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Abstract

In this paper, a comparison of the three recently published novel clustering methods: Parameter
free Clustering based K means, A Criterion for Deciding the Number of Clusters in a Dataset and
Graph-based Data clustering via Multiscale Community Detection is undertaken. Each of the
these methods are replicated on both real and synthetic data sets for which their performance
is evaluated with the regards to the relative error between the number of outputted clusters and
the true cluster number for each data set. It was found that the Graph-based Data clustering via
Multiscale Community Detection was the best performing and was able to determine the cluster
number for each data set with complete accuracy with regards to the number of partitions. Further
evaluation of each method considers the quality of the output in more depth as well as evaluates
the strengths and limitations of each respective method.
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1 Introduction

Clustering is a data mining technique used to process large data in the fields of data analysis and
machine learning. Clustering has many purposes that range from dimensionality reduction to uncov-
ering meaningful information about a datas structure. There are a wide range of clustering techniques
used today for which each of them aim to maximise the similarity of points within a cluster and the
dissimilarity between alternate clusters for which uncover patterns in data that are not readily acces-
sible. Clustering can be applied to a multitude of data sets that are not limited to numerical, such as
images and graph networks which has given rise a wide range of techniques. The majority of commonly
used clustering algorithms focus on applying distance metrics to measure the closeness of data points.
Despite the efficacy of these methods, there are still persistent challenges in the field of clustering with
regards to parameter sensitivity, initialisation processes and dealing with outliers and noisy data. The
challenges that arise with mining high dimensional data are referred to as the curse of dimensionality,
which is a limitation to even the most robust clustering algorithms.

In this paper, three recent novel clustering methods are compared and contrasted with regards to
the best performing method. They each stem from individual areas where one proposes a parameter
free clustering algorithm, the second a parameter estimation algorithm and the final method introduces
a novel framework applied to a graph based multi scale community detection method. Each of these
studies are replicated on a selection of both real and synthetic data that varies in attributes and
dimensionality that were not covered in the original analysis.

2 Literature Review

In this section, a comprehensive overview of established clustering methods is detailed with regards to
the relative field of each clustering method used in the comparison.

One of the most commonly used clustering methods is the k means clustering algorithm. This is an
unsupervised learning method, meaning that the algorithm does not have knowledge regarding details
of the data set such as labels, upfront. The algorithm works by segregating data into k partitions
by calculating the distance between each data object and a cluster center such that the similarity
of data objects within a cluster is maximised, and the dissimilarity between clusters is maximised.
Therefore data objects are assigned to the centers that they are closest to. The process of selecting
the initial k cluster centers is random. The distance between each data object and cluster center
is calculated at each iteration and the mean of all the data objects within a cluster is assigned to
that cluster k. The process continues until there is no longer a change in the mean cluster values [6]
The random initialisation process conveys that the results may not always be stable, and considering
pairwise distances and each data object in isolation yields to outlier sensitivity. The method is therefore
sensitive to the parameter k which means that the selection of k needs to be a well considered process.
The criterion method based on data depth[2] is a novel method that estimates the number of clusters
k with relevance to the importance of this metric.

Another commonly used clustering method is the density based spatial clustering of applications
with noise known as the DBSCAN method. In this method, data objects are clustered based on their
density, where clusters are determined by high density regions and outliers are conveyed as noise. This
method is therefore robust to outliers and effective in determining clusters of varying shape [28].For
each data point in a cluster it has an ϵ neighbourhood value which is a radius value defined by a
distance metric and a ’MinPts’ value which is the minimum number of points that are within the this
ϵ radius [4]. Although this algorithm is able to cluster data of varying shape and does not include
an initial input parameter for the number of clusters, it is not able to cluster data sets that have
significant difference in densities which renders the parameter selection unsuitable for all clusters of
this kind. Additionally the method is not deterministic meaning is does not produce consistent results
as the algorithm has a random starting point [32].

Another common branch of clustering regards a data visualisation technique to determine similar-
ities known as hierarchical clustering. The data visualisation concerns diagrams that have tree based
structures but are mostly reliant on interpretation of a dendrogram. A dendrogram is a diagram that
conveys the relations between data objects in a data set. It behaves as almost like a tree like structure
where the branches convey the clusters. The vertical component represents the distance between clus-
ters defined by some distance metric and the horizontal component represents the data points [24]. To
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compute this dendrogram there are two main methods. One is agglomeritve clustering which works
by starting with n groups where a single point considered as a cluster features in each group. The
algorithm is said to work as a ’ bottom up’ approach to clustering data, where the two groups of the
highest similarity are joined to form one group and the process repeats until there is a single group
that is inclusive of all the data objects. The vertical component or height of each group conveys the
dissimilarity between the groups being joined [31]. The second approach is known as divisive clustering
which is the converse of agglomeritive clustering. Instead all data objects feature in a single cluster and
the data is divided iterative according to the dissimilarity between objects. This method is effective
in identifying large clusters whereas the agglomerative method better identifies smaller clusters [8].

Regarding graph based approaches to clustering, one of the main techniques considered is spectral
clustering. Spectral clustering focuses on extracting communities from graphs or networks in the form
of nodes. The matrix representations of the graph are extracted such as the adjacency matrix A
which denotes the connections between the nodes and the degree matrix D conveying the number
of edges attached to each node, are then extracted from the graphical representation of the data set
where the eigenvectors and eigenvalues are analysed. An eigenvector is a non zero vector that when
multiplied a matrix A, the result is a multiple of that matrix A, and an eigenvalue is the scalar multiple
corresponding the eigenvector such that Ax = λx [13]. Using the information given by the eigenvectors
and eigenvalues the variations of the graph Laplacian matrices, of the form L = D−1A can be deduced
which are the main focus of spectral clustering for the purpose of identifying the data’s inherit structure
by considering it in its entirety [20] These Laplacian matrices are used to identify natural clusters in
the data but the significance of spectral clustering is the use of eigenvectors and eigenvalues to uncover
the networks structure. The multi scale community detection algorithm replicated in this paper is a
branch of graph based clustering that uses a novel framework applied to the matrix representation of
the data extracted from the graph network.

3 Theoretical Description of Methods

In this section, each study implemented for the comparison is detailed with regards to their theoretical
background. As these are novel clustering methods published within the past 3-4 years, these descrip-
tions focus on the methodology and key definitions used to implement each respective algorithm.

3.1 A Parameter free Clustering Algorithm based K Means

In this study, the authors Said Slaoui and Zineb Dafir, propose in their clustering study [29], a novel
method that aims to determine the optimal number of clusters in a data set as well as the initial cluster
centres without any prior initialisation of the number of clusters. Their methods consist of developing
a new clustering heuristic that combines and existing E – transitive heuristic adapted to quantitative
data as well as adaptations of the traditional k means clustering algorithm denoted as PFK-means.
The mathematical concepts behind their E- transitive method and its derivation are outlined in detail
below alongside Slaoui and Defir’s variations of their parameter free methods.

3.1.1 Mathematical Concepts

The theoretical concepts behind Slaoui and Defirs defined in their work [29], resembles traditional
clustering ideology: to partition data into distinct clusters such that the union of all clusters is equal
to the data set, and that there exists no data element that is present in more than one cluster, thus
maximising the dissimilarity across clusters.

The cluster centres are defined as follows:

cj =
1

|Cj |
∑

xi∈Cj

xi

Where cj is the cluster centre of each respective cluster Cj , therefore the center is defined as the
sum of all data points divided by the size of the cluster which denoted the center as the clusters
location within the data set.

The distance between the clusters centre ci and a data object xi is determined using the Euclidean
distance metric. The Euclidean distance between a pair of points (x1, y1) and (x2, y2) is denoted by
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d =
√
(x2 − x1)2 + (y2 − y1)2. This conveys the difference between the x and y coordinates in each

respective coordinate pair for which the horizontal and vertical distance components are obtained.
Summing and square rooting the addition of these distances yields the distance between the coordinates
which stems from the Pythagorean theorem of calculating missing triangle lengths. The Euclidean
distance is therefore used to calculate the closest distance between a pair of points [3]. Applying
this ideology, Slaoui and Defir, denote the quality metric of a cluster Cj as the sum of squared error
between all data objects ci in a cluster Cj and the cluster centre cj . To do this, the difference between
the expected value of the distance function and the average value of the distance function is computed.
This suffices as a quality metric as it provides an understanding of the dispersion of the cluster centres
and the overall spread of the data which therefore provides an insight to towards the datas structure
and the reliability of this shape in terms of these distances. The expected value of the cluster distances
is defined as follows:

E =

n∑
i=1

k∑
j=1

dist(xi, cj)
2, xi ∈ Cj

Which is simply the squared distances of the data objects and the respective cluster centres. The
average distance of all the data objects in the entire data set denoted as X is given by:

MeanDist(X) =
2

n(n− 1)

n∑
i=1

n∑
j+1

dist(xi, xj)

Which computes a normalised output of the distances occurring between 0 and 1. New cluster
centres are therefore computed as follows:

dist(cnew, cj) = Max(dist(xi, cj))

Where j and k are bounded by p, the number of existing cluster centres, in the following manner:
1 ≤ j ≤ p, p ≤ k, and cj is the jth cluster center. [29].

3.1.2 The Transitive Heuristic

The PFK heuristic measure as stated previously, is a combination of the E- transitive heuristic and
a representative of a parameter free clustering algorithm. The E transitive heuristic is an adaptation
of the transitive heuristic which aims to cluster data without the use of parameters or specifying the
number of clusters, and instead clusters are based the similarities between data objects. The transitive
heuristic regards clustering categorical data via an iterative process for which the pipeline is outlined
in the flow chart below that was detailed in their previous alternate work [30]

Figure 1: Transitive heuristic process

The transitive clustering process commences with an initialisation stage where data objects are
randomly selected as the representative of a cluster. The construction stage formulates clusters by
assigning similar data objects to this cluster representative using a metric known as the Condorcet’s
criterion. The Condorcet method applied to statistics concerns a branch of relational analysis for
which the relationship between categorical variables is explored with regards to their similarity .The
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ideology behind the Condorcet method is stemmed from voting theory where candidates were elected
based on their ranking relative to other candidates, so the ideal candidate was selected via a process
of pairwise comparisons [38] .The ideal or winning candidate was identified as having the highest
ranking of preferential interest compared to all other candidates. The Condorcet ideology has been
applied to the transitive method of clustering in the form of a Condorcet Criterion which is not an
exact measure but can be expressed as such..As stated by Ah-Pine and Marcotorchino [1], to first
apply the methodology of relational analysis, the relationship between variables needs to be encoded
as a binary relation, where 1 represents a relation and 0 no relation, for which the values are stored
in matrices known as ‘relational matrices’. In this context the Condorcet criterion is a mathematical
expression that conducts pairwise comparisons between relational matrices to output a numerical value
that determines the magnitude of the relation that exists between the pairwise objects, a higher value
thus constitutes to a higher similarity between variables. Slaoui and Dafir [30] have expressed this
metric with regards to the mathematical encoding of the pairwise similarities between data objects.
To first define the Condorcet criterion Cij is defined which is the collective relational matrix based on
the individual relational matrices. The individual matrix for the individual attributes al is defined as
Cl

ij , where al(di) of the attribute al for the data object i:

Cl
ij =

{
1 ifal(di) = al(dj)
0 otherwise

Cij =

k∑
l=1

Cl
ij

The Condorcet criterion therefore makes pairwise comparisons between these matrices and X, the
cluster collective that conveys the partition that needs to be optimised:

Max
X

Condorcet(C,X) =

N∑
i=1

N∑
j=1

CijXij +

N∑
i=1

N∑
j=1

C̄ijX̄ij

The above formula conveys the maximum value for the Concert criterion with respect to the cluster
collectives regarding partitions and relational matrices. The compliments C̄ and x̄ for the cluster
collective and collective and relational matrix collective represent their converse values. The Condorcet
criterion therefore computes the similarity metric by considering not only the relationship between the
pairs considers in each comparison, but the dissimilarity amongst them to output an overall similarity
metric to best decide the maximum similarity.

The next step in the transitive clustering process is known as the intersection stage. The purpose
of performing intersections between all clusters is to identify shared data objects, as an object can be
assigned to more than one cluster. The subsequent evaluation step therefore decides which cluster that
these shared objects would be best suited or assigned to. To do this the contribution for each of the
shared data objects toward each cluster is considered and thus the shared data objects are assigned to
the cluster that constitutes towards the highest contribution. Once all data objects are clustered the
process terminates and if not, the process reiterates from the initialisation stage.

3.1.3 E Transitive

The Enhanced transitive heuristic (E – transitive) is an augmentation of the transitive heuristic that
is also applied to large data sets that have categorical features. The main improvements of this
algorithm are found in different stages of the proposed transitive heuristic. For the E transitive
process, the initialisation phase differs in the selection of the cluster representatives. As opposed to
all representatives being chosen randomly, instead only the first cluster representative is randomly
selected and each subsequent data object undergoes a pairwise comparison to the abstaining cluster
centre using the Condorcet criterion. The data point that has a contribution or positive Condorcet
criterion value to this current cluster centre is added to this cluster and labelled as clustered. In the
case of a data point having a negative Condorcet criterion value that conveys dissimilarity, it is noted as
not clustered will be saved as the new cluster representative for the next iteration. The only remaining
change in this method regards data points that are labelled clustered. When a new cluster centre is
determined, the previous clustered data point is compared to the new forgoing cluster centre via its
Condorcet criterion value and its contribution to the new cluster is higher than its current cluster, then
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Figure 2: E Transitive Heuristic

it is removed from the old cluster. This process repeats until all data points are assigned to cluster,
therefore the cluster centres themselves are formed iteratively without being defined upfront. This
method is an improvement of the existing transitive method as it eliminates the intersection stage.
This was achieved as the status of each data object is labelled as clustered or not clustered which
avoid data objects belonging to the multiple clusters, hence the construction and evaluation stage
form a singular stage in the process. Lastly, each cluster representative is updated using the maximum
likelihood estimation metric each time a new data object is added to the cluster. Slaouri and Dafir
define this in their pseudo code below [30]:

The input of the algorithm outlined above takes in a set of data objects or points denoted as D
and encodes them as a set of attributes A where A = a1, a2, . . . , aq where q denotes a set of categorical
attributes.

3.1.4 The PFK Heuristic

In Slauoi and Dafir,s recent work, [29] they derived a PFK method which is a combination of the
E -transitive method but applied to quantitative data and the k means clustering method devised in
two stages. The first stage or initialisation stage makes use of the E transitive method to iteratively
form the cluster centres without the use of initial parameters or specifying k, the number of clusters.
The average distance between each of the data objects is first computed using the MeanDist(X) and
then a cluster centre is randomly selected. The forgoing process to assign data objects to a cluster
therefore uses the Euclidean distance as the similarity metric as opposed to the Condorcet Criterion
since the data to be processed is no longer categorical. New data objects are assigned to the cluster by
computing the Euclidean distance between the current cluster centre and all remaining data objects
in the data set. The data objects that have a Euclidean distance less than this average distance
computed earlier, are assigned to the cluster. To form a new cluster centre, the data point that is the
least similar to the current cluster centre is selected for the purpose of dissimilarity. To do this the
maximum Euclidean distance defined in equation 3, is used to select the new cluster representative
and subsequent data objects are assigned to it in the same iterative manner. The process is continued
until all data objects are assigned to a cluster thus the initial cluster centres are defined, the algorithm
for this initial stage is outlined below:

The second stage in the PFK method is to implement the traditional k means clustering algorithm
using the output of Algorithm 1 as the input parameters. The aim of this method as stated by Slaoui
and Dafir is to automatically detect the number of clusters k using the initial cluster centres from the
previous stage. Therefore, the k means clustering method is applied to the initially clustered data set
with established cluster centres as opposed to raw data. The Euclidean distances are calculated between
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Figure 3: Pseudo Code for Algorithm 1

each data object and each of these initial cluster centres and are then assigned to the cluster that
corresponds to the smallest Euclidean distance smaller than the MeanDist(X) calculated previously.
. Once these data objects have been re assigned, the mean distance of all data points in each cluster
and assigned to its cluster centre or representative k. The process repeats until there are no changes in
the k mean values. Slaoui and Dafir note that applying the k means algorithm to the initialised cluster
data set enables a rapid convergence to an optimal solution and convey its application to Algorithm 1
in the outline of Algorithm 2 below.

Figure 4: Pseudo code for Algorithm 2

Slaoui and Defir proposed variants of their PFK method to further investigate their method. The
variants regard the initialisation process with two main approaches called the overlapping PFK means
and the hard-PFK means.
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3.1.5 Overlapping PFK means

The aim of this variant is to resolve the issue of a data object belonging to multiple clusters in the
initialisation stage which is denoted as an overlapping cluster. Thus the result of this method yields
to overlapping clusters as opposed to distinct ones. The overlapping clusters not only maintain the
integrity of the data’s structure but are also useful in clustering data objects that do not necessarily
contribute strongly to a single distinct cluster and is still able to produce a partitioned data set into
$k$ clusters. This process is denoted as Algorithm 3 in the pseudo code below.

Figure 5: Pseudo code for Algorithm 3

The input of Algorithm 3 takes in the clustered data with initial cluster centres C obtained from
the same initialisation stage defined in Algorithm 1. The singular main difference in this approach is
the absence of the Tcnext

notation which encodes each cluster centre distinctively. In the case where
the Euclidean distance between the initial cluster centre and an unlabelled data object is not less than
the MeanDist(X), it is added to another cluster currently being formed in the form of a facet almost,
and not a separate cluster which creates an overlapping cluster. The data object can therefore belong
to more than one cluster and the cluster numbers are stored in the variable C. The cluster centres are
then updated via the k means process where the mean value of the distances between all data points
and their respective clusters is calculated, and assigned to the cluster representative in an iterative
process that terminates when the mean value no longer changes [29]

3.1.6 The hard PFK means procedure version 1

This variant works almost as a combination of the PFKmeans and the overlapping PFKmeans methods
in terms of producing distinct clusters but not via defining dissimilar points as cluster centres. The
initialisation stage defined in Algorithm 1 is applied to initialise the cluster numbers $k$ and the
centres C. In this process, each data point is assigned to an appropriate cluster using the same criteria
of : dist(xi, cr) < MeanDist(X). In the case where the data point is not clustered it is immediately
added to the current cluster being formed, and in the case where data objects are already assigned
to a cluster, the Euclidean distance between its current cluster centre and the forgoing cluster centre
is observed and the data object is assigned to a single cluster that constitutes towards the highest
similarity. So the clusters are formed in an overlapping manner where the intersections between data
objects and multiple cluster centres are removed in parallel in each iteration. The cluster centres
are updated after each iteration by calculating the mean value of the data points in each respective
cluster, for which the process terminates when the mean values have been stabilised. The outline of
this procedure is detailed in the pseudo code in Algorithm 4:
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Figure 6: Psuedo Code or Algorithm 4

From figure it can be seen that data objects that are both clustered and not clustered are compared
to the cluster being formed cr in terms of their Euclidean distance. The data object in question xi

is added to cr if this distance is smaller than the mean distance. If xi is already clustered, then
the distance between its assigned cluster $c m$ and the current cluster cr is compared, and xi is
removed from the cm if the distance to cris smaller than the distance to cm. Whereas Algorithm
3 only considered the distance between xi and the current cluster being formed. In Algorithm 4,
overlapping clusters are still produced hence the notation C as opposed to Tcnext, since data objects
can be assigned to more than one cluster. This is because the removal of xi from cm is only considered
is this distance is greater than x′

is distance to cr. If the Euclidean distance between xi and cm is greater
than or equal to the Euclidean distance to between xi and cr then xi remains clusters or assigned to
both cm and cr.

3.1.7 The hard PFK means version 2

The original version of the PFK means method consists of applying the initialisation stage (Algorithm
1) with the traditional k means method (Algorithm 2). In the overlapping variant and the hard PFK
means variant, they combine Algorithm 1 with Algorithms 3 and 4 respectively without applying the
traditional $k$ means algorithm. This is where the hard PFK version 2 differs from the previous
two variations. The hard PFK means method combines the initialisation stage (Algorithm 1) with
Algorithm 4 and Algorithm 2, meaning that the output of the first hard iterative procedure is used as
the input for the k means algorithm.

3.1.8 The E transitive heuristic applied to quantitative data

The intuition behind the E transitive method regards choosing the first cluster centre randomly and
using a similarity metric to make pairwise comparisons to cluster data objects and define new cluster
centres via their dissimilarity to previous cluster centres. In this application to quantitative data the
initialisation stage (Algorithm 1) is applied to the data set and removes the intersections between the
overlapping clusters via labelling data objects as clustered or not clustered and only enabling them to
belong to one single cluster. Saori and Dafir defined their application to this method to quantitative
data in the pseudo code below denoted as Algorithm 5:

11



Figure 7: Psuedo code for Algorithm 5

By viewing the progressive steps of Algorithm 5 it can be deduced that the E transitive heuristic
method applies the initialisation stage and the hard iterative procedure to produce distinct cluster
centres where the clusters are updated within each iteration after they are modified. Steps 1 to
12 of Algorithm 5 convey the steps of Algorithm 1 with constructing the initial clusters iteratively
assigning one data point to each cluster. In steps 11-19, the Algorithm 5 has integrated steps 9-13
from Algorithm 4 where the clustered data object’s pairwise distance to the current cluster is compared
and assigned accordingly. If the Euclidean distance to the new cluster is smaller than the Euclidean
distance to the cluster that its currently assigned to cm then it is removed from cm. The clusters are
then updated immediately after data objects have been assigned or reassigned. The Algorithm then
concludes by implementing steps 12-23 from Algorithm 1 where the data objects not assigned to the
current cluster or removed from a previous cluster are used to form the new cluster centres and the
process terminates once all data objects have been clustered distinctively. This method therefore does
not produce overlapping clusters or apply the k means algorithm after the initialisation stage, as the
cluster updates are performed within each iteration.

3.2 A Criterion for Deciding the Number of Clusters in a Dataset Based
on Data Depth

In this paper, the number of clusters in a data set are determined using a concept of ’data depth’.
Baidari and Patil [2]define data depth as ’a statistical function that calculates the deepness or the
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centrality of a point in a data cloud’. A depth value of a large magnitude is indicative of a points
deepness within a data cloud, whereas the converse demonstrates a points degree of being an outlier.
Besides conveying a data object’s position in a data cloud, depth functions can also be used to gain
further insights to a data set such as shape and spread via depth regions.

Definitions In this section the metrics regarding depth and distance functions used in Baidari and
Patils work are outlined in full.

3.2.1 Depth

The depth function used in this analysis in an adapatoin of the Mahalanobis depth (MD) function.
This was selected for determining the depth of all data points xi in a data set X. The original MD
function is based on the Mahalanobis distance of a point x, with respect to a dataset X and was
defined by P.C Mahalanobis [25] as:

MD(x | X) =
[
1 + (x− x̄)TCov(X)−1(x− x̄)

]−1

As seen above, the MD function is estimated using the sample mean x̄ of a point x ,and covariance
matrix Cov(X) of a data set X. As the mean estimate is sensitive to outliers this renders x̄, Cov(X)
and hence the MD to be a non robust depth function [2]. Baidari and Patil therefore substitute
the mean and covariance with Xi: Rousseeuw’s minimum covariance determinant (MCD), and C:
minimum volume ellipsoid (MVE) estimates respectively, in their alternative depth function:

MD(x;X) =
[
1 + (x−Xi)

TC−1(x−Xi)
]−1

Regarding the MVE, this estimates the center and scatter of where he elements in the data set have
the highest concentration, thus making it robust to the influence of outliers [36]

The MCD estimates the mean and covariance of a multivariate random variable, and works by
assuming that a dataset of n observations has known n−h outliers. The h observations are defined by
covariance matrices that have the lowest determinant.The outliers n− h can therefore be determined
and excluded in the process of finding the mean and covariance estimates, which thus concludes the
MCD robustness [25]

The depth function outlined in the above equation is therefore used to calculate the depth of all
data points xi in the kth cluster which corresponds to D(xi|k).

3.2.2 Depth median

The depth median µk is denoted by:

µk = max1≤i≤nk
D(xi|k)

where nk represents the number of points within a k cluster. The depth median is used to denote the
maximum depth value in a cluster.

3.2.3 Within-Cluster Depth

The within- cluster depth is calculated by taking the average of the differences between µk and D(xi|k).
In this context,µk represents the centroid of a cluster k and D(xi|k) is the data depth (measure of
centrality) of a point in a cluster k.

Thus the within- cluster depth was defined by Baidari.I and Patil.C as the average difference
between each point in a data set and the center of a cluster k:

WD(k) =
1

nk

nk∑
i=1

(µk −D(xi|k))

where nk is the number of points within-cluster k.
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3.2.4 Between-Cluster Depth

The between cluster depth, which is also referred to as the minimum between cluster depth, was defined
as:’the minimum value of the average distance between every object in cluster k, and the center of
every other cluster’. The calculation of the between-cluster depth is quite similar WD(k), with the
main contrast that every other cluster j is considered as opposed to a cluster k:

BD(k) = min
1≤j<≤m,j ̸=k

[
1

nk

nk∑
i=1

(µj −D(xi|k))

]
Depth Difference The depth difference is simply the difference between the within and between

cluster depths outlined as follows:

DD(k) = WD(k)−BD(k)

3.2.5 Validity Index Value

The validity index value is used to define the optimal number of clusters and is defined by the average
depth difference of k clusters:

V I(k) =
1

k

k∑
i=1

DD(i)

It can be seen from the definitions of the previous metrics that the final validity index is determined
via the accumulation of the previous depth measures.

3.2.6 Method

To estimate the number of clusters in a data set, Baidari and Patil begin their algorithm [2] with a
single input data set X containing n instances. The entirety of this data set is considered to be a single
cluster, since no partitioning has taken place, therefore the initial value of k is set to 1. As there exists
just one cluster, the DD(K) value will simply be 0, so the V I index value of one cluster is set to 0.

The algorithm then proceeds to calculate the depth values D(xi|k) of each point xi in the data set
X as seen is step 4 in Figure 8.

Figure 8: Pseudo code for the estimation of k algorithm

Regarding the process outlined in step 5,the k value is increased by 1 as the data set is divided
into k partitions, each with n/k points. The number of points in each partition is dictated by the
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’start’ and ’end’ limits outlined in steps a)-g). The depth median for each j partition µj is set to
the maximum value of D(xi|k), so that the subsequent within cluster depth is can be calculated for
each partition. The depth medians are used to determine the nearby partitions for each j which is
then used to calculate the between cluster depth BD(j) for each cluster j with respect to the nearest
cluster outlined in step (i)i. The depth difference DD(j) is calculated and its average with respect to
k clusters is found, which yields the value for the V I index for each k cluster. If this value is less than
the value of the previous k − 1 clusters, the algorithm terminates and k − 1 is defined as the optimal
cluster number. This condition is outlined as V I(k) < V I(k − 1), so the value k − 1 indicates that
average validity index of the k clusters has dropped from the previous k− 1 clusters. The output kopt
therefore denotes the optimal cluster number.

3.3 Graph-based Data Clustering via Multiscale Community Detection

In this paper, Liu and Barahona adopt a graph-based method to clustering[17] where five methods of
graph construction are considered to encompass both local and global features of a data set, which are
then used to determine the number of clusters. Liu and Barahana apply a framework using Markov logic
to model the connectivity of the graphs structure in matrix form, for which a multiscale community
detection framework is applied to obtain a solution as an output of an algorithm. The multi scale
element of their Markov stability framework enables to scan for communities across different levels of
resolutions to determine robust clustering that are not sensitive to the parameters used in the graph
constructions. An outline of their graph-based clustering approach to identify clusters is seen below:

Figure 9: Diagram of the framework for graph based clustering

3.3.1 Graph construction

To construct each graph, each data point is encoded as a vector, where n samples each correspond
to {yi}ni=1. A pairwise dissimilarity metric is assumed between the samples, as the local distances
are considered only, as d(i, j) ≤ 0. For graphs considered in this analysis the Euclidean distances
are used for the dissimilarity metric. The Euclidean distance between two points $(x 1,y 1)$ and
(x2, y 2) is denoted by d =

√
{(x 2 − x 1)2 + (y 2 − y 1)2}. This conveys the difference between the

x and y coordinates in each respective coordinate pair for which the horizontal and vertical distance
components are obtained. Summing and square rooting the addition of these distances yields the
distance between the coordinates which stems from the Pythagorean theorem of calculating missing
triangle lengths. The Euclidean distance is therefore used to calculate the closest distance between
a pair of points [3] .The main methods of graph construction utilised in Liu and Barahona’s work
consists of neighbourhood-based graphs, k nearest neighbour graphs and spanning trees.

3.3.2 Minimum spanning tree based methods PMST and RMST

The minimum spanning tree (MST) method of graph construction focuses on capturing the global
features of the data’s structure and therefore the geometry of the overall data set is considered..The
intuition behind the minimum spanning tree approach is to connect all nodes of in the network to form
an acyclic graph that spans across the entire data set[17].From this, a subset of the graph is extracted
that is also of an acyclic nature, such that the sum of the weighted edges is minimised. To do this, the
matrix of all pairwise distances d(i, j) is regarded as the adjacency matrix, so the actual distances are
considered as apposed to the matrix of 0’s and 1’s conveying the just the connectivity. Therefore this
approach considers a weighted graph that is fully connected and the sum total of all these weights is

15



minimises, meaning the graph connects all possible points using the shortest distances in the network,
obtained a minimal global distance. The two minimum based spanning tree algorithms considered in
Liu and Barahona’s work considers a union of an MST graph and a kNN graph with a small value for
k. This is done as a means of ensuring global connectivity of the data structure.

3.3.3 Perturbed minimum spanning tree (PMST)

The perturbed minimum spanning (PMST) method considers each individual data point yi and induces
a small amount of noise controlled by a parameter r, where dk denotes an estimation of the local noise
and the amount of noise is defined as a standard deviation of si = rdk(i)r ∈ [0, 1]. dk is the average
distance of the k nearest neighbours to the selected data point [39]. For each aspect of the perturbed
data, an MST is constructed and the PMST graph is therefore a combination of the all of the perturbed
MST graphs alongside the original MST. The reason for this noise induction is to identify the robust
global features of the graph as they will remain immutable or minimally changed in the presence of
noise which therefore obtains the most important edges of the graph representative of the solid global
features. Liu and Barahona note that the computational demand for this algorithm is of a heavy nature
due to the fact that the distance matrix and MST are computed for each realisation of the perturbed
data, so small fixed values for r and k are used. The following alternative to the PMST method is
therefore proposed as a means of alleviating the computational cost of this MST based method.

Restricted mean survival time (RMST)
The RMST graph works by connecting a pair of nodes using the rule d(i, j) < dmax

path(i,j)+ γ(dk(i)+

dk(j)) where dmax
path(i,j) denotes the longest edge between a pair of nodes and γ is a parameter that

puts a weight on the local density a global property, meaning the average distance to the $k$ nearest
neighbours of a pair of points is measured against the maximum distance between the pair of points.
The γ parameter therefore controls the sparsity of the network in the same manner that the δ parameter
in the CkNN method. This method suffices as good description of data according to Liu and Barahona
[17] due to less computational time and the fact that it reconstructs data that is not evenly distributed
across the entire network.

Regarding the following constructed graphs, these methods are neighbourhood based which effec-
tively capture the data’s inherent structure. The constructed graphs in question, involve the use of
local distances for the purpose of capturing local and global measures.

3.3.4 Neighbourhood based methods

The neighbourhood-based methods used in this paper [17]are the ϵ-ball graph, the k- nearest neigh-
bour graph (kNN) and the continuous k- nearest neighbours graph (CkNN). These methods construct
graphs based on the local node distances, meaning that the shortest pairwise distance, in this case
the Euclidean distance, between two nodes d(i, j) is considered. The ϵ ball and k-nearest neighbour
graphs are the two simplest neighbourhood-based methods as they connect nodes relative to the pa-
rameters ϵ and k. For the ϵ ball method, the Euclidean distance between each data sample $x i$ and
all other samples of data xj is calculated. All distances that are less than the ϵ are used to establish
connections between the respective nodes and are therefore considered as nearest neighbours using this
metric. [19]The ϵ parameter is determined upfront and represents the radius of a ball, so each of the
nodes are connected to the closest node that resides within the ball bound by ϵ. This method works
best for data that is uniformly distributed [35]

Regarding the kth nearest neighbour method, the Euclidean distances are calculated between a
data point xi and all other points in the data set. The set of the first k points that xi is closest
to which have the smallest Euclidean distances are selected and then connected to the point xi. In
contrast to the ϵ ball method, the kNN method connects a single point to a selection of its closest
neighbours which is determined by the parameter k. [19]The drawbacks to these methods stated by
Liu and Barahona are that they are sensitive to the ϵ and k parameters as well as that they convey
mainly the local structure of the data. The parameters that these methods are heavily reliant on are
also determined by the density of the data at hand, however the majority of data sets are not always
uniformly distributed which would could thus render these parameters unreliable.

Therefore the continuous k nearest neighbour method (CkNN) was considered as a means to resolve
this issue. The CkNN method was proposed by Berry and Sauer [35]as a means to capture the structure
of complex data in the form of a manifold. A manifold in the context of clustering regards the surface
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in which data is found on. Manifolds refer to several geometric surfaces that can exist in multiple
dimensions, and take a variety of forms such as a curved and warped, or surfaces that even have holes
in them. [39]. Therefore the characteristics of manifolds will vary depending on the vantage point
in which they are observed. So the reference to the local and global features of the data structure
in Berry and Sauer’s work concern the specific surfaces of the manifold where the neighbouring data
points will resemble some structure, whereas the entirety of the data will vary with each manifold
surface but the overall data’s structure will have an inherit shape in terms of the density in which the
nodes are arranged. The difficulties in interrogating large data confirming to complex manifolds are
therefore apparent as manifolds do not always conform to a closed shape with definitive boundaries as
the overall shape can be amorphous. Therefore the CkNN method is a novel method of constructing
a single unweighted graph [35]from large data sets that maintain the integrity of the data’s structure.

The method can be thought of as a combination of both the ϵ ball method and the kNN method
in terms of connecting a single node to multiple nodes and using a pre defined tuning parameter as
a threshold to determine which nodes are to be connected, with regards to their Euclidean distance.
The advantages of this method are highlighted as producing a single graph that captures topological
features simultaneously across multiple scales [39] where topology refers to the characteristics of the
graph that remain invariant under continuous changes.

To determine the CkNN graph construction, the points x, y are connected if:
d(x, y) < δ

√
d(x, xk)d(y, yk)

Where d(x, y) is the Euclidean distance between the nodes x and y and xk, and yk,the respective k
nearest neighbours of $x$ and $y$. The δ parameter is a continuous, unitless scale parameter that is
best suited to determining graph structures that focus primarily on conserving topology and produces
consistent geometry. The δ metric can be considered as the replacement of ϵ length parameter in the
ϵ ball method [35]in terms of setting a threshold for which determines the number of connections in
the network.

The delta parameter is a metric that conveys the density of the nodes across the entirety of the
network. To connect a pair of nodes using the above formula, the Euclidean distance between each
node x and y and their respective nearest neighbours xk and yh is calculated. The dot product of these
two distances is then computed as a means of determining the similarity between the points, which is
then normalised via the square root operation and then multiplied by the δ metric which scales this
value with regards to the sparsity of the original network, thus maintaining the data’s structure. If
the Euclidean distance between the original nodes d(x, y) is less than this value, then a pair of nodes
is connected. So each node will be connected to a selection of its k nearest neighbours which considers
the global features of the network upfront to ensure that the connections between nodes will construct
a graph that is consistent with the data’s existing structure.

The formula for constructing the CkNN network is based on the function of ‘self -tuning’ kernels
[35] A kernel is a function that is able to quantify information regarding the similarity between a pair
of subjects [27]in this context, a pair of nodes in an unweighted network. The kernel function takes
the input as a coordinate as each node in the Euclidean space has an (x, y) component which is thus a
vector, and computes the dot product between these points for which the output is a scalar numerical
value. The magnitude of this scalar is used to determine the similarity between a pair of points, which
is defined by the Euclidean distance between the nodes, for which a smaller value that is outputted by
the kernel function will indicate that the points are more similar. which is therefore used to determine
whether a pair of nodes should be connected.

The self-tuning kernel function that the CkNN formula is derived from is as follows:

K(x, y) = exp
(
− d(x,y)2

d(x,xk)d(y,yk)

)
This kernel measure applies to weighted networks,by removing the exponential element and sub-

stituting an ‘indicator’ function, the kernel for unweighted networks is derived:

K(x, y) = I
d(x, y)2

d(x, xk)d(y, yk)
< 1

These functions were introduced by L. Zelnick-Manor and P.Perona [14] to describe the similarity
between a pair of points. In their paper, they introduced the prospect of using local scaling parameters
that can self tune the between node distances according to the local features of the neighbourhoods
surrounding these nodes. The selection of the scaling parameter is achieved by considering the local
statistics of the neighbourhood of a point $x$, in this context the points x and y are considered
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and their local neighbourhood statistics are defined by d(x, xk)d(y, yk). Zelnick-Manor and Perona
demonstrate in their paper that the benefits of local scaling result in high similarities within clusters
and low similarities across clusters which maximises the dissimilarity across clusters and maximises
the similarities within clusters.

Berry and Sauer [35]built on this concept by applying the use of a self tuning scaling parameter
to their method of graph construction where the considered data’s structure was not limited to its
local features. Instead their parameter δ considers the global features across the entire data set
whilst incorporating the local features using the Zelnick-Manor and Perona’s local similarity parameter
[14]represented by the respective distances of each point and its kth nearest neighbour. Introducing
the δ parameter to the above kernel function as their indicator function and rearranging the kernel
function to consider the Euclidean distance between the nodes, yields Berry and Sauers formula for
determining the connection between a pair of nodes:

K(x, y) = {I} d(x, y)2

d(x, xk)d(y, yk)
< 1

K(x, y) = d(x, y) < {I}
√

d(x, xk)d(y, yk)

d(x, y) < δ
√
d(x, xk)d(y, yk)

The CkNN method is also noted as a multi scale method of graph construction as the kNN nearest
neighbour element in the process suffices a simple density estimator as it underpins the local features
of the graph that satisfies the following for small values of $k$:

∥x− x k| ∝ q(x)−
1
m

where q(x) represents the sampling density and m is the dimension of the data. In common
data practices these characteristics may not always be known upfront, yet the CkNN method is able to
incorporate the dimension component 1

m without needed to have an estimate for $m$ in the underlying
manifold [35] A simple visual representation given by Berry and Sauer of how the CkNN method is able
to construct a single weighted graph whilst maintain the topological integrity of the data is illustrated
below with clear comparison to how it outperforms the ϵ ball method and kNN method.

Figure 10:

In the above example, there are three rectangular spaces that represent true clusters of a data set,
each containing two densely sampled data components and one sparsely sampled data component. The
value for ϵ is indicated in figure 10 a) by the red ball surrounding the data points and used consistently
for each cluster. Figure 10b conveys that the value is insufficient in connecting the sparse data and
thus no connections are established as ϵ is too small, whereas in each of the dense data components,
all data points within the radius ofϵ establishes false connections between the nodes and incorrectly
connected the two distinct clusters which is further not representative of maximising the dissimilarity
between clusters, a fundamental characteristic of clustering large data. Therefore, the data is either
overly connected or under connected, and the ϵ value cannot be tuned to provide a fixed value that
will correctly connect the nodes within and across these data clusters [35]

The same illustration is used in figure 11 below to demonstrate the kNN method of graph con-
struction.
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Figure 11:

In figure 2a. the nodes are connected to its nearest neighbour with k = 1, and it can be seen that
it is unable to consider the topology of the entire data set as it fails to establish connections between
all the regions in both the sparse and densely sampled data. In figure 11 b, each node is connected
to two of its closest k nearest neighbours with k = 2 which establishes false connections between the
data clusters and incorrectly connects the nodes. For values of k > 2, Berry and Sauer state that this
problem will remain and is thus not able to correctly construct a network for the case of non-uniformly
sampled data.

Using the same visual explanation, figure 13 conveys the CkNN method to the same data clusters
and explicitly shows in this simple example how the CkNN method is able to construct single network
that is inclusive of the correct topology of the data, across each cluster in both the dense and sparsely
connected cluster spaces.

Figure 12:

In figure 13a, the colouring represented in the sparse data sample represents the relative values of
the bandwidth function d(x, xk), with a value for 10 for k and an optimal tuning of the δ parameter
where blue conveys a low value and red a high value. Using the formula for connecting a pair of nodes
K(x, y) = d(x, y) < I

√
d(x, xk)d(y, yk)

each of the nodes in the respect data samples are fully connected and triangulated, preserving the
data’s topology in each of the clusters, evident in figure 13b.

Regarding Berry and Sauers research, they were able to determine via rigorous mathematical proof
that the existence of δ is guaranteed which constitutes to an unweighted graph preserving the manifold
in the large data limit [35].This proof centers around the CkNN graph Laplacian convergence to the
Laplace Beltrami operator, where the graph Laplacian refers to the matrix representation of the graph
in terms of the connectivity between the nodes. The theory underpinning the δ metric states that
the Laplacian convergence is achieved for any compact Riemannian manifold where a Riemannian
manifold is a manifold with the Riemannian metric g that determines the lengths of the curves in the
manifold. This g metric is therefore used to define the distance between the points in the network that
are not limited to straight lines but also encompasses curved lengths.

Convergence of the graph Laplacian to the Laplacian beltrami operator means that the Laplacian
beltrami operator is able to determine the Riemannian metric g , so that the entire topology of
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the Riemannian manifold i.e the networks structure, can be determined [35] The Laplacian beltrami
operator is a generalisation of the Laplacian operator and can be considered as such when interpreting
Riemannian manifolds in the Euclidean space [13]. The Laplacian operator itself is differential operator
that acts on functions to describe the variation of properties with respect to their rate of change, in
this context, the shape of the manifold. So convergence of the matrix representation of the CkNN
graph to this Laplacian operator conveys that the structure of the data and the data’s shape is known,
therefore the δ metric can be determined to represent the entire graphs structure. Berry and Sauer
outlined this via technical mathematical proofs which can be referred to in their work.

To derive the δ metric Berry and Sauer used a persistence diagram to visually convey the data’s
topology and identify the delta metric accordingly. A persistence diagram is a method of data repre-
sentation that enables to interpret data across a multitude of scales without the need to rely on any
singular specific scale. The persistence diagram conveys the connectivity between the data points as
well as the ‘holes’ in the data’s structure using a simple barcode type representation. These two fea-
tures are referred to as dimension 0 and dimension 1 respectively. In order to construct the persistence
diagram, Berry and Sauer first construct a graphical representation of the data using the Vietoris-Rips
(VR) complex. The Vietoris rips are a means representing the topology of a data set in terms o# of
the distance between each of the points using triangles. Berry and Sauer state that the ‘VR complex
is constructed inductively’ meaning each triangle is added to each subsequent triangle until all of the
triangles are connected to each other. [35]This complex or graphical structure then suffices as a visual
portrayal of how each of the points in the data set are connected, preserving the structure of the
data. In the example below, Berry and Sauer apply the ϵ ball and δ metric to a persistence diagram
conveying the structure of some sampled data.

Figure 13:

In figure 13a) the data’s original structure is conveyed alongside the persistence diagram in figure
13b) where the ϵ metric is used to define the overall structure of the data. It is evident that the
data’s inherent structure consists of two connected components isolated by an annulus region which is
referred to as a hole in the structure.

The persistence diagram in figure 13b) conveys the connections between the data points in ‘Dim 0’
and the holes in the data by ‘Dim1’ that resemble a barcode format. The length of these lines convey
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the ‘lifespan’ or persistence of each of these connections or holes which conveys how these features
last or persist in the data over time. The length of the lines are used to determine the significance of
these data aspects as the longer lines convey features that have higher persistence, which are stable
features that do not distort with the presence of noise or fluctuations in the data and are therefore
representative of established characteristics of the data. So regarding the results figure 3b. there is
no evidence of a persistence region that is representative of these two connected components and a
hole across both diagrams. Figure 3c) conveys the structure of the graph with an ϵ value of 0.135,
which does not successfully connect the outliers whereas ϵ value of 0.16, will connect the outliers but
not distinguish between the connected components by bridging the annulus region and will therefore
remain in the large data limit [35]. Regarding the CkNN method in figures 3.e and 3.f the correct
structure of the graph is conveyed with a δ metric in the range of 0.180 <δ ¡ 0.215. The graph
construction conveyed in 3.f constitutes to a δ metric of 0.2. It is evident from figure 3.e that this δ
range is representative of a region across both dimensions encompassing the connections and the holes
in the graph that constitute towards two distinct connected components and the hole conveyed by the
annulus region.

These persistence diagrams therefore enable a simple interpretable mean of selecting a δ value
that accurately represents the data’s structure alongside a visual representation using the VR com-
plex. After this method is applied, δ is then used to construct the CkNN graph using: d(x, y) <
δ
√

d(x, xk)d(y, yk).

3.3.5 The Markov Process

The Markov stability method outlined in this study, refers to the use of random processes to determine
the strength or quality of the communities constructed via graph construction. These communities
are conveyed as a set of connected nodes where the connections within communities are dense and the
connections between different communities are sparse [21]

The Markov process involved in this method regards a random walk which is a special type of
Markov chain. A Markov chain is simply a model that is used to describe the random motion of
an object in a distinct set of locations [17]which in this case is the undirected graphs constructed
previously. The random walk itself is understood as a series of steps that an object takes randomly in
a direction, where each subsequent step is not dependent on any steps taken previously.The direction of
each step that the object takes is determined probabilistically [9] by finding its probability distribution
function, a mathematical expression that describes likelihood that the object will step in a certain
direction. [33].This model can be observed in under both discrete and continuous time scales, where
discrete time (t)involves times scales observed at distinct intervals such as 2,4,6 and 8 seconds for
example, and a continuous time scale is considered at all times of t that are above zero [17] . In this
study, these random walks are used to uncover the structure of these communities [15] help determine
the quality metric of these graph partitions and are observed in continuous time for optimisation
purposes.

3.3.6 Graph encoding

These graphs to be encoded are unweighted and undirected, meaning that edges only correspond to a
connection between the nodes. The connections are encoded using an adjacency matrix A, where the
entries of the matrix A ij} consist of 0’s and 1’s, with 1 corresponding to a edges that connect nodes i
and,j and 0 to nodes that are unconnected. The degree of the nodes conveys the number of edges it is
connected to and is summarised using the vector d where di =

∑n
j Aij , the sum of all the connections,

and using a diagonal degree matrix D, where the diagonal entries correspond to Dii = di and all other
entries are 0. The total number of edges in the network is denoted by m =

∑
I,j(Aij/2) [17].

3.3.7 Markov Stability

As mentioned previously, the Markov process involves a continuous time random walk for which the
main statistics are the number of steps taken and the times that they occur. Using this information,
the probability that a random walker will visit a specific node at a given time can be defined by a
Poisson process. The Poisson process is a model for random events that occur independently, counted
in integer form, where the time between events is unknown and no two events can occur at the same
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time, i.e the random walker cannot visit two nodes at the same time. The probability distribution
associated with the Poisson model is of an exponential form, for which the time between traversed
nodes is a random variable and distributed exponentially with an associated parameter of \lambda that
controls the time scale. This \lambda value is normalised to 1, denoting the sum of all probabilities
[21].

3.3.8 Markov Stabiltiy Defined as Vector Partioning

Liu and Barahona have defined the dynamics of their Markov stability framework by redefining the
markov stability optimisation problem as a ‘max -sum’ partitioning of vectors that was established in
the previous paper: multiscale community detection and vector partitioning [18]. In their previous
work, they demonstrated that the Markov stability optimisation can be represented by an equivalent
geometric interpretation for community detection using vector partitioning, where the time parameter
is referred to as a resolution scale. By using this vector representation of the Markov process, it
enables the optimised number of communities to be interpreted as an output of an algorithm and
also incorporates a quality metric that additionally defines the strength of these communities which
thus leads to better interpretability of the results. This vector partitioning approach was proposed
by Liu and Barahona as means of community detection as it resembles the objective of the minimum
cut problem for graph partitioning [15]. The minimum cut problem regards partitioning a graph into
disjoint subsets such that the dissimilarity between these subsets is maximised, which is defined as the
total weight of the removed edges In this case, the graphs in question are unweighted so the minimum
cut concerns the minimum number of edges removed to achieve this partition. In short, the Markov
process can be translated to vector notation to model the Markov process in the same manner that
matrices are used to encode connections of the graph.

To describe the dynamics of the network, a 1× n row vector p is defined on the nodes or vertices
of the graph, which constitutes to a numerical representation of the network’s nodes. To define the
vector p, the network is represented numerically via a Laplacian matrix. The Laplacian matrix L, is
simply the difference of the degree matrix and the adjacency matrix: D − A, which constitutes to a
matrix representation of the graph. The normalised form of the Laplacian is used in this analysis and
is obtained by multiplying the degree matrix inverse by the adjacency matrix: D−1A which is denoted
by M in Liu and Barahona’s framework [17]. The dynamics that they have defined for this process is
as follows:

dp

dt
= −p[D−1L]

where L = D −A
therefore

dp

dt
= −p[D−1[D −A]]

= −p[I −D−1A]

where I is the identity matrix
Denoting M as D−1A, the derivative simplifies to

dp

dt
= −p(I −M)

In this vector representation of the nodes, M is conveys the transition matrix which is a square matrix
of the probabilities that the random walker will transition between the nodes, where 1 represents a
certain transition and 0, no probability of transitioning. Each row of M represents an initial state
(node) and the column, the state (node)that it transitions to. (I-M) is therefore the ‘random- walk
normalised Laplacian).

The vectors that are representative of the network’s nodes are derived from the eigenvalue de-
composition of the Laplacian matrix. The Laplacian matrix contains important information about
the graphs structure which is encoded in the eigenvalues and eigenvectors which is necessary for the
network partitioning. According to Luxburg, [20] the Laplacian matrix has the lowest eigenvalue of 0
which corresponds to an eigenvector of 1, so when a graph can be partitioned into p non overlapping
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communities, the amount of the 0 eigenvalues correspond to the number of components of p/ Whereas
when a graph has a less distinctive layout with p communities, there exists only one eigenvalue equal
to 0, p − 1 eigenvalues larger than 0 and the remaining eigenvalues with a small deviation from 0.
Therefore the eigenvalue decomposition of the Laplacian enables critical information of the graphs
structure, [14] regarding the eigenvectors related to eigenvalues slightly greater than 0, which enables
an effective mathematical encoding of the network.

Regarding the parameters of the Markov process defined on the node vectors, since the likelihood of
a transition between node i to node j, is not dependent on any previous transition, therefore transition
probabilities between the nodes in the undirected network are uniform across all neighbouring nodes
The Markov process is also defined as ergodic which means that the process is non periodic and visits
each node with a ‘non zero frequency’ over a long period of time, which therefore converges to a
stationary distribution [36]. A stationary distribution of a Markov chain is a probability distribution
that remains unchanged over time . It is usually denoted by the vector π of probabilities summing to 1,
where solving the following will yield to the unique stationary distribution of the Markov chain: π = πP
[25] Where P represents the transition matrix, for this process the transition matrix is represented by
M .The analytical form of the stationary distribution of this Markov process is given by πi = di/2L
where 2L =

∑
jϵN dj which denotes the total outgoing connection of node i and di =

∑
jϵN Aij denoting

two times the total weight of the outgoing connections in the network of node j [17]. Liu and Barahona
have applied this to their framework by denoting the stationary distribution for their Markov process
as follows: π = dT /2m where m is the sum of all connections in the network and d is the degree of
each node. So this stationary distribution that describes the likelihood of each node being traversed,
is expressed as a ratio of each nodes degree to the sum total of the networks edges.

The autocovariance function is another parameter defined by Liu and Barahona that conveys more
information about the random walk’s behaviour. Autocovariance itself in this context, regards the
covariance (variance between two variables) and describes the behaviour of the random walk. The
autocovariance function is given by B(t) =

∏
P (t) − πTπ where

∏
= D/2m denotes the stationary

distribution, and P (t) = exp(−t(I − M)) is an encoding of the transition matrix. The exponential
component in the definition of P (t) refers to the Markov processes evolving over a continuous time
period and expressing the transition matrix as an exponential function of t, using the identity matrix
and M, this definition of P (t) conveys the changes in states across the network, with I representing the
initial state and $M$ the matrix of transition probabilities. Using this definition the time parameter t is
therefore understood as ‘Markov time’ [18]. By defining the autocovariance function with respect to the
transition probabilities and stationary distribution, the dynamics of Markov process over continuous
time can be analysed, which in the context of community detection, can be used to help determine the
stability of the network.

Liu and Barahona [17] use their autocovariance definition to define a quality function that gauges
the stability of partitions of their network. A partition of nodes is denoted as g, into c into non
-overlapping communities, and the markov stabilty is evaluated using the following metric:

r(t, g) =

c∑
s=1

∑
i,jϵgs

B(t)ij

In this definition, B(t)ij conveys how the interactions between nodes i and j vary with t, and that
these interactions are observed across all pairwise nodes in each community.

Liu and Barahona state that a high value of g, constitutes towards the most robust and optimised
partitions over time and are able to convey the multiscale community structure of the network [18],
thus finding partitions with a high values of Markov stability are highly sought after. A higher value
of Markov stability conveys a high probability that a random walker at a time t is observed within the
same community as it was at t = 0 [17] as a function of t, Markov stability can be expressed as:

r ∗ (t)maxr
g

(t, g)

given by the partition g ∗ (t) .Observing how the Markov process unfolds over time, gives valuable
information about the graphs structure. For large values of t, global properties of the networks struc-
ture are uncovered as few communities are present, whereas at smaller values of t, more communities
can be detected to convey more local information about the graph. To optimise the stability of each
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partition at each time interval, Liu and Barahona adopt Vincent D Blondel’s [5]version of the Louvain
algorithm.

3.3.9 The Louvain Algorithm

In Vincent D Blondel et al’s paper: ‘Fast unfolding of communities in large networks’ [5] they developed
an algorithm that determines the community structure of large networks, which was adopted by Liu
and Barahona in their method to uncover the most robust and optimised partitions.

This method is of a heuristic nature that optimises a quality metric called modularity. The mod-
ularity metric Q measures the quality of a partition by measuring the density of the links within the
communities on a scale between -1 and 1.

Q = 1/2m
∑
i,j

[Ai,j −
kikj
2m

]∂(ci, cj)

Where Ai,j is the weight of the edge between i and j and ki =
∑

j Ai,j is the sum of the weights
for the edges connected to vertex i, m = 1/2

∑
i,j Ai,j , ci represents the community that i is assigned

to and the ∂ function ∂(u, v) is 1 where u = v and 0 otherwise. In the case of undirected networks
each edge is assigned to a weight of 1 [21] , therefore the number of edges that a node is connected to
is considered only.

The Louvain algorithm proposed by Vincent D Blondel [5] suffices as an improvement to existing
algorithms that have attempted to optimise modularity by finding high modularity based partitions
of large networks in a short computational time which also reveal complete hierarchical community
structures of the network, and enables a range of resolutions of community detections. Previous
methods such as greedy algorithms, output partitions of lower values of modularity which are therefore
not optimised, and other alternative methods output ‘super-communities’ or networks consisting nodes
that have no significant contribution towards its structure.

Blondel achieved this by developing an algorithm that is to be run iteratively over a network,
consisting of two phases. The first stage involves assigning a community to each node i, in the
network. In order to build communities in the network, the algorithm begins by considering the
neighbouring nodes j of i, and i is placed in the community of j. The modularity of this community
shift is then evaluated in terms of gain, and the node i is placed in the community that constitutes
towards the maximum, positive gain in modularity. In cases where no positive gain is observed, the
node i remains in its its original community. This process is repeated until there are no more individual
node transitions that will yield to a gain in modularity, and the first phase is completed. Regarding
the output of the first phase, Blondel notes that the order in which the nodes are processed has no
impact on the modularity but seems to affect the computational time for which this is worth further
investigation [5]

As mentioned previously, the Louvain algorithm is an efficient approach to modularity optimisation
which is largely attributed to the simplicity and efficiency of how modularity gain is computed. The
modularity gain metric used to build communities is defined below as ∆Q, representing the change in
modularity.

∆Q =

[∑
in +2ki,in
2m

−
(∑

tot +ki
2m

)2
]
−

[∑
in

2m
−

(∑
tot

2m

)2

−
(

ki
2m

)2
]

In this formula, the =
∑

in conveys the sum of the weighted edges inside the community C and∑
tot the sum of weights of the edges that are incident to the nodes in C [5] ki is sum of weighted

edges from node $i$ to all nodes in C, m is the sum of weights of all edges of the network. When i
is removed from its community and then moved to a neighbouring community, a similar expression is
used to evaluate this modularity change. The efficiency of this method is therefore attributed to this
simplicity of calculating ∆Q as it just considers the summations of respective edge weights.

The second phase of the algorithm regards constructing a new network where the nodes are the
communities determined from the first phase. To construct this new network, the sum of the edge
weights between two communities are used to construct the edge weights between new nodes of this
network. Regarding nodes that are in the same community, their edges become ‘self-loops’, and thus
the second phase of the algorithm is completed. The first phase of the algorithm is then applied to
network outputted from the second phase and this combination of the two phases is denoted as a ‘pass’.
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Blondel states that these passes are iterated until there no longer exists a change of modularity and
the maximum modularity is therefore attained. A visual interpretation of these phases of the Louvain
algorithm are seen below:

Figure 14: Visual representation of the Louvain Algorithm

In this above example taken from Blondel’s fast unfolding communities paper [5], a visualisation of
both phases and each pass of the algorithm are observed to denote its simplicity. The first phase of the
algorithm is described as modularity optimisation, where each singular node is assigned to an individual
community and then transitioned to others with regards to a positive, maximum gain in modularity.
The second phase that uses the communities determined from the first phase to create nodes of a new
network, is summarised as community aggregation. The passes are then visualised with where these
new nodes are assigned to others with regards to modularity gain, and the self-loops indicate nodes
that remain in their original community that are already representative of maximum modularity. The
output of the second pass in this example conveys a network of communities connected by a weighted
edge where no further adjustments can be made to increase the modularity of the communities in the
network.

Blondel outlines that the advantages of their algorithm derive from the intuitive steps that are easy
to implement, its fast computational time, simple calculations regarding modularity gain and change
as well as minimal passes that need to be iterated in the final stage, as the weight of the computa-
tional time is concentrated on the first few iterations. It is noted that modularity optimisation is not
sufficient in identifying communities that are smaller than a certain scale, therefore the introduction
of a resolution limit on the detected community is advised. In Liu and barahona’s work, [17] they
have used time as a resolution parameter regarding their multi scale community approach.

As mentioned previously, the Markov process is observed in continuous time so their approach
involves running the Louvain algorithm multiple times at each time t which constitutes to their method
of computational maximisation of the Markov stability each partition g as of r. As a result, optimised
partitions g ∗ (t) are detected at all time scales. Their method was able to determine the most robust
partitions at robust scales which involved optimising Markov stability across long intervals of Markov
time.

In order to achieve this, the dissimilarity between each detected partition was computed at times
t and t′. the metric used to define the partition dissimilarity, is the variation of information (VI).
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3.3.10 Variation of information

The variation of information metric is a theoretical criterion used to compare clustering’s or partitions
of the same data set. This criterion was invented by Marina Meilia in her paper:’ comparing clusterings
by the varition of information’ [40]. Thus this comprehensive summary of the variation of information
is an overview of the metric’s derivation and its defintions denoted by Melia. In her reasearch, she
states that the variation of information measures the loss and gain of information from changing
between clusterings C and C’. The relationship between two clusterings is considered as an exchange
of information, similar to how the quality of each partition was determined via the change in modularity
as each node shifted between communities.

The information in each cluster and the information that a cluster gives about another is defined
using the concept of entropy. At first, the probability of each node being assigned to a cluster Ck, is
defined as P (k) = nk

n which conveys a uniform probability across all nodes. Meila defines this as a
‘discrete random variable taking K values, uniquely associated to a clustering C’. The measurement
of uncertainty that a node will be in a given cluster C is equal to the entropy of the random variable
K which is defined as:

H(C) = −
k∑

k=1

P (k)logP (k)

Here H(C) refers to the entropy of the clustering C which always takes a non negative value. A
zero value of H(C) denotes no uncertainty that a node will be assigned to a cluster C, meaning that
there exists only one cluster that that node is to be assigned to. It is also noted that this uncertainty
depends on the relative proportions of the clusters.

Regarding the information that one clustering contains about the other, this is defined as the
mutual information between two clusterings. Meila uses probability theory to also define this metric
as follows:

I(C,C ′) =

K∑
k=1

K∑
k=1

= P (k, k′)log
P (k, k′)

P (k)P ′(k′)

In this formula, the P (k) and P (k′) represent the random variables associated with the clusterings C
and C ′ respectively. P (k, k′) is therefore the joint probability distribution of the random variables in
each of the two clusterings and is defined as:

P (k, k′) =
Ck ∩ C ′

k

n

This demonstrates the joint probability that a point in k and k′ belong to a clustering C in Ck and
C ′ in C ′

k. To define the variation of information metric, the above definitions of the associated entropy
of a clustering C, H(C) and the mutual information between two clusterings I(C,C ′) are used with
regards to their properties. I(C,C ′) can be considered as the ‘reduction of uncertainty, averaged over
all points’. Meila’s explanation of I(C,C ′) as uncertainty reduction stems from the idea that, if it is
known upfront that a point is to be assigned the cluster C, then the uncertainty about the cluster C ′

is reduced, and when averaged across all points s equivalent to I(C,C ′).
Given that the $I(C,C’)$ is always non negative, never greater than the total uncertainty in a

clustering and that the entropies of associated with each clustering: $H(C)$ and $H(C’)$ are equal
when one clustering is determined by the other, a quantity metric to compare the clusterings $C$ and
$C’$ can be deduced as follows:

V I(C,C ′) = H(C) +H(C ′)–2I(C,C ′)

Upon closer inspection the V I(C,C ′) metric can be understood as the sum of the differences
between the entropy of each respective clustering and the mutual information between them:

V I(C,C ′) = [H(C)− I(C,C ′)] + [H(C ′)− I(C,C ′)]

Thus denotes the variation of information between two clusterings, where the first term represents
the loss of information from a clustering C whereas the second term reflects the gain of information
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regarding the clustering C ′, when a point is assigned to clustering C ′ from C. Meila also clarifies in
this formula that each respective term denotes the conditional entropies H(C|C ′) and H(C ′|C). These
conditional entropies regard the entropy of each respective clustering based on or given the entropy of
the alternative clustering [40]

3.3.11 Summary

The pipeline of Liu and Barahona’s multiscale community detection method via Markov stability was
outlined in one of their examples involving synthetic data. For this data set, they first constructed
a weighted Cknn graph and optimised the Markov stability of the g nodes of each partition into c
communities across a Markov time frame of t ∈ [1, 1000]. At each t the Louvain algorithm was run
nL = 500 times and the partition with the highest Markov Stability g ∗ (t) was recorded. Then
the V I(t) is used to compute the dissimilarity metric of the partitions in each nL optimisations he
values for which are stored in a matrix that convey the dissimilarity of the optimal partitions. The
robustness of the partitions were further analysed by plotting graphs of all partitions uncovered by
Louvain optimisations at each Markov time and one dimensional embedding of the VI distances. [17]

To summarise this method, a graph is first constructed from a data set for which the adjacency
and degree matrices are extracted and subjected to calculations that correspond to a Markov stability
framework. In these calculations the transition matrix for the respective Markov process is determined
along with its auto covariance function in order to determine the r(t, g) metric that quantifies the
stability of each partition. The VI metric is also calculated alongside this to determine partitions that
are the most dissimilarity. The Louvain algorithm is used to detect these partitions at different time
scales to determine the most robust partitions. The robustness is also measured by the stability of the
output of the Louvain algorithm in terms of the partition number.

Data Description

3.4 Data from Studies

In the studies outlined previously, both real and synthetic data sets were used for the parameter free
clustering and criterion method, whereas the multi scale community detection method only used UCI
benchmark real data sets. In the parameter free clustering method, the real data sets had clusters
that varied from 2-4 with the exception of the letter recognition data set which had 26 clusters (see
appendix). The synthetic data sets for this method were constructed with regards to varying the size
of the data, the attributes and the cluster number but each in isolation. Therefore, variations with
both a high cluster and attribute number were not considered.

Similarly for the criterion method, the number of clusters estimated only ranged from 2-4 with
maximum considered attributes of 16. The data range considered up to 5000 values which established
that the size of the data was not a limitation to the algorithm’s performance, however this method did
not explore high dimensional data in terms of cluster number and attributes. Lastly, the multi scale
community detection method did not consider synthetic data and experimented on real data sets with
up to 10 clusters.

So regarding the established performance of each algorithm, the number of attributes has not been
a limitation, however the selection of clusters and attributes has conveyed a limited understanding of
each methods performance.

3.5 Data Selection

To further investigate the performance of each method, the selection of data used in this study consid-
ered high dimensional data with regards to cluster number and attributes for both real and synthetic
data sets, denoted as S1, S2, S3 and S4. The main parameters considered for variation across all data
sets were the cluster number, attributes and the cluster separation/ data overlap. As each method
is reliant on distance metrics to determine the number of clusters, the sparsity of the synthetic data
was varied to explore its influence over the performance (refer appendix for data visualisation) . The
selection of data are detailed in the table below.
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Dataset No. of Instances No. of Attributes No. of Clusters
Iris 150 4 3

Breast Cancer 569 30 2
Digits 1797 64 10

Forest Cover Type Subset 350 54 3
S1 700 10 8
S2 400 50 16
S3 900 40 25
S4 1200 12 8

Table 1: Details of the Real and Synthetic Data Sets

The aim of this analysis is therefore to explore more complex data structures and analyse each
algorithms relative suitability. The forest covert type data featured in this analysis is a subset of the
original data set consisting of 581012 instances (see appendix). The original number of 54 attributes
is sustained but the number of classes has been reduced to 3 (see appendix). This was done to explore
high dimensionality with regards to attributes only as the cluster number and instances are small,
and the overlap is minimal. Regarding the number of instances, this parameter was not a key interest
in the experiments as the studies have already established that the size of the data did not convey a
limitation with regards to the algorithms performance and simply confirmed that it constituted to a
higher computational time.

4 Results

In this section the results of each algorithms performance on the eight data sets are conveyed both
individually and as a collective. As each method is unique to one another, the evaluation metric used
to compare the performance of all three methods is their relative error:

RE =
|k − kest|

k

where k is the true number of clusters for each data set. The performance evaluation criteria
therefore concerns each method’s ability to output the correct number of clusters. The relative error
metric was used from the criterion method as this is an estimation of the number of clusters k and
does not have an actual cluster output with regards to cluster centers and their relative assigned data
objects. The graph based multi scale community detection algorithm also conveys an output partition
with regards to its Markov stability and variation of information between relative partitions which also
does not convey an interpretable cluster output in terms of centers or partitioned data.

4.1 Parameter-free clustering Method

The PFK method and its variants were tested on the 8 data sets for which each algorithm was run
five times. The following results represent the best result out of the five runs to replicate Slaouri and
Defir’s experiments. The evaluation of each method was performed with regards to the sum of squared
errors and the root mean squared error in tables 2 and 3 respectively. Additionally,the silhouette score
was calculated for each output in order to evaluate the cluster quality for which the results can be
observed in table 4.

4.1.1 Clustering Performance

The PFK methods were only able to correctly cluster the Iris and Digits Data sets and failed to detect
the correct cluster number for each of the remaining data sets. This suggests that the algorithms are
not well suited to high dimensional data as it was unable to cluster data with larger cluster numbers.
Additional evidence to support this was the fact that the method over estimated the number of clusters
for the breast cancer and forest covert type subset data sets. Despite these data sets being low in classes
and relatively low in instance number, this suggests that the high attributes are the key factor regarding
dimensionality that limits the performance of these algorithms. This could potentially be due to the
level of overlapping data objects in the data set, yet the synthetic data sets S1-S4 have well separated
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clusters will minimal to moderate overlap. Regarding the the Musk and Letter Recognition data sets
(see figures 6 and 7 in appendix) used in the original study, they are high dimensional in terms of
clusters and attributes as well as consisting of both minimal considerable data overlap. So it does not
appear that data overlap is a limiting factor to the algorithms performance.

4.1.2 Evaluation of Individual PFK Variants

From tables 2 and 3, the lowest SSE and RMSE are highlighted in bold and are reported for the original
PFK method consisting of algorithms (1+2) and the Hard iterative procedure consisting of algorithms
(1+4). In each of these methods the output of the initialisation algorithm is used as the input to the
algorithms that produce distinct clusters allowing each data object to belong to one cluster only. This
suggests that the data objects in each data set are well separated and the clusters are distinct overall.

Regarding the quality of the cluster output, the silhouette score was calculated to summarise the
compactness of the data objects to their cluster centers and detailed in table 4. The largest silhouette
score: 6.93E-01 can be observed for the second and third variants of the PFK method for the Iris data
set, with the lowest value at -7.52E-03 for the third PFK variant for the digits data. This conveys a
moderate to poor cluster quality which is interesting as its representative of the only two data sets
that these methods were able to cluster correctly. This also indicates that the iris data set results are
reliable and too a good quality whereas the digits data set was clustered very poorly, rendering the
result unreliable.

Moreover the second variant of the PFK method was not able to cluster the digits, S2 and S3
data sets at all which produced no output for the silhouette score. Upon further inspection of these
results, it was found that the algorithm produced empty clusters, resulting in an output of a single
cluster. Additionally, the S1 and S4 data sets for the second PFK variant produced empty clusters,
and the output result for each data set was inclusive of 2-3 clusters for each run. As these data sets
constitute towards the highest dimensional data in terms of clusters and attributes, this suggests that
PFK method and its variants are not well suited to high dimensional data regardless of good cluster
separation demonstrated in data sets S1 and S2

Lastly regarding the S1 and S2 data sets, the E transitive method was the best performing in terms
of their respective silhouette score , which suggests that the E transitive method is best suited to well
separated data as the S1 and S2 data sets have distinct clusters with very minimal overlap. However
since it was still not able to cluster the data correctly, this suggests that the E transitive heuristic
method is not well suited to high dimensional data in terms of cluster number.

The final results of these methods are represented in table 5 which details the cluster number
relative to each data sets best performing algorithm and the RE between the actual and outputted
cluster number.

Dataset PFK Means Overlapping PFK Hard PFK1 Hard PFK2 Hard PFK3 E- transitive
Iris 1.13E+02 1.65E+02 8.77E+01 1.44E+02 1.90E+02 1.76E+02
BC 3.05E+07 4.90E+07 2.74E+07 6.26E+07 4.90E+07 4.87E+07
Digits 1.84E+06 3.01E+06 1.81E+06 2.97E+06 3.02E+06 3.03E+06
FCT 5.07E+08 1.13E+09 5.40E+08 1.36E+09 1.14E+09 1.01E+09
S1 4.04E+04 7.68E+04 3.86E+04 2.26E+05 7.88E+04 6.62E+04
S2 4.79E+05 7.64E+05 6.04E+05 9.08E+05 8.01E+05 7.39E+05
S3 7.71E+05 1.38E+06 6.14E+05 1.73E+06 1.41E+06 1.38E+06
S4 1.16E+05 2.10E+05 1.93E+05 5.30E+05 2.18E+05 2.35E+05

Table 2: Sum of Squared Errors (SSE)
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Dataset PFK Means Overlapping PFK Hard PFK1 Hard PFK2 Hard PFK3 E- transitive
Iris 8.61E-01 1.04E+00 7.59E-01 9.86E-01 1.13E+00 1.09E+00
BC 2.30E+02 2.93E+02 2.19E+02 3.32E+02 2.91E+02 2.92E+02
Digits 3.19E+01 4.08E+01 3.17E+01 4.06E+01 4.09E+01 4.11E+01
FCT 1.19E+03 1.79E+03 1.29E+03 1.97E+03 1.80E+03 1.76E+03
S1 7.56E+00 1.04E+01 7.42E+00 1.80E+01 1.06E+01 9.72E+00
S2 3.42E+01 4.32E+01 3.84E+01 4.76E+01 4.21E+01 4.30E+01
S3 2.91E+01 4.08E+01 3.21E+01 4.41E+01 3.92E+01 3.92E+01
S4 9.80E+00 1.32E+01 1.27E+01 2.10E+01 1.34E+01 1.40E+01

Table 3: Root Mean Squared Error (RMSE)

Dataset PFK Means Overlapping PFK Hard PFK1 Hard PFK2 Hard PFK3 E- Transitive
Iris 5.38E-01 5.19E-01 4.20E-01 6.93E-01 6.93E-01 5.12E-01
BC 5.01E-01 4.66E-01 2.77E-01 6.61E-01 4.41E-01 4.90E-01
Digits -1.01E-02 -2.80E-02 -2.29E-02 null -7.52E-03 -6.42E-02
FCT 3.10E-01 2.88E-01 9.65E-02 2.77E-01 3.04E-01 1.94E-01
S1 6.34E-01 6.38E-01 6.35E-01 3.38E-01 6.34E-01 6.75E-01
S2 1.63E-02 1.20E-01 -8.65E-02 null 9.41E-02 1.69E-01
S3 1.17E-01 8.27E-02 2.41E-01 null 4.70E-02 1.09E-01
S4 1.09E-01 1.96E-01 -2.98E-02 3.58E-02 1.19E-01 7.73E-02

Table 4: Silhouette Score (SIL)

Dataset PFK Algorithm Output Cluster Exact cluster Relative Error
Iris Hard PFK1 3 3 0.00
Breast Cancer Hard PFK1 8 2 -3.00
Digits Hard PFK1 10 10 0.00
Forest Covert Type Subset PFK - Means 5 3 0.29
S1 Hard PFK1 6 8 0.25
S2 PFK - Means 10 16 0.38
S3 Hard PFK1 14 25 0.44
S4 PFK - Means 8 12 0.33

Table 5: Final Best Method Relative Results

4.2 Criterion for for Deciding the Number of Clusters Data Depth

The data depth based criterion method was applied to each of the eight data sets where the number
of clusters k is estimated using distance metrics based on a robust variation of the Mahalanobis depth
function. The criterion algorithm segregates the data into partitions of size n/k and calculates the
a series of depth distance metrics relative to these partitions in order to derive a value for k that
maximises the separation between these clusters. The separation is gauged via minimum values of
the validity index, and the number of clusters k increases until there is no longer a decrease in the
validity index, conveying that additional clusters does not improve the data separation. The algorithm
therefore does not output clusters with assigned centers, and instead just provides and estimation for
k which is results to the relative error RE as the only suitable evaluation metric for this method and
consequently for comparison of across all three methods.

Out of the eight data sets, this method was only able to correctly output a value for k for the
breast cancer data set. The details for each of the clusterings are conveyed in table 6 below.

30



Dataset Output Cluster Exact cluster Relative Error
Iris 2 3 0.33
Breast Cancer 2 2 0.00
Digits 3 10 0.70
Forest Covert Type Subset 2 3 0.33
S1 2 8 0.75
S2 3 16 0.81
S3 3 25 0.88
S4 4 12 0.67

Table 6: Summary of the number of estimated clusters k for each data set

Given that this method under estimated the number of clusters for data with class numbers greater
than 2, this suggests that the criterion method is not suited to high dimensional data, however it was
still unable to correctly estimate k for the iris data set which is well separated and low in dimensionality.
Regarding the digits data set, when computing the Rousseeuw minimum covariance determinant,
this was not possible as the data was not full rank. There were some attributes that were linearly
independent which resulted in the matrix not being invertible which highlighted a key limitation of
this method. In an attempt to overcome this, principal component analysis (PCA) was applied which
reduced the data set to two components. This PCA transformed digits data was therefore inputted
into the criterion method. However the method was still not able to correctly identify the number
of clusters despite the reduction in dimensionality. This therefore indicates that high dimensionality,
significant data overlap, cluster separation and data sparsity are limitations to this method as well as
data that is not full rank. Interestingly high dimensional data with regards to attributes is not implied
to be a limiting factor as the breast cancer data set was correctly clustered and the forest covert type
data subset was underestimating by 1 cluster, constituting to the lowest RE value in the experiments.
Since the original study had a much higher success rate with clustering 16 out of the 20 data sets, for
data with clusters that ranged from 2-4 and attributes that ranged up to 16, it can be deduced that
the number of classes or clusters in a data set it a key limiting factor for this method.

4.3 Graph-based data Clustering via Multiscale Community Detection

In this method, graphs are constructed from the eight data sets for which their respective adjacency and
degree matrices are extracted and subjected to the matrix calculations, used to determine the metrics
needed to apply the Markov stability framework. Using the Markov stability framework, the transition
matrix P (t) = (−exp(I −M)) ,where M = D−1A is the one step random walk transition matrix that
corresponds to the random walk associated with the respective data set. The P (t) matrix was used to
construct a network which was used as the input of the Louvain algorithm As mentioned previously,
time is used a resolution parameter in the Louvain algorithm to scan across the graph network and
detect the most robust partitions. The optimal partition is determined from a high value of Markov
stability r(t, g) =

∑c
s=1

∑
i,j∈g B(t) where B(t) conveys the auto covariance matrix for the relative

Markov process. and a low value of variation of information between g partitions at different times
t and t′: V I(t, t′) = V I(g∗(t)g∗(t′)) , which conveys the dissimilarity between partitions at different
times. The graphs constructed for each of the data sets were the CkNN graphs with parameters k = 7
and δ = 1 as the Markov stability framework was only applied to this network in the original study.
Liu and Barahona established in their work that the four additionally considered networks were not
well suited to cluster separation [17] With regards to replication of this method, it was not explicit in
their study at which Markov times or the time frames for which the networks were scanned across for
each data set, therefore in these experiments Markov time scales were considered from 0 ≤ t ≤ 3500
on average for each data set. From this range, the selected Markov time that constitutes to the correct
data partition with regards to a low V I(t, t′) value and a high r(t, g) value was run 10 times through the
Louvain algorithm. The stability of the output result was what determined the final cluster number.
Overall this multi scale community detection algorithm was able to successfully detect the correct
number of partitions for all data sets.
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4.3.1 Iris data

Below is the CkNN network constructed from the Iris data set:

Figure 15: CkNN graph for Iris data

It is evident from this network that the shape of the Iris data is unstable. The delta values were
adjusted in attempt to better capture the data shape, however there did not exists a range or value for
delta that was able to graph the data that formed distinct clusters. Given that the method was not
able to cluster the data accurately, it is evident that the method is sensitive to the graph construction
which is dependent on the shape of the data. Therefore this clustering algorithm is not sensitive to
the data’s attributes or cluster number but geometric shape of the data , as the iris data set is quite
low in dimensionality.

Markov time in seconds No. of Partitions Markov stability Variation of information
0 ≤ t ≤ 50 7-3 0.31 ≤ 0.39 0 ≤ 3.09

500 ≤ t ≤ 1000 2 0.12 ≤ 0.20 8.81E-16
1000 ≤ t ≤ 1500 2 0.08 ≤ 0.12 8.81E-16
1500 ≤ t ≤ 2000 2 0.05 ≤ 0.07 8.81E-16
3000 ≤ t ≤ 4000 3 -0.04 ≤ −0.03 1.11E-15 ≤ 0.11
4000 ≤ t ≤ 5000 5-4 -0.07 ≤ −0.04 0.07 ≤ 0.48

Table 7: Markov time frames for Iris data

From Table 7, it can be seen that the Louvain algorithm is able to detect the correct number of
partitions at both low and high Markov times but the reliable partitions exist in the 0 ≤ t ≤ 50
with regards the high Markov stability, however this does not constitute to the lowest variation of
information which conveys that the partitions are not robust. At time t close to zero the number of
partitions should be large as this detects local graph features, and at higher Markov times the number
of partitions should decrease as the global features are detected. The varying VI as well as the varying
number of partitions suggests that the network does not fully stabilise across time which evident from
Figure 1.

The selected Markov time was therefore selected at t = 35 which was run 10 times on the Louvain
algorithm which produced a stable output in terms of partition value and Markov stability for which
the output can be seen in Ta
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Run Partition Markov Stability
1 3 0.33325513999113693
2 3 0.33325513999113693
3 3 0.333255139991137
4 3 0.3271600852073318
5 3 0.3302069666165575
6 3 0.33325513999113693
7 3 0.3302069666165575
8 3 0.33325513999113693
9 3 0.3302069666165575
10 3 0.333255139991137

Table 8: Final Output Result

4.3.2 Breast Cancer Data

The CkNN graph for the Breast cancer data is given below

Figure 16: CkNN Graph for Breast Cancer Data

The Markov times that the network was scanned are cross are given in table 9.

Markov time in seconds No. of Partitions Markov stability Variation of information
0 ≤ t ≤ 100 563-4 0.33-0.41 0.18-4.5

500 ≤ t ≤ 1000 3 0.22-0.26 0.06-0.94
1250 ≤ t ≤ 1300 2 0.25 -6.61E-16

Table 9: Markov time frames for Breast Cancer data

It is evident from the above table that the network stabilises quite quickly as at t = 0 ,the number
of partitions detected was 563, but within 100 seconds the number of partitions detected was 4. For
the correct number of partitions the Markov stability and VI index stabilises, each of which constitutes
to the highest and lowest respective stable values. The selected Markov time was t = 1266 for which
the number of partitions and Markov stability stabilises, conveying a robust output.
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Run Partition Markov Stability
1 2 0.24914527076519183
2 2 0.24914527076519183
3 2 0.24914527076519183
4 2 0.24914527076519183
5 2 0.24914527076519183
6 2 0.24914527076519183
7 2 0.24914527076519183
8 2 0.24914527076519183
9 2 0.24914527076519183
10 2 0.24914527076519183

Table 10: Final Output Result

4.3.3 Digits Data

Regarding the original digits data set, the Louvain algorithm originally was only able to partition
the data into 3 clusters. From previous analysis it was found that the digits data set has linearly
independent attributes, therefore the PCA transformed digits data was used for the analysis as a
means to determine the correct cluster number for which the algorithm was able to do so accurately.
This conveys that PCA is a sucessful correction method to enable the algorithms perforamnce and
data that is not full rank is a limitation to this method The original and PCA transformed CkNN
networks are given below.

Figure 17: CkNN graphs for the digits data set before and after PCA

The Markov times frames ran on the Louvain algorithm and their respective outputs are given
below.

Markov time in seconds No. of Partitions Markov stability Variation of information
50 ≤ t ≤ 500 5-3 0.19-0.33 0.08-5.73

1000 ≤ t ≤ 1200 3 0.12 0.01-0.15
20 ≤ t ≤ 100 8-5 0.30-0.37 0.76-5.45
2 ≤ t ≤ 10 21-11 0.40-0.45 0.60-4.50

10.5 ≤ t ≤ 15 11-9 0.39-0.40 0.79-1.14
10.3 ≤ t ≤ 13 11-9 0.40 0.74-1.24

11.05 ≤ t ≤ 11.5 11-10 0.40 0.61-1.14

Table 11: Markov time frames for Digits data

From table 11, it is clear that the network does not stabilise in terms of the number of partitions
and variation of index values, however it does stabilise in terms of Markov stability. This means that
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the output partitions are reliable but not robust and therefore do not constitute to the best possible
partitioning due to the unstable structure of the data’s shape as seen in Figure 3.

Run Partition Markov Stability
1 11 0.40208789166528774
2 10 0.4031791393004087
3 11 0.40124292707189185
4 11 0.3995928457208694
5 10 0.40133550252109645
6 10 0.4056037387295903
7 10 0.4074591245174318
8 10 0.4053638469076779
9 11 0.39819366120833677
10 10 0.40546433782819086

Table 12: Final Output Result

From table 12 it can be deduced that the output for the Louvain algorithm that constitutes to 10
partitions is unstable. Therefore, the datas shape can be seen as a limiting factor to the algorithm’s
performance.

4.3.4 Forest Covert Type Data Subset

Figure 4 below shows the CkNN network for the forest covert data subset.

Figure 18: CkNN graph for forest covert type data subset

The Markov times frames ran on the Louvain algorithm and their respective outputs are given
below.

Markov time in seconds No. of Partitions Markov stability Variation of information
0 ≤ t ≤ 1000 4-2 0.12-0.25 0.02-4.78

1000 ≤ t ≤ 1500 4-3 0.09-0.11 0.07-0.67
1500 ≤ t ≤ 2000 4-2 0.09-0.12 0.03-1.02
2000 ≤ t ≤ 3000 3-2 0.12 0.08-0.57
2000 ≤ t ≤ 2500 3 0.11-0.13 6.66E-16-0.42
2500 ≤ t ≤ 3000 3 0.11-0.12 8.88E-16-0.39

Table 13: Markov time frames for Forest Covert Type Data Subset

Table 13 shows that the network stablises at a higher time probably due the high dimensionality
of the data. The correct number of partitions is stablised after t = 2000 seconds. The interval where
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the markov time was selected was between 2000 ≤ t ≤ 3000 as this constitutes to the lowest variation
of information.

The selected time was t = 2055 seconds as this corresponds to the lowest outputted variation of
information at 8.88E-16, for which the stability of the results can be observed below.

Run Partition Markov Stability
1 3 0.12525964635785905
2 3 0.11200846919714065
3 3 0.1176728570106732
4 3 0.11200846919714065
5 3 0.11200846919714065
6 3 0.11200846919714065
7 3 0.11200846919714065
8 3 0.11200848735961529
9 3 0.11200848735961529
10 3 0.11200846919714065

Table 14: Forest Covert Data Final Output Result

4.3.5 S1 data

Figure 5 conveys the CkNN network for the first synthetic data set.

Figure 19: CkNN graph for S1 data

It can be deduced from Figure 4 that the CkNN method is able to capture the shape of the data
for well separated and distinct clusters.

Markov time in seconds No. of Partitions Markov stability Variation of information
0 ≤ t ≤ 500 8 0.47 1.78E-15 -4,46

500 ≤ t ≤ 1000 8 0.47 1.78E-15
1200 ≤ t ≤ 1220 8 0.47 8.88E-16-1.78E-15
1200 ≤ t ≤ 1201 8 0.47 8.88E-16-1.78E-15
1000 ≤ t ≤ 1100 8 0.47 8.88E-16-1.78E-15

Table 15: Markov time frames for S1 Data

Table 15 conveys that the network stabilises quite quickly and consistently detects 8 partitions
evident from the distinct communities constructed from the CkNN graph. The Markov stability
metric shows that the partitions are stable throughout the network yet the variation of information
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varies between exactly two values: 8.88E-16-1.78E-15. This shows that the algorithm is finding the
same two partitions sets each time which again is representative of the data’s well separated clusters.

There therefore exists multiple times for which the algorithm will output stable partitions.

Run Partition Markov Stability
1 8 0.46869749491153634
2 8 0.4686974949115362
3 8 0.4686974949115362
4 8 0.46869749491153634
5 8 0.46869749491153634
6 8 0.46869749491153634
7 8 0.46869749491153634
8 8 0.4686974949115363
9 8 0.46869749491153634
10 8 0.46869749491153634

Table 16: S1 Final Output Result

4.3.6 S2 Data

The CkNN graph below conveys S2 data. Although the CkNN method is able to distinguish between
the clusters, is it not able to account for the minor overlap or the true sparsity of the clusters and
therefore is not able to accurately represent the data.

Figure 20: CkNN for S2 Data

Varying the δ parameter was not useful in producing a more reliable CkNN graph, as it either
did not convey edges within the cluster partitions or conveyed an even wider cluster disparity. This
therefore shows that the CkNN method is sensitive to data sparsity, not in terms of overlap but in
terms of separation, even in the case of well separated data. The Louvain algorithm was run at t = 920
for which the output is given below.

Markov time in seconds No. of Partitions Markov stability Variation of information
0 ≤ t ≤ 100 16 0.48 0-3.20
0 ≤ t ≤ 10 16 0.48 -8.88E-16-3.20
0 ≤ t ≤ 1000 16 0.48 0-3.20

1200 ≤ t ≤ 1220 16 0.48 0
1000 ≤ t ≤ 2000 16 0.48 0

Table 17: Markov time frames for S2 Data

From Table 17, its clear that the network stabilises quite quickly with consistency across the
partition, Markov stability and Variation of information value which stabilises to 0. This means that
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the algorithm is outputting the same partitions each time as the Markov’s time increases across the
network, which also conveys that the graph and data shape is stable. However CkNN graph does
not accurately capture the data’s true structure and completely dismisses the overlap and does not
accurately show the cluster separation. Therefore it is likely that these partitions do not constitute to
accurate clusters despite being robust, and data objects have been assigned to the incorrect clusters.

The following output values constitute to the Markov time t = 11 but due to the stability of the
network, this output will exist at multiple times after t = 11.

Run Partition Markov Stability
1 16 0.4843182108105294
2 16 0.4843182108105293
3 16 0.4843182108105294
4 16 0.4843182108105293
5 16 0.4843182108105293
6 16 0.4843182108105293
7 16 0.4843182108105293
8 16 0.4843182108105294
9 16 0.4843182108105293
10 16 0.4843182108105292

Table 18: S2 Final Output Result

4.3.7 S3 Data

The output for the bets CkNN graph for the S3 data is given below. The performance of this graph
construction was identical to the S2 data in terms of not capturing the true disparity between cluster
for considering the data overlap. The δ parameter was varied for which the output graphs can be seen
in figures 4-8 in the appendix, and shows that the method either under connects or over connects the
data. The CkNN method was not able to accurately represent this data.

Figure 21: CkNN Graph for S3 Data
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Markov time in seconds No. of Partitions Markov stability Variation of information
0 ≤ t ≤ 100 25 0.49 0-3.7
0 ≤ t ≤ 50 25 0.49 -8.88E-16-3.55

500 ≤ t ≤ 1000 25 0.49 0-8.88E-16
1200 ≤ t ≤ 1200 25 0.49 0-8.88E-16
1000 ≤ t ≤ 2000 25 0.49 0-8.88E-16

Table 19: Markov time frames for S3 Data

Table 19 is almost identical to Table 16 in terms of output consistency and the variation of infor-
mation range. The network stabilises quickly the output is consistent in the terms of partitions and
Markov stability. The variation of information fluctuations between 0 and 8.88E-16, again show that
the algorithm is ouputting the same partitions each time.

The output detailed below is taken at a Markov time of t = 600, but again this stability exists at
multiple times across the network.

Run Partition Markov Stability
1 25 0.48996638035170514
2 25 0.48996638035170514
3 25 0.4899663803517052
4 25 0.4899663803517052
5 25 0.4899663803517052
6 25 0.48996638035170514
7 25 0.48996638035170514
8 25 0.4899663803517052
9 25 0.48996638035170526
10 25 0.48996638035170514

Table 20: S3 Final Output Result

4.3.8 S4 Data

The CkNN graph for the S4 data is given below. In this instance, the CkNN was about to better
account for the data disparity, was inclusive of some overlap and partitioned the data into the correct
number of clusters.

Figure 22: CkNN graph for S4 data

The stability of the output at different Markov times is given in Table 19 below.
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Markov time in seconds No. of Partitions Markov stability Variation of information
0 ≤ t ≤ 100 12 0.48 -8.88E-16 - 4.59
0 ≤ t ≤ 1000 12 0.48 0-8.88E-16

1000 ≤ t ≤ 2000 12 0.48 -8.88E-16-0
2000 ≤ t ≤ 3000 12 0.48 -8.88E-16-0

Table 21: Markov time frames for S4 Data

From table 21, it can be seen that again the network stabilises quite quickly with regards to the
partition number and Markov stability. The variation of information again fluctuates exactly between
two values 0 and -8.88E-16. This conveys that the network is stable and Louvain algorithm outputs
the same set of partitions across increasing Markov time.

The stability of the output from 10 runs is given below at a value of t = 50. Due to the networks
stability this output will be stable across a wide range of Markov times.

Run Partition Markov Stability
1 12 0.47913185273232006
2 12 0.47913185273232006
3 12 0.47913185273232006
4 12 0.47913185273232006
5 12 0.47913185273232006
6 12 0.47913185273232006
7 12 0.4791318527323202
8 12 0.47913185273232006
9 12 0.47913185273232006
10 12 0.47913185273232006

Table 22: S4 Final Output Result

4.4 Results Comparison Across all Methods

The performance of each clustering method with regards to the relative error for each outputted number
of clusters is detailed below, with MSCD referring to the multi scale community detection method

Data Set Cluster number RE: PFK Means RE: Criterion Method RE:MSCD
Iris 3 0.00 0.33 0.00

Breast Cancer 2 -3.00 0.00 0.00
Digits 10 0.00 0.70 0.00

Forest Covert Type Subset 3 0.29 0.33 0.00
S1 8 0.25 0.75 0.00
S2 16 0.38 0.81 0.00
S3 25 0.44 0.88 0.00
S4 12 0.33 0.67 0.00

Table 23: RE across all methods

To summarise the performance of each method, the multi scale community detection is the best
performing across all 3 methods with zero relative error for each cluster output. It should be noted
that the reliability of the output for the Iris, and synthetic data sets is not Representative of the best
cluster partition as the CkNN graphs were not able to accurately capture the data’s integrity. The zero
relative error for the digits data set in the parameter free clustering method also does not constitute
a robust output as this had a very poor silhouette score for the cluster quality.

5 Discussion

The analysis of each of algorthim’s individual performance is outlined below.
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5.1 PFK Means Method

The parameter free clustering method and its variants performance was quite poor with regards to
the selected data sets as it was only able to cluster the Iris data set reliably. In both the original
and replicated results, the best out of five runs was reported which conveys that the algorithms do
not produce stable or consistent results and its possible that the algorithm’s will not output the
correct result at all. This suggests that the random initialisation process is poor and and that even
correct results could be representative of a convergence to the local optimum and not the best possible
clustering. Although the PFK method and its variants are not dependent on initial parameters,
they are however sensitive to the data disparity due to the mean euclidean distance metric being
the threshold to determine the clusters in each method. As the pairwise distance between two data
objects are iterative compared and assigned to clusters, this method could be sensitive to outliers
and unsuitable for high dimensional and complex data which was established in the results of this
study. Moreover these PFK methods that consider the entirety of the data set in the algorithm’s
input become computationally expensive in of large data even if it is of low dimensionality. So overall
the PFK algorithm is not suited to high dimensional or large data sets with regards to large cluster
numbers and attributes. The key limitation in these methods is the sparsity of the data as it was not
able to correctly cluster well separated distinctively clustered data, which again renders this unsuitable
for complex data. Overlapping data objects do not seem to be a limitation for this method as the
original data sets used in the study had considerate overlap as well as the digits data set that was able
to output the correct cluster number. Overall it is unclear what factors have the strongest influence
or limitations to the algorithms performance and further investigation of this methods performance
should elaborate on the influence of: data disparity, random initialisation of the first cluster center and
sensitivity to the mean euclidean distance metric. Improvements towards this method should factor in
the quality of the cluster output as well as outputting consistent stable results. The second variant of
the hard iterative procedure constitutes to the greatest area of improvement/ further investigation as
it outputs empty clusters in the case of high dimensional data. Overall this method is able to produce
a reliable and correct output in the low dimensional data limit and is better suited to small data sets
for which the data objects are low in sparsity, and have minimal to no outliers.

5.2 Criterion Method based on Data Depth

The results of this study as well as the original study convey that this method is not well suited to
high dimensional data with regards to cluster size, as it was not able to determine the correct k value
for a cluster number greater and than 4, and even had difficulty with determining k for 2 to 3 clusters.
The number of attributes and size of the data set were not a limitation to this method however since
this method takes in the input as a data collective it is computationally expensive in the case of
large data. As the main distance metric was inclusive of a robust covariance matrix determinant, the
algorithm is not able to compute an output on data that is not full rank as the matrix inverse is not
attainable, which was uncovered when processing the digits data set. Principal component analysis
was not an effective means to overcome this limitation so further exploration into this area is needed
or its possible that this algorithm will not work on data that has linearly independent attributes. The
fact the performance of the algorithm underestimated the number of clusters suggests that this method
is best suited to low dimensional data in terms of cluster number. Other limitations of this method
could be attributed to the initialisation process in terms of the data partitioning. Depending on the
data set it may not always be possible to be partitioned into equal n/k sizes which would results in
data objects wrongly assigned to clusters. The size and shape of clusters could also be an issue as the
algorithm assumes that they can be equally partitioned which may not always be the case. This could
also mean that the algorithm is not robust noisy data and outliers. Overall this method is not well
suited to data that is partitioned into more than 4 clusters or large in size and areas for improvement
should consider the initialisation process and data suitability to this method. It can however suffice as
a good estimator for low dimensional data but it is difficult to gain a comprehensive evaluation of the
performance when limited a single relative error metric. The criterion method is therefore thought to
be sensitive to particular data structures and does not consider the global data structure.
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5.3 Graph-based Data Clustering via Multi scale Community Detection

This method was very well suited to high dimensional data and produced robust, reliable outputs. Both
the global and local features of the data set are accessible and the method considered the integrity of
the entire data set and accounted for its shape. The main limitations of this method lie in the graph
construction as the data extracted from this determines the algorithms performance. The CkNN
graph was sensitive to the δ parameter which was not always able to be tuned to produce an accurate
depiction of the data’s structure in case of the first two synthetic data sets. This method struggled
the most with data that was both sparse and overlapping as it was not able to capture the cluster
separation accurately. it is also worth noting that it can be computationally expensive with regards
to large data which is why the Louvain algorithm was run 10 times as opposed to nL times in these
experiments. While the method was able to determine the correct number of clusters in each case, they
are not always representative of the most robust or accurate partition. Therefore regarding areas for
improvement, the main area would lie in the graph construction to uncover graphs that are suitable to
varying data shapes and sparsity. It could also be possible that certain data shapes may not be suitable
for this method as this is what the parameters are most sensitive to.So investigation into the type of
data that this method is best suited to can help to guarantee reliable results. There could also be
advancements in the interpretability of the output as it is difficult to visualise the detected partitions.
Certain metrics such as the silhouette score are not well suited to this method so investigation to
evaluation criteria will be useful. Although the ARI index was used in the original study, this was only
applicable to data sets for which the number of classes was known upfront, hence why there was no
inclusion of synthetic data. This is not ideal as the ground truth is not always known upfront when
clustering data.

6 Conclusion

To summarise the findings of this study, the comparison of the performance of the parameter free clus-
tering , the criterion based on data depth and the graph based community detection methods deduced
that the graph based multi scale community detection method was the best performing. It is thought
that the previous two methods were not well suited to high dimensional data as they do not consider
the entirety of the data’s integrity, they are computationally expensive in the large data limit and are
sensitive to their parameter initialisation processes. Despite their drawbacks, these methods still have
proven efficacy for low dimensional data with a cluster number less than 4. Given the performance
of the multi scale community detection algorithm it can also be deduced that these methods are not
robust to outliers and are sensitive to the shape of the data, however these were also drawbacks in the
graph based method. Overall despite these novel clustering methods and enhancements in the field of
data mining, parameter sensitivity and high dimensional data still prove to be persistent difficulties
when developing clustering algorithms. This study found that the sparsity of clusters and data objects
are also a significant draw back to methods that are able to successfully cluster high dimensional data,
as these algorithms as well as existing methods are mainly developed around distance metrics. Further
enhancements should continue to focus on developing algorithms for data of specific shapes in the large
data limit, where the global structure of the data is taken into consideration.
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7 Appendix

Figure 23: Scatter graph of S1 data

Figure 24: Scatter graph of S2data

Figure 25: Scatter graph of S3 data
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Figure 26: Scatter graph of S4 data

Figure 27: Full Forest Covert Type data

Figure 28: Forest Covert Type data Subset st
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Figure 30: Letter recognition data set from original PFK study

Figure 29: Digits data set
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