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Abstract

This paper serves as a master thesis titled "Fusion of medical images and preclinical data
in ophthalmology using deep learning". It explores data fusion and compares it to simple seg-
mentation based on deep learning. At first, an overview of relevant literature is provided. It
gives knowledge about deep learning, CNV pathology, data fusion, as well as achievements in
the field. Then in order to do the task, ophthalmology data was prepared: preclinical data was
collected that would tell various information about animals, as well as two sets of images (OCT
b-scans and FA images) were annotated. Later on, three algorithms are compared. The first one
is image segmentation using the trained neural net model. Then early data fusion algorithm,
and the late data fusion algorithm both follow different approaches to the task. Results are cal-
culated: image segmentation is compared using the Dice coefficient and methods are compared
to each other using the Wilcoxon rank-sum test. Results show that data fusion using given
methods didn’t improve image segmentation: the only combination where the difference of Dice
coefficients wasn’t significant was between initial segmentation and late data fusion algorithms
for FA images, but that model had other problems. Discussions and conclusions are formed
explaining why data fusion wasn’t as good performing as expected.

Keywords: Data fusion, Choroidal neovascularization, Deep learning

Abbreviations

• CNV - choroidal neovascularization

• FA - fluorescein angiography

• MLP - multi-layer perceptrons

• OCT - optical coherence tomography

• SVM - support vector machines
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1 Introduction

Deep learning is an important tool in biomedical data analysis. Vast amounts of medical
images are being generated every moment and each of them must be examined by professionals.
Due to advancements in machine learning, doing data science projects is becoming easier. Not
only examinations can be done faster but also accurate deep learning algorithms remove the risk
of human error. On the other hand, to achieve this, deep learning models must be programmed
correctly and developed well so that it can be trusted with the task. One of the bases of a good
biomedical algorithm is accurate and representative clinical data that holds information not only
about clinical status (if a patient has the disease and how serious it is) but also phenotypical
data that might have influence. Combining both clinical data and medical images is a complex
but crucial part of biomedicine and these days it’s important that this task would be given to
deep learning so that medical examinations would become faster and more precise.

For some pathologies the parameter that defines how well treatment works is a specific
area in the image. Medical experts mark such regions of interest themselves and calculate
measurements out of that. These days such task is usually left for deep learning models where
using ground truth images a neural net model is trained that would make segmentation much
faster. Unfortunately, such models still make mistakes and aren’t perfect. One possible way
to increase performance is to make this model influenced by clinical data. Usually for humans
information is being collected like sex, age, date of examination, and so on, though in this
thesis preclinical data will be used, which means that instead of humans, tests are done with
laboratory animals (more specifically mice) for better examinations on dosage and toxicity (how
dangerous treatment might be). If preclinical data is used to improve image segmentation, such
methodology would be called data fusion.

While scientists have already made attempts to implement data fusion on various tasks
(including image segmentation), for ophthalmology (science about eye diseases) in preclinical
stages it would be a novel approach. It’s not only that ophthalmology is a relatively poorly
explored field but also preclinical stage isn’t as popular in biomedical data science as the clinical
one. Due to this, it would be interesting and useful to explore, how data fusion works with
ophthalmology images in the preclinical stage, whether it works, and what’s the best approach.

1.1 Goals and objectives

The main goal of this thesis is to test whether data fusion improves image segmentation in
ophthalmology in the preclinical stages.

To fulfill the purpose of this thesis it’s important to complete these objectives:

1. To analyze literature about relevant topics from both biological and mathematical fields.

2. To prepare preclinical data as well as medical images.
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3. To create neural net models using medical images.

4. To combine preclinical data with medical images to make segmentation more accurate.

5. To summarize results and make conclusions.

Completing all the objectives would provide the desired insight into data fusion for preclinical
ophthalmology image segmentation. To achieve this, the thesis will have the following sections:
literature analysis providing knowledge into the field and what has been done already, data
overview exploring data that was used, analytical part where algorithms will be tested and
results calculated, discussion where results will be summed up and analyzed, and conclusion
with final notes. After that references and an appendix will provide additional supporting
material.
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2 Literature analysis

In this section main terminology will be required to work with the data, as well as already
created algorithms will be explored to draw inspiration and ideas on how this idea could be
approached.

2.1 Fundamentals of artificial neural networks

The main purpose of this thesis can be achieved using deep learning. It is a technology that
by using complex levels of the algorithm with multiple layers, achieves a result that would be
difficult to define by the singular function [19]. This allows us to make important advancements
in fields like speech recognition, visual object detection, and many others.

In general, deep learning is a subfield in a broad sphere of machine learning. Machine
learning itself is at the intersection of computer science and statistics, and at the core of artificial
intelligence and data science [16]. It tries to answer two main questions: how a system learning
through experience can be created, and what are essential statistical computation-information-
theoretic laws that govern all learning systems. In recent decades data science has relied heavily
on machine learning and this amount increases every year, from economical tasks to sorting
credit card transactions into fraud or not, to language models able to answer detailed questions.
All this can be achieved when constructing various complexity models to solve these problems.

Data science models that deep learning uses have a complex structure. When training, the
algorithm has parameters that determine an output and assign weights to each. They compose
a complex neural network structure consisting of layers that each has its use when determining
the final output. The first such algorithm was invented by Frank Rosenblatt in 1957, which
was called perceptron and it forms the smallest computational unit of deep learning [31]. It’s
sometimes also called a neuron due to its similarity to a basic working unit of the brain. In
Figure 1 there is a visual representation of neuron (a) and a whole deep learning model consisting
of multiple neurons structured in layers (b).

Rosenblatt defined formula for it:

y = f(
D∑
i=1

wixi + b)

Here D is the dimension of input space, x is input vector, w is set of weights corresponding to
the input vector, b is bias, and f is activation function. Perceptron has D+1 tunable parameters
(D weights and one bias) and can be described as multiple linear regression augmented by an
output function (f), which is non-linear. The form of the activation function was originally a
step function, but now a range of monotonic functional forms, such as sigmoidal, are used.

Perceptrons are connected into structures called multi-layer perceptrons (MLP) [28]. The
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Figure 1: Visual representation of neural network fundamentals. (a) - perceptron, (b) - whole
structure consisting of multiple perceptrons, also called multi-layer perceptrons (MLP) [28]

first layer of neurons, also called the first hidden layer, would have Dn1 weights and n1 biases,
where n1 is the number of neurons in this layer. The second hidden layer would have n1n2

weights and n2 biases while for last one its nd−1nd weights and nd biases, where d is a total
number of layers and nd−1 and nd are the numbers of neurons in the second-to-last and last
layers. The total number of layers in an MLP and the number of neurons in each layer are hyper-
parameters. Due to its complex structure, MLP would have many more tunable parameters than
the perceptron. One more important thing to consider is the choice of activation functions in
each layer. What to consider is the fact that a linear activation function is typically only suitable
for the last layer and any stack of linear layers is effectively equivalent to a single linear layer.

Deep learning didn’t become popular instantly because at first weight optimization was
arduous. Because of that, the back-propagation algorithm was invented to enable the training
of MLPs with any network structure [32]. Back-propagation is an optimization algorithm that
minimizes a loss function, F, representing the goodness-of-fit of predictions to observations, for
example, the sum of squared errors. It is defined by this formula:

F =
M∑
i=1

nd∑
j=1

(T k
j − ykj )

2

Here ykj is the output of neuron j in the output layer when the network is forced with input
data sample k and T is the respective desired target, M is the size of training data, and nd is
the number of neurons in the output layer. Using this function weights can be optimized more
easily. The training of such a model is an iterative optimization process, where parameters are
updated after each iteration (also called epoch), to minimize the loss function. Such a method
of learning is called stochastic gradient descent[19].

There are multiple model architectures created. For this segmentation task, ResNet34 will be
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used. It’s an image classification model, structured as a 34-layer convolutional neural network.
ResNet34 is also a good model because it was pre-trained on the ImageNet dataset[15] that
contains more than 100,000 images with around 200 different categories. Pre-training is useful
so that the model would better know how to segment in general: neighbour pixels usually
belong to the same category, and regions of interest are rarely shaped in a specific way but
they are rather blobs. In general ResNet34 was implemented that input images were cropped
to be 224x224, then batch normalization was adopted right after each convolution and before
activation. Some of the parameters that were used when training: weights were initialized from
scratch, stochastic gradient descent was used with mini-batch size of 256, learning rate starts
from 0.1 and is multiplied by 0.1 when error stops changing, models were trained for up to 60
× 104 iterations, weight decay of 0.0001 and a momentum of 0.9 were used [17]. For all deep
learning based image segmentation tasks in this thesis ResNet34 architecture will be used.

2.2 Insight into deep learning

When working with medical images, usually supervised learning is applied. It’s a form of
machine learning where a model learns by having true references what output must be with
some kind of input (usually images themselves). This allows for making the task more precise
though requires a vast amount of ground truth images (also called annotations).

When training models there are a few things to consider. One of them is accurate data
splitting into sets [29]. Usually, there are three: training - which images will be used as inputs
for machine learning, validation - another smaller set of data to fine-tune hyperparameters, test -
data to test already trained model. The idea is that if these datasets were the same, the created
model would be overfitted on the dataset, or in other words, would be very accurate on the
current dataset but would fail when applied to new data. There are multiple ways to split the
dataset but the most important factor to consider is that all datasets should be representative
and have a similar distribution of output values, for example when doing classification, if the
training dataset has unbalanced classes, the model could learn to assign most into one, thus,
overfitting and having a bias towards the most popular class, or if it’s regression, a cluster of
similar points could shift linear function in a way that it would no longer be accurate for further
points.

Another thing to consider when training models are number of epochs. On one hand, it is
important because, after a number of epochs, the loss value might start increasing indicating
that the model is starting to overfit and, thus, losing its accuracy. It might be useful to limit
the number of epochs also due to computational resources and time. Even though computers
are increasing in power at high speeds, training deep learning models requires a lot of power. It
might be possible to train it on a simple computer but it might require an unreasonable amount
of time, thus, creating an obstacle loosely related to the machine-learning model itself.

7



One more thing to consider when training a model is the task itself. One of the most popular
ones is the binary classification where the model calculates a real value or more in N-dimensions
and based on either threshold or hyperplane assigns it to either of two classes [19]. For example
in some cases, it could be useful when trying to determine whether pathology is present in
a medical image or not. However, in some cases, just binary classification isn’t enough. It
may require classification into more groups or assigning multiple labels. This could make the
model less accurate though provides more useful clinical information. Another common task,
though not present in this thesis, is regression where a continuous variable is being predicted,
for example area affected by pathology. This would require different models and approaches
(accuracy metric would be different, other type of models would be required, and so on).

It is no news that deep learning technology is used when working with medical images.
Understanding how it works and what is needed to create a model to apply in medical fields is
an important task in data science.

2.3 Choroidal neovascularization

Choroidal neovascularization (CNV) is an eye disease that makes blood vessels grow through
Bruch’s membrane into the retina, damaging it and destroying photoreceptors. Leakage of reti-
nal edema and hemorrhage from it threatens vision sharpness. CNV is part of the spectrum
of exudative (when liquids from blood vessels escape through pores or breaks in the cell mem-
branes) age-related macular degeneration (AMD), thus, meaning that getting older is the biggest
factor, though genetics are also important. Alterations in the normal transport of metabolites,
ions, and water through Bruch’s membrane in age-related macular degeneration, alter the nutri-
tion and stability of retinal pigment epithelium (RPE) from choriocapillaris and the transport of
waste out from the neurosensory retina. Hypoxia leads to VEGF (Vascular endothelial growth
factor) being released by the RPE, which initiates a cascade of angiogenic responses at the
level of the choroidal endothelium. Bruch´s membrane damage is required to allow the passage
of abnormal neovascular vessels from the choroidal vasculature through the breaks in Bruch’s
membrane to the retina[18].

Research analyzing choroidal neovascularization started over three decades ago. Pretty soon
its standard procedure was to use popular mouse strain c57bl/6jrj for noninvasive imaging
modalities. CNV can be monitored at different timepoints which allows for a decreased number
of animals used. A standard procedure to work with choroidal neovascularization using mice
would look like this [26]:

1. Inspect eyes for any abnormalities. Similarly to humans, mice can have unrelated medical
conditions that could affect analysis and it is important to take that into account.

2. Weight the animal.

8



3. Calculate and prepare anesthetics to use, based on the weight of the mice. For it these
compounds are used: a mixture of medetomidine (1 mg/kg), ketamine (75 mg/kg), and
distilled water (0.9% NaCl solution) at a ratio of 1:1.5:2.5, or ketamine (40-75 mg/kg),
xylazine (5 mg/kg), and distilled water (0.9% NaCl solution) at a ratio of 1:2.5:1; for a 20
g mouse, inject 0.1 mL of mixture.

4. Inject anesthetic within the peritoneal cavity (the area that contains the abdominal or-
gans).

5. Place the mouse back to the cage and wait until it’s anesthetized, which can be confirmed
by the lack of a pedal reflex.

6. Ensure the use of laser safety personal protective equipment.

7. Turn on a slit lamp and a 532 nm diode laser.

8. Remove the mouse from the cage and place it on the heating pad (they are used to warm
animals quickly and to use before, during, and after surgical procedures).

9. Apply one drop of tropicamide for pupillary dilation and then wait for 3 to 5 minutes for
full (3 mm) pupillary dilation.

10. Place the mouse on the stage of the slit lamp.

11. Place one drop of ophthalmic liquid gel on a coverslip to applanate the cornea.

12. Orient the mouse eye with the optic nerve head in the center.

13. Set the laser power to 100 mW, the duration to 100 ms, and the spot size to 50 µm.

14. Focus the laser beam on the retinal pigment epithelium (RPE). It is a pigmented cell layer
just outside the neurosensory retina that nourishes retinal visual cells

15. Make three laser shots into one eye by avoiding retinal blood vessels ideally at the 4, 8,
and 12 o’clock positions around the optic nerve, respectively. Inspect the fundus of the
eye after all laser shots for the absence of retinal bleeding. The contralateral eye is used
as a non-lasered control.

16. Discard the coverslip and place the mouse back on the heating pad.

17. Apply one drop of PEG gel on both eyes.

These 17 steps induce artificial choroidal neovascularization - if there is leakage of fluids
around all three shots (mentioned in step 15), the procedure is successful and the animal can
be used in studies.
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2.4 Data formats

To analyze CNV, some medical images are taken. One of them is fluorescein angiography
(FA). Fluorescein is a diagnostic contrast agent. Injected to eye it reveals how blood flows
through vessels. For CNV particularly it’s useful because it would help in the detection of
abnormal blood vessels or even their exudation. Together with fluorescein angiography infrared
(IR) images are taken that better reveal the whole surface of an eye instead of just showing
blood flow [24]. Figure 2 shows examples of both images. In these images, as well as in VIP
for optical coherence tomography (explained later) the middle optic nerve can be seen, also
branching out are blood vessels.

Figure 2: Example of fluorescein angiography (left) and infrared (right) images. In both images,
4 lesions can be seen that imitate CNV where blood vessels grow from choroid to retina damaging
it [41]

Before mentioned article [26] also provides workflow on how FA should be imaged:

1. Remove the mouse with the holder and place it on the FA system (for example one of
them can be Heidelberg Spectralis HRA2).

2. Focus on laser burn areas of the fundus of the eye using infrared reflectance mode with
the head of the optic nerve in the middle of the viewing window.

3. Inject 0.1 mL of 5% fluorescein sodium salt for a 20 g mouse in the fatty tissue, just under
the skin or within the peritoneal cavity.

4. Focus on the choroidal level and take an image from the choroidal focus level.

5. Re-focus at the retinal level and take an image.

6. Wait for 30 s and repeat steps 4 and 5.

7. Remove the mouse from the holder and place it on the heating pad.
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8. Reverse anesthesia by α2-antagonist for medetomidine, atipamezole (0.5 mg/kg), or simply
wait for animal recovery from anesthesia.

9. Repeat in vivo FA imaging in anesthetized animals on the follow-up days, for example, 5,
10, and 14 can be used, depending on the study design.

Another data format that is used when working with CNV is optical coherence tomography
(OCT). It is non-invasive imaging tests that use light waves to take cross-section pictures of
the retina. Usually, 1000 images are taken for one eye that together make a 3D scan. One
such image is 1000x1024 pixels and it’s called a b-scan while their combination of them taking
one specific height (looking from a b-scan perspective) is called volume intensity projection
(VIP). To work more effectively, spectral domain optical coherence tomography (SD-OCT) was
developed that make this process faster and more accurate [40].

Figure 3: Image to better understand OCT. An image is a b-scan, it shows retina layers and
choroid (layers under the retina). B image is more general showing that it’s a 3D scan. C image
is a projection made using all b-scans, called VIP [13]

Another example that could understand not only OCT but also CNV better is a collage of b-
scans showing how lesions progress during days. To imitate choroidal neovascularization, Bruch’s
membrane must be damaged manually using a laser. This is being done using corresponding
devices by professionals so that the procedure would be precise and do as little harm to animals
as possible. In a collage of Figure 4 three CNV lesions for one eye can be seen.

In before mentioned article about procedures, workflow for OCT imaging was provided too
[26]:

1. Place the animal into the rodent alignment stage and immobilize the head.
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Figure 4: OCT collage. In VIP positions lesions can be seen. Red, green, and blue circles show
the positions of each lesion. Next, there are columns for each timepoint (baseline and day 0 is
same day just one is before doing lesions, other is after) [26]

2. Align the lens of the SD-OCT system (for example Bioptigen/Leica Envisu R2200) to face
the eye for in vivo imaging using X- and Y-stage controllers.

3. Perform SD-OCT scans to verify breaks of Bruch’s membrane. Once the SD-OCT scans
the whole eye, manually move the reference line on the lasered sites. Breaks of Bruch’s
membrane should be visible in lasered areas. Those are the three damaged spots seen in
Figure 4.

Apart from the segmentation of lesions, another important parameter that would tell how
treatment affects pathology is CNV grading. On induction day (usually called day 0), for every
lesion a score is determined whether Bruch’s membrane was damaged or not (1 - if it was,
0 - no). It is uncommon to have 0 in this case and such laser shots are considered wrong.
Then for all the other days where Bruch’s membrane was damaged, another score is determined
for every lesion observed by comparing dynamics of fluorescein signal in a series of retinal FA
images: 0 - the normal appearance of retina, 0.5 - faint staining of leakage, 1.0 - CNV areas
are leaky. Such a parameter is important for all time points and lesions because the treatment
is supposed to decrease the amount of blood vessels but leaky areas would determine that it’s
not working. The article suggesting this [26] also made useful advice to use OCT imaging for
additional confirmation or additional FA scans where the presence of intraretinal fluid in OCT
images would make CNV grading not trivial. Although it’s a useful variable when working with
CNV, in this thesis it won’t be used as the main goal is to test image segmentation and it can’t
be used as preclinical parameters, because its value on day 0 isn’t useful (all lesions are leaking
because the wound is fresh).

Using such images together with clinical data choroidal neovascularization can be analyzed.
Numerical parameters of lesions’ area and volumes throughout timepoints would show the de-
velopment of disease and could help to discover what might influence it.
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2.5 Data fusion

Data fusion is a process where data is joined from multiple modalities to get more informa-
tion and create better-performing models [10]. Multiple modalities in data science mean that
different types of data are used: they can be visual images, tabular data, audio, and so on. In
this thesis, only tabular data and images are used. It allows to create pipeline incorporating
various types of data and even predictions for more accurate final results. Depending on which
level of data is combined, there are three types of data fusion:

• Early fusion, also known as feature level fusion, joins modalities before feeding into one
single machine-learning model for training. Different inputs can be fused both by con-
catenation or pooling and fusing extracted features.

• Joint fusion, also called intermediate fusion, combines learned feature representations from
intermediate layers of neural networks with features from other modalities as input to a
final model.

• Late fusion, also known as decision-level fusion, is a process of leveraging predictions
from multiple models to make a final decision. In other words, instead of combining data
modalities, late fusion combines predictions made on said data.

Models structured in more complex ways allow to not only solve more difficult tasks but also
lets use various sources of data. One such example is Huang et al. building a model to automat-
ically predict the presence of pulmonary embolism [9]. Data collected by Stanford University
was used, medical records were preprocessed and radiology reports were composed and then
two models were built: one using clinical data, one using medical computed tomography scans.
They were combined to form the final result, whether a patient has a pulmonary embolism. It
can be seen that the late fusion type was used there.

Another approach to performing medical research by doing data fusion was made by Lu et
al. [20]. A joint fusion model was constructed to predict lymph node metastases of pancreatic
cancer. Similarly to the previous example, both clinical data and contrast-enhanced computed
tomography scans were taken for input, though in the whole pipeline, few models used medical
scans that generated different results which were used as inputs for higher-level models. The
final model based on three phases of contrast-enhanced computed tomography and clinical data
proved to be better than a simple one using the same data.

In a lot of cases in the medical field, both clinical data and medical images are used, and
data fusion allows solving tasks that simple machine learning algorithms wouldn’t be able to.
It’s important to note that the examples mentioned were not used with ophthalmology data
which makes the analysis in this thesis more novel.
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2.6 Achievements in the field

Before diving deeper into the data fusion, it is important to analyze what has already been
done in the field. Several scientific articles were analyzed that could give useful insight into how
goals could be achieved better.

Since one of the main sets of images (also sometimes referred to as datasets) will be optical
coherence tomography, it would be useful to explore it more deeply. Anran et al. in 2021
summarized some of the achievements when working with OCT and OCTA (optical coherence
tomography angiography) [27]. This article explores some of the problems that data scientists
face when working with such data. One of them is small sample size which occurs because
scans are difficult to make and requires preparation for scientists and expensive equipment.
Furthermore, data preprocessing is difficult to standardize because while a lot of deep learning
uses more typical data formats (like PNG images for visual-based models or CSV for more
numerical-based models), there specific OCT file format is used that requires specific software
to visually explore data or very specific libraries to work with it. Even then data itself needs
to be processed by aligning and averaging - 3D matrix which is OCT scan has retina height
fluctuating due to patient breathing which needs to be made equal across scan and then nearby
b-scans are averaged so that they would have less noise and more sharpness [34]. One more
issue is results explanation - while understanding how pathology works is one thing, another is
portraying final results from 3D scans to 2D graphs that would be simple to understand. These
and a few other issues make working with OCT scans more difficult than it would usually be in
data science. On the other hand, such data is still widely used for retinal disease detection (for
example diabetic macular edema or AMD - age-related macular degeneration) and prognosis
monitoring (like response to anti-vascular endothelial growth factor treatment).

One of the neural net models using optical coherence tomography was developed in 2021
where choroidal neovascularization was being segmented [14]. At first OCT scans were pre-
processed - aligned and averaged. This was done using custom-made algorithms. Then U-net
convolutional neural net model was created using over 1000 annotated b-scans with lesions seg-
mented in them. Such model was proven to be quite accurate and, thus, was used to segment
CNV lesions in all b-scans, and then using information about scaling (how many millimeters is
one pixel in any dimension), lesion volume was calculated that provides important information
on how pathology progresses. It was proven that calculating OCT volumes is a good measure
when analyzing how treatment works [36]. There control animals were compared to others that
were treated with aflibercept. OCT volume analysis has shown that the highest 25 mg/kg dose
significantly decreased CNV leakage area by 42% (p = 0.046) at day 5 and on day 14 it was
found that groups treated with aflibercept at a dose of 15 mg/kg or 25 mg/kg decrease CNV
volume by an average of 53%. It’s important to have this information as further analysis in
this thesis will be using the fact that aflibercept has a statistically significant effect when treat-
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ing CNV pathology and differs in results when compared to vehicle - a compound that has no
healing properties.

Similarly to before mentioned algorithm, CNV lesion segmentation was done on OCTA too.
Wang et al. created a convolutional neural network-based algorithm [37]. Two CNN models
were used: one for CNV membrane identification and segmentation, and the other for pixel-wise
vessel segmentation. The first one is used to detect whether CNV is present in the image. If it
is, the second model segments blood vessels themselves. Even though data is different, articles
like this give ideas on how similar problems could be approached.

As mentioned before, fluorescein angiography is an important data format for analyzing
choroidal neovascularization. Even back in 1986 when analyzing CNV, FA was used to check if
the lesion was leaking [5]. In this study in 28% of lesions, leakage appeared which means that
it’s not just blood vessels are growing into the retina but also they are leaking blood which has
a detrimental effect on wider parts of the retina.

Finally, it would be useful to get more insight into what could cause variability in results.
Renard et al. composed a literature review that explores this topic [30]. The authors also
propose three main recommendations to address results variability potential issues. The first
one is an adequate description of the framework of deep learning, the second - is a suitable
analysis of the different sources of variability in the framework of deep learning, and the final
recommendation is an efficient system for evaluating the segmentation results. A more precise
case in ophthalmology was performed by Choi et al. in 2020 [4]. Creating an algorithm us-
ing deep learning, showed that there is a variability of results caused by different researchers.
Thus, knowledge like this could provide some information on what is important when analyzing
ophthalmology results.

2.7 Data science tools

As the field of data science grows, so does the number of computational tools available to
use. These days building a deep learning model can be done in a few lines of code. Data
preparation and analysis is also quite automated with a lot of standard functions available. As
previous research and results in the field were explored, this subsection is for available specific
tools.

Probably the most popular programming language for data science is Python. It is a high-
level, general-purpose programming language, whose design philosophy emphasizes code read-
ability using significant indentation via the off-side rule. Deep learning and general workflows
can be done using other languages like R, MATLAB, and Java, but in this thesis, Python will
be used as it’s not only easy to read but also due to its popularity there are a lot of libraries
available (version of main libraries are provided in Appendix A).

Before working with actual images it is important to prepare the data and there are tons of
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libraries to apply. One of the most popular ones is NumPy [7] which not only holds powerful
numerical computing tools but also has commonly used data structures like numpy array, which
works both as a list but also it could be N-dimensional matrix. Additionally, some of the most
important mathematical functions are provided, from essential arithmetic mean to complex
algebra or trigonometry functions and even more. Another library for data preparation is
pandas [38]. It’s best suited for tabular data. This library provides a commonly used pandas
dataframe data structure that lets easily and intuitively manipulate values stored in a table:
sort, filter, clean, save, and read from files.

Another aspect of data preparation is visualizing it, which could be later used to show results
too. One very popular library is Matplotlib [11]. With it a lot of various plots can be made,
that can also be customized in an intuitive way. This library is often given to know when
starting as just one simple line like matplotlib.pyplot.plt(data) could simply provide a full graph
to show or understand data from. Another framework that’s less about making graphs but
more bout working with visual data is OpenCV [3]. It works with images as data providing a
lot of useful functions to alter them like ones used in morphological image processing, intensity
transformations, and so on.

While for data exploration and cleaning some of the libraries ease the job, the most essential
part is building a model. There are tons of possible models to build depending on the task,
though for this thesis deep learning models are most important, especially the ones working
with visual data. One of the most popular deep learning frameworks is PyTorch [22], which was
created in 2016 by Meta AI. It provides a user-friendly front-end, distributed training, and an
ecosystem of tools and libraries to enable fast, flexible experimentation and efficient production.
For anyone wanting to start to use deep learning in data science, PyTorch would provide simple
workflows to train models for various tasks. Another important framework is Tensorflow [2]
created in 2015 by Google. Similarly to PyTorch, Tensorflow provides pre-trained models or
simple solutions on how to build your own, and another advantage is that it can be deployed
basically everywhere: on the web, in mobile environments, and on servers. Additionally, Keras
[6] library was developed on top of Tensorflow that aims to make the code more simple and
easier to understand. Another library that may not be as popular as others but still useful,
especially for visual data, is fastai [8], which was built on top of PyTorch, in order to make
model training both more flexible and better performing, using its carefully layered architecture.

It seems like the the two main frameworks are PyTorch and Tensorflow which are the basis
of other popular libraries. Madhavan et al. in 2021 compared both in various aspects [21]:

• Ease of use. PyTorch is better at this with its intuitive functions and good integration
with Python. Meanwhile Tensorflow isn’t integrated that well, and even though it has
been updated into 2.0 version incorporating Keras, it’s not that smooth to use.

• Computational graphs. Tensorflow uses static computational graphs while PyTorch uses
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dynamic ones. What it means is that with static computational graphs user first must
define the computation graph of the model and then run the machine learning model while
dynamic type lets alter them.

• Debugging and introspection. PyTorch allows any Python debugger while Tensorflow
users must familiarize with tfdbg (TensorFlow debugger).

• Data visualizations. Both frameworks provide their own tools to visualize machine learning
models, though for Tensorflow it’s considered better.

• Data parallelism. PyTorch allows using multiple GPUs (graphics processing units) with
little effort for model training while in Tensorflow defining data parallelism requires a lot
of effort.

• Deployment. Tensorflow has built-in tools to be applied in various environments. For
PyTorch these tools are not as good and might cause more problems.

• Community support. Both have huge communities, Tensorflow is much bigger in software
production, PyTorch in research. Tensorflow seems to have more tutorials and might be
more popular in general, but both have huge support nevertheless.

Overall, it seems that PyTorch is better with all factors, except deployment and community
support, though since this paper is in the field of research, not software development, this
advantage isn’t that useful. Consequently, PyTorch is a better deep learning framework for this
project, and more specifically fastai, which was built on PyTorch, will be used.

There are other libraries that could be used. Some are alternatives to before mentioned
ones, some are supplements that would add additional functionalities, though those mentioned
in this subsection make the core of data science workflow.
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3 Data overview

In this section, input data will be reviewed. Since data fusion will be performed, it’s impor-
tant to have a good understanding of both medical images and preclinical data.

All data is provided by Experimentica Ltd.[1] Author works in this company and, thus, was
allowed to use any data owned by the company. No data related to external sponsors was used.
Data is not publically available because it’s the company’s property.

3.1 Preclinical data

There are a total of 633 mice that were used to test CNV pathology. The oldest ones were
born in 2020 Q3, thus, all analyses are relatively new. There are two main tables. One is at
the level of animal (each row is different animal), other has multiple rows containing measured
values for each combination of animal, timepoint, and lesion (one of three).

3.1.1 Information about each animal

The animal table has 36 columns though not all of them are useful. These are the most
important ones:

• study ID - in this context study is one project where a set of animals (usually from 50
to 100) are taken and all get treatment at the same time and screened at the same time.
Treatment groups are formed by sorting the same set of animals into groups and results
are usually analyzed from just one study. While studies are separate projects, selected
ones can be analyzed together because all analyze CNV in mice and they follow similar
timepoints structure. There are 9 unique studies in the dataset.

• animal ID - an identifier for a specific animal. Usually, those consist of the study name
and natural ascending number joined with a hyphen.

• vendor - shows a company that grows and provides animals. This might be important as
initial breeding conditions and animals themselves might affect results. In data only two
were present: "Janvier" and "Envigo".

• birth date shows when the animal was born.

• compound - which chemical compound was used to treat the pathology. One of the most
important ones is Eylea which is a more common name for aflibercept and as it was
mentioned before this compound has a significant effect when treating CNV[36]. Another
important compound is a vehicle: its purpose is to be a blank treatment that has no
healing properties and could show how results would look if the compound did not work
at all. These two are very useful for each study because if there is a third compound that
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is being tested, it would show whether its performance is closer to actual medicine or an
ineffective healing compound.

• cohort: since studies can have up to 100 animals, scientists can’t do all scans on the same
day, thus, the whole set is separated into a few smaller sets. While the difference between
timepoints are same between the same set of animals, the cohort allows to shift of the
exact date for some of them. In the data maximum number of cohorts was 3.

• treatment date shows when treatment was started.

• induction date - the date when CNV was induced. On this day scientists make laser shots
where Bruch’s membrane is damaged (layer separating retina and choroid) and CNV is
imitated in three different spots. For rats, it’s usually 4 (which can be seen in Figure 2)
but in this analysis only mice were used and all had 3 shots done.

• excluded - parameter whether an animal was taken for final analysis. During study animals
can be removed for various reasons: they might die too early, their retina might become
too physically distorted, or other unexpected reasons. For this analysis excluded animals
won’t be used.

• treatment group - since compounds might vary in naming across different studies, they
were all sorted into a few categories: Eylea, Other, Vehicle, Unsorted, and Untreated.
Eylea represents all compounds with aflibercept, Vehicle means all compounds that have
no healing properties, other treatment groups won’t be used as they are much smaller or
too varied inside.

Some parameters weren’t mentioned because they are equal for all animals, for example, all
of them are from the c57bl/6jrj strain and all of them are male.

3.1.2 Measured values

Another important table, which has more information about each lesion, has 57688 rows and
32 columns. While the previous table has more general information that could tell more about
the study and animals in general, this one gives a plethora of data to work with. Since not
everything will be used (because only data for annotated images will be taken), it’s important
to look through the most useful columns and some of the values that would give a better view
of how the variable looks with a bigger sample size.

The table is constructed in a way that it would be easy to make a pivot table out of this: there
are set of columns that are identifiers or could be useful as filters (like animal ID, timepoint,
treatment group, lesion ID and others) and then there is a column for parameter and then few
for value (where possible some are measured both in pixels and in millimeters). This allows
easier data analysis with tools like Microsoft Excel instead of always relying on codes.
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These are some of the most important parameters:

• CNV (choroidal neovascularization) volume - since OCT scans are 3D representations
of the retina, it’s possible to measure the lesion’s volume. Usually, they are shaped like
cones with blunt tops, though often might have cavities (empty spaces inside) or additional
sprouts. There are a total of 4777 values, Figure 5 shows their distribution. Looking at

Figure 5: Histogram showing how CNV volume values are distributed in input data, x label
shows values in cubic millimeters, y label shows frequency.

the histogram it seems that values are distributed to log-normal distribution. The average
value is equal to 0.0052, though it’s obvious that if a lesion isn’t healing well, its volume
can stray quite far from that.

• FA area - another significant parameter is the lesion’s leakage area in fluorescein angiogra-
phy (FA) scans. While OCT volume portrays better physical damage and lesion growth,
the FA area shows another aspect of CNV - blood flowing out of fragile neovascularization
structure. While some areas would be visible even without it, a huge amount of blood
leaking out would increase area. Figure 6 shows a distribution of 7093 values with a mean
of 0.0475. It seems that the FA area is also distributed in log-normal distribution, like
CNV volumes. This might indicate the general tendency of lesions: based on general
physical parameters most have similar quite low values and then usually due to ineffective
healing some tend to grow much bigger.

• Spot area in an infrared image - while FA area shows leakage area, this parameter shows
a physical area of the lesion, though in an infrared (IR) image. Also, compared to OCT,
since OCT is a 3D scan, the physical lesion’s area might depend on how VIP (image from
the same angle as FA and IR) is made. Infrared is another technique that portrays the
retina not being influenced by blood flowing or additional image construction algorithms,
thus, spot area in infrared is another physical measure that could be used for analysis.
Figure 7 shows all 2739 values that has a mean equal to 0.285. It’s obvious that a few huge
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Figure 6: Histogram showing how FA leakage areas are distributed in input data, x label shows
values in quadratic millimeters, y label shows frequency.

Figure 7: Histogram showing how lesion’s areas in infrared images are distributed, where x label
shows values in millimeters, y label shows frequency.

values make the whole histogram difficult to read. There are 99 values bigger than 0.5.
If those were filtered, values would have a much more comprehensible histogram. Figure
8 shows exactly that. While this could look like a normal distribution, overall this can’t
be accepted as there are much bigger values, also following arguments from the previous
point, it’s obvious that most of the values are quite low, except this parameter has much
fewer values that stray far from the mean.

• Distance to the optic nerve - one of the parameters that could influence how the lesion
is healing, is how far is the lesion from the optic nerve. In a mouse’s eye optic nerve is
in the middle and the net of blood vessels goes to all sides (similarly like in the human
eye) and near optic nerve blood vessels tend to be thicker and there are more of them
while they decrease in size and frequency further from the nerve. Also, it’s important to
note that distance is measured from the lesion’s center to the center of the optic nerve.
Figure 9 shows the distribution of such values. While values will never be below 0, overall
distribution in general reminds of normal distribution. There are a total of 2703 values
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Figure 8: Histogram of lesion’s areas but with filter leaving only values smaller than 0.5.

Figure 9: Histogram showing how lesion’s distances to the optic nerve are distributed in input
data. X label shows values in millimeters, y label shows frequency.

with a mean equal to 0.466±0.087.

• Distance to the nearest blood vessel - one more parameter is the distance from the lesion’s
border to the nearest blood vessel (also its border). Similarly to distance to the optic
nerve, the lesion’s position and closeness to blood vessels might influence how well it is
healing. Though it’s important to note that this measures only distance to one of the
major blood vessels, for example in Figure 2 in the FA image 11 major blood vessels
can be seen, and while the whole eye has a net of them, this parameter ignores them as
they are much less important. Figure 10 shows how values are distributed. There are
a total of 2385 values with a mean equal to 0.0301. It’s important to note, that if a
lesion is on a blood vessel, the distance is equal to 0 and this can be clearly seen in the
histogram. Overall, it’s difficult to pinpoint in what way values are distributed, though
gamma distribution with k being equal or less than 1 seems like one of the closest options.

In order to illustrate parameters in the infrared image, Figure 11 was created. It provides a
basis to understand how distance to the nearest blood vessel, distance to the optic nerve, and
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Figure 10: Histogram showing how lesion’s distances to nearest blood vessel are distributed in
the data. There x label shows values in millimeters, y label shows frequency.

lesion area is measured. While there are lines for the two closest blood vessels, only distance to
the first was used.

Figure 11: Image illustrating how preclinical parameters are measured. There lesions and blood
vessels are marked manually to illustrate important objects in the image, also lines show either
the distance to the two nearest blood vessels or the distance from the lesion’s center to the optic
nerve. Furthermore, numbers can be seen, which helps identify lesions.

Measured values can be separated into two groups here: lesion areas in OCT b-scans and
FA areas are values that will be predicted with further algorithms and a comparison will be
made. Taking the whole OCT volume is not possible as that would require having annotation
of all images in one scan - 100 images would only give information about one animal from one
timepoint. The other three parameters will be used as input. Due to this, spot area in infrared
image, distance to nearest blood vessel, and distance to optic nerve are only from day 0 because
the intention is that these are taken as information for animals and then always same value
is used. On the other hand, OCT volumes and FA area are predicted only for later days (the
earliest is the 3rd) not just because only then CNV lesion is formed but also so that there would

23



be no dependency that some scans must be made before others. For the latter reason, FA area
and lesion areas in OCT b-scans also won’t be mixed together (one won’t be input for another).

3.2 Medical images

This subsection reviews medical images that were annotated. It’s important not only to
show how they look but also to look at their respective preclinical data.

3.2.1 OCT data

Each mouse has OCT (Optical Coherence Tomography) scans number of timepoints that
were performed, the maximum can be 5. A number of timepoints depend on the study. While
usually, OCT scans have two more timepoints: baseline which is for undamaged eyes, and day
0 for recently damaged ones, they are ignored there as the former neither have CNV lesions
(though the latter has places of laser shots visible). There are a total of 599 b-scans annotated.
Figure 12 shows one of the annotations. There 2 different lesions that can be seen, also it’s
obvious that there are huge cavities - it’s important not to segment them as otherwise, they
would greatly increase area making a significant error.

Figure 12: Three images showing one of OCT b-scan annotations. On the left is an original
image, on the middle annotated contours were marked, on the right - mask of the same image.

A mask is an important thing to understand. For image segmentation, a mask is an image
that has the same dimensions as the original image it represents that has regions of interest
marked. In semantic segmentation, each pixel’s value represents which category it belongs to:
0 is usually reserved for background and in this case, 1 means CNV lesion. Bigger values could
mean other categories though for this task (segmentation for both b-scans and FA images) there
will be only these two categories.

With these annotations, it’s important to look at how annotations are distributed based on
preclinical data:
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• Vendor: 505 b-scans has "Janvier" as a vendor, 20 has "Envigo". Clear dis-balance can
be seen. Across all animals 13% of them are from "Envigo", thus, the difference is not as
huge, but still relevant. Since the vendor is a categorical variable where no category has
more importance, in further algorithms, the weights of both vendors will be equal.

• Cohort: 354 was in 1st cohort, 80 was in 2nd, 91 had no information. For this parameter
and all others that had no parameter, if no information is provided, it’s treated as a
separate category, that defaults to the most generic method, for example for early fusion
no processing is made.

• Difference between birth date and induction date in days: 67 days were for 65 b-scans, 68
for 27, 71 for 167, 74 for 13, 75 for 78 b-scans, while 175 b-scans had no information.

• Distance from lesion to the optic nerve in pixels: mean 242.64±26.9, minimum 182, max-
imum 313.

• IR area in pixels: mean 2599.58±488.33, minimum 1538, maximum 3716.

• Distance to the nearest vessel in pixels: mean 17.7±18.62, minimum 0, maximum 64.0.

In order to have a better comparison between models, it’s important to have a test dataset.
For this, 74 OCT b-scans were selected (out of the initial 599 that weren’t used for training or
validation) that have such a distribution of preclinical parameters:

• Vendor: 39 b-scans have "Janvier" as a vendor, and 35 have "Envigo".

• Cohort: 55 were in 2nd, 19 were in third.

• Difference between birth date and induction date in days: 68 days were for 35 b-scans, 72
for 20, and 73 for 19 b-scans.

• Distance from lesion to optic nerve in pixels: mean 243.69±20.3, minimum 207, maximum
267.

• IR area in pixels: mean 2701.55±640.4, minimum 1745, maximum 3956.

• Distance to the nearest vessel in pixels: mean 23.49±12.8, minimum 2, maximum 43.

3.2.2 FA images

There are a total of 664 FA (fluorescein angiography) images annotated. Figure 13 shows
one of the annotations.

It can be seen that the view is different and while b-scans usually portray one lesion and
sometimes 2 that can have the same or bigger number of contours, the vast majority (85%) of
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Figure 13: Three images showing one of FA image annotations. Same with OCT b-scan, on the
left is the original image, on the middle annotated contours were marked, and on the right it is
a mask of the same image.

FA images have 3 spots (this only applies to contours in the mask, not actual number of lesions
in eye).

Similarly to OCT data, let’s look at how annotations are distributed based on preclinical
data:

• Vendor: 466 b-scans have "Janvier" as a vendor, 192 have "Envigo", 6 have no information.
As it was mentioned before, 13% of all animals are from "Envigo", while in this case, it’s
29%. While such input doesn’t represent whole data, at least class dis-balance is not as
significant, thus, no additional measures are taken to fix it.

• Cohort: 204 was in 1st cohort, 218 was in 2nd, 65 was in 3rd, 177 had no information.

• Difference between birth date and induction date in days: mean 62.07±6.7, minimum 54,
maximum 69.

• Distance from lesion to optic nerve in pixels: mean 304.52±134.9, minimum 183, maximum
630.

• IR area in pixels: mean 5069.29±5078.1, minimum 1432, maximum 19901.

• Distance to the nearest vessel in pixels: mean 19.5±16.6, minimum 0, maximum 83.

For the test dataset, 51 images were selected that had a similar distribution of preclinical
parameters.

Just to clarify, annotated images for OCT b-scans and FA images were from different animals.
This could have been indicated by the fact that preclinical data is different.
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4 Analytical part

This section explores how data fusion was done. At first, initial segmentation was described
that would be the baseline for how the model could perform. Later different methods of data
fusion will be explained and show how they predict compared to the initial model. Finally, it’s
essential to do a comparison that would show if data fusion improves segmentation and which
approach is the best. All algorithms firstly will be tested using OCT b-scans, and then the same
practices will be applied to FA images in 5.4.

4.1 Simple segmentation model

To know whether data fusion improves segmentation, it’s important to have a model without
any fusion.

4.1.1 Initial segmentation

Semantic image segmentation was done using fastai [8] library coding with Python (versions
for most common libraries are provided in Appendix A). To do this, a dataloader was created
using SegmentationDataLoaders.from_label_func() function that was given these parameters:

• folder containing all images and their masks;

• batch size - 32 was selected for optimal segmentation;

• seed equal to 42 for random splitting;

• a parameter that shows which proportion of the dataset will be used for validation, in this
case, 0.1 was selected as there are not a lot of images so a better model was prioritized
instead of more accurate validation results;

• list of images to use (as list of Path objects);

• label function that is usually used to define labels for prediction, though this time function
would give a path where the corresponding mask file is saved,

• item transformations - how to transform each image for a model, which for this model
is equal to a list with one Resize object with value 224. It means that each image was
resized so that it would be a size of 224x224 pixels. This means that the output mask
will also be in that size. This was done to make the model faster without losing too much
information and doing this would decrease noise.

After that, a learner object was created using unetlearner object providing previously de-
scribed dataloader object, model architecture - ResNet34 was selected for this task, n_out
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parameter equal to 2 which means that output should have only two categories (background
and CNV lesion), and finally for metrics parameter Dice was chosen.

Talking about metrics, the Dice coefficient is a very important metric in image segmentation
that shows how well segmentation performs on average in all categories [12]. Because in input
images vast majority of the area is background, it’s important to measure not how many pixels
were segmented correctly but rather check how well the lesion was found. Dice metric works
in a simple way. For each category two times the intersection area is measured for annotation
(ground truth image) and prediction then it is divided by the summed area of both. Finally,
the mean of all fractions is calculated and that’s equal to Dice. The maximum value is 1 while
the minimum possible is 0. Dice metric works in a way that it punishes the model not only for
marking wrong pixels but also for failing to segment all of the true area.

Dicecategoryi =
2× (predictioni ∩ annotationi)

predictioni + annotationi

Dicefinal =

∑k
i=1 Dicecategoryi

k
.

(1)

Here i is a number of a specific category, predictioni and annotationi areas of category i from
either prediction or annotation images respectively, k is a number of categories, in this case it’s
equal to 2.

Finally, 20 epochs were selected as an optimal number for training since then the model
stops improving and it’s important not to overfit. Unless specified otherwise, all further models
will be trained using the previously mentioned parameters. Part of the code is provided in
Appendix B.

Training results show 0.902 Dice coefficient. Figure 14 shows visual results from some of
the images used for validation.

It seems that the model performs quite well as CNV lesions in b-scans might look quite
differently from each other - size might vary a lot, some have cavities, and some might physically
distort the rest of the retina making segmentation more difficult.

4.1.2 Testing data augmentation

The previously mentioned loader function has other optional parameters, for example, pa-
rameters for batch transformations (batch_tfms) that would transform images differently for
each training batch which might increase accuracy. Before accepting training parameters as
final, there was an interest in trying batch augmentations as these could make the model more
generalized.

Three were selected:

1. simple built-in augmentations. These involve changing brightness, zooming in, and slight
rotating. It was achieved in dataloader setting parameter batch_tfms equal to aug_transforms().

28



Figure 14: Image showing initial segmentation results. Two parts are from the same set, just
images were compacted to have more images in less space. The target column shows how the
image was annotated and the prediction shows the model’s attempt.

2. Flipping image - half of the images were horizontally flipped. It wouldn’t make sense to
flip images vertically as the retina in b-scans is never upside down. This was implemented
using albumentations library.

3. Scale and rotate - half of the images were randomly rescaled and rotated. Implementation
was also done using albumentations library.

For each transformation neural net was trained using before mentioned parameters. To
compare models, each Dice coefficient was calculated for test images. Then these results were
compared using the Wilcoxon rank-sum test. The Wilcoxon rank-sum test is a nonparametric
test that is often used as an alternative to the two-sample t-test. It is based solely on the order
in which the observations from the two samples fall. Observations from both samples are ranked
together. Each observation has a rank where the smallest has a rank equal to 1, the 2nd smallest
rank 2, and so on. The statistic for the test is the sum of the ranks for observations from one of
the samples. Then p-value is calculated by getting the probability of having that sum of ranks if
both samples would have the same sums [39]. All further tests will be two-sided where the null
hypothesis means that distributions of both results are identical and the alternative hypothesis
would show that they are not. A significance level equal to 0.05 is used.
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Figure 15 shows a comparison between initial segmentation where rows show which model
is compared and columns with which other model.

Figure 15: Comparison between augmentations. There p-value was transformed by subtracting
it from 1 and multiplying by -1 if the sample’s mean is lower. So values above 0.95 would mean
significantly better results, as well as values below -0.95, and all others show no significant
difference though could help in providing the general image. Also, from the color scale, it can
be seen that blue means higher values and better-performing models while red means lower
values.

The first obvious thing to notice, scaling and rotating are much worse than all other methods.
Secondly, the initial model is better than all others, even if the difference is not significant.
Default augmentation barely has any differences but because it’s still slightly lower, it was
decided to not do any augmentation further on.

4.2 Early fusion

The image segmentation algorithm for early fusion was inspired by R. Harrabi and E. B.
Braiek [25]. The idea of their algorithm is that images from different colour channels are fused
using mass functions and multi-level thresholds. The data used wasn’t part of ophthalmology.
Since this thesis uses deep learning, instead of a statistical approach, a bit more complex one
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was done. Figure 16 explains how the data fusion algorithm used in this thesis works. First, two
types of data are prepared: preclinical data and ground truth images. Then for each preclinical
parameter image’s colour channels are modified based on values of preclinical variables. Then
segmentation model is trained for each using the same masks as with the original images.
Finally, when a new image needs to be segmented, at first task is separated into a number of
parts how many preclinical parameters are used: for each image’s colour channels are modified
in the same way as in training, segmentation is done with the neural net model, and after such
segmentations are made, all are combined by iterating with 3x3 window and taking mean value
for each pixel across all segmentations. A more thorough code is provided in Appendix C.

Figure 16: Scheme explaining how early fusion algorithm works. Yellow blocks are meant to
represent where only preclinical data is used, red blocks are for only medical images, and orange
is meant to represent algorithm parts where both types of data were necessary

As it was mentioned, each preclinical parameter has its own modifications and segmentation
model. Depending on the value, a coefficient was calculated and each image’s red channel was
multiplied accordingly. Table 1 explains how the coefficient for each preclinical parameter was
calculated, and additionally when the image segmentation model was trained with modified
images, what the Dice coefficient was equal to. Coefficients ranging from 0.75 to 1.25 were
selected in a way that preclinical parameters would influence how the image looks but the
change wouldn’t be drastic, so these values should make a balance between those two sides.

Using all these models image segmentation was done. The algorithm took all annotated im-
ages in the test dataset, for each separately segmented lesion on modified images and combined
them. The final Dice coefficient is equal to 0.728 which is worse than the initial model (p-value
3.9e-05 from the Wilcoxon rank-sum test). It could be possible that modifying colour channels
make this task more complex or there are models who perform segmentation poorly and, thus,
ruin the combined result.

To check the latter hypothesis, the algorithm was run with different combinations of clinical
parameters. Table 2 shows various combinations of preclinical parameters, what Dice each has
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Table 1: Explanation how coefficient to change red colour’s channel was calculated - value before
hyphen means preclinical parameter’s value, a number after hyphen is coefficient’s value. Also,
since the image segmentation model was trained for each parameter, this table also shows the
Dice coefficient for each model.
*Table only shows minimum and maximum value, all others in the range have coefficients
assigned accordingly in a linear way
Preclinical parameter Colour coefficient Model’s dice
Vendor Janvier - 0.75, Envigo - 1.25 0.847
Cohort 1 - 0.75, 2 - 1.25 0.86
Diff. birth date-induction date 67 - 0.75, 75 - 1.25* 0.826
Lesion’s distance to optic nerve 185 - 0.75, 285 - 1.25* 0.882
IR area 1500 - 0.75, 3718 - 1.3045* 0.863
Lesion’s distance to blood vessel 0 - 0.75, 32 - 1.25* 0.852

Table 2: Dice coefficients for various combinations of clinical parameters when using early data
fusion for image segmentation in OCT b-scans
Combination of parameters Dice coefficient P-value
All except vendor 0.619 6.3e-20
All except cohort 0.816 7e-5
All except diff. birth date-induction date 0.696 3.2e-11
All except distance from lesion to optic nerve 0.714 9.2e-9
All except IR area 0.71 1e-9
All except distance from lesion to blood vessel 0.711 2.5e-9

achieved, and also the p-value from the Wilcoxon rank-sum test for each compared to initial
segmentation.

Even though trying combinations improved the model (Dice coefficient being equal to 0.816),
based on all of the Dice coefficients and p-values, the early fusion algorithm doesn’t improve
image segmentation for OCT b-scans.

4.3 Late fusion

For late fusion algorithm by Gupta et al. was adapted [33]. The general scheme is provided
in Figure 17. For a wider explanation, the code for the algorithm can be found in Appendix D.

At first ground truth images are prepared. They are used for two purposes: annotated
lesions are used for training and a semantic segmentation model is created using them. For
later purposes same model as the initial one (described in 5.1.1) was used. Annotated lesions
are important for training the late fusion model because for each image one or more bounding
boxes were created in a way that it’s limited by the most left one, most right one, highest, and
lowest points. Such a rectangle will always be parallel to the image’s borders. Another step
for each in such a rectangle is to calculate parameters or take previously mentioned preclinical
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Figure 17: Scheme explaining how late fusion algorithm works. As with the previous scheme,
red blocks represent steps where only medical images were used, yellow is where only preclinical
data was used and orange is for both.

parameters. In total 14 variables were used:

1. Brightness: pixel value

2. Mean brightness: in a 3x3 window centered on a pixel mean value was calculated.

3. Variance: similarly to the previous, the variable for current and neighbour pixels was
calculated.

4. Angle: it’s a parameter that shows in which way from the current point pixels are brighter.
While retina layers vary in brightness, CNV lesions, in general, are brighter than the
background or at least surrounding pixels (both in OCT b-scans and FA images), thus
this parameter could show whether the current pixel is at the bottom of the lesion or
maybe at the side. It’s calculated in a way that there are 8 matrices created that have
coefficients of either 1, 0, or -1. To get the angle, neighbouring values are multiplied by
these coefficients, summed and it’s important with which matrix the highest value will
be achieved, such angle would be taken accordingly. Figure 18 illustrates some of these
matrices. The current pixel’s coefficient is always 0.

5. Contour height: bounding box’s height in pixels.

6. Contour width: bounding box’s width in pixels.
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Figure 18: Some of the matrices that were used to calculate angle variables. If neighbour pixels
multiplied by the first matrix would have the highest result, the angle would be equal to 0°, if
multiplication with the second matrix would have the highest value, the angle would be equal
to 45°, if with third matrix - 270°

7. Laterality: pixels relative position in the image horizontally (it’s a continuous variable);
0 means that the pixel is on the left side, if 1 it’s on the right side.

8. Depth: pixels relative position in image vertically; 0 means that pixel is at the very top,
1 means it’s at the bottom.

9. Vendor: this and the next five parameters were taken depending on which animal was
used.

10. Cohort

11. Difference between birth date and induction date in days

12. Distance from lesion to optic nerve in pixels

13. IR area in pixels

14. Distance to the nearest vessel in pixels

The final column is ground truth value: 0 if it’s background, 1 if it’s lesion. Using all this
data Support Vector Machines (SVM) algorithm was trained using the 14 mentioned variables
as input and ground truth value as the target variable. It was achieved using Scipy library [35]
using default parameters. SVM is a supervised machine learning algorithm, that could be used
both for classification and regression, though this time it’s only used for classification. Support
vector machine is done by constructing hyperplanes. The most important step is to choose
a hyperplane in a way that the distance between the hyperplane and the nearest data point
from either set would be as big as possible, giving a greater chance of new data being classified
correctly [23].

Figure 19 shows a correlation matrix made from the table that was used to train the model.
It can be seen that apart from variables correlating with themselves, the biggest positive

correlations are brightness with average brightness (0.93), lesion’s distance to the optic nerve,
and area in infrared images (0.88). Also, quite high correlations (0.47-0.5) are between these
combinations: contour height and width, average brightness and label, simple brightness and
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Figure 19: Correlation matrix for variables used to train SVM. Blue means higher values while
red is for lower values.

label, as well as average brightness and variance. While some are expected to correlate, it’s
important to note that brightness correlates with label which explains why the angle parameter
could be useful. Apart from that, distance to the optic nerve and area in IR is unexpectedly
quite well correlated. The biggest negative correlation is between contour height and depth
(-0.51), then there is a bunch of combinations that have correlations from -0.29 to -0.2 that still
could be interesting, depth and difference in days are the most significant one and unexpected.

Then when predicting new lesions at first they are segmented using before mentioned
ResNet34 neural net model using the same parameters. After that, bounding boxes are made
and for each pixel same parameters are calculated. Using this new table SVM predicts pixel
values and they are used to improve initial segmentation.

It’s important to note that in order to make the algorithm faster, all images (both when
training and predicting) were resized to 224x224. This size was chosen because initial segmen-
tation also predicts this size of images.

Using this algorithm lesions were segmented on the test set and Dice equal to 0.817 was
achieved. Wilcoxon rank sum test showed that this method is still significantly worse than
initial segmentation (p-value is 0.009).

Figure 20 visually shows how some of the predictions look on the test dataset. It looks like
the late fusion algorithm is much more vulnerable when brightness changes, though some cases
look quite accurate.

To improve segmentation, correlations shown in Figure 19 were analyzed, and for the first op-
timization attempt only variables that correlate the most with the label were taken. More specif-
ically 6 variables have a correlation less than -0.1 or more than 0.1: brightness, avg_brightness,
variance, cont_height, depth, diff_days. SVM was trained only using these variables (their val-
ues weren’t changed) and for new images, only these values were used to fix predictions. The
Dice coefficient was calculated to be 0.82. Using the Wilcoxon rank-sum test p-value was calcu-
lated to compare optimization with initial segmentation (without data fusion) and it’s equal to
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Figure 20: Image illustrating some of the predictions. Three images are presented: the original
image, ground truth, and segmentation of the late fusion algorithm (after fixing pixels with
SVM). It’s important to note that images are cropped to better see lesions.

7.56e-16, thus, showing that still this method is significantly worse. However when compared
to unoptimized late fusion Dice coefficient though not significantly better (p-value is 0.96).

Apparently, late fusion segmentation wasn’t as accurate as the initial segmentation. Opti-
mization helped to improve the algorithm but it’s still significantly worse.

4.4 Testing methods on different task

Similarly to OCT b-scans, the same algorithms were used with FA (fluorescein angiography)
images. To know whether data fusion actually works, it’s essential to test more cases. CNV
segmentation in FA images provides a bit different angle on the problem: regions of interest
(lesions) look different, there are usually three lesions instead of either 1 or sometimes 2, and
images are a bit smaller (768x768 pixels instead of 1000x1024).

Using annotated images initial neural net model was trained. The same parameters as with
OCT b-scans were used (no data augmentation was done). It has dice equal to 0.904 which is
a bit better compared to the previous set of images.

An early fusion algorithm was applied to FA images. Table 3 shows how coefficients were
constructed to train neural net models for this set of images.

Coefficients are a bit different from the ones in Table 1 to have better use of the training
dataset and not to overfit the models.

Applying an early fusion algorithm gave a Dice coefficient equal to 0.837. Using the
Wilcoxon rank-sum test p-value was calculated and it’s equal to 4.4e-05, thus, with default
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Table 3: Table explaining how coefficient to change colour channels were calculated - value
before hyphen means preclinical parameter’s value. Table works similarly to Table 1.
*Table only shows minimum and maximum values, all others in the range have coefficients
assigned accordingly in a linear way.
**In this case green colour channel was modified using this coefficient instead of the red channel
because each value is useful though not more important than another.
Preclinical parameter Colour coefficient Model’s dice
Vendor Janvier - 0.75, Envigo - 1.25 0.847
Cohort 1 - 0.75, 2 - 1.25, 3 - 1.25** 0.86
Diff. birth date-induction date 54 - 0.75, 69 - 1.25* 0.826
Lesion’s distance to optic nerve 183 - 0.75, 630 - 1.25* 0.882
IR area 1432 - 0.75, 19901 - 1.25 0.863
Lesion’s distance to blood vessel 0 - 0.75, 83 - 1.25* 0.852

Table 4: Dice coefficients for various combinations of clinical parameters for early data fusion-
based image segmentation in FA images
Combination of parameters Dice coefficient P-value
All except vendor 0.841 2.7e-5
All except cohort 0.783 6.9e-9
All except diff. birth date-induction date 0.821 3.7e-6
All except distance from lesion to optic nerve 0.789 1.7e-8
All except IR area 0.797 5.6e-8
All except distance from lesion to blood vessel 0.78 2.2e-20

parameters early fusion for FA image segmentation is significantly worse compared to the initial
model.

As with previous images, there was an attempt to make the algorithm better by trying
various combinations. Table 4 shows various combinations of preclinical parameters. It can
be seen that the first combination where vendor, as a parameter was ignored, gave the best
results with a Dice coefficient equal to 0.841, though it’s still significantly worse than the
initial segmentation.

Furthermore, a late fusion algorithm was also applied for FA images. The same 14 variables
and parameters (including resizing to 224x224) were used as in this case it’s also important
that the pixel would be brighter, as well as the center of the lesion is usually more intensive in
colour, which could be useful for the angle parameter. Using such data SVM model was trained.
Unfortunately, compared to correlations for OCT b-scans, these weren’t as high as Figure 21
shows.

In the whole table, some high correlations can be observed: average and average brightness
(0.99), distance to optic nerve and area in infrared image (0.94), contour height, and contour
width (0.91). Unfortunately, when looking at correlations with target variables only two were
higher than 0.1: brightness and average brightness (both 0.41).
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Figure 21: Correlation matrix for variables used to train SVM with FA images. As previously,
blue means higher values while red means lower values.

When using all 14 variables to test how the algorithm performs, a Dice coefficient equal to
0.652 was observed. Even without the Wilcoxon rank-sum test (although for curiosity p-value
is equal to 3.3e-18) it is obvious that image segmentation was much worse.

Using before mentioned best correlating variables (brightness and average brightness) an
attempt was made to optimize the algorithm. Dice coefficient equal to 0.89 was calculated and
with a p-value equal to 0.21. Differently from all other data fusion attempts, in this case, even
though the model doesn’t perform as well as initial segmentation, the difference isn’t significant.
Though it would still apply that optimization didn’t help the late fusion algorithm to reach the
performance that the initial segmentation model achieved. Another reason for the previous
statement is that it only uses two variables that essentially mean the same and none of them
are preclinical, which could raise the question of whether such a model would still count as data
fusion.
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Table 5: Final results summarized. The table shows the best observed Dice coefficients on test
sets of both OCT b-scans and FA images using three tested algorithms: initial segmentation
(no data fusion), early data fusion, and late data fusion

OCT b-scans FA images
Initial segmentation 0.902 0.904
Early data fusion 0.816 0.841
Late data fusion 0.82 0.89

5 Discussion

With two different datasets and two data fusion algorithms, it was tested whether image
segmentation could be improved. Table 5 shows the best Dice coefficients achieved with each
combination. It can be seen that for both datasets initial segmentation was best performing.
Wilcoxon rank-sum test proved that differences in most results are significant (except initial
segmentation compared to late data fusion for FA images). It’s interesting to note, that the
late fusion algorithm performed slightly better which could imply that either the late fusion
algorithm is more suitable for this task or just early data fusion algorithm wasn’t as effective.
Though on the other hand, early data fusion relied more on preclinical data which was one of
the requirements for this task.

Data fusion algorithms used by other scientists proved to be successful [9] [20], thus, it is
important to discuss why in this case they didn’t work. There might be a few reasons for that.

The first reason could be that data fusion adds more complexity. For example, instead of
having just one segmentation model, the early fusion algorithm has up to a number of clinical
parameters. While one of the models could fix other models’ mistakes, optimization for both
image sets showed that some (but not the same) variables are not needed. Additionally, image
modifications are prone to errors. Tables 1 and 3 have quite a big variation of what value
corresponds to what coefficient. This creates a dilemma as to whether it’s better to make them
the same or more related to input data. In most cases range for the coefficient by which the
red channel’s value is multiplied is in the range from 0.75 to 1.25 (1 meaning it will remain
the same). Allowing bigger coefficients could make the image less recognizable while making
changes minimal doesn’t influence preclinical parameters.

Another related reason why algorithms don’t perform well enough is that data doesn’t cor-
relate well with the target variable. This was shown in Figures 19 and 21. For OCT b-scans 6
of 14 variables had an absolute correlation bigger than 0.1 while for FA images there were only
two variables that were very highly correlated with each other. Out of six preclinical parameters
intended to be used, the only difference in days between birth date and induction date barely
passed this limit and only for OCT b-scans. This could show why for FA images late fusion
algorithm without optimization performed much worse.

Speaking about preclinical parameters, it is likely that this task in general isn’t well suited
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Table 6: Dice coefficients for separate treatments for each algorithm to test whether there is a
difference between treatments, also p-values generated by Wilcoxon rank-sum test to check if
differences between Dice coefficient are significant. The table on the left shows results for OCT
b-scans, right table for FA images. "Afliber." means aflibercept, "segm." means segmentation.
OCT-bscans Aflib. Vehicle P-value
Initial segm. 0.899 0.905 0.368
Early fusion 0.759 0.884 4.712e-6
Late fusion 0.838 0.801 0.345

FA images Aflib. Vehicle P-value
Initial segm. 0.89 0.917 0.163
Early fusion 0.835 0.847 0.291
Late fusion 0.88 0.9 0.346

for data fusion. With clinical data, there are more parameters that could seem more meaningful
like body mass index, blood pressure, and harmful habits. None of these are measured for mice.
While logically variables like vendor or cohort could influence treatment, as well as the lesion’s
position in the eye, it might not be as important to treatment as parameters being measured
for humans.

Furthermore, this raises the question of whether algorithms themselves are universal. In this
thesis, preclinical ophthalmology is being analyzed. In examples mentioned before [9] [20] [25]
[33] it’s different biology field (for example, for the first two it’s respectively lung diseases and
cancer). The main focus of this thesis was on OCT b-scans. When building an algorithm for
late fusion, variables were selected both so that it would be suggested by the original author
and logical in these kinds of images. For FA images same variables were calculated. While it
can be seen that some of the same logic applies (for example brighter pixels are more likely to
belong to a lesion), based on correlation it looks like variables would need to be restructured.
That’s just between datasets of the same pathology but when images don’t just look differently
but also analyze different pathology, the same logic might no longer work.

Another question that is important when comparing algorithms is whether they preserve
biomedical tendencies. Since segmentations in general are used to speed up the process of
analyzing results and whether treatment works, it’s important that the model wouldn’t be
biased. Table 6 shows Dice coefficients separated by treatments. Only aflibercept and vehicle
were chosen as they are the most common treatments, also they biologically make the most sense
as aflibercept was proven to have healing properties [36] while the vehicle has none and they are
used for comparison. Apart from Dice coefficients, there are also p-values calculated using the
Wilcoxon rank-sum test where it was compared whether model performance is different between
treatments for the same algorithm for the same image set. Looking at the table it can be seen
that for OCT b-scans, for early data fusion algorithm difference is statistically significant, which
is unacceptable. While one such occasion isn’t definitive proof, this shows that early data fusion
algorithms shouldn’t be trusted.

All in all, because different types of data were fused for the same task, it became more
complex, and preclinical variables weren’t good enough to make up and increase the model’s
performance. Looking at the fact that early fusion algorithms can have bias on treatment, it’s
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not advised to use data fusion for this type of task. All this analysis doesn’t prove or say that
data fusion shouldn’t be used in general but rather it doesn’t work in all spheres. If preclinical
data would be more informative and better correlating, possibly the best solution would be
to create a data fusion algorithm from scratch, though that would require time and expertise.
On the other hand, initial segmentation ignoring all preclinical parameters seems like a viable
option, which is advised to use for ophthalmology image segmentation in the preclinical stage.
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6 Conclusion

The goal this thesis was trying to accomplish is whether data fusion is a good way to make
image segmentation in ophthalmology images more accurate. Relevant literature was analyzed
and two data fusion methods were found. As well as data was prepared (both preclinical data
and medical images). After doing all of the analysis few conclusions can be formulated:

1. Using just around half a thousand images semantic segmentation models were trained
that showed quite good results (Dice coefficients 0.902 for OCT b-scans and 0.904 for FA
images).

2. Early data fusion was proven to be not as good, even after its optimization (0.816 for
OCT b-scans and 0.841 for FA images).

3. Late data fusion algorithm was also proven to be worse compared to initial semantic
segmentation (Dice coefficients 0.82 for OCT b-scans and 0.652 for FA images).

4. Data fusion possibly didn’t work due to a few reasons: the task became more complex,
variables were weak and not correlating with the target variable, and algorithms could
develop bias.

To sum all of it up, the main conclusion of this thesis is that at least with tested methods
for ophthalmology in preclinical stages, data fusion shouldn’t be used for image segmentation.
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7 Appendix

This section provides supplementary material that would be too cumbersome if used in the
middle of the text.

7.1 Appendix A. Library versions

All code was done using Python version 3.10.9. Versions of most commonly used libraries:

• albumentations - 1.3.1

• fastai - 2.7.12

• fastcore - 1.5.29

• matplotlib - 3.7.0

• numpy - 1.23.5

• opencv-python - 4.7.0.72

• pandas - 1.5.3

• scikit-learn - 1.2.1

• torch - 2.0.0

• tqdm - 4.64.1

• scipy - 1.10.0

7.2 Appendix B. Code for training initial image segmentation

# input parameters

def get_image_files2(destination):

# function makes a list of all images in the folder

dest_files = os.listdir(str(destination))

files = []

for f in dest_files:

if "_mask" not in str(f):

files.append([Path(str(destination)+"/"+f))

return files

def label_func(fn):
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# label function for loading segmentation model, it defines target variable

return destination/f"{fn.stem}_mask{fn.suffix}"

destination = Path(’./oct_bscans/’)

images = [f for f in get_image_files2(destination)]

dls = SegmentationDataLoaders.from_label_func(

destination,

bs=32,

seed=42,

valid_pct=0.1,

fnames=images,

label_func=label_func,

item_tfms=[Resize(224)],

)

# training

learn = unet_learner(dls, resnet34, n_out=2, metrics=Dice())

learn.fine_tune(20)

# exporting model

model_save_path = ...

learn.export(os.path.abspath(model_save_path))

7.3 Appendix C. Code for early fusion algorithm (for OCT b-scans)

def get_px_m(imgs, x0, y0, window=3):

# gets modified value

height, width = imgs[0].shape

step = int(np.ceil(window/2))-1

xl = max(0, x0-step)

xr = min(width, x0+step)

yl = max(0, y0-step)

yr = min(height, y0+step)

ms = []

for x in range(xl, xr):

for y in range(yl, yr):

vals = [img[y,x] for img in imgs]

m = np.mean(vals)
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ms.append(m)

final_m = np.mean(ms)

return final_m

def get_dice(ann, pred):

# calculates Dice coefficient

epsilon = 1e-10

if pred.shape != ann.shape:

pred = cv2.resize(pred, (ann.shape[1], ann.shape[0]))

mask_and =np.logical_and(ann, pred)

dice1 = 2*np.sum(mask_and)/(np.sum(ann)+np.sum(pred)+epsilon)

if str(dice1) == "nan":

dice1 = 1

# adding dice for background

ann[ann == 1] = 2

ann[ann == 0] = 1

ann[ann == 2] = 0

pred[pred == 1] = 2

pred[pred == 0] = 1

pred[pred == 2] = 0

mask_and =np.logical_and(ann, pred)

dice2 = 2*np.sum(mask_and)/(np.sum(ann)+np.sum(pred)+epsilon)

if str(dice2) == "nan":

dice2 = 1

dice = np.mean([dice1, dice2])

return dice

def label_func(fn): ... # same as in Appendix B

vendor_model = load_learner(model_path1)

cohort_model = load_learner(model_path2)

difference_birth_induction_model = load_learner(model_path3)

dist_to_onh_model = load_learner(model_path4)

dist_to_vessel_model = load_learner(model_path5)

ir_area_model = load_learner(model_path6)

models = {"vendor": vendor_model, "cohort": cohort_model,

"diff_days": difference_birth_induction_model,
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"dist_to_onh": dist_to_onh_model, "dist_to_vessel": dist_to_vessel_model,

"ir_area": ir_area_model}

folder_path = ...

files = [x for x in os.listdir(folder_path) if "mask" not in str(x)]

final_table = pd.read_csv(path_of_table_with_preclinical_data)

metrics = {"filename": [], "dice": []}

new_pred = None

for f in tqdm(files):

img = cv2.imread(folder_path, 3)

# following few lines extracts animal ID from filename

animal = f[4:].replace("ion_", "ion").replace("ion-", "ion").split("_")[0]

animal = animal.replace("In", "In_").replace("ion", "ion_")

animal = animal.split("-")[0]+"-"+animal.split("-")[-1].zfill(3)

animal_info = final_table.loc[final_table["animal_id"] == animal]

preds = []

for model_key in models.keys():

value = list(animal_info[model_key])[0]

if str(value) not in ["", "nan"]:

if model_key == "vendor":

if value == "janvier":

coef = 0.75

else:

coef = 1.25

img[:,:,0] = img[:,:,0]*coef

if model_key =="cohort":

if value == 1.0:

coef = 0.75

img[:,:,0] = img[:,:,0]*coef

elif value == 2.0:

coef = 1.25

img[:,:,0] = img[:,:,0]*coef

else:

coef = 1.25

img[:,0,:] = img[:,0,:]*coef

if model_key =="diff_days":

diff_coef = abs(value-71)/16
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if value >= 71:

coef = 1+diff_coef

else:

coef = 1-diff_coef

img[:,:,0] = img[:,:,0]*coef

if model_key =="dist_to_onh":

coef = ((value-185)/(285-185))*0.5+0.75

img[:,:,0] = img[:,:,0]*coef

if model_key =="dist_to_vessel":

coef = ((value-0)/(32-0))*0.5+0.75

img[:,:,0] = img[:,:,0]*coef

if model_key =="ir_area":

coef = ((value-1500)/(3500-1500))*0.5+0.75

img[:,:,0] = img[:,:,0]*coef

model = models[model_key]

with model.no_bar():

pred, _, probs = model.predict(img)

pred = cv2.resize(np.uint8(np.array(pred)), img.shape[:2][::-1])

preds.append(pred)

height, width = img.shape[:2]

new_pred = np.zeros(img.shape[:2][::-1])

for x0 in range(0, width):

for y0 in range(0, height):

m = get_px_m(preds, x0, y0, window=3)

vals = [pred[y0, x0] for pred in preds]

m = np.mean(vals)

if m >=0.5:

m = 1

else:

m = 0

new_pred[x0, y0] = m

new_pred = new_pred.T

ann = cv2.imread("./data/oct_annotations/"+f[:-4]+"_mask.png", 0)

ann[ann>0] = 1

dice = get_dice(ann, new_pred)

metrics["filename"].append(f)

metrics["dice"].append(dice)
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7.4 Appendix D. Code for late fusion algorithm

def get_avg_and_var(img, x0, y0):

# calculates mean and variance in 3x3 window around pixel

vals = []

for x in [x0-1, x0, x0+1]:

for y in [y0-1, y0, y0+1]:

try:

vals.append(img[x,y])

except:

pass

return np.mean(vals), np.var(vals)

def get_angle(img, x0, y0):

# calculates angle parameter

if x0 in [0, img.shape[0]] or y0 in [0, img.shape[0]]:

return 0

matrixes = [

np.matrix([[ 1, 1, 1],

[ 0, 0, 0],

[-1,-1,-1]]),

np.matrix([[ 0, 1, 1],

[-1, 0, 1],

[-1,-1, 0]]),

np.matrix([[-1, 0, 1],

[-1, 0, 1],

[-1, 0, 1]]),

np.matrix([[-1,-1, 0],

[-1, 0, 1],

[ 0, 1, 1]]),

np.matrix([[-1,-1,-1],

[ 0, 0, 0],

[ 1, 1, 1]]),

np.matrix([[ 0,-1,-1],

[ 1, 0,-1],

[ 1, 1, 0]]),

np.matrix([[ 1, 0,-1],

[ 1, 0,-1],
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[ 1, 0,-1]]),

np.matrix([[ 1, 1, 0],

[ 1, 0,-1],

[ 0,-1,-1]]),

]

angles = [0,45,90,135,180,225,270,315]

this_matrix = np.matrix([[img[x0-1,y0-1],img[x0 ,y0-1],img[x0+1,y0-1]],

[img[x0-1,y0 ],img[x0 ,y0 ],img[x0+1,y0]],

[img[x0-1,y0+1],img[x0 ,y0+1],img[x0+1,y0+1]]])

best_angle = -9999

best_angle_ind = 0

for m in range(len(matrixes)):

mat = matrixes[m]

mult = np.sum(np.multiply(this_matrix, mat))

if mult > best_angle:

best_angle = mult

best_angle_ind = m

return angles[best_angle_ind]

def get_dice(ann, pred): ... # same as in Appendix C

def label_func(fn): ... # same as in Appendix B

preclinical_df = pd.read_csv(path_of_table_with_preclinical_data)

learn = load_learner(initial_model_path, cpu=False)

files = [f for f in os.listdir(input_path) if "mask" not in f]

points_df = {"id": [], "filename": [], "brightness": [], "avg_brightness": [],

"variance": [], "angle": [], "cont_height": [], "cont_width": [],

"laterality": [], "depth": [], "vendor": [], "cohort": [], "diff_days": [],

"dist_to_onh": [], "dist_to_vessel": [], "ir_area": [], "label": []}

pxi = 0

for f in tqdm(files):

# following few lines extracts animal ID from filename
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animal = f[4:].replace("ion_", "ion").replace("ion-", "ion").split("_")[0]

animal = animal.replace("In", "In_").replace("ion", "ion_")

animal = animal.split("-")[0]+"-"+animal.split("-")[-1].zfill(3)

animal_info = preclinical_df.loc[preclinical_df["animal_id"] == animal]

vendor = list(animal_info["vendor"])[0]

cohort = list(animal_info["cohort"])[0]

diff_days = list(animal_info["diff_days"])[0]

dist_to_onh = list(animal_info["dist_to_onh"])[0]

dist_to_vessel = list(animal_info["dist_to_vessel"])[0]

ir_area = list(animal_info["ir_area"])[0]

ann = cv2.imread(input_path+f[:-4]+"_mask.png", 0)

img = cv2.imread(input_path+f, 3)

img = img[:,:,0]

img = cv2.resize(img, (224,224))

ann = cv2.resize(ann, (224,224))

contours, _ = cv2.findContours(ann, cv2.RETR_CCOMP,cv2.CHAIN_APPROX_SIMPLE)

for cnt in contours:

xs = []

ys = []

for pt in cnt:

xs.append(pt[0][0])

ys.append(pt[0][1])

for x0 in range(np.min(xs), np.max(xs)):

for y0 in range(np.min(ys), np.max(ys)):

x = y0

y = x0

avg, var = get_avg_and_var(img, x, y)

angle = get_angle(img, x, y)

points_df["id"].append(pxi)

points_df["filename"].append(f)

points_df["brightness"].append(img[x,y])

points_df["avg_brightness"].append(avg)

points_df["variance"].append(var)

points_df["angle"].append(angle)

points_df["cont_height"].append(abs(np.max(ys)-np.min(ys)))

points_df["cont_width"].append(abs(np.max(xs)-np.min(xs)))

points_df["laterality"].append(y/img.shape[1])

points_df["depth"].append(x/img.shape[0])
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points_df["vendor"].append(vendor)

points_df["cohort"].append(cohort)

points_df["diff_days"].append(diff_days)

points_df["dist_to_onh"].append(dist_to_onh)

points_df["dist_to_vessel"].append(dist_to_vessel)

points_df["ir_area"].append(ir_area)

points_df["label"].append(ann[x,y])

pxi += 1

points_df2 = pd.DataFrame(points_df)

X = points_df2.drop(columns=["id", "filename", "label"])

y = points_df2["label"]

clf = svm.SVC()

clf.fit(X, y)

# prediction

valid_df = {"id": [], "filename": [], "brightness": [], "avg_brightness": [],

"variance": [], "angle": [], "cont_height": [], "cont_width": [],

"laterality": [], "depth": [], "vendor": [], "cohort": [], "diff_days": [],

"dist_to_onh": [], "dist_to_vessel": [], "ir_area": [], "label": []}

pxi = 0

valid_files = [x for x in os.listdir(valid_folder_path) if "mask" not in str(x)]

for f in tqdm(valid_files):

...

# code is the same like the one under "for f in tqdm(files):"

# except instead of points_df, data is collected in valid_df

valid_df2 = pd.DataFrame(valid_df)

X_valid = valid_df2.drop(columns=["id", "filename", "label"])

pred_rez = clf.predict(X_valid)
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