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Abstract 
 

The frequency of words in a language is well-described by Zipf's (1949) law. However, studies at the 

syllable level are relatively rare in the field of quantitative linguistics, and Zipf's law does not neces-

sarily describe the distribution of syllables. In examining the frequency of syllable occurrence in the 

Lithuanian language, I found that the ranked frequencies of syllables are best described by the Yule 

distribution model. The Yule equation fits the distribution of Lithuanian syllable rank frequencies bet-

ter than the Zipf's, Beta, and Zipf-Mandelbrot models. To account for the complexity of the Lithuanian 

language, I employed Shannon and conditional entropy measures. The Shannon entropy rate averaged 

8.91 information bits per syllable across the Lithuanian text corpus, and the conditional entropy aver-

aged 6.45, conditioned on the preceding syllable. The Shannon entropy rate was used to classify more 

complex texts, and the gradient boost classification algorithm demonstrated the best accuracy and bal-

ance in classifying fractions of syllables from 80 Lithuanian texts into complex and not complex cate-

gories. 

 

 

Keywords: Zipf’s law; Yule model; Beta model; Zipf-Mandelbrot; rank-frequency distribution; sylla-

ble‘s entropy rate; syllable’s conditional entropy; complex text classification; gradient boost classifica-

tion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

   

 

 

Santrauka 
 

 

Žodžių dažnumą kalboje gerai apibūdina Zipfo (1949) dėsnis. Tačiau kiekybinės lingvistikos srityje 

skiemenų lygmens tyrimai yra palyginti reti, o Zipfo dėsnis nebūtinai apibūdina žodžius sudarančių 

skiemenų pasiskirstymą. Tirdama skiemenų pasiskirstymo dažnumą lietuvių kalboje, nustačiau, kad 

skiemenų ranginius dažnius geriausiai apibūdina “Yule” pasiskirstymo modelis. “Yule” lygtis lietuvių 

kalbos skiemenų ranginių dažnių pasiskirstymą atitinka geriau nei Zipfo, Beta ir Zipfo-Mandelbroto 

modeliai. Siekdama įvertinti lietuvių kalbos sudėtingumą, taikiau Šenono ir sąlyginės entropijos matus. 

Šenono entropijos rodiklis vidutiniškai siekė 8,91 informacijos bito visame lietuviškų tekstų korpuse, o 

sąlyginė entropija - 6,45, priklausomai nuo prieš tai esančio skiemens. Šenono entropijos matas yra 

naudojamas sudėtingesniems tekstams klasifikuoti, o gradientinis stiprinimo klasifikavimo algoritmas 

parodė geriausią tikslumą ir pusiausvyrą klasifikuojant 80 lietuviškų tekstų skiemenų dalis į sudėtingų 

ir nesudėtingų tekstų kategorijas. 

 

Raktažodžiai: Zipfo dėsnis; “Yule” modelis; Beta modelis; Zipfo-Mandelbrotas; rangų dažnių 

pasiskirstymas; skiemenų entropijos norma; skiemenų sąlyginė entropija; sudėtingų tekstų 

klasifikavimas; gradientinis stiprinimo klasifikavimas. 
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Introduction 
 

The aim of this thesis is to explore difficulty of the Lithuanian language through the lenses of syllable 

frequencies, information entropy and syllabic bigram networks. The study examines a syllabified 

corpus of 80 Lithuanian texts, including both original and translated works, to offer an understanding 

of the syllables as linguistic structure. Central to the linguistic exploration is the frequency of linguistic 

units such as words, syllables, and phonemes. Several found studies [1],[2] have been engaged in 

applying Zipf’s law rank-frequency distribution commonly used mostly for words (Eq. 1, 2) in 

linguistic analyses to the syllables. This thesis aligns with these studies, seeking to understand whether 

the methods used for word frequency analysis can also effectively describe the rank-frequency relation 

of Lithuanian syllables.  

In addition to syllable frequency analysis, the study employs Shannon entropy and conditional entropy 

as tools to quantify linguistic difficulty. These measures, recognized in the field of linguistics [4], are 

used to estimate the information content inherent in syllables. Following the methodology used by 

Pellegrino et al. (2007), this study uses Shannon entropy to quantify the average information derived 

from unigram syllables probability distributions, thereby assessing the difficulty of the Lithuanian 

language based on the information rate of syllables. 

Another aspect of this research is the analysis of syllabic bigram networks. This involves mapping the 

connections and frequencies of syllable pairings within the text corpus, providing insights into the 

syntactic structures of the Lithuanian language. The bigram network analysis shows patterns and 

tendencies in syllable usage, revealing structural elements that are not immediately apparent through 

syllable’s unigram analysis alone. These analytical tasks were performed in the R program. 

Finally, the thesis incorporates a classification of complex text. Parts of texts labelled as 'Complex' and 

'Not Complex' were derived from Shannon entropy measure. For classification gradient boosting, 

logistic regression, random forest, decision tree and k-nearest neighbours (KNN) classification 

algorithms were employed.  Classification exercise was implemented in Python.  

 

 

 

 

 



   

 

   

 

Literature review 
 

Ranked frequency distribution studies 
 

Research on the level of syllables appears relatively rare. One can assume that it might be due to lack 

of precise and unified definitions of syllables and methods of syllabification. Radojičić et al. (2019) 

made an analysis of several properties of syllables, one of them being the rank-frequency distribution. 

The idea behind in that part is to check already formulated hypothesis by Strauss et al. (2008) that the 

rank-frequency distribution of syllables behaves like the rank-frequency distribution of words. Zipf-

Mandelbrot model is a generalization of Zipf's law that introduces a new parameter 𝑏. Zipf-Mandelbrot 

that model was used for the application: 

𝑝𝑟 =  
𝐶

(𝑟 + 𝑏)𝑎 
                                                                                𝐸𝑞. 1     

The distribution has two free parameters 𝑎 (𝑎 > 0) and b [0, ∞), 𝐶 is a scaling constant. Radojičić et 

al. (2019) present results of supporting the hypothesis of Strauss et al. (2008), that syllables behave 

like words and mimic word behaviour in terms of rank - frequency. When investigating several 

syllable properties Rujević et al. (2021) followed the research of Wimmer & Altmann (1999) and 

already reviewed Radojičić et al. (2019) on syllable’s rank-frequency characterization and applied the 

same The Zipf-Mandelbrot (Eq. 1) model to the rank-frequencies of syllables of ten chapters from a 

Russian novel and its translations into Croatian, Serbian, and Ukrainian. The Zipf-Mandelbrot 

distribution is applied to the rank-frequencies of syllables and achieves a good fit. This model is more 

often used for word frequencies and as well as in many other scientific disciplines. Both authors 

support the hypothesis from Strauss et al. (2008), in which the rank-frequency distribution of syllables 

can be modelled by the same model for words, but also concludes that the parameter values for 

syllables differ quite dramatically from those for words. 

Li at al. (2010) discuss the need to employ two-parameter functions over the traditional one-parameter 

model, such as Zipf's law [11], for fitting ranked linguistic data for several motives. One of them is 

that ranked linguistic data like phoneme’s frequency or other, do not follow very well Zipf’s power 

law: 

𝑝𝑟 = 
𝐶

𝑟𝑎
                                                                                              𝐸𝑞. 2 

here 𝑝𝑟 represents the probability of the r-th most frequent item, 𝐶 is a constant, and 𝑎 is the scaling 

exponent that determines how steeply the frequency declines with rank - 𝑟. While 𝑎 is a free parameter 

constrained to be positive (𝑎 > 0), 𝐶 serves as a scaling factor to adjust the distribution. When Zipf's 



   

 

   

 

law is represented on a logarithmic scale, the law is linearized, and the constant 𝐶 translates to the y-

intercept. In this linearized form, the y-intercept is not always functionally significant, as it may be 

absorbed into the normalization of the probability distribution or adjusted during regression analysis. 

Authors suggest that it is worth using models with two parameters in data fitting for more flexibility. 

Other reason, even in the well-known case of Zipf's Law of ranked-frequency distribution the fitting 

often is not that good when the full rank-frequency range is investigated. This imperfection is ignored 

rather than analysed. Authors are eager to see if a two-parameter functions can be used to model the 

rank-frequency linguistic data better than Zipf's law. One of the considered is a Beta function that 

attempts to approximate the two sides low and high ranks of the rank-frequency distributions. The 

frequencies, denoted as 𝑓(1) ≥  𝑓(2)   ≥  ⋯  ≥ 𝑓(𝑛)  , are arranged in descending order, where 𝑓(1) is the 

highest frequency, 𝑓(2) is the second highest, and so on, down to 𝑓(𝑛). These frequencies are used to 

calculate the normalized frequencies, represented as 𝑝(𝑟) ≡ 𝑓(𝑟)/𝑁, so that ∑ 𝑝(𝑟) = 1𝑛
𝑟=1 , (n is the 

number of items to be ranked, r is rank, and normalization factor 𝑁 = ∑ 𝑓(𝑟)
𝑛
𝑟=1  . In the Beta function, 

the rank distribution is modelled as: 

𝑝𝑟 = C
(n + 1 − r)𝑏

𝑟𝑎
                                                                             𝐸𝑞. 3 

where the parameter a, which must be greater than zero (𝑎 > 0), characterizes the scaling of the 

distribution at lower ranks, affecting the most frequent items and 𝑏 (𝑏 ∈ [0, ∞))  characterizes the 

scaling for the high-rank-number (low frequency) items points. The total number of syllable types is 

denoted by 𝑛, and 𝐶 is a normalization constant that is adjusted based on the values of 𝑎, 𝑏 and 𝑛 to 

ensure that the sum of the distribution equals 1. 

The second two-parameter function that was applied is the Yule function: 

𝑝𝑟 = C
b𝑟

𝑟𝑎
                                                                                               𝐸𝑞. 4 

It has two parameters, 𝑎 (𝑎 > 0) and 𝑏 (𝑏 ∈ [0, ∞)), which influences the distribution's curvature, 𝐶 is 

a scaling constant. Yule function has been used in several studies of linguistics units [5], [8], mostly to 

describe phonemes.  

Li at al. (2010) discussed Zipf-Mandelbrot (Eq. 1) as another two-parameter function, proposed by 

Mandelbrot [18], but since it cannot be easily cast in a regression framework it was not used in their 

paper. 

Finally, authors conclude that both Beta function and Yule function are fitting better than Zipf's law, 

and that the two-parameter model is worth using even though many empirical linguists prefer functions 



   

 

   

 

with one key parameter like Zipf law. The intention is to find a balance between the poor fitting with 

too few parameters and overfitting with too many parameters.  

Shannon entropy 
 

In relatively recent years, information theory, particularly the concept of Shannon entropy, has become 

a fundamental tool in communication and linguistic research. It is quite commonly used principle 

which allows us to quantify the information in bits. The concept of Shannon entropy has been 

considered and used as a quantitative measure of difficulty in linguistics [12]. Developed by Claude 

Shannon, this concept quantifies the information content in messages, measured in bits, and provides a 

mathematical framework for analysing communication channels between a source and a receiver. 

Shannon's entropy 𝐻𝐿 𝐸𝑞. 9  measures the unpredictability or randomness of information content, 

essentially quantifying the average amount of information produced by a stochastic source of data. 

This concept is crucial in determining the theoretical limits of effective communication in a channel. If 

the information transmitted is below the channel capacity, it can result in ambiguity where messages 

become indistinguishable. Conversely, transmitting information above the channel's capacity leads to 

redundancy and inefficiency [12], [14]. 

Extending beyond Shannon entropy, conditional entropy (𝐻(𝑋|𝐶)) 𝐸𝑞. 10 offers further insights, 

particularly in linguistic complexity. This measure quantifies the amount of information in a linguistic 

unit (such as a syllable or a word) given the knowledge of another unit. It's especially useful in 

understanding the dependencies and structure within language. 

The application of information-theoretic measures like Shannon entropy (𝐻𝐿) 𝐸𝑞. 9 and conditional 

entropy (𝐻(𝑋|𝐶)) 𝐸𝑞. 10 offers a method to quantify linguistic complexity. These measures can be 

particularly insightful when analysing language as a series of messages between a speaker and a 

listener. Within this framework, a language or text can be considered difficult if it contains a high 

amount of information concerning its linguistic units, such as syllables. 

 

 

 

 

 



   

 

   

 

Methodology 
 

Syllable definition 
 

A syllable, intuitively felt in speech, often eludes precise definition, especially in spoken language 

where distinct boundaries between syllables are not always apparent. Various theories attempt to 

define syllable boundaries, ranging from those based on articulatory features (such as muscle tension 

in the speech apparatus and the volume of air exhaled) to acoustic or auditory features (like spectral 

analysis and consonant voicing). The challenge in establishing objective syllable boundaries based on 

phonetic features underscores the notion that the number of syllables in a language may be more 

significant than their precise demarcations. In this context, a syllabication tool for computer processing 

of language was developed by G. Norkevičius, A. Kazlauskienė, G. Raškinis, A. Vaičiūnas, and A. 

Petrovas, as described in [13], and is available online or for downloading. 

Description of the data 
 

The dataset for this thesis comprises texts recommended for pupils in Years 5-8, drawn from a 

collection of Lithuanian and foreign authors. These works are available in the digital library 

http://ebiblioteka.mkp.emokykla.lt/. The collection includes 80 texts from 63 different authors, 

spanning to 8 genres. The total word count of the texts was initially 215,717. Following data pre-

processing and cleaning, which involved removing some syllables that were not correctly syllabified 

(along with the corresponding words), the dataset was refined to 199,669 unique words. The original 

syllabified version contained approximately 10,800 different syllables; after correction, this number 

was reduced to 8,109 unique syllables. The texts were processed into 12 syllables groups using the 

Automatic Syllabication Software developed in [13]. 

Data Pre-processing 
 

The data pre-processing stage was mostly guided by the syllable structure of the Lithuanian language 

as described in Kasparaitis P.'s work [16]. The syllable structure is shown in the formula STRARTSK, 

representing the fundamental building blocks of Lithuanian syllables: 

S represents: {'s', 'š', 'z', 'ž'}. 

T represents: {'b', 'd', 'g', 'k', 'p', 't', 'c', 'č', 'dz', 'dž', 'ch', 'h', 'f'}. 

R represents: {'j', 'l', 'm', 'n', 'r', 'v'}. 

A stands for any vowel or group of vowels, an essential component in every syllable. 



   

 

   

 

K represents: {'k', 't'}. 

In this structure, the presence of an element from set A (vowel or vowel group) is mandatory, 

underlining its significance as the core of a syllable. Other elements (S, T, R, and K) are optional. 

We applied the STRARTSK formula for text segmentation into syllables, which was instrumental in 

identifying incorrect syllable constructions. This process involved pinpointing the vowel groups (A) 

labelled as V (vowel) and then placing them in context with preceding or succeeding consonant groups 

(C) represented by S, T, R, and K. To validate the accuracy of syllabification, we classified syllables 

into types based on their constituent phonemic elements, adhering to the constraints specified in the 

Lithuanian syllabic structure STRASTK. 

Syllabic Bigram Analysis 
 

In our investigation into the structure of the Lithuanian language, we employed a first-order Markov 

chain model. This approach is rooted in the principles of bigram analysis, commonly utilized in natural 

language processing. A Markov chain, in this analysis context, shows transitions from one syllable to 

another, with the probability of each state transition depending only on the current state and not the 

events that precede it.  

𝑃(𝑆𝑛+1 = 𝑠𝑗 ∣ 𝑆𝑛 = 𝑠𝑖) = 𝑝𝑖𝑗                                                                    𝐸𝑞. 5 

In this formula, 𝑆𝑛+1 denotes the syllable following the current syllable 𝑆𝑛, and 𝑝𝑖𝑗 represents the 

probability of transitioning from syllable 𝑠𝑖 to 𝑠𝑗. These probabilities are derived from the frequency of 

each syllable pair in the dataset: 

𝑝𝑖𝑗 =
 Frequency of bigram (𝑠𝑖, 𝑠𝑗)

 Total occurrences of syllable 𝑠𝑖
                                                        𝐸𝑞. 5.1 

The decision to use bigrams pairs comes from our finding that the average number of syllables per 

word in analysed Lithuanian text corpus is approximately 2.19. 

Syllable’s rank-frequency distribution 
 

Ranking syllables by their frequency may establish the priorities in learning a Lithuanian language and 

prioritize learning most common syllables as well as help understand syllabification better. Fitting a 

power-law function for the whole range of ranks is by no mean perfect. In several studies it was 

suggested that power-law fitting with two different scaling exponents are needed to fit the ranked 

syllables frequencies.  



   

 

   

 

To check more closely how well Zipf’s law (Eq. 2) and other models the Beta (Eq. 3), Yule (Eq. 4) fit 

our syllable frequency data which have been used in several quotative linguistic analyses, I conducted 

multiple regression analyses. These analyses included a standard multiple regression of all rank-

frequency points for syllables. To enhance the robustness of our models, especially in the presence of 

heteroscedasticity or non-normal distribution of residuals, I also implemented weighted regression 

models. Weighting scheme:𝑤1 implements a monotonically decreasing weight of 1/𝑟, where 𝑟 is the 

rank of the syllable. This weighting approach assigns higher importance to syllables with lower ranks 

(more frequent syllables). 

Each syllable occurs in the text with some frequency. Frequency here means the number of 

occurrences in this text that it appears. A syllable has a frequency 𝑓 and frequency rank 𝑟. Both 𝑟 and 

𝑓 are numbers, we can think of the relationship between them as a function. I want to see if and if so, 

how well Lithuanian syllables rank-frequency relation can be defined not only by already explored 

methods for syllables, but also by introduced methods for word and other linguistic unit’s frequencies.  

The frequencies denoted as 𝑓 are ranked 𝑓_((1) ) ≥  𝑓_((2) )    ≥  ⋯  ≥  𝑓_((𝑛)) then normalized 

frequency  𝑝(𝑟) ≡ 𝑓(𝑟)/𝑁, so that  ∑ 𝑝(𝑟) = 1𝑛
𝑟=1 , (𝑛 is the number of items to be ranked, 𝑟 is rank, and 

normalization factor 𝑁 = ∑ 𝑓(𝑟)
𝑛
𝑟=1 . One of the first considered is a Beta function that attempts to 

approximate the rank-frequency distributions in Eq. 3. Applying a logarithmic transformation to both 

sides of Beta function (Eq. 3) transforms it into a multiple regression model: 

log(𝑝𝑟) =  𝑐0 +  𝑐1 log(𝑟) +  𝑐2 log(𝑛 + 1 − 𝑟)                             𝐸𝑞. 3.1 

In this form, 𝑐0 = log (𝐶), 𝑐1 = −𝑎, and 𝑐2 = 𝑏.  

The second two-parameter function that was applied is the Yule function which is expressed in Eq. 4. 

Which both sides can be logarithmically transformed into the multiple regression model as well: 

log(𝑝𝑟) =  𝑐0 +  𝑐1r +  𝑐2 log(𝑟)                                                     𝐸𝑞. 4.1 

In this form 𝑐0 = log (𝐶), 𝑐2 = −𝑎, and 𝑐1 = log (𝑏).  

I am also interested to see how well Zipf’s law in Eq. 2 can fit the data. Both sides can as well be 

logarithmically transformed into a regression model: 

log(𝑝𝑟) =  𝑐0 +  𝑐1 log(𝑟)                                                                   𝐸𝑞. 2.1 

In this form 𝑐0 = log (𝐶),  𝑐1 = −𝑎 . 

Besides these multiple regression models, I also explore the Zipf-Mandelbrot model to understand its 

applicability to Lithuanian syllables’ rank-frequency distribution. The Zipf-Mandelbrot model is a 

generalization of the Zipf model and is expressed in Eq. 1. The inclusion of the Zipf-Mandelbrot 



   

 

   

 

model allows us to assess whether the adjustment of ranks with parameter 𝑏 provides a more accurate 

representation of the syllable frequency distribution in Lithuanian as Radojičić et al. (2019) 

experimented with Serbian language syllables. To estimate the parameters of this model, a non-linear 

least squares method is employed. This approach is particularly suited for the Zipf-Mandelbrot model 

because of its inherent non-linearity, which is a characteristic that sets it apart from the more 

straightforward linear relationships found in the Zipf, Beta, and Yule models after their respective 

logarithmic transformations. 

Above functions are variations of the power law function, so the model is better fitted for logarithmic 

frequency scales which was done in Eq. 2.1, 3.1, 4.1. This will also allow determining if one of these 

distributions has a chance of describing ranked syllable frequencies better than the other. In regression 

analysis, the model 𝑦 = 𝐹(𝑥) parameters are estimated by minimizing the sum of squared errors: 

SSE =  ∑(𝑦𝑖 − 𝐹(𝑥𝑖))2

𝑛

𝑖=1

                                                                       𝐸𝑞. 6 

 Models can be compared using Akaike information criterion: 

𝐴𝐼𝐶 = 𝑛 log
𝑆𝑆𝐸

𝑛
+ 2𝐾                                                                            𝐸𝑞. 7 

where 𝐾 is the number of fitting parameters in the model.  

For the weighted models, the Sum of Squared Errors (SSE) is calculated by taking into account 𝑤1 

weight assigned to each data point. The formula for weighted SSE is: 

𝑆𝑆𝐸𝑤 =  ∑(𝑤1𝑖(𝑦𝑖 − 𝐹(𝑥𝑖))2

𝑛

𝑖=1

)                                                           𝐸𝑞. 6.1 

Therefore, Akaike information criterion for weighted models is: 

𝐴𝐼𝐶 = 𝑛 log
𝑆𝑆𝐸𝑤

𝑛
+ 2𝐾                                                                            𝐸𝑞. 7.1 

In the process of model comparison, it is important to note that the methodology for comparing AIC 

values is applicable to both standard and weighted models. This uniform approach in comparing AIC 

values, regardless of the model type, enables consistent evaluation of model performance. For two 

models applied to the same dataset, their 𝐴𝐼𝐶 differences are: 

∆𝐴𝐼𝐶 =  𝐴𝐼𝐶2 −  𝐴𝐼𝐶1 = 𝑛 log
𝑆𝑆𝐸2

𝑆𝑆𝐸1
+ 2(𝐾2 − 𝐾1)                    𝐸𝑞. 8 



   

 

   

 

Where 𝐴𝐼𝐶1 and 𝐴𝐼𝐶2 are the 𝐴𝐼𝐶 values for two different models, 𝑆𝑆𝐸1 and 𝑆𝑆𝐸2 are their respective 

Sum of Squared Errors, 𝐾1 and 𝐾2 represent the number of parameters in each model. A smaller 𝐴𝐼𝐶 

value indicates a better model. 

Information-theoretic complexity measures  

 

In text data analysis, understanding the information content is essential. Text is comprised of symbols, 

most commonly letters, each occurring with varying frequencies. To digitally represent text, we often 

use ASCII (American Standard Code for Information Interchange), where each character is assigned a 

number from 0 to 127, occupying 7 bits (Picture 2 [15]). For example, the ASCII code for the letter “e” 

is represented as 101. Characters in a language like English appear with different probabilities. For 

instance, in an English book, there’s an 8.2% chance that a randomly selected letter will be an “a” and 

only a 0.8% chance to find “k”. Shannon's entropy, a concept from information theory, provides a way 

to quantify this information in bits. Represented as: 

𝐻𝐿 =  − ∑ 𝑝𝑖

𝑁𝐿

𝑖=1

 𝑙𝑜𝑔2 (𝑝𝑖)                                                                      𝐸𝑞. 9 

Here, 𝐻𝐿 is the Shannon entropy or information entropy. A language 𝐿 consists of a finite set of 𝑁𝐿 

syllables, and 𝑝𝑖 is the probability of the i-th syllable occurring (frequency). Shannon's entropy reaches 

its maximum when all syllables in language 𝐿 are evenly distributed, meaning all 𝑝𝑖 are equal. If 𝑝𝑖 

equals 1, the uncertainty disappears and 𝐻𝐿 is 0. Shannon proved that one can never encode less than 

𝐻𝐿 bits of data on average. 

For Lithuanian texts, we consider syllables as the basic language units. We calculate the probabilities 

of different syllables from a corpus of 80 Lithuanian texts to determine Shannon entropy rate. The 

Shannon entropy reaches a maximum when syllables are evenly distributed and drops to zero when 

there's no uncertainty. 

In this study, information-theoretic approaches and language complexity estimations consider 

predictability distribution based on a relatively large number of linguistic data. Language is a 

communication channel between a speaker and a listener, and in this case, the difficulty of different 

Lithuanian texts can be defined by how much information this channel contains in bits with respect to 

syllables. By categorizing data into genres and individual texts I explore how information entropy 

measures vary, providing insights into the complexity and structure of Lithuanian language. This 

framework allows for the analysis of intuitive notions of language difficulty. 



   

 

   

 

Conditional entropy 
 

Shannon entropy offers a way to measure the average information content of syllables, treating each 

syllable independently of its context. This measure, while insightful, does not account for the 

dependencies that may exist between syllables in a language. In contrast, conditional entropy addresses 

this aspect by considering the context. It reveals the average amount of information needed to encode a 

syllable, given the knowledge of the syllable that precedes it. This context-aware measure is 

particularly relevant for understanding the relationships and dependencies between syllables, shedding 

light on the deeper structure of language. The formula for conditional entropy is given by: 

𝐻( 𝑋 ∣ 𝐶 ) = ∑ 𝑝(𝑐)

𝑐∈𝐶

∗  𝐻( 𝑋 ∣ 𝐶 = 𝑐 ) =                                                                                            

= − ∑ 𝑝(𝑐)

𝑐∈𝐶

∗  ∑ 𝑝(𝑋 =  𝑥𝑖

𝑁𝐿

𝑖=1

| 𝐶 = 𝑐) log2(𝑝( 𝑋 =  𝑥𝑖 ∣∣ 𝐶 = 𝑐 ))                                       𝐸𝑞. 10 

where the two random variables, 𝐶 and 𝑋, represent the context and the syllable, respectively. The 

probability of a given context 𝑐 within the range of values that 𝐶 could choose is denoted by 𝑝(𝑐). The 

context is defined as the syllable that comes before. In this analysis the conditional entropy is denoted 

as 𝐻( 𝑋𝑛 ∣∣ 𝑋𝑛−1 ), meaning context is the preceding syllable. 

For this analysis, I consider genres and individual texts as distinct contexts. This approach allows to 

compare information measures across different linguistic units and assess complexity within these 

subgroups. By doing so, it is possible to uncover the nuances of language that are not apparent when 

considering syllables in isolation. This method aligns with the methodology used by Pellegrino, 

Coupé, and Marsico (2007), who estimated phonological complexity using similar information-

theoretic measures. Their work demonstrates the utility of these measures in capturing the intricate 

patterns of language use, and I apply part of those principles to this difficulty analysis of Lithuanian 

texts. 

Classification of complex texts 
 

To assess the complexity of literary texts, I have utilized entropy rates as a measure. 80 Lithuanian 

texts were categorized into 'Complex' and 'Not Complex' based on entropy rates, with the 75th 

percentile of entropy rates serving as the complexity threshold. This classification was executed in R, 

labelling texts as complex if their entropy rate surpassed the established threshold. To handle the 

diverse lengths of texts and standardize the input for modelling as well as the fact that we only have 80 

Lithuanian texts, the texts were fragmented into equal-sized segments, each information about 



   

 

   

 

containing 1000 syllables and those fragments with less than 1000 data points were removed. This 

method helps to avoid biases toward longer or shorter texts. Before creating fragments, data rows were 

shuffled in order to ensure that models are not biased to any inherited order. This shuffling was 

implemented by randomly reordering the data using the shuffle function. 

Classification used these data features: 

Unique Syllable Count: The number of unique syllables present in each fragment. 

Average Syllable Frequency: The average frequency of occurrence of syllables within a fragment: 

 
∑   (Frequency of each unique syllable )

 Number of unique syllables 
 

CV Pattern Uniqueness: The count of unique consonant-vowel (CV) patterns in each fragment. 

Syllable Position Proportions: Proportions of syllables in positions initial, inner and end within each 

fragment. 

Syllable Type Proportions: Proportions of different types of syllables: monosyllables (syllables make 

the whole word by themselves like “ir” “aš” and so on), disyllables (syllables that come from words 

that are made of two syllables like “da-rė”, “lė-kė” and so on) and polysyllables (syllables that come 

from words that have tree or more syllables like “pa-da-rė”, “lin-kė-ji-mai”)  within each fragment. 

Stop word Proportions: Proportions of stop word within each fragment. 

CV Pattern Proportions: Proportions of consonant-vowel (CV) patterns in each fragment. This 

involves counting how many times a specific pattern (like CV, CVC, VC and so on) occurs within that 

fragment and divided by 1000 (fragment size). 

I employed several classification algorithms for complex text classification: Gradient Boosting, 

Logistic Regression, Random Forest, Decision Tree, and K-nearest neighbours. 

 

 

 

 

 

 



   

 

   

 

Results 
 

Syllabic Bigram Network 
 

In analysing the syntactic structure of the Lithuanian language, I used a first-order Markov chain 

model (Eq. 5, 5.1) to assess the occurrence and variability of syllables. To enhance the visual 

representation, a threshold was set to include only bigram combinations that appeared more than 2500 

times, allowing to focus on the most frequent and structurally significant syllable pairs. 

The resulting bigram network graph, depicted in Figure 1, reveals several key features of syllable 

distribution and connectivity. Central nodes, such as the syllable “si”, emerge prominently within the 

network, suggesting they may serve as common prefixes or suffixes in Lithuanian. These nodes often 

have a high degree of connectivity, indicating a tendency for syllable combination. 

 

          Figure 1. Syllable’s bigram network (frequency > 2500) 



   

 

   

 

Thicker edges denote more frequent pairings, exemplified by the connection between “pa” and “si”, as 

opposed to thinner edges which represent fewer combinations like “pa” and “ti”. Additionally, certain 

syllables appear less connected or relatively isolated on the graph, hinting for their limited use or 

specificity in linguistic contexts. These less frequent nodes are indicative of syllables that may appear 

from commonly used words and are not prefixes or suffixes. Due to the frequent links between pairs of 

two-syllable nodes, the overall network architecture indicates that disyllabic words are common in 

Lithuanian. 

Lithuanian language rank-frequency distribution of syllable 
 

First to make any sense of the frequency of syllables and its rank, both sides have to be logarithmically 

transformed. Taking the logarithm of both sides gives us a chance to have a glimpse and inspect if a 

Zipf’s power-law distribution is nowhere visible, implying that it follows a relatively straight line on a 

doubly logarithmic plot. Please see Figure 2. 

 

             Figure 2. Logarithmically transformed Lithuanian syllable’s frequencies and rank. 



   

 

   

 

From the Figure 2 it is visible that the slope becomes steeper towards the tail (high rank, least frequent 

syllables). Applied Zipf’s power-law model (Eq. 2) is shown in the below Figure 3: 

 

               Figure 3. Logarithmically transformed Lithuanian syllable’s frequencies and rank. Red line 

represents unweighted Zipf’s laws regression fitting and blue weighted by scheme 𝑤1.  

Figure 3 clearly shows the observation that Zipf’s law is not a good fit of the ranked syllables 

frequency distribution. This observation underlines the need for more complex models to accurately 

represent the distribution of syllable frequencies. A two-parameter fitting functions: Beta, Yule and 

Zipf-Mandelbrot (Eq. 3, 4, 1 respectively) will be employed for that. The Beta model is characterized 

by the parameters 𝐶, 𝑎, 𝑎𝑛𝑑 𝑏, where 𝐶 is a normalization constant, 𝑎 affects the scaling for frequent 

syllables and 𝑏 affects the scaling for less frequent ones. The estimated parameters for the unweighted 

Beta model are 𝐶 =  5.82, 𝑎 =  0.96, and 𝑏 =  0.06. Similarly, the Yule model's parameters include 

𝐶 and 𝑎, which control the distribution's curvature, and 𝑏. For the unweighted Yule model, the 

estimated parameters are 𝐶 =  1.31, 𝑎 =  0.62, and 𝑏 =  0.99, indicating a different distribution 

shape compared to the Beta model. The Zipf model, with its simpler one-parameter form, is 



   

 

   

 

represented by the scaling constant 𝐶 and the exponent 𝑎. The estimated unweighted Zipf model 

parameters are 𝐶 =  20.51 and 𝑎 =  1.07, which suggest a steeper decline in frequency with rank 

than the two-parameter models. Lastly, the Zipf-Mandelbrot model, which is a generalization of the 

Zipf model, adds an additional parameter 𝑏 to account for a shift in rank. The estimated parameters for 

this model are considerably higher, with  𝐶 =  3.25 ∗ 108, 𝑎 =  3.92, and 𝑏 =  626.11. 

Table 1. presents a comparison of the Beta, Yule, Zipf and Zipf-Mandelbrot models, both in 

unweighted and weighted (𝑤1 =
1

𝑟
) scenarios. The table outlines key statistical measures such as 

𝑆𝑆𝐸, 𝐴𝐼𝐶, 𝛥𝐴𝐼𝐶, 𝑎𝑛𝑑 𝑅², providing a view of each model's performance. 

Model 

Unweighted Weighted (𝑤1 =
1

𝑟
) 

 

K SSE AIC ΔAIC R2 K SSE AIC ΔAIC R2  

Beta  3 398.34 -1415.43 14118.21 0.96 3 1,79 -68244,5 13601.95 0.91  

Yule  3 69.84 -15533.65 0 0.99 3 0,34 -81846,5 0 0.98  

Zipf  2 612.99 2077.80 17611.45 0.94 2 2,76 -64740,2 17106.29  0.86  

Zipf-

Mandelbrot 
3 97.91 -12794,46 2739.188 - 3 1,23 -71307,6 10538.87 -  

 Table 1. Comparison of models in fitting ranked syllables frequency distribution obtained from 

Lithuanian texts.  

The Yule model demonstrates superior performance across both weighted and unweighted models, 

with the highest 𝑅² values and the lowest 𝑆𝑆𝐸 and 𝐴𝐼𝐶 scores, indicating its effectiveness in capturing 

the rank-frequency distribution of Lithuanian syllables. Weighted regressions generally show 

improved fits, as it is indicated by reduced 𝑆𝑆𝐸 values. This improvement highlights the significance 

of considering syllable rank in the model fitting process. 

While the Yule model emerges as the best fit, the Beta and Zipf-Mandelbrot models also show decent 

performance, suggesting their potential utility in certain linguistic analysis contexts. Figures 3, 4, 6, 

and 7 visually represent the model fits and clearly illustrate the varying degrees of alignment between 

the models and the actual data. Figure 4 showcases the effectiveness of the Yule model, both in its 

unweighted and weighted forms.  



   

 

   

 

 

                    Figure 4. Logarithmically transformed Lithuanian normalized syllable’s frequencies and 

rank. Red line represents unweighted Yule model regression fitting and blue weighted by scheme 𝑤1. 

Results from Table 1 and provided figures suggest that two-parameter models, particularly the Yule 

model, offer a more accurate representation of the syllable rank-frequency distribution in Lithuanian 

texts compared to the traditional one-parameter Zipf’s law. This is significant for understanding the 

linguistic structure of the Lithuanian language and can inform further studies in linguistic complexity 

and syllable usage patterns. 

Information entropy of Lithuanian language syllables 

 

I have considered syllables as the symbols used by the system and estimated syllable occurring 

probabilities by counting the syllables and dividing it by the sample size. Shannon entropy quantifies 

the average information from the unigram model without considering any context. This allows to find 

how many bits take on average to encode linguistic variable. This formalized measure of information 

reduces the message to binary arithmetic coding in other words to 0 and 1. Shannon entropy 

estimations yielded an average value of 8.91 bits of information per syllable for the whole corpora of 



   

 

   

 

80 Lithuanian texts syllables. Compared to Pellegrino et al. (2007) several languages study (Picture 1), 

the Lithuanian language would appear next to English with one of the highest Shannon entropy rates of 

8.91.  

Shannon entropy measure can be considered as well as the variability measure [6]. Shannon entropy 

measure study revealed how variability differs between 8 genres of 80 Lithuanian texts in terms of 

average information rate per syllable: 

Genre Entropy rate 

Short story 8,84 

Essay 8,87 

Travel 9,06 

Mythology 8,84 

Tales 8,71 

Plays 8,87 

Poetry 9,25 

Novel 8,78 

         Table 2. Syllable’s Shannon entropy rate (in bits) for each genre 

Calculations yielded an average value of 9.25 bits of information per syllable in the poetry genre, 

compared to 8,78 bits for the genre of the novel or 8,71 bits for the tales’ genre. 

Figure 4 presents a scatter plot that illustrates the relationship between the word count of various 

Lithuanian texts and their corresponding Shannon entropy values, segmented by genre. Shannon 

entropy, a measure of unpredictability or information content, indicates how evenly the syllables are 

distributed within a language. In the context of linguistic texts, a higher entropy value suggests a more 

uniform distribution of syllables, implying a richer and more complex usage of language like we have 

in poetry and travel genre compared to tales or short stories. Conversely, lower entropy may indicate a 

more predictable and less diverse syllable usage. However, it is important to note Shannon entropy rate 

increases not only because the syllable frequencies become more uniformed, but also because the 

number of different syllables (for example in longer texts) is higher. Thus, it is possible that long less 

rich text may have a higher entropy than a rich but short one. 



   

 

   

 

 

              Figure 5. Shannon entropy rate vs. word count of each text grouped by genre. 

From the plot, it appears that as the word count increases, the Shannon entropy values begin to cluster 

more closely. This suggests that larger text corpora provide a more stable estimation of entropy 

because they are less susceptible to the variability inherent in smaller samples. In other words, the 

larger the text, the more reliable the entropy measure becomes. 

In Figure 5, it is evident that entropy values vary across different genres, with poetry characteristically 

exhibiting higher entropy rates and a notable degree of variability. Such a trend correlates with the 

inherent stylistic nuances of poetry, which typically uses a broad vocabulary and innovative language 

usage. In contrast, genres such as tales and short stories are often associated with lower entropy values, 

potentially reflecting their narrative straightforwardness and a tendency towards repetition. 

It is worth to mention that texts with a higher count of unique syllables generally display increased 

Shannon entropy. This pattern is underpinned by a moderate positive correlation between entropy and 



   

 

   

 

word count in the texts. Longer compositions encompass a wider syllable variety, which, in turn, 

increases entropy rate. This phenomenon suggests that even a text with a comparatively sparse 

vocabulary could manifest a high entropy if it is lengthy, thereby countering the presumption that only 

lexically rich texts exhibit high entropy. Spearman's rank correlation coefficient was approximated to 

0.398 (p-value = 0.0002855), this lends statistical support to this observation. The coefficient indicates 

that as texts expand in length, there is a tendency towards a more varied syllable usage, contributing to 

the increase in entropy. However, the moderate strength of this correlation suggests the presence of 

additional factors influencing entropy.  

The table 4 provides lists of specific texts along with their genres and entropy rates. At the top of the 

entropy values are poetry works such as "Judita_VAICIUNAITE__Eilerasciai" with an entropy rate of 

9.26, indicating a highly diverse syllable distribution within the text. Travel literature such as 

"Ligi_Lietuvos_10000_kilometru" and "Kelionė_į_Sambalą" also show high entropy rates, suggesting 

a richness in language that might be attributed to the descriptive travel writing, because they are full of 

location names and foreign words with atypical syllables. At the other end of the spectrum, texts like 

"Brisiaus_galas," "Kliudžiau," and "Juratė_ir_Kastytis" have lower entropy values, which may reflect 

a narrower syllable distribution or a more repetitive use of language, common in stories aimed at 

children or in simpler narratives. 

Conditional entropy 
 

Shannon entropy provides an estimate of the average uncertainty in predicting a syllable from a 

distribution that is observed within a large body of text. It is a measure of the unpredictability inherent 

in the syllable structure of a language without any given context. Conversely, conditional entropy (Eq. 

10) measures the residual uncertainty of a syllable's occurrence when the preceding syllable is known. 

Given that words are typically composed of multiple syllables, the presence of context reduces 

uncertainty. Naturally, conditional entropy tends to be lower than Shannon entropy, reflecting the 

reduction in unpredictability provided by this contextual information. 

Genre Conditional entropy rate) 

Short story 6,26 

Essay 6,25 

Travel 6,32 

Mythology 6,11 

Tales 6,06 

Plays 5,79 

Poetry 6,55 

Novel 6,20 

                 Table 3. Syllable’s conditional entropy rate (in bits) for each genre. Conditional here is the 

preceding syllable. 



   

 

   

 

Conditional entropy may reveal how certain syllables are predisposed to appear at the beginning (like 

prefixes) or at the end (like suffixes) of words. This distribution is not uniform, preceding syllables 

often carry more information, making them "information-rich" [17]. In contrast, Shannon entropy 

measures the overall diversity and frequency of syllable usage throughout a text corpus. In a 

hypothetical, simplified scenario where every syllable is equally probable what one might consider 

ideal state each syllable would be used inversely proportional to the effort required to articulate it. This 

would represent a language of maximum efficiency and minimal predictability, a model that serves as 

a theoretical baseline rather than a reflection of actual linguistic complexity. 

In the context of this analysis, the total conditional entropy has been calculated to be approximately 

6.45. This value quantifies the average unpredictability of a syllable sequence within a given context 

of previous syllable and underscores the complexity of understanding syllable usage when previous or 

subsequent syllables are considered. Compared to other language conditional entropy findings based 

on syllable’s as linguistic units, Lithuanian language would be somewhere between German (6.08) and 

French (6.68) as it was estimated in [19]. For more details see Picture 3 in appendices. 

Our findings indicate that the Shannon entropy of Lithuanian texts provides insight into the overall 

complexity of the language concerning its syllables. By employing both unigram models and context-

aware conditional entropy measures, I observed variability in the information content across different 

genres and texts. This variability reflects the richness and diversity of the language's syllabic structure. 

Further, the results underscore the intricate balance between frequency and information content, where 

frequently occurring syllables carry less information, consistent with the principles of Zipf's law. This 

balance suggests an optimization of the language's communicative efficiency, where the most common 

messages are transmitted with the least amount of information, avoiding redundancy while maintaining 

clarity.  

Complex text‘s classification 
 

The complexity of literary texts was determined using entropy rates as a measure of complexity. A 

significant aspect of this analysis was the classification of texts into 'Complex' or 'Not Complex' 

categories, based on their entropy rates. The threshold for difficulty was established as the 75th 

percentile (4th quantile) of entropy rates among the texts. This quantile-based approach ensures that 

texts with high variability and unpredictability in their language usage are categorized as 'Complex'. 

The labelling process in R involved comparing each text's entropy rate against this threshold and 

assigning the corresponding complexity label. For the classification task, the gradient boosting, logistic 

regression, random forest, decision tree and k-nearest neighbours (KNN) classification algorithms 

were employed. In terms of accuracy gradient boosting classification model performed the best with 



   

 

   

 

91% accuracy. Gradient Boosting is an ensemble learning technique that builds a series of decision 

trees sequentially. Each tree in the sequence focuses on correcting the mistakes of the previous one. 

The model operates on the principle: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛾𝑚ℎ𝑚(𝑥) 

Where 𝐹𝑚(𝑥) is the model at iteration m, 𝛾𝑚 is the learning rate, and ℎ𝑚(𝑥) is the decision tree. The 

final model is a weighted sum of these weak learners, aiming to minimize the deviance loss function. 

Deviance loss for a binary classification is: 

𝐿(𝑦, 𝑝) = − ∑  

𝑛

𝑖=1

[𝑦𝑖log (𝑝𝑖) + (1 − 𝑦𝑖)log (1 − 𝑝𝑖)] 

where 𝑦 is the true label, 𝑝 is the predicted probability, and 𝑛 is the number of samples. 

The models' performance was assessed using metrics such as precision, recall, f1-score, and the 

confusion matrix.  

 

 

Model: Gradient Boosting 

Classification Report: 

              precision    recall  f1-score   support 

 

     Complex       0.87      0.88      0.88       381 

 Not Complex       0.94      0.93      0.93       723 

 

    accuracy                           0.91      1104 

   macro avg       0.90      0.91      0.91      1104 

weighted avg       0.91      0.91      0.91      1104 

 

Confusion Matrix: 

[[337  44] 

 [ 51 672]] 

 

 

The Gradient Boosting model had a precision of 94% for 'Not Complex' texts and 87% for 'Complex' 

texts, indicating its high accuracy in predicting both categories. This model achieved a recall of 93% 

for 'Not Complex' and 88% for 'Complex', showing how effectively it can identify most of the true 

'Complex' and 'Not Complex' cases. The f1-scores for both categories (93% for 'Not Complex' and 

88% for 'Complex') reflect the model's balanced precision and recall. The Gradient Boosting model's 

confusion matrix showed 672 true positives (correctly identified not complex texts), 51 false positives  

(complex texts incorrectly identified as not complex), 44 false negatives (not complex texts incorrectly 

identified as complex), and 337 true negatives (correctly identified complex texts). Less accurate or 

balanced classification results of Logistic Regression (accuracy – 90%), Random Forest (accuracy – 

91%), Decision Tree (88%) and KNN (87%) models can be reviewed in Table 6. 



   

 

   

 

The results from the classification models not only provided a clear distinction between complex and 

not complex texts but most important highlights features that influence this classification as it offers 

insights into which aspects of a text most strongly relate to its perceived complexity. This 

understanding is beneficial for both the analysis and the development of more refined models in the 

future. From the table 5 it is visible that most influential feature is 'unique_syllable_count,' with an 

importance score of ~0.79. This strongly suggests that the diversity of syllables within a text plays a 

crucial role in determining its difficulty. Other notable features include various consonant-vowel CV 

patterns (like 'cv_pattern_CV' and 'cv_pattern_CCVC'), indicating that the complexity of syllabic 

structures also contributes to the overall complexity of the text. 'avg_syllable_freq' also emerged as a 

contributing feature, emphasizing the importance to text difficulty of how frequently certain syllables 

occur within a text.  

Feature   Importance 

unique_syllable_count  0.78976 

cv_pattern_CV  0.04458 

avg_syllable_freq   0.03961 

type_monosyllables   0.02211 

position_inner   0.01637 

type_disyllables   0.01065 

type_polysyllables    0.00975 

stopai_N     0.00898 

cv_pattern_CCVC    0.00855 

cv_pattern_CVC   0.00660 

          Table 5. Feature importance ccores for text complexity classification 

 

Discussion  
 

Tambovtsev et al. (2007) whom also included the Lithuanian language in their study of phoneme’s 

rank-frequency distribution and came to the conclusion that the Yule function fits the distribution of 

phoneme frequencies better than Zipf’s law and several other models. Since Yule function fits our 

Lithuanian language text’s syllable’s rank-frequency data best compared to several other commonly 

used in quantitate linguistics rank-frequency models, this analysis raises a new discussion point if the 

syllable’s rank-frequency distribution behaves more like phonemes than words. It would be interesting 

to include phonemes and more models into the analysis in order to address the assumption of syllable’s 

rank-frequency behaviour similarity to phonemes.  

 

 



   

 

   

 

Conclusions 
  

In this thesis, I applied various distribution models to syllabified Lithuanian text data. Both the Beta 

and Yule models, as well as the Zipf-Mandelbrot model, better fit the Lithuanian language syllable’s 

rank-frequency distribution compared to Zipf's law. The best fit was achieved using monotonically 

decreasing weights that assign higher weights to high-frequency syllables. Since Yule model achieved 

the best fitting, this raises a new discussion point: whether syllables behave more like phonemes than 

words in terms of their ranked occurrence probabilities, as a few studies have found that the Yule 

model describes phoneme frequencies best [5]. 

The bigram network analysis, conducted using Markov Chains, revealed an intertwined network of 

syllables within the Lithuanian language. This network mostly consists of syllables that are prefixes 

and suffixes, suggesting their frequent use in word formations. Additionally, the analysis identified a 

distinct set of syllables that appear disconnected from this intertwined network, indicating their unique 

use in the language corpus. This separation in the syllable network shows the diverse structural 

elements in Lithuanian language and their varying roles in linguistic construction. 

In the second part of the thesis, I considered the Shannon entropy measure and conditional entropy as 

measures of difficulty and variability [6]. This part of the study revealed how variability differs among 

8 genres of 80 Lithuanian texts in terms of the average information rate per syllable and how much 

average information in bits can be expected from different types of texts in terms of syllables. It takes 

an average of 9.25 bits of information to encode a syllable in the poetry genre, compared to 8.78 bits 

for novels and 8.71 bits for tales. The Shannon entropy measure yielded an average value of 8.91 bits 

of information per syllable for the entire corpus of 80 Lithuanian texts. Compared to Pellegrino et al. 

(2007)'s study of several languages (Picture 1), the Lithuanian language appears next to English, 

exhibiting one of the highest Shannon entropy rates. Conditional entropy, given the context of the 

preceding syllable, revealed an entropy rate of 6.45. Compared to other languages estimated in [19], 

Lithuanian would appear somewhere between German and French. 

In an attempt to understand more about text complexity, I classified chunks of texts based on syllabic 

information into “Complex” and “Not Complex” categories. The gradient boosting classification 

algorithm was the most accurate, with a 91% accuracy rate. This part of the study revealed that most 

text fragments could be classified as more difficult (requiring more effort) based on the unique number 

of syllables they contain. 

The analysis presented in this thesis offers contributions to the understanding of the Lithuanian 

language's syllabic difficulty and distribution. It provides some valuable insights for linguistics 

applications, particularly in language frequency distribution modelling and text difficulty analysis. 
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APPENDICES 
 

 

Figure 6. Logarithmically transformed Lithuanian syllable’s frequencies and rank. Red line represents 

unweighted Beta model regression fitting, blue weighted by scheme 𝑤1. 



   

 

   

 

 

Figure 7. Logarithmically transformed Lithuanian syllable’s frequencies and rank. Red line represents 

unweighted Zipf-Mandelbrot model fitting, green weighted by scheme 𝑤1. 

 

Text/Book Genre Entropy rate 

Judita_VAICIUNAITE__Eilerasciai Poetry 9,26 

Konradas_Valenrodas Poetry 9,06 

Ligi_Lietuvos_10000_kilometru Travel 9,04 

Kelione_i_Sambala Travel 9,02 

Kelioniu_alchemija Travel 9,01 

Pavasario_balsai Poetry 8,98 

Metai Poetry 8,94 

Bobute_is_Paryziaus_arba_Lakstingala_Zarasuose Poetry 8,91 

Keliones Travel 8,88 

Raudonosios_mirties_kauke Novel 8,88 

Link_Debesijos Short story 8,87 

Pauksciu_takas Poetry 8,84 

Bilietas_is_dangaus_arba_Jono_Grigo_kelione_greituoju_traukiniu Poetry 8,83 



   

 

   

 

Naktys_Karaliskiuose Essay 8,82 

Graiku_mitai Mythology 8,82 

Romeo_ir_Dzuljeta Play 8,81 

Kintas Essay 8,81 

Grazina Poetry 8,80 

Zuika_padukelis Essay 8,80 

Gugis_-_giriu_kaukas_ir_zmoniu_draugas Novel 8,78 

Nebijoke Short story 8,77 

Papartynu_saule Short story 8,77 

Padavimai_ir_legendos Mythology 8,74 

Uzrasai_apie_Serloka_Holmsa Short story 8,74 

Haufo_pasakos Tale 8,74 

Burimas_obuolio_seklom Essay 8,74 

Giesme_apie_Gedimina Poetry 8,71 

Egle_Zalciu_karaliene Tale 8,71 

Vilniaus_legendos_Pasakos Tale 8,70 

Giedancios_upes Poetry 8,70 

Baltoji_varnele Poetry 8,70 

Dedes_Tomo_trobele Novel 8,68 

Dainavos_salies_senu_zmoniu_padavimai Essay 8,67 

BASKERVILIU_SUO Essay 8,65 

Zydrieji_Jungos Essay 8,65 

Tomo_Sojerio_nuotykiai Essay 8,64 

Nebaigta_Tale Poetry 8,64 

Perkuno_sventykloje Essay 8,63 

Ane_is_Zaliastogiu Novel 8,63 

Rugseji_sermuksnio_uoga Poetry 8,63 

Suzeistas_vejas Mythology 8,63 

Vasara_su_Katsuniu Novel 8,61 

Jura_yra_suri Short story 8,61 

Pelenu_antele Play 8,60 

Anksti_ryta Poetry 8,59 

Robinzonas_Kruzas Novel 8,59 

kurio_nieks_nemylejo Novel 8,58 

Kaip_atsirado_zeme Mythology 8,58 

Zmogaus_zvaigzde Poetry 8,57 

Portugalijos_karalius Novel 8,55 

Algimantas Novel 8,54 

Ka_nuveike_Keite Essay 8,54 

Vaiku_karas Essay 8,54 

Lietuviskos_pasakos Tale 8,53 

Skerdzius Short story 8,52 

Bembio_vaikai Essay 8,50 

Broliai_Grimai_Vaiku_ir_namu_pasakos Tale 8,49 

Jurgio_Paketurio_klajones Essay 8,49 

Vejo_birbyne Poetry 8,48 

Paslaptingas_sodas Novel 8,47 

Alisa_stebuklu_salyje Essay 8,46 



   

 

   

 

Jos_vardas_Nippe Essay 8,46 

Baltaragio_malunas_arba_Kas_dejosi_anuo_metu_Paudruves_kraste Novel 8,44 

Po_raganos_kirviu_Senas_kareivis_Matatutis Tale 8,42 

Heida Novel 8,41 

Nidos_zverys Tale 8,41 

Mazasis_princas Tale 8,40 

Galvazudys Short story 8,40 

Poliana Novel 8,39 

Bembis Essay 8,37 

Irkos_tragedija Short story 8,30 

Kudikystes_sapnai Short story 8,25 

Sigitas_PARULSKIS__Eilerasciai Poetry 8,18 

Auksine_kurpele Tale 8,17 

Laimes_ziburys Tale 8,02 

Brisiaus_galas Short story 7,90 

Kliudziau Short story 7,69 

Jurate_ir_Kastytis Tale 7,51 

Eilerasciai Poetry 7,25 

Peizazas Poetry 6,41 

 

Table 4. Syllable’s Shannon entropy rate (in bits) for each text/book 

 

 

 

 

Picture 1. Source: Pellegrino, François, Christophe Coupe, and Egidio Marsico. "An information 

theory-based approach to the balance of complexity between phonetics, phonology and 

morphosyntax." 81st Annual Meeting of the Linguistic Society of America 2007. Anaheim, CA, 2007.  

 

 



   

 

   

 

 

Picture 2. Source [15]: https://scholar.harvard.edu/files/schwartz/files/6-entropy.pdf 

 

 

Picture 3. Source: Oh, Y. M. (2015). Linguistic complexity and information: Quantitative approaches. 

Unpublished doctoral thesis, University of Lyon. (Page 61) 

 

 

Model: Logistic Regression 

Classification Report: 

              precision    recall  f1-score   support 

 

     Complex       0.87      0.82      0.84       381 

 Not Complex       0.91      0.93      0.92       723 

 

    accuracy                           0.90      1104 

   macro avg       0.89      0.88      0.88      1104 

weighted avg       0.90      0.90      0.90      1104 

 

Confusion Matrix: 

[[313  68] 

 [ 47 676]] 

 

Model: Random Forest 

Classification Report: 

              precision    recall  f1-score   support 

 

     Complex       0.89      0.86      0.87       381 

 Not Complex       0.93      0.94      0.94       723 

 

    accuracy                           0.91      1104 

   macro avg       0.91      0.90      0.91      1104 

weighted avg       0.91      0.91      0.91      1104 

https://scholar.harvard.edu/files/schwartz/files/6-entropy.pdf


   

 

   

 

 

Confusion Matrix: 

[[328  53] 

 [ 41 682]] 

 

Model: Decision Tree 

Classification Report: 

              precision    recall  f1-score   support 

 

     Complex       0.82      0.82      0.82       381 

 Not Complex       0.90      0.91      0.91       723 

 

    accuracy                           0.88      1104 

   macro avg       0.86      0.86      0.86      1104 

weighted avg       0.88      0.88      0.88      1104 

 

Confusion Matrix: 

[[312  69] 

 [ 67 656]] 

 

 

 

Model: KNN 

Classification Report: 

              precision    recall  f1-score   support 

 

     Complex       0.81      0.82      0.82       381 

 Not Complex       0.90      0.90      0.90       723 

 

    accuracy                           0.87      1104 

   macro avg       0.86      0.86      0.86      1104 

weighted avg       0.87      0.87      0.87      1104 

 

Confusion Matrix: 

[[312  69] 

 [ 71 652]] 

 

Table 6. Other classification model metrics for complex and not complex text fragments. 

 

 

 

 

 

 

 

 

 

 

 



   

 

   

 

CODE: 
 

library(dplyr) 

library(tidyr) 

library(tidyverse) 

library(scales) 

library(ggplot2) 

library(tidytext) 

library(igraph) 

library(widyr) 

library(igraph) 

library(ggraph) 

library(gridExtra) 

library(grid) 

library(purrr) 

set.seed(123) 

 

#### Data preprocessing and cleaning 

long_sylldata <- sylldata %>%  

  gather(Syllablesno, Syllables, SK1:SK12) 

 

long_sylldata <- long_sylldata %>% 

  filter(Syllables != "<NA>")  

### CV coding 

is_vowel <- function(letter) { 

  return(tolower(letter) %in% c('a', 'ą', 'e', 'ė', 'ę', 'i', 'į','y', 'o', 'u', 'ū', 'ų')) 

} 

convert_to_cv <- function(syllable) { 

  letters <- strsplit(syllable, "")[[1]] 

  cv_code <- sapply(letters, function(letter) if(is_vowel(letter)) "V" else "C") 

  return(paste(cv_code, collapse = "")) 

} 

 

long_sylldata <- long_sylldata %>% 

  mutate(cv_pattern = sapply(Syllables, convert_to_cv)) 

 

cv_grouped <- long_sylldata %>% 

  group_by(cv_pattern) %>% 

  summarise( 

    count = n(), 

    examples = list(unique(Syllables)), 

    .groups = 'drop' 

  )  

 

### removing incorrect syllables patterns 

#pattern is wrong if it has V separated by one or more C or if it consists only of C like VCVC 



   

 

   

 

is_invalid_syllable <- function(cv_pattern) { 

  invalid_pattern <- str_detect(cv_pattern, "VC+V") || !str_detect(cv_pattern, "V") || 

str_detect(cv_pattern, "^C+$") 

  return(invalid_pattern) 

} 

 

invalid_mskiem_groups <- long_sylldata %>% 

  mutate(is_invalid = sapply(cv_pattern, is_invalid_syllable)) %>% 

  filter(is_invalid) %>% 

  distinct(MSkiem) 

 

cleaned_sylldata <- long_sylldata %>% 

  filter(!(MSkiem %in% invalid_mskiem_groups$MSkiem)) 

 

cv_grouped_cleaned <- cleaned_sylldata %>% 

  group_by(cv_pattern) %>% 

  summarise( 

    count = n(), 

    examples = list(unique(Syllables)), 

    .groups = 'drop' 

  ) 

 

cleaned_sylldata <- cleaned_sylldata %>% 

  add_count(Syllablesno, Syllables, sort = TRUE) %>% 

  mutate(SKno_ranks = min_rank(desc(n))) 

 

cleaned_sylldata <- cleaned_sylldata %>% 

  add_count(Syllables, sort = TRUE) %>% 

  mutate(totalcount_ranks = min_rank(desc(nn))) 

 

cleaned_sylldata <- cleaned_sylldata %>% 

  dplyr::rename(count_SKno = n, totalcount = nn) %>% 

  mutate(Syll_length = nchar(Syllables)) %>% 

  filter(Syll_length < 10)  

 

#### number of words 

unique_words_count <- cleaned_sylldata %>% 

  distinct(word) %>%   

  nrow() 

 

##### number of unique syllables 

unique_syllables_count <- cleaned_sylldata %>% 

  distinct(Syllables) %>%  

  nrow() 

 

### Sylables structure (CV pattern) distribution 



   

 

   

 

genres <- unique(cleaned_sylldata$zanras) 

 

genre_plots <- list() 

for (genre in genres) { 

  genre_data <- cleaned_sylldata %>% 

    filter(zanras == genre) %>% 

    count(cv_pattern, name = "frequency") %>% 

    arrange(desc(frequency)) 

   

  genre_plots[[genre]] <- ggplot(genre_data, aes(x = reorder(cv_pattern, -frequency), y = frequency)) + 

    geom_bar(stat = "identity") + 

    labs(title = paste("Frequency of Syllable Types in", genre), 

         x = "Syllable Type", 

         y = "Frequency") + 

    theme(axis.text.x = element_text(angle = 90, hjust = 1)) 

} 

grid_plots <- do.call(grid.arrange, c(genre_plots, ncol = 2, nrow = 4)) 

 

#### creating syllables types 

cleaned_sylldata <- cleaned_sylldata %>% 

  mutate(Syll_type = case_when( 

    Tsyll == 1 ~ 'monosyllables', 

    Tsyll == 2 ~ 'disyllables', 

    Tsyll >= 3 ~ 'polysyllables' 

  )) 

 

cleaned_sylldata <- cleaned_sylldata %>% 

  mutate(Syll_position = as.numeric(gsub("SK", "", Syllablesno))) 

 

# categorizing syllable position 

cleaned_sylldata <- cleaned_sylldata %>% 

  mutate(Syll_position_group = case_when( 

    Tsyll == 1 ~ 'initial', 

    Syll_position == 1 & Tsyll >= 2 ~ 'initial', 

    Tsyll == Syll_position ~ 'end', 

    TRUE ~ 'inner' 

  )) 

 

# n-grams analysis (bigram network) 

 

make_bigrams <- function(...) { 

  syllables <- na.omit(c(...))  

  bigrams <- map2_chr(head(syllables, -1), tail(syllables, -1), ~ paste(.x, .y)) 

  return(bigrams) 

} 



   

 

   

 

 

bigram_counts <- sylldata %>% 

  transmute(syllables = pmap(list(SK1, SK2, SK3, SK4, SK5, SK6, SK7, SK8, SK9, SK10, SK11, 

SK12), make_bigrams)) %>% 

  unnest(cols = c(syllables)) %>% 

  separate(syllables, into = c("syllable_sequence", "next_syllable"), sep = " ") %>% 

  count(syllable_sequence, next_syllable, sort = TRUE) 

 

bigram_graph <- bigram_counts %>% 

  filter(n > 2500) %>%   

  graph_from_data_frame() 

 

a <- grid::arrow(type = "closed", length = unit(0.15, "inches")) 

 

bigram_plot <- ggraph(bigram_graph, layout = "fr") + 

  geom_edge_link(aes(edge_alpha = n), show.legend = FALSE, 

                 arrow = a, end_cap = circle(0.07, "inches"), color = "gray50") + 

  geom_node_point(color = "lightblue", size = 5) + 

  geom_node_text(aes(label = name), vjust = 1, hjust = 1) + 

  ggtitle("Bigram Network Graph") + 

  theme_void() + 

  theme(plot.title = element_text(hjust = 0.5)) 

 

total_transitions <- bigram_counts %>% 

  group_by(syllable_sequence) %>% 

  summarise(total = sum(n)) 

 

transition_probabilities <- bigram_counts %>% 

  left_join(total_transitions, by = "syllable_sequence") %>% 

  mutate(probability = n / total) 

 

ggplot(transition_probabilities, aes(x = syllable_sequence, y = next_syllable, fill = probability)) + 

  geom_tile() + 

  scale_fill_gradient(low = "white", high = "steelblue") + 

  theme_minimal() + 

  labs(title = "Bigram Transition Probabilities", x = "Syllable", y = "Next Syllable", fill = 

"Probability") 

 

### rank-frequency distribution 

syllable_freq_table <- cleaned_sylldata %>% 

  count(Syllables, sort = TRUE, name = "frequency") %>% 

  mutate( 

    total = sum(frequency),  

    term_frequency = frequency / total,  

    rank = rank(-term_frequency),  

    log_frequency = log10(frequency), 

    log_term_frequency = log10(term_frequency),  



   

 

   

 

    syllable_length = nchar(Syllables), 

    log_rank = log(rank) 

  ) 

 

#weight: 

wt1 <- 1/syllable_freq_table$rank 

######## plot Yule 

Yule_model <- lm(log_term_frequency ~ I(rank) + I(log_rank), data = syllable_freq_table)  

summary(Yule_model) 

SSE0_yule=sum(Yule_model$residuals**2) 

SSE0 

AIC_yule <- AIC(Yule_model) 

 

Yule_model_wt1 <- lm(log_term_frequency ~ I(rank) + I(log_rank),  

                     data = syllable_freq_table,  

                     weights = wt1) 

 

summary(Yule_model_wt1) 

 

pred <- predict(Yule_model) 

pred1 <- predict(Yule_model_wt1) 

ix <- order(syllable_freq_table$log_rank) 

 

plot(syllable_freq_table$log_rank, syllable_freq_table$log_term_frequency,  

     xlab = "Rank (in log scale)",  

     ylab = "Syllable's Frequency (in log scale)",  

     main = "Log-Log Syllable's frequency vs. Rank", 

     cex.lab = 1.2, cex.axis = 1.2, cex.main = 1.5, pch = 19) 

 

lines(syllable_freq_table$log_rank[ix], pred[ix], col = 'red', lwd = 2) 

lines(syllable_freq_table$log_rank[ix], pred1[ix], col = 'blue', lwd = 2) 

 

coef_unwt <- round(coef(Yule_model), 5) 

coef_wt1 <- round(coef(Yule_model_wt1), 5) 

 

x_pos <- min(syllable_freq_table$log_rank) 

y_pos <- min(syllable_freq_table$log_term_frequency) - 0.1   

 

text(x = x_pos, y = y_pos,  

     labels = paste("Unweighted model:\nIntercept =", coef_unwt[1], "\nCoefficient 1 =", coef_unwt[2], 

"\nCoefficient 2 =", coef_unwt[3], 

                    "\nWeighted model w1:\nIntercept =", coef_wt1[1], "\nCoefficient 1 =", coef_wt1[2], 

"\nCoefficient 2 =", coef_wt1[3]), 

     adj = c(0,0), cex = 0.8, col = "black") 



   

 

   

 

 

#### Zipf - power law 

 

Zipf_model <- lm(log_term_frequency ~ I(log_rank), data = syllable_freq_table)  

summary(Zipf_model) 

SSE0_zipf=sum(Zipf_model$residuals**2) 

AIC_zipf <- AIC(Zipf_model) 

AIC_zipf 

 

Zipf_model_wt1 <- lm(log_term_frequency ~ I(log_rank),  

                     data = syllable_freq_table,  

                     weights = wt1) 

summary(Zipf_model_wt1) 

 

pred <- predict(Zipf_model) 

pred1 <- predict(Zipf_model_wt1) 

ix <- order(syllable_freq_table$log_rank) 

 

plot(syllable_freq_table$log_rank, syllable_freq_table$log_term_frequency,  

     xlab = "Rank (in log scale)",  

     ylab = "Syllable's Frequency (in log scale)",  

     main = "Log-Log Syllable's frequency vs. Rank", 

     cex.lab = 1.2, cex.axis = 1.2, cex.main = 1.5) 

 

lines(syllable_freq_table$log_rank[ix], pred1[ix], col = 'blue', lwd = 2) 

lines(syllable_freq_table$log_rank[ix], pred[ix], col = 'red', lwd = 2) 

 

coef_unwt <- round(coef(Zipf_model), 3) 

coef_wt1 <- round(coef(Zipf_model_wt1), 3) 

 

x_pos <- min(syllable_freq_table$log_rank) 

y_pos <- min(syllable_freq_table$log_term_frequency) - 0.1 

 

text(x = x_pos, y = y_pos,  

     labels = paste("Unweighted model:\nIntercept =", coef_unwt[1], "\nSlope =", coef_unwt[2],  

                    "\n\nWeighted model w1:\nIntercept =", coef_wt1[1], "\nSlope =", coef_wt1[2]),  

     adj = c(0,0), cex = 0.8, col = "black") 

 

### Beta 

 

Beta_model <- lm(log_term_frequency ~ I(log_rank) + log(max(rank) + 1 - rank), data = 

syllable_freq_table) 



   

 

   

 

summary(Beta_model) 

SSE0_beta=sum(Beta_model$residuals**2) 

SSE0_beta 

AIC_beta <- AIC(Beta_model) 

AIC_beta 

 

Beta_model_wt1 <- lm(log_term_frequency ~ I(log_rank) + log(max(rank) + 1 - rank), 

                     data = syllable_freq_table,  

                     weights = wt1) 

 

summary(Beta_model_wt1) 

pred <- predict(Beta_model) 

pred1 <- predict(Beta_model_wt1) 

ix <- order(syllable_freq_table$log_rank) 

 

plot(syllable_freq_table$log_rank, syllable_freq_table$log_term_frequency,  

     xlab = "Rank (in log scale)",  

     ylab = "Syllable's Frequency (in log scale)",  

     main = "Log-Log Syllable's frequency vs. Rank") 

 

 

lines(syllable_freq_table$log_rank[ix], pred1[ix], col = 'blue', lwd = 2) 

lines(syllable_freq_table$log_rank[ix], pred[ix], col = 'red', lwd = 2) 

 

coef_unwt <- round(coef(Beta_model), 3) 

coef_wt1 <- round(coef(Beta_model_wt1), 3) 

 

x_pos <- min(syllable_freq_table$log_rank) 

y_pos <- min(syllable_freq_table$log_term_frequency) - 0.1   

 

text(x = x_pos, y = y_pos,  

     labels = paste("Unweighted model:\nIntercept =", coef_unwt[1], "\nCoefficient 1 =", coef_unwt[2], 

"\nCoefficient 2 =", coef_unwt[3], 

                    "\nWeighted model w1:\nIntercept =", coef_wt1[1], "\nCoefficient 1 =", coef_wt1[2], 

"\nCoefficient 2 =", coef_wt1[3]), 

     adj = c(0,0), cex = 0.8, col = "black") 

 

 

####### Zipf Mandelbrot 

ZM_model <- nls(log(term_frequency) ~ log(c_param) - a * log(rank + b),  

                data = syllable_freq_table,  

                start = list(a = 1, b = 0, c_param = 1), 

                control = nls.control(maxiter = 100))   

 



   

 

   

 

summary(ZM_model) 

AIC_ZM <- AIC(ZM_model) 

AIC_ZM 

residuals_ZM <- residuals(ZM_model) 

SSE0_ZM <- sum(residuals_ZM^2) 

SSE0_ZM 

 

ZM_modelw1 <- nls(log(term_frequency) ~ log(c) - a * log(rank + b),  

                  data = syllable_freq_table,  

                  start = list(a = 1, b = 0, c = 1), 

                  control = nls.control(maxiter = 100), 

                  weights = wt1)   

 

ZM_modelw1 

 

#### plots: 

plot(log(syllable_freq_table$rank), log(syllable_freq_table$term_frequency),  

     xlab = "log(rank)",  

     ylab = "log(frequency)", 

     main = "Log-Log Plot of Word Frequency vs. Rank") 

 

lines(log(syllable_freq_table$rank), predict(ZM_model), col = 2, lwd = 3) 

lines(log(syllable_freq_table$rank), predict(ZM_modelw1), col = 3, lwd = 3) 

 

coef_unwt <- round(coef(ZM_model), 3) 

coef_wt1 <- round(coef(ZM_modelw1), 3) 

 

x_pos <- min(syllable_freq_table$log_rank) 

y_pos <- min(syllable_freq_table$log_term_frequency) - 9 

 

text(x = x_pos, y = y_pos,  

     labels = paste("Unweighted model:\nIntercept =", round(coef_unwt[1], 3),  

                    "\nCoefficient 1 =", round(coef_unwt[2], 3),  

                    "\nCoefficient 2 =", round(coef_unwt[3], 3), 

                    "\n\nWeighted model w1:\nIntercept =", round(coef_wt1[1], 3),  

                    "\nCoefficient 1 =", round(coef_wt1[2], 3),  

                    "\nCoefficient 2 =", round(coef_wt1[3], 3)), 

     adj = c(0, 0), cex = 0.8, col = "black") 

 

#### fitting 

 

weighted_residuals_ZM <- sqrt(wt1) * residuals(ZM_modelw1) 

weighted_RSS_ZM <- sum(weighted_residuals_ZM^2) 

log_term_freq <- log(syllable_freq_table$term_frequency) 

TSS <- sum((log_term_freq - mean(log_term_freq))^2) 



   

 

   

 

rsquared_ZM_wt <- 1 - (weighted_RSS_ZM / TSS) 

rsquared_ZM_wt 

 

#### Akaike for weighted regression 

 

aic_weighted <- function(model, weights) { 

  n <- length(residuals(model)) 

  k <- length(coef(model)) 

  weighted_residuals <- sqrt(weights) * residuals(model) 

  weighted_RSS <- sum(weighted_residuals^2) 

   

  aic_w <- n * log(weighted_RSS / n) + 2 * k 

  return(aic_w) 

} 

 

names(weighted_model_list) <- c("Yule_model_wt1", "Zipf_model_wt1", "Beta_model_wt1", 

"ZM_model_wt1") 

 

aic_values <- sapply(weighted_model_list, function(model) aic_weighted(model, wt1)) 

aic_values 

 

### SSE for weighted 

 

SSE_weighted <- function(model, weights) { 

  weighted_residuals <- sqrt(weights) * residuals(model) 

  SSE_w <- sum(weighted_residuals^2) 

  return(SSE_w) 

} 

 

weighted_model_list <- list(Yule_model_wt1, Zipf_model_wt1, Beta_model_wt1, ZM_modelw1) 

 

sse_values <- sapply(weighted_model_list, function(model) SSE_weighted(model, wt1)) 

sse_values 

 

### number of parameters 

K_yule <- length(coef(Yule_model)) 

K_zipf <- length(coef(Zipf_model)) 

K_beta <- length(coef(Beta_model)) 

K_ZM <- length(coef(ZM_model)) 

 

#### delata AIC 

 

min_AIC_unwt <- min(c(AIC_yule, AIC_zipf, AIC_beta, AIC_ZM)) 



   

 

   

 

delta_AIC_yule_unwt <- AIC_yule - min_AIC_unwt 

delta_AIC_yule_unwt 

delta_AIC_zipf_unwt <- AIC_zipf - min_AIC_unwt 

delta_AIC_zipf_unwt 

delta_AIC_beta_unwt <- AIC_beta - min_AIC_unwt 

delta_AIC_beta_unwt 

delta_AIC_ZM_unwt <- AIC_ZM - min_AIC_unwt 

delta_AIC_ZM_unwt 

 

min_AIC_wt <- min(aic_values) 

delta_AIC_yule_wt <- aic_values["Yule_model_wt1"] - min_AIC_wt 

delta_AIC_zipf_wt <- aic_values["Zipf_model_wt1"] - min_AIC_wt 

delta_AIC_beta_wt <- aic_values["Beta_model_wt1"] - min_AIC_wt 

delta_AIC_ZM_wt <- aic_values["ZM_model_wt1"] - min_AIC_wt 

 

#beta coef 

beta_coeffs <- coef(Beta_model) 

c0_beta <- beta_coeffs["(Intercept)"] 

c1_beta <- beta_coeffs["I(log_rank)"] 

c2_beta <- beta_coeffs["log(max(rank) + 1 - rank)"] 

C_beta <- exp(c0_beta) 

a_beta <- -c1_beta 

b_beta <- c2_beta 

 

# yule coef 

yule_coeffs <- coef(Yule_model) 

c0_yule <- yule_coeffs["(Intercept)"] 

c1_yule <- yule_coeffs["I(rank)"] 

c1_yule 

c2_yule <- yule_coeffs["I(log_rank)"] 

C_yule <- exp(c0_yule) 

a_yule <- -c2_yule 

b_yule <- exp(c1_yule) 

 

# zipf 

zipf_coeffs <- coef(Zipf_model) 

c0_zipf <- zipf_coeffs["(Intercept)"] 

c1_zipf <- zipf_coeffs["I(log_rank)"] 

C_zipf <- exp(c0_zipf) 

a_zipf <- -c1_zipf 

 

#ZM 

zm_coeffs <- coef(ZM_model) 

c_zm <- zm_coeffs["c_param"] 

a_zm <- zm_coeffs["a"] 

b_zm <- zm_coeffs["b"] 

 



   

 

   

 

results <- data.frame( 

  Model = c("Beta", "Yule", "Zipf", "Zipf-Mandelbrot"), 

  C = c(C_beta, C_yule, C_zipf, c_zm), 

  a = c(a_beta, a_yule, a_zipf, a_zm), 

  b = c(b_beta, b_yule, NA, b_zm) 

) 

 

##### Entropy 

#### 1st part general entropy 

distinct_syllables <- cleaned_sylldata %>% 

  dplyr::select(Syllables, totalcount) %>% 

  distinct() 

 

distinct_syllables <- distinct_syllables %>% 

  mutate(probability = totalcount / sum(totalcount)) 

 

distinct_syllables <- distinct_syllables %>% 

  mutate(shannon_inf = -probability * log2(probability)) 

 

distinct_syllables <- distinct_syllables %>% 

  mutate(rank = rank(-probability)) 

 

total_entropy <- sum(distinct_syllables$shannon_inf, na.rm = TRUE) 

total_entropy 

 

##### correcting sylldata according to cleaned_sylldata 

unique_MSkiem <- unique(cleaned_sylldata$MSkiem) 

 

filtered_sylldata <- sylldata %>%  

  filter(MSkiem %in% unique_MSkiem) 

 

mean_Tsyll <- mean(filtered_sylldata$Tsyll, na.rm = TRUE) 

print(paste("The mean of Tsyll is:", mean_Tsyll)) 

 

sylldata_unnested <- filtered_sylldata %>% 

  dplyr::select(moKur_nr, word, ZodIlg, stopai, Grupe, Tsyll, MSkiem, nr, autorID, autorius, 

n_kuriniu, kurinioID, kurinys, autK1, autK, zanras, Versta, SK1:SK12) %>% 

  pivot_longer(cols = starts_with("SK"), names_to = "Syllable_no", values_to = "Syllable") %>% 

  filter(!is.na(Syllable)) 

 

syllable_counts <- sylldata_unnested %>% 

  group_by(kurinys, zanras, Syllable) %>% 



   

 

   

 

  summarize(count = n(), .groups = 'drop') 

 

syllable_probs <- syllable_counts %>% 

  group_by(kurinys, zanras) %>% 

  mutate(total = sum(count), probability = count / total) %>% 

  ungroup() 

 

shannon_entropy_kurinys <- syllable_probs %>% 

  group_by(kurinys, zanras) %>% 

  summarize(entropy = -sum(probability * log2(probability)), .groups = 'drop') 

 

word_counts <- sylldata_unnested %>% 

  group_by(kurinys, zanras) %>% 

  summarize(word_count = n(), .groups = 'drop') 

 

entropy_with_wordcounts <- merge(shannon_entropy_kurinys, word_counts, by = "kurinys") 

 

entropy_with_wordcounts$genre_english <- factor(entropy_with_wordcounts$zanras.x, 

                                                levels = c("Apysaka", "Apsakymas", "Kelionės", "Mitologija", "Pasaka", 

"Pjesė", "Poezija", "Romanas"), 

                                                labels = c("Short story", "Essay", "Travel", "Mythology", "Tales", 

"Plays", "Poetry", "Novel")) 

 

ggplot(entropy_with_wordcounts, aes(x = word_count, y = entropy, color = genre_english)) + 

  geom_point() +   

  theme_minimal() +  

  labs(title = "Shannon Entropy vs Word Count by Book and Genre", 

       x = "Word Count", 

       y = "Shannon Entropy", 

       color = "Genre")  

 

#spearman correlation 

spearman_test <- cor.test(entropy_with_wordcounts$word_count, entropy_with_wordcounts$entropy, 

method = "spearman") 

spearman_test 

 

### shannon by genre 

syllable_counts_genre <- sylldata_unnested %>% 

  group_by(zanras, Syllable) %>% 

  summarize(count = n(), .groups = 'drop') 

 

syllable_probs <- syllable_counts_genre %>% 

  group_by(zanras) %>% 

  mutate(total = sum(count), probability = count / total) %>% 



   

 

   

 

  ungroup() 

 

shannon_entropy_zanras <- syllable_probs %>% 

  group_by(zanras) %>% 

  summarize(entropy = -sum(probability * log2(probability)), .groups = 'drop') 

 

shannon_entropy_zanras 

write.csv(shannon_entropy_kurinys, "shannon_entropy_kurinys.csv", row.names = TRUE) 

 

word_counts <- sylldata_unnested %>% 

  group_by(kurinys, zanras) %>% 

  summarize(word_count = n(), .groups = 'drop') 

 

entropy_with_wordcounts <- merge(shannon_entropy_kurinys, word_counts, by = "kurinys") 

 

ggplot(entropy_with_wordcounts, aes(x = word_count, y = entropy, color = zanras.x)) + 

  geom_point() +   

  theme_minimal() +   

  labs(title = "Shannon Entropy vs Word Count by Book and Genre", 

       x = "Word Count", 

       y = "Shannon Entropy") + 

  scale_color_discrete(name = "Genre")   

 

### coonditional entropy 

bigrams_list <- strsplit(filtered_sylldata$MSkiem, "-") 

 

generate_bigrams_with_markers <- function(syllables) { 

  if (length(syllables) == 1) { 

    return(paste0("*_", syllables)) 

  } 

  c(paste0("*_", syllables[1]),  

    paste(head(syllables, -1), tail(syllables, -1), sep = "_")) 

} 

marked_bigrams_list <- lapply(bigrams_list, generate_bigrams_with_markers) 

 

bigrams <- unlist(marked_bigrams_list) 

 

context_freq <- table(sub("_.*", "", bigrams)) 

 

bigram_freq <- table(bigrams) 

 



   

 

   

 

bigrams_df <- data.frame(bigram = names(bigram_freq), freq = as.numeric(bigram_freq)) 

p_c <- context_freq / sum(context_freq) 

 

bigrams_df <- bigrams_df %>% 

  separate(bigram, into = c("context", "syllable"), sep = "_", fill = "left", remove = FALSE) %>% 

  mutate(context = ifelse(context == "*", NA, context))  

 

bigrams_df <- bigrams_df %>% 

  group_by(context) %>% 

  mutate(p_xi_given_c = freq / sum(freq)) %>% 

  ungroup() 

 

bigrams_df$conditional_entropy <- ifelse(bigrams_df$p_xi_given_c > 0,  

                                         -bigrams_df$p_xi_given_c * log2(bigrams_df$p_xi_given_c), 

                                         0) 

 

bigrams_df$context[is.na(bigrams_df$context)] <- "*" 

 

bigrams_df$weighted_entropy <- bigrams_df$conditional_entropy * 

p_c[as.character(bigrams_df$context)] 

total_conditional_entropy <- sum(bigrams_df$weighted_entropy, na.rm = TRUE) 

 

print(paste("Total Conditional Entropy:", total_conditional_entropy)) 

 

#### conditional entropy per genre, It is repeated for every genre. Here it is a part 

#### for novel (romanas) genre 

filtered_sylldata_romanas <- filtered_sylldata[filtered_sylldata$zanras == "Romanas", ] 

 

bigrams_list_romanas <- strsplit(filtered_sylldata_romanas$MSkiem, "-") 

 

generate_bigrams_with_markers <- function(syllables) { 

  if (length(syllables) == 1) { 

    return(paste0("*_", syllables)) 

  } 

  c(paste0("*_", syllables[1]),  

    paste(head(syllables, -1), tail(syllables, -1), sep = "_")) 

} 

 

marked_bigrams_list_romanas <- lapply(bigrams_list_romanas, generate_bigrams_with_markers) 

 



   

 

   

 

bigrams_romanas <- unlist(marked_bigrams_list_romanas) 

 

context_freq_romanas <- table(sub("_.*", "", bigrams_romanas)) 

 

bigram_freq_romanas <- table(bigrams_romanas) 

 

bigrams_df_romanas <- data.frame(bigram = names(bigram_freq_romanas), freq = 

as.numeric(bigram_freq_romanas)) 

 

p_c_romanas <- context_freq_romanas / sum(context_freq_romanas) 

 

bigrams_df_romanas <- bigrams_df_romanas %>% 

  separate(bigram, into = c("context", "syllable"), sep = "_", fill = "left", remove = FALSE) %>% 

  mutate(context = ifelse(context == "*", NA, context))   

 

bigrams_df_romanas <- bigrams_df_romanas %>% 

  group_by(context) %>% 

  mutate(p_xi_given_c = freq / sum(freq)) %>% 

  ungroup() 

 

bigrams_df_romanas$conditional_entropy <- ifelse(bigrams_df_romanas$p_xi_given_c > 0,  

                                                 -bigrams_df_romanas$p_xi_given_c * 

log2(bigrams_df_romanas$p_xi_given_c), 

                                                 0) 

 

bigrams_df_romanas$context[is.na(bigrams_df_romanas$context)] <- "*" 

 

bigrams_df_romanas$weighted_entropy <- bigrams_df_romanas$conditional_entropy * 

p_c_romanas[as.character(bigrams_df_romanas$context)] 

 

total_conditional_entropy_romanas <- sum(bigrams_df_romanas$weighted_entropy, na.rm = TRUE) 

 

print(paste("Conditional Entropy for Romanas:", total_conditional_entropy_romanas)) 

 

#### complex and not complex text classification 

 

threshold <- quantile(shannon_entropy_kurinys$entropy, 0.75) 

 



   

 

   

 

shannon_entropy_kurinys$Complexity <- ifelse(shannon_entropy_kurinys$entropy >= threshold, 

"Complex", "Not Complex") 

 

merged_data <- merge(cleaned_sylldata, shannon_entropy_kurinys, by = "kurinys") 

 

Classification of complex text in python code: 

import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import classification_report, confusion_matrix 
from sklearn.linear_model import LogisticRegression 
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier 
from sklearn.neighbors import KNeighborsClassifier 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.utils import shuffle 
 
np.random.seed(123) 
 
fragment_size = 1000  #syllables per fragment 
fragments = [] 
 
model_data = shuffle(model_data).reset_index(drop=True) 
 
for name, group in model_data.groupby('kurinys'): 
    for i in range(0, len(group), fragment_size): 
        fragment = group.iloc[i:i + fragment_size] 
        if len(fragment) == fragment_size: 
            fragment_id = f"{name}_fragment_{i // fragment_size}" 
            fragments.append((fragment_id, fragment)) 
 
aggregated_fragments = [] 
 
for fragment_id, fragment in fragments: 
    position_proportions = fragment.groupby('Syll_position_group').size().div(len(fragment)) 
    type_proportions = fragment.groupby('Syll_type').size().div(len(fragment)) 
    stopai_proportions = fragment.groupby('stopai').size().div(len(fragment)) 
    cv_pattern_proportions = fragment.groupby('cv_pattern').size().div(len(fragment)) 
 
    complexity_class = fragment['Complexity'].iloc[0] 
 
    aggregated_data = { 
        'unique_syllable_count': fragment['Syllables'].nunique(), 
        'avg_syllable_freq': fragment['n'].mean(), 
        'cv_pattern_unique': fragment['cv_pattern'].nunique(), 
        'Complexity': complexity_class, 
        'fragment_id': fragment_id 



   

 

   

 

    } 
 
    aggregated_data.update({'position_' + k: v for k, v in position_proportions.to_dict().items()}) 
    aggregated_data.update({'type_' + k: v for k, v in type_proportions.to_dict().items()}) 
    aggregated_data.update({'stopai_' + k: v for k, v in stopai_proportions.to_dict().items()}) 
    aggregated_data.update({'cv_pattern_' + k: v for k, v in cv_pattern_proportions.to_dict().items()}) 
 
    aggregated_fragments.append(aggregated_data) 
 
final_aggregated_data = pd.DataFrame(aggregated_fragments) 
 
final_aggregated_data = final_aggregated_data.fillna(0) 
 
X = final_aggregated_data.drop(['fragment_id', 'Complexity'], axis=1)  
y = final_aggregated_data['Complexity'] 
 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 
 
#logistic regression 
log_reg = LogisticRegression(max_iter=1000) 
log_reg.fit(X_train, y_train) 
log_reg_pred = log_reg.predict(X_test) 
 

#random forest 

rf = RandomForestClassifier() 

rf.fit(X_train, y_train) 

rf_pred = rf.predict(X_test) 

 

#KNN 

knn = KNeighborsClassifier() 

knn.fit(X_train, y_train) 

knn_pred = knn.predict(X_test) 

#decision tree 

dt = DecisionTreeClassifier() 

dt.fit(X_train, y_train) 

dt_pred = dt.predict(X_test) 

 

#GB 

gb = GradientBoostingClassifier() 

gb.fit(X_train, y_train) 

gb_pred = gb.predict(X_test) 

 

#evaluation 

models = [log_reg, rf, dt, gb, knn] 

predictions = [log_reg_pred, rf_pred, dt_pred, gb_pred, knn_pred] 

model_names = ['Logistic Regression', 'Random Forest', 'Decision Tree', 'Gradient Boosting', 'KNN'] 

 



   

 

   

 

for model, pred, name in zip(models, predictions, model_names): 

    print(f"Model: {name}") 

    print("Classification Report:") 

    print(classification_report(y_test, pred)) 

    print("Confusion Matrix:") 

    print(confusion_matrix(y_test, pred)) 

    print("-" * 50) 

 

feature_importances = gb.feature_importances_ 

 

features_df = pd.DataFrame({ 

    'Feature': X_train.columns, 

    'Importance': feature_importances 

}) 

 

sorted_features_df = features_df.sort_values(by='Importance', ascending=False) 

print(sorted_features_df.head(10))   


