y=mean, group=1 , geom="line", colour="blue", alpha=0.6) +
labs(x = "Time", y = "Load (normalised)") +
theme_bw ()

#Classification and regression tree
#Characteristics index
al <- (apply(trDatal, -1], 1, function(x) mean(x)/(max(x))))
a2 <- (apply(trDatal, -1], 1, function(x) min(x)/(max(x))))
a3 <- (apply(trDatal, c(2,3,4,5,6,7,8,9,10,11,12,13)], 1,
function(x) mean(x)/max(x)))
a4 <- (apply(trDatal, c(14,15,16,17,18,19,36,37,38,39,40,41,42,43)], 1,
function(x) mean(x)/max(x)))
ab <- (apply(trDatal, c(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,44,45,46,47,48,49)],

1, function(x) mean(x)/max(x)))

trData$al <- al
trData$a2 <- a2
trData$a3 <- a3
trData$ad <- a4d
trData$ab <- ab

rm(al,a2,a3,a4,ab)
trData$cluster = xdf$cluster

opar2 <- par(mfrow=c(1,2))

#CART using characteristics index values

fit = rpart(xdf$cluster™., data = trDatal,50:54], control = rpart.control(cp = 0.0001))
plot (fit)

text(fit, cex = 0.9, xpd = TRUE, digits = 1)

printcp(fit)

#Pruning

fit.pruned = prune(fit, cp = 0.0055)
plot(fit.pruned)

text(fit.pruned, cex = 0.9, xpd = TRUE, digits = 1)
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#Testing
#Applying CART to same data-set
pred <- round(predict(fit.pruned, trData),0)

#Print matrix of clustering results vs CART
table(factor(trData$cluster, levels=min(pred) :max(pred)),

factor(pred, levels=min(pred) :max(pred)))

set.seed(25) #seed used to reproduce results

#removal of unnecesarry objects

rm(bspl, dta.A, elect_fda,elect_fdaH,elect_fdal,elect_fdaN,elect_fdaX, Lfdobjelect,
monfdPar ,monMatr, stat, opar2, monRng, pred, t.sq, indexes, elect_pca, elect_V_pca,
a, gr, nharm, dfX,dfX3, fit, fit.pruned,nmlSUM3, mapID, nmlSUM,nml1SUM4,std,sumData,
trData,trData_long,vid,xdf, varin, vel, elect_fdaHl, elect_fdalLl, elect_fdaH2,
elect_fdal2, elect_fdal, elect_fda2, acc, grid_mat, mapID2, fns)

#random household clustering into one of 12 clusters
objl = suvart %>%

group_by(0BJ_ID, TIME_ID) %>%

summarise_at ("CONSUMP", list(mean))
obj2 = dcast(objl, OBJ_ID ~ TIME_ID , value.var = "CONSUMP")
mapID <- obj2[1]
mapID$Ccluster<-print(sample(Ccluster,nrow(mapID) ,replace=TRUE))
rm(objl,0bj2)
#final data set prepared
suvart3 <- left_join(suvart, tariff, by=c("stdorToU", "DATE_ID","TIME_ID"))
suvart3 <- na.omit(suvart3) #remove fixed rate observations
#unique (suvart3$PRICE)

suvart3$PRICE [suvart3$PRICE == ’Normal’] <- ’High’ #combine Normal and High groups

#Aggregation for each cluster + tariff group
nmlSUM3 = suvart3 %>%

28



group_by(0BJ_ID, TIME_ID) %>%

summarise_at ("CONSUMP", list(var)) #variance calculation

nmlSUM3 <- na.omit (nml1SUM3)

dfX3 = dcast(nmlSUM3, OBJ_ID ~ TIME_ID , value.var = "CONSUMP")
dfX3 <- na.omit(dfX3)

#checking for cluster center number

# Elbow method

fviz_nbclust(dfX3[-1], kmeans, method = "wss") +
#theme (text = element_text(size = 16)) +
geom_vline(xintercept = 2, linetype = 2)+
labs(subtitle = "Elbow method")

# Silhouette method
fviz_nbclust(dfX3[-1], kmeans, method = "silhouette")+
#theme (text = element_text(size = 16)) +

labs(subtitle = "Silhouette method")

# Gap statistic - advised: very long run time
fviz_nbclust(dfX3[-1], kmeans, method = "gap_stat", nboot = 50)+
#theme (text = element_text(size = 16)) +
labs(subtitle = "Gap statistic method")

#Clustering

#normalize data
sumData = dfX3
sumDatal,-1] = t(apply(dfX3[, -1], 1, function(x) (x)/(max(x))))

sumData = na.omit (sumData)

trData <- sumData %>% dplyr::sample_frac(1.00)

#FCM, 2 cluster, 100 iterations
xdf = cmeans(trDatal[,-1], 2, 100, FALSE,"euclidean", "cmeans", 2)

#Cluster center graph

fviz_cluster(list(data = trDatal[-1], cluster=xdf$cluster),
ellipse.type = "norm",
ellipse.level = 0.6,
palette = "jco",
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ggtheme = theme_minimal())

trData$Scluster = xdf$cluster
trData_long = gather(trData, time, measure, 2:48, factor_key=TRUE)
trData = trDatal,-50]

#Cluster mean graph

ggplot(trData_long, aes(time, measure, group = 0BJ_ID)) +
facet_wrap(trData_long$Scluster, ncol = 1, scales = "free_y") +
geom_line(color = "greyl0", alpha = 0.25) +
geom_line(data = trData_long, aes(time, measure),

color = "grey50", alpha = 0.60, size = 0.2) +

stat_summary (fun.y=mean, group=1 , geom="line", colour="blue", alpha=0.6) +
labs(x = "Time", y = "Load (normalised)") +
theme_bw()

#Classification and regression tree

#Characteristics index
al <- (apply(trDatal, -1], 1, function(x) mean(x)/(max(x))))
a2 <- (apply(trDatal, -1], 1, function(x) min(x)/(max(x))))
a3 <- (apply(trDatal, c(2,3,4,5,6,7,8,9,10,11,12,13)], 1,
function(x) mean(x)/max(x)))
a4 <- (apply(trDatal, c(14,15,16,17,18,19,36,37,38,39,40,41,42,43)], 1,
function(x) mean(x)/max(x)))
ab <- (apply(trDatal, c(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,44,45,46,47,48,49)],

1, function(x) mean(x)/max(x)))

trData$al <- al
trData$a2 <- a2
trData$a3 <- a3
trData$ad <- a4d
trData$ab <- ab

rm(al,a2,a3,a4,ab)
trData$Scluster = xdf$cluster

opar2 <- par(mfrow=c(1,2))

#CART using characteristics index values

fit = rpart(xdf$cluster™., data = trDatal,50:54], control = rpart.control(cp = 0.0001))
plot(fit)

text(fit, cex = 0.9, xpd = TRUE, digits = 1)

printcp(fit)
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#Pruning

fit.pruned = prune(fit, cp = 0.01)

plot(fit.pruned)

text(fit.pruned, cex = 0.9, xpd = TRUE, digits = 1)

#Testing
#Applying CART to same data-set
pred <- round(predict(fit.pruned, trData),0)

#Print matrix of clustering results vs CART

table(factor (trData$Scluster, levels=min(pred) :max(pred)),
factor(pred, levels=min(pred) :max(pred)))

#Validation of price sensitivity

mapID2 <- mapID

mapID <- left_join(trDatal,c(1,55)], mapID, by=c("0OBJ_ID"))

suvart3 <- suvart3[,1:6]

suvart3 <- left_join(suvart3, mapID, by=c("0BJ_ID"))

nmlSUM = suvart3 %>
group_by(TIME_ID, PRICE, Scluster, Ccluster) %>%
summarise_at ("CONSUMP", list(mean))

nmlSUM <- na.omit (nmlSUM)

dfX dcast (nmlSUM, TIME_ID ~ PRICE+Scluster+Ccluster , value.var = "CONSUMP")
dfX = na_replace(dfX, 0)

opar2 <- par(mfrow=c(1,1))

#Smoothing

monRng <- c(1,48)

bspl <- create.bspline.basis(monRng, norder=6)
Lfdobjelect = int2Lfd(6)

monfdPar <- fdPar(bspl, Lfdobjelect, 0.32)
#plot (bspl, 1lwd=2)

monMatr <- as.matrix(dfX[,-1])
elect_fda <- smooth.basis(1:48, monMatr, monfdPar)
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plot(elect_fda)
plot (monMatr)

plotfit.fd(monMatr, 1:48, elect_fda$fd)

#data split into price groups per cluster

#For PointwiseAnova

elect_fdal <- monMatr[,c(1,2,3,4,5,6,7,8,9,10,11,12,25,26,27,28,29,30,31,32,33,34,35,36)]

elect_fda2 <- monMatr[,c(13,14,15,16,17,18,19,20,21,22,23,24,37,38,39,40,41,42,
43,44,45,46,47,48)]

#for Twosample test

elect_fdaHl <- Data2fd(1:48, monMatr[,c(1,2,3,4,5,6,7,8,9,10,11,12)], basisobj=bspl)

elect_fdall <- Data2fd(1:48, monMatr[,c(25,26,27,28,29,30,31,32,33,34,35,36)],
basisobj=bspl)

elect_fdaH2 <- Data2fd(1:48, monMatr[,c(13,14,15,16,17,18,19,20,21,22,23,24)],
basisobj=bspl)

elect_fdalL2 <- Data2fd(1:48, monMatrl[,c(37,38,39,40,41,42,43,44,45,46,47,48)],
basisobj=bspl)

#mean Variation

vid <- mean.fd(elect_fda$fd)

std <- sd.fd(elect_fda$fd)

plot(elect_fda, lwd=1)

lines(vid, col = 2, 1lwd = 3)
lines(vid+std, col = "blue", lty=2, lwd=3)
lines(vid-std, col = "blue", lty=2, lwd=3)

#£ANOVA
source("C:/Users/domas/Desktop/Magis/fANOVA.R")
t.sq <- seq(1,48, length=400)

#fAnova analysis
#assign groups
a <- c(’High’,’Low’)

gr <- factor(c(rep(a, 12)))
t.sq <- seq(1,48, length=48)

fANOVA.pointwise(data=elect_fdal, groups=gr, t.seq=t.sq, alpha=0.05)

fANOVA.pointwise(data=elect_fda2, groups=gr, t.seq=t.sq, alpha=0.05)
plotFANOVA(x = elect_fdal, group.label = as.character(gr), int = c(0, 1), means = TRUE)
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plotFANOVA(x = elect_fda2, group.label = as.character(gr), int = c(0, 1), means = TRUE)

#Two sample pointwise-test

source("C:/Users/domas/Desktop/Magis/Ztwosample.R")

opar2 <- par(mfrow=c(1,2))

"Clusterl")
stat <- Ztwosample(x=elect_fdaH2, y=elect_fdal2, t.seq = t.sq, namesH = "Cluster2")

stat <- Ztwosample(x=elect_fdaH1l, y=elect_fdall, t.seq = t.sq, namesH

fANOVA.pointwise <- function(data, groups, t.seq, alpha=0.05) {
# data is matrix with time in rows and variables in columns
# group is a list names separating columns into different groups, a factor
# time scale for measures
n <- nrow(data)
pvals <- numeric(n)
lv <- levels(groups)
k <- length(1lv)
mean.p <- matrix(NA, ncol=k, nrow=n)
perm <- factorial(k)/(factorial(2)*(factorial(k-2)))
Tukey.posthoc <- matrix(NA, ncol=perm, nrow=n)
for(i in 1:n) {
dt <- data.frame((datali,]), groups)
names (dt) <- c("values", "groups")
av <- aov(values~groups, data = dt)
pvals[i] <- summary(av) [[1]]["Pr(>F)"][1,1]
mean.pli,] <- as.matrix((dt %>% group_by(groups) %>, summarise(mean(values)))[,2])
colnames (Tukey.posthoc) <- rownames (TukeyHSD(av)$groups)
Tukey.posthoc[i,] <- TukeyHSD(av)$groupsl[,4]
}

overall_mean <- apply(data, 1, mean)

oparl <- par(mfrow=c(2,1))

plot(t.seq, pvals, type="1", main = "Pointwise ANOVA p-values",
xlab = "Time", ylab="p-value", ylim=c(0,1))

lines(t.seq, rep(0.05, n), col="blue", lty=2)

mn <- min(mean.p, overall_mean)

mx <- max(mean.p, overall_mean)
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plot(t.seq, overall_mean, type = "1", main = "Group means",
xlab = "Time", ylab = "Mean", ylim = c(mn-0.05, mx+0.05))
for(i in 1:k) {
lines(t.seq, mean.pl[,i], col=i+1, lty=i+1)
}
legend("topleft", legend=c("Overall", 1lv), lty=1:(k+1), col=1:(k+1),
cex=0.5,, title="Group")
par (oparl)
opar2 <- par(mfrow=c(2,3))

for(i in 1:perm) {
plot(t.seq, Tukey.posthoc[,i], type="1",
main = paste("Tukey HSD p-values", rownames(TukeyHSD(av)$groups) [i]),
xlab = "Time", ylab = "p-value", ylim = c(0,1))
lines(t.seq, rep(0.05, n), col="blue", 1lty=2)

par (opar2)
return(list(p.values=pvals, TukeyHSD=Tukey.posthoc, gr.means = mean.p,

overal .mean=overall_mean))

# Two samples pointwise t-test

Ztwosample <- function(x, y, t.seq, alpha=0.05, namesH) {
if (class(x) != "fd") stop("X must be fd object")
if (class(y) !'= "fd") stop("Y must be fd object")
k <- length(t.seq)

mu.x <- mean.fd(x)

mu.y <- mean.fd(y)

n <- dim(x$coef) [2]
m <- dim(x$coef) [2]

delta <- (mu.x - mu.y)
delta.t <- eval.fd(t.seq, delta)

<- center.fd(x)

N
o]

z.y <- center.fd(y)

N
o]

.t <- eval.fd(t.seq, z.x)
z.y.t <- eval.fd(t.seq, z.y)
z.t <- cbind(z.x.t, z.y.t)
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if(n > k) {

Sigma <- (t(z.t) %*% z.t)/(n-2)
} else {

Sigma <- (z.t %*}% t(z.t))/(n-2)

gamma.t <- diag(Sigma)
Zpointwise <- sqrt((n*m)/(n+m)) * delta.t/sqrt(gamma.t)

crit <- qt(1-alpha/2, n-2)
crit.val <- rep(crit, k)

params <- list(critical.value = crit)

mx <- max(cbind(Zpointwise, crit.val))

mn <- min(cbind(Zpointwise, -crit.val))

plot(t.seq, Zpointwise, type="l", xlab = ’Time’, ylab = "Z statistics",
main = namesH, ylim=c(mn-0.5, mx+0.5))

lines(t.seq, crit.val, 1lty=2, lwd=2, col="blue")

lines(t.seq, -crit.val, 1lty=2, lwd=2, col="blue")

return(list(statistics.pointwise = Zpointwise,

params = params))

#End
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