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Glossary of Terms

• NLP (Natural Language Processing): A branch of artificial intelligence focused on en-
abling computers to understand, interpret, and generate human language.

• LLM (Large Language Model): A type of machine learning model, often based on neural
networks, designed to understand, generate, and translate human language at a large scale.

• GPT (Generative Pre-trained Transformer): A type of LLM model developed by Ope-
nAI pre-trained on large data sets of unlabelled text and able to generate novel human-like
content.

• ChatGPT: A specialized version of the GPT model by OpenAI, optimized for generating
human-like conversational response.

• RNN (Recurrent Neural Network): A class of neural networks where connections between
nodes form a directed graph along a temporal sequence, allowing it to exhibit temporal
dynamic behavior.

• LSTM (Long Short-Term Memory): Advanced RNNs for learning long-term data se-
quences.

• CLI (Command Line Interface): Text-based interface for managing files and programs
via commands.

• UI (User Interface): The interface for user interactions with computers and software.

• Prompt: User-provided input or instruction that triggers the system to process and generate
a response or output.

• Token: In NLP it is a unit of text, such as a word, subword or character, treated as a single
unit by model.
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Abstract

This thesis investigates the role of Large Language Models (LLMs), specifically AutoGPT, in
the automation of software development for data analysis, focusing on the impact of integrating
functional and non-functional requirements on LLM decision quality. This study evaluates Auto-
GPT’s ability to write Python scripts for data processing and to create R Shiny dashboards across
three distinct datasets, using prompts of varying complexity. The experiment progresses from sim-
ple natural language prompts to structured ones, finally to prompts that integrate both functional
and non-functional requirements. This progression enables an in-depth assessment of AutoGPT’s
efficiency, accuracy and challenges. Key findings show that AutoGPT can autonomously generate
Python scripts and R Shiny dashboards. The study reveals that prompt complexity enhances Auto-
GPT’s output quality and efficiency, although challenges such as the reproducibility of generated
codes and sensitivity to the structure of prompts are observed. Concluding, the thesis underscores
the potential and current limitations of AutoGPT in software development for data analysis. It sug-
gests a strategic approach to prompt construction and indicates that while AutoGPT is promising,
it does not yet match the capability of a skilled human data analyst.

Keywords: Large Language Models, AI agents, AutoGPT, Data Analysis, Software Develop-
ment Automation
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Santrauka

Didžiųjų kalbos modelių panaudojimo procesų automatizavimui tyrimas

Šiame darbe yra tiriamos didžiųjų kalbos modelių (LLM), konkrečiai AutoGPT, galimybės
automatizuoti programinės įrangos kūrimą duomenų analizei. Esant sparčiai dirbtinio intelekto ir
mašininio mokymo plėtrai, LLM tapo svarbiu elementu duomenų analitikoje. Tačiau jų galimybės
automatizuoti programinės įrangos kūrimą iki šiol nebuvo pakankamai ištirtos. Šis tyrimas siekia
užpildyti šią spragą, įvertinant AutoGPT efektyvumą rašant Python kodą duomenų apdorojimui ir
išgavimui bei tuos duomenis atvaizduojant R Shiny programos pagalba.

Naudojant tris įvairius duomenų rinkinius, tyrimas metodologiškai įvertina AutoGPT veikimą
naudojant įvairaus sudėtingumo užklausas. Tyrimas pradedamas nuo paprastų kasdienės kalbos
užklausų, vėliau pereinama prie labiau strukturizuotų ir baigiama užklausomis, kurios integruoja
tiek funkcinius, tiek nefunkcinius reikalavimus. Toks planas leidžia išsamiai įvertinti AutoGPT
efektyvumą, tikslumą ir iššūkius įvairiose situacijose.

Išvadose atskleidžiama, kad AutoGPT gali generuoti Python kodą duomenų apdorojimui ir
kurti R Shiny ataskaitas. Taip pat, tam tikriems duomenų rinkiniams AutoGPT pateikė duomenų
analize paremtas įžvalgas bei dokumentacijas. Buvo pastebėta, kad AutoGPT rezultatų kokybė
ir efektyvumas gerokai pagerėja didinant užklausų sudėtingumą ir specifiškumą, ypač į užklausą
įtraukiant funkcinius ir nefunkcinius reikalavimus. Tačiau taip pat pastebėti iššūkiai bandant atkar-
toti LLM sugeneruotus išeities kodus bei didelė AutoGPT rezultatų priklausomybė nuo užklausos
struktūros.

Šis darbas prisideda prie geresnio supratimo apie procesų automatizavimą naudojant LLM,
ypač programinės įrangos kūrimo duomenų analizei srityje. Jis siūlo strukturizuotą planą užk-
lausų kūrimui ir pabrėžia AutoGPT galimybes bei apribojimus praktinėse taikymo srityse. Tyrimas
baigiamas išvada, kad nors dirbtinio intelekto agentai, tokie kaip AutoGPT, rodo potencialą autom-
atizuojant programinės įrangos kūrimą, tačiau jų gebėjimai dar neprilygsta kvalifikuoto duomenų
analitiko gebėjimams.

Raktiniai žodžiai: Didieji kalbos modeliai, DI agentai, AutoGPT, Duomenų analizė, Program-
inės įrangos kūrimo automatizavimas
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Introduction

In the era of global digitalization, we observe an undeniable growth of data tracking mechanisms.
As individuals we engage in a multitude of data generating activities, every click, transaction and
interaction contributes to the generation of data points. The cumulative effect of these actions has
resulted in the rapid increase in the volume of data generated [47]. The exponential growth of data
in the digital age has introduced both challenges and opportunities for researchers. This provides
perfect environment for the rapid evolution of data exploration techniques ranging from basic data-
driven insights applicable to the fields like business [30], healthcare [4], education [26] and our
everyday life [18], to the more sophisticated methods such as deep learning, artificial intelligence
(AI) and large language models (LLM) for the more advanced applications in various domains.

Recent progress in natural language processing (NLP) led to the fast development of powerful
large language models (LLMs) like ChatGPT. ChatGPT, in particular, has gained significant inter-
est due to its impressive natural language processing capabilities and its accessibility to the general
public. People have been actively investigating the potential uses of LLMs to enhance efficiency,
accuracy and decision-making in a wide array of applications, from text generation to translation,
summarization and question-answering [11, 2]. Widespread adoption of ChatGPT has ushered in
a new era of automation, changing the way we approach complex processes in various fields and
software development is no exception [52, 42, 43].

As software development become increasingly complex and demanding, our research strives to
bridge the gap between cutting-edge natural language processing capabilities and the increasing de-
mand of software engineering. The purpose of this master thesis is to analyze the potential of large
language models in the context of automated software development. To achieve our objectives,
we have outlined a comprehensive set of tasks. First, we perform a scientific literature review,
examining a wealth of knowledge from previous research in the field of LLM and its applications
in software development. Secondly, we collect 3 different test data sets and create test protocols.
This not only ensures the reproducibility and measurability of our experiments but also creates
a benchmark for evaluating the performance of different LLM prompting approaches. Through
empirical studies, we further investigate how both functional and non-functional requirements can
enhance the quality of automated software code generation using LLM. Finally, we provide ac-
tionable recommendations and insights for the creation of automated software development using
LLM.

The aim of this thesis: To make a comparative and exploratory analysis in the context of
automated software development by identifying the impact of functional and non-functional re-
quirements on LLM decision quality.

Objectives:

1. Literature Review: Conduct a scientific review of the literature and identify relevant pos-
sible solutions.

2. Collect Test Datasets: Collect and process three distinct test datasets. Design and establish
robust test protocols, ensuring the reproducibility, measurability and benchmarking capabil-
ities of our experiments.

3. Empirical Study: Conduct an empirical study of how various functional/non-functional
requirements can improve automated software code generation.
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4. Recommendations and Insights: Provide actionable recommendations and conclusions for
the creation of automated software code. Draw conclusions that could guide future research
and practical applications in this field.
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1 Related Work

This section reviews the literature and methods of software development automation using large
language models. It begins with the evolution of large language models. Tracing the development
from simple models to the most advanced today. Then it continues with process automation and
its significance. Discussing existing automation applications like content generation, code writing
and other. The chapter then continues about tools, techniques and challenges of data analysis
today, followed by analysis of studies of using LLM for data analysis. Finally, the chapter ends
with a summary and findings of literature analyzed.

1.1 Evolution of Large Language Models

Although the introduction of ChatGPT to public usage has brought significant attention to large
language models in recent years, the evolution of natural language processing models has a long
history dating back to the mid-1960s. with the introduction of the first language model - ELIZA,
created by Joseph Weizenbaum. This was when the first language model - ELIZA, created by
Joseph Weizenbaum [51]. It was a relatively simple program that used pattern recognition to
simulate human-like conversation and generate a response from a set of pre-defined rules. While
ELIZA was not "large" by today’s standards, it was as an early example of human-computer in-
teraction using natural language processing and it marked the beginning of research into natural
language processing (NLP) and the development of more sophisticated LLMs.

As computational capabilities increased [12], the field of natural language processing (NLP)
evolved with the emergence of statistical language models [31] and the early use of machine learn-
ing algorithms in the 1980s and 1990s. The transition from rule-based systems to probabilistic
models, like n-gram [25] or hidden Markov models (HMMs) [37], marked a significant advance-
ment in the machine’s ability to predict and generate language.

Further NLP improvements emerged with the adoption of neural network based approaches,
Recurrent Neural Networks (RNNs) and particularly Long Short-Term Memory (LSTM) architec-
ture became transformative with their ability to handle sequential data and long-term dependencies,
fundamental for tasks like speech recognition, language modeling or text generation [10, 32, 21].
These advancements, while monumental, were not without limitations. Issues such as vanishing
gradients in standard RNNs [5] or lack of parallel computing were significant limitations, sparking
further research and development into more robust architectures. The introduction of the attention
mechanism in neural networks presented a solution to these problems, laying the groundwork for
the next breakthrough in NLP – the Transformer model [50]. This architecture leverages self-
attention to weigh the influence of different parts of the input data, which makes application of
parallel processing easier.

The transformers model led to further reasearch of chatbots and NLP, which enabled the devel-
opment of Bidirectional Encoder Representations from Transformers (BERT) [9] by researchers
at Google capable to capture deep bidirectional contexts by pre-training on a large amount of un-
labeled text and fine-tuning for various tasks with just one additional output layer. In parallel, the
development of Generative Pre-trained Transformer (GPT) [38, 39, 8, 35] models by OpenAI has
shown a leap in generative capabilities. These models, trained on large amount of diverse texts
from the internet, are able to perform complex NLP tasks. With each iteration, from GPT-1 to the
latest GPT-4, they showed significant improvements in machine translation, question answering,
summarization and increased general application scope. The most advanced models have demon-
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strated unprecedented success in language comprehension and generation, opening new ways to
automate complex processes, from writing and content creation to coding and data analysis using
large language models. These developments have given rise to intelligent agents like AutoGPT
[15], MetaGPT [22] and BabyAGI [34], which using OpenAI’s GPT API and other tools are de-
signed to autonomously carry out a diverse array of tasks.

1.2 Process Automation and Its Significance

Process automation, defined as the technology-enabled automation of various processes that re-
duces human intervention in them, has evolved significantly over the past several decades. It has
fundamentally changed how work is completed in some industries, shifting from labor-intensive
practices to efficient, technology-driven operations. Historically, process automation found its
roots in the manufacturing, particularly in textile manufacturing [49], sector with the introduction
of machinery to automate manual tasks. Since then, it has evolved to support a variety of applica-
tions across different sectors and this evolution shows a transition from manual, often error-prone
processes to streamlined and efficient automated systems across industries such as manufacturing,
telecommunications, banking and agriculture. The significance of this transformation lies in sub-
stantial gains in productivity, accuracy and efficiency it brings, empowering businesses to scale
operations and innovate rapidly.

Development of Artificial Intelligence (AI) and Machine Learning (ML) has further pushed
process automation into a new era, where automation systems are not just rule-based processes,
but are able to learn and adapt, expanding their scope and scale to the new areas of application. In
today’s manufacturing landscape, robotics has become a key element executing tasks with a level
of precision and stamina that far exceeds human limits. Apart from physical tasks, AI and ML have
transformed the landscape of data processing and decision making, transitioning towards adaptive
and continuously learning systems. These systems are good by learning from new data, identifying
patterns and making intelligent decisions with little to no human input. There are many real-world
applications, including recommendation systems in various industries, such as AI-driven content
management in streaming services that improves viewing recommendations [48] or personalized
shopping experiences in e-commerce which improve product discovery [46]. Also intelligent doc-
ument processing which automates relevant data extraction from various types of documents [13].
These applications not only demonstrate a successful integration of AI and automation but also
highlight significantly reduced time and costs for operations while simultaneously improving the
quality of services.

In the field of content generation, automation is making significant advancements. This progress
can be seen in a variety of applications, from simple text auto-completion to the writing of narra-
tive content or chatbots [19, 29]. Here, the rapid processing and generative capabilities of AI have
proved to be crucial. In software development, process automation has taken a more sophisticated
turn with the emergence of tools like GitHub Copilot [14]. Leveraging the capabilities of Large
Language Models (LLMs) to assist in code writing and debugging, significantly reducing the time
and effort required for developing and maintaining software. Additionally, in the area of data
analysis, LLMs could help with often labor-intensive process of data preparation, enabling more
efficient data cleaning, feature engineering and train data generation [53, 7]. This not only speeds
up the analysis process but also enhances the accuracy and reliability of the insights generated,
marking a pivotal shift in how data-driven decisions are made.

In conclusion, while process automation, particularly through advancements in AI and ML,
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has revolutionized various industries by enhancing efficiency, accuracy and productivity, it is
not without limitations. Large Language Models (LLMs), despite their sophisticated capabilities,
often struggle with understanding context and create hallucination results [24, 3]. This shows the
importance of human oversight, especially in critical decision-making processes. The integration
of AI in automation has opened new horizons for innovation and operational excellence, but it also
requires a balanced approach, where human expertise and ethical considerations are necessary
to the successful implementation and evolution of these technologies. This balance is crucial to
getting the full potential of process automation while mitigating its inherent challenges.

1.3 Modern Data Analytics: Tools, Techniques, Challenges and the Role of
the LLM

The landscape of data analytics is constantly evolving, primarily due to increasing importance of
data in decision-making across multiple industries. From healthcare to finance, data-driven in-
sights have become crucial for strategic planning and operational efficiency [40, 45, 36]. This
increased reliance on data analytics has created a strong need for skilled data professionals capa-
ble of extracting meaningful insights from complex datasets that are integral in guiding everything
from business strategies to scientific research. However, actionable insights extraction from raw
data not only requires comprehensive domain knowledge and advanced analytical techniques, but
also data visualization skills and often some software development skills in programming lan-
guages like Python or R [6, 55, 1]. These tools, known for their powerful data manipulation and
analytical capabilities, often require extensive training and expertise to use their full potential. In
response to this growing demand, educational institutions and online learning platforms are rapidly
expanding their course offerings in data science and analytics, equipping a new generation of pro-
fessionals with the tools and knowledge needed to harness the power of data in our increasingly
data-driven world [1].

However, the field of data analytics is not without its challenges. Some issues include concerns
over data quality, privacy and the management of large and complex datasets [20, 41, 17]. Data
quality issues can arise from various sources, such as incomplete data, inconsistent formats or
errors in data collection and entry. Privacy concerns have also become increasingly significant,
because data breaches and misuse can lead to severe consequences. Additionally, handling of large
datasets requires specialized tools and techniques to process and analyze it effectively. Such issues
not only slow down the analytical process but also can affect the quality of insights derived. These
challenges highlight the need for advanced data analytics tools and systems that can assist data
analysts in their work, making their processes not only faster but also more accurate and efficient.
Solutions that can automate parts of the data cleaning, processing and analysis are in high demand,
as they can significantly reduce the time and effort required to derive actionable insights or even
replace some manual tasks.

Additionally, as technology advances, the role of artificial intelligence and machine learning
in data analytics is expanding, offering new possibilities for deeper insights, predictive analytics
and automated decision-making, thereby changing how data professionals work [16]. Large Lan-
guage Models (LLMs) have begun to play a crucial role in data analysis. Case studies and recent
research show that LLMs can help with data processing, interpretation, data quality checks, pro-
viding descriptive statistics, well interpreting unstructured data or even write code for data analysis
[53, 54, 28, 16, 33]. In this context, the integration of Large Language Models (LLMs) into data
analytics presents numerous opportunities. LLMs, with their advanced natural language process-
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ing capabilities, are beginning to play a role in various aspects of data analysis, from assisting
in data cleaning and preprocessing to helping in the planning and initial stages of data analysis
projects. They offer the potential to automate some of the more laborious parts of the data ana-
lyst’s workflow, thereby speeding up the process, leaving more time for more valuable tasks and
possibly uncovering insights that might be missed by traditional methods.
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2 Methodology

This section covers the methodology used to investigate the integration of large language mod-
els (LLMs) in software development automation. It begins with an exploration of GPT models,
briefly explaining their main concepts and how they work. Then it continues with the role and
functionality of AI agents like AutoGPT, followed by an examination of effective prompt con-
struction techniques for LLMs, which are essential for effective LLM utilization. Subsequently,
it discusses the criteria for selecting appropriate datasets for this thesis. The chapter then contin-
ues discussing the formal requirements necessary for software development projects, delving into
functional and non-functional requirements. It concludes with a detailed strategy for evaluating
LLM performance in software development automation practical applications.

2.1 Generative Pre-trained Transformers (GPT)

This subsection discusses the essential concepts and techniques related to Generative Pre-trained
Transformers (GPT), including the architecture of Transformers and their application in GPT mod-
els, as well as input tokenization. Understanding these foundational elements is crucial for our
investigation into process automation using LLMs.

2.1.1 Transformers

Among the most known LLMs are the Generative Pre-trained Transformer (GPT) models, specif-
ically GPT-3 and GPT-4, developed by OpenAI. These models represent the cutting edge in lan-
guage processing and generation technology. GPT models learn to predict and generate language
by being trained on a large corpus of text data, allowing them to respond to a wide range of prompts
with high accuracy. Their versatility in handling various language tasks, from translation to code
generation, makes them particularly relevant to the domain of software development automation.

GPT models use a transformer architecture [38] that handles sequential data well, making
them very efficient for natural language based tasks. They operate using a mechanism of attention,
allowing the model to focus on different parts of the input text to generate contextually relevant
outputs.

Unlike standard transformers that use both encoders and decoders (Figure 1), GPT models
use only decoders. These decoders are structured as a series of stacked layers, each consisting of
self-attention mechanism and feed-forward neural network layer. This architecture is designed for
text generation tasks, showing strong performance in predicting the next tokens in a sequence by
effectively utilizing the context provided by the preceding tokens. This design choice makes GPT
models good at processing and generating language, making them particularly effective for a wide
range of generative language tasks.

Transformers revolutionized NLP with their unique architecture, centralizing around the con-
cepts of attention and self-attention mechanisms. The key to their success lies in the ability to
process entire sequences of data simultaneously, unlike traditional models that process data se-
quentially.

• Positional Encoding. Since Transformers don’t have a recurrence mechanism like RNNs,
positional encodings are used to give the model a sense of word order.
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Figure 1. The Transformer architecture [50]. Encoder on the left and Decoder on the right.

• Attention. This mechanism allows the model to focus on different parts of the input se-
quence when performing a task, like humans pay attention to specific aspects of what they’re
reading or listening to.

• Self-Attention. A specialized form of attention, self-attention associate each element in the
input sequence to every other element, giving a comprehensive understanding of the entire
sequence.

• Masked Attention. Masked attention is a technique where certain positions in the input
sequence are masked or hidden from the self-attention mechanism. This means that a model
cannot see the masked positions, in this case it cannot attend future words in the sequence
and it only has access to itself and the words before it.

• Feed-Forward Network. Feed-forward network is responsible for processing the informa-
tion from the attention mechanism, applying additional transformations to the data. Each
feed-forward network typically consists of two linear transformations with a non-linear acti-
vation function in between, allowing the network to learn complex patterns within the data.

GPT operates on an autoregressive principle, where it predicts the probability of each subse-
quent token (word or sub-word) based on the preceding sequence of tokens. During text genera-
tion, for each token prediction, GPT uses a softmax function to generate a probability distribution
over its vocabulary, choosing the most likely next token.
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2.1.2 Tokenization

The initial stage of text processing in GPT is tokenization, a critical step that segments the input
text into manageable units, called tokens [31]. These tokens enable the model to understand and
predict the statistical relationships in the sequence of words. This process is essential as neural
networks are designed to interpret numerical data rather than raw text.

GPT models utilize a hybrid approach to tokenization, incorporating both word-level and
subword-level strategies. This combination allows the models to capture linguistic nuances while
effectively managing the vocabulary size. As a result, in GPT models, tokens may not align per-
fectly with word boundaries, they can include trailing spaces or even parts of words (Figure 2).

Figure 2. GPT-3.5 and GPT-4 Text Tokenization Example

To provide a sense of scale, a single token in English typically corresponds to about 4 char-
acters, 100 tokens approximate 75 words and 1-2 sentences are approximately 30 tokens. This
quantification helps in understanding the granularity and scale of tokenization in practice.

It is also important to mention that OpenAI’s GPT API automatically convert text to tokens.
Thus user does not have to do it manually.

Understanding the infrastructure of transformers and their adaptation in GPT models, along
with the process of input tokenization, is crucial for our exploration of process automation using
Large Language Models (LLMs).

2.2 AI Agents (AutoGPT)

This subsection explores the principal concepts of AI Agents, with a particular focus on AutoGPT
[15]. It discusses their capabilities in autonomously executing tasks such as data analysis and soft-
ware development by utilizing the advanced functionalities of Large Language Models (LLMs).
The subsection also covers the main limitations, including cost considerations and the tendency to
generate inaccurate or "hallucinated" content, which may affect their reliability and practical appli-

15



cation. The subsection aims to provide a balanced view of AutoGPT’s capabilities and challenges
in the context of AI-driven process automation.

Currently, people interaction with AI involves a standard procedure: a user provides a prompt
and the AI generates a response based on that input. This process requires a new prompt for each
desired output. Thus, it requires continuous human intervention. However, AI agents function
differently as they are designed for autonomous operation and decision-making. The innovation
here is the shift from a passive to an active role in AI interaction. The user’s role is primarily in
setting objectives, which could range from conducting a market research to creating a personal-
ized fitness program. Once a goal is created, AI agents autonomously formulate and execute their
plan, dynamically adjusting their approach based on environmental feedback and internal assess-
ment. This self-prompting capability allows AI agents to continuously refine their strategies to
efficiently meet their goals. Unlike traditional automation, which relies on predefined triggers and
actions, AI agents can adapt to complex and variable environments, demonstrating a sophisticated
level of intelligent automation. Their capabilities extend to the ability to browse the internet, use
applications, read and write files, execute payment transactions or even control various computer
functions. The development of AI agents is a step closer to achieving Artificial General Intelli-
gence (AGI), where machines can perform diverse tasks with a level of flexibility and efficiency
comparable to human capabilities.

There are multiple AI agents available, but for this study, one of the most popular AI agents,
AutoGPT, was selected. AutoGPT is and open-source Python application which can be run through
CLI or using UI. At its core, it operates on a relatively straightforward concept: it uses self-
prompting technique to make decisions and perform tasks autonomously. The results of each
action are fed back into the system, enabling it to progressively work towards a defined objective.
This recursive process distinguishes AutoGPT as an agent capable of executing actions on behalf
of its users. Users are still required to authorize every action performed by AutoGPT or they can
enter "continuous" mode, which lets to run the AI without user authorization. However, it is not
yet recommended by authors of AutoGPT, due to potential risks, such as execution of unwanted
actions or getting into an infinitive loop. The process ends by saving all its finding to the system’s
files for easy access and terminates the task when completed. It is important to mention that
AutoGPT is designed as a generalist agent, meaning it is not restricted to specific tasks but can
work on a wide range of tasks that are completable on a computer.

The core elements of AutoGPT’s workflow are presented in the Figure (3) and described below:

1. User Input: The user inputs a sentence starting with "I want Auto-GPT to," or specifies the
name, role and up to five goals for the AI.

2. Input Preprocessing: User’s input is passed to OpenAI’s API for input preprocessing and
generating an internal monologue that outlines the AI’s understanding by providing planned
actions (THOUGHTS), strategy (REASONING), tasks to complete in order to reach provided
goals (PLAN), optional CRITICISM and the next AI agent command (SPEAK).

3. Task Queue: All identified tasks are placed in a queue for execution.

4. Task Execution: The AI begins working on the tasks using the OpenAI’s API, the internet
and other applications, while interacting with its memory to save and retrieve information.
The executed command returns a string value. For example, the read_file command would
return a summary of file read from the system, the execute_python_code command would
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return python code results in natural language, the browse_website command would return a
summary of the scraped website contents, the write_to_file would return the status of writing
to a file.

5. Task Creation: New tasks are created based on the results of previous executions, with
continuous memory interaction for context and result storage.

6. Task Prioritization: Newly created tasks are added to the queue, where the "Task Prioriti-
zation" system reprioritizes the task list based on the new tasks generated and their priorities,
using OpenAI’s API to assist in the prioritization process.

The process loops through steps 3-6, continually generating and executing tasks and leveraging
both internal and external resources, until the final goal is reached and the "Done" state is achieved.

User Input

Input Preprocessing
(agent)

Task Queue
Task Prioritization

(agent)

Task Execution
(agent)

Done

Task Creation
(agent)

Memory

(1)

(2)

(6.1)

(6.2)

(3)

(4)

(5)

Figure 3. Conceptual Workflow of AutoGPT’s Autonomous Task Processing Cycle. This diagram
illustrates the AI agent’s ability to independently process natural language input, prioritize tasks
and execute a sequence of actions to achieve specified goals.

In conclusion, while utilizing AutoGPT presents significant advantages, it is important to ac-
knowledge and address its limitations. There are multiple factors to consider when using Auto-
GPT, like cost considerations, particularly due to its reliance on OpenAI’s GPT-4 API, known
for its advanced capabilities but also its higher price. Every step working on the task requires a
corresponding interaction with the API which incurs a token fee, accumulating costs with every
loop required to reach the goal. Additionally, the risk of AutoGPT becoming stuck in the loop
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can further increase these expenses. Another concern is the chance to generate inaccurate or "hal-
lucinated" content, which can compromise the reliability and effectiveness of the tool. Thus this
AI agents advancement also shows the need for ongoing human oversight, particularly in com-
plex decision-making scenarios, to ensure the ethical and effective use of such technology. The
ultimate goal is to harness the potential of AI agents within a framework where they complement
human skills, leading to greater efficiency and innovation across various sectors. Understanding
and addressing these challenges is crucial for maximizing the benefits of AutoGPT in process
automation.

2.3 Prompt Construction

This subsection continues with an examination of effective prompt construction techniques for
AI agents, emphasizing the importance of skilled prompt engineering in automation using LLMs.
Various strategies and best practices in prompt design are explored, integrating both functional
and non-functional requirements from IT project management to formulate more precise prompts
for AutoGPT. The subsection examine effective prompt construction techniques for LLMs, em-
phasizing the importance of skilled prompt engineering in automation using AI agents.

2.3.1 Overview of Prompt Engineering

Effective communication with AI chatbots, such as ChatGPT, relies heavily on the skill of prompt
engineering. This process involves shaping a user’s input or instruction in a way that guides
the response of the large language model (LLM). In the context of code generation and software
development, a prompt might vary from a broad description of the problem to a more detailed
specification of input, output and functional requirements. The design of these prompts is cru-
cial, as it directly influences the model’s output, ensuring more accurate, relevant interactions and
increasing the reliability of LLM results [44].

Even though AI agents like AutoGPT are built as a selft-prompting systems, but they still need
initial steps from a human and it still require well-crafted prompts. Thus, majority of the core
principles of prompt construction apply to both ChatGPT and AutoGPT, which utilize OpenAI’s
API. Prompt engineering, therefore, emerges as a crucial skill in the domain of LLMs, requiring a
deep understanding of effective prompt design principles, including:

1. Being Specific and Direct: It’s essential to ensure that prompts are clear and unambigu-
ous. Clarity in prompts helps in reducing misunderstandings and misinterpretations by the
LLM, leading to more accurate responses. This includes using straightforward language and
avoiding complex jargon unless it’s necessary for the context.

2. Context Inclusion: LLMs perform better with contextually rich prompts. Including relevant
background information or specifying the task’s context, together with guiding the LLM to
understand the exact nature of the task and the information required, can enhance the model’s
understanding and response quality. This is especially important in complex tasks where
the model needs to understand the broader context. It could be acomplished by including
important details in the prompt, asking LLM to act in a relevant role, by specifying the steps
required to complete the task or how the final output should look like.
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3. Providing Examples: Incorporating examples within prompts, a technique known as "few-
shot" prompting, can guide LLMs toward the desired output format or style. In coding tasks,
providing code snippets as examples can clarify expected outcomes.

4. Appropriate Formatting: The format of a prompt can greatly influence the LLM’s re-
sponse. In software development, structured formats such as bullet points, numbered lists,
delimiters like triple quotation marks, section titles or clear instructions can lead to more
effective code generation.

5. Task Decomposition: Breaking down complex tasks into simpler sub-tasks can make it eas-
ier for the LLM to process and respond accurately. This approach is particularly beneficial
in more complex projects, although AutoGPT attempts to address this aspect autonomously.

6. Iterative Prompting: Using an iterative approach, where responses are refined through
subsequent prompts, can improve the model’s output over time. This method is useful for
gradually perfecting LLM’s solutions, despite AI agents like AutoGPT already incorporating
this feature to an extent.

Prompt engineering is not just about instructing an LLM, but engaging in a nuanced dialogue
where each prompt is a blend of clarity, specificity and creativity. This subsubsection explores
these principles in depth, providing a comprehensive understanding of how to effectively commu-
nicate with LLMs, thereby harnessing their full potential in diverse applications such as software
development for data analysis automation.

2.3.2 Formal Requirements for Software Development Projects in Prompt Construction

The successful implementation of software development projects significantly depends on the ac-
curate definition and consistent adherence to formal requirements [23]. These requirements are the
cornerstone of project planning and execution, ensuring that the final product meets the end-user’s
needs and complies to quality and performance standards. Formal requirements defines what sys-
tem needs to be built. Thus, the clarity, specificity and comprehensiveness of these requirements
play a critical role in guiding the development process from the beginning to completion.

These requirements are broadly classified into functional and non-functional:

• Functional Requirements: Functional requirements define the specific behavior or func-
tions of the software system, describing what the software should do, the actions it must per-
form, the data it processes and the expected outputs. They directly reflect the user’s needs
and are essential for defining the core functionalities of the software system. In the context
of prompt construction for LLMs, functional requirements can be translated into explicit in-
structions or detailed specification that guide the model to achieve the final goal. In this case
- perform automated software development for data analysis on selected datasets. For ex-
ample, a prompt may include specific inputs and desired outputs, data processing methods,
clearly outlining the functionality that needs to be developed. It should be clear what have
to be done in order to comply with particular functional requirement, for example: "Develop
a Python script to import Lithuanian traffic accidents data from ’traffic_accidents.csv’. En-
sure the script handles Lithuanian text encoding and verifies data integrity upon import."
To comply with the requirement, Python script must be developed to import data from ’traf-
fic_accidents.csv’, ensuring it correctly handles Lithuanian text encoding (likely UTF-8) and
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includes checks for data completeness and format consistency to maintain data integrity.
This involves testing the script with the actual dataset to validate its functionality and effec-
tiveness in data handling.

• Non-Functional Requirements: Non-functional requirements often define the quality at-
tributes of the system. They focus on the operational criteria of a software system, such
as performance, security, usability and reliability. They are essential for ensuring that the
software operates efficiently and effectively within its intended environment. These require-
ments are not about what the software does, but how it does it. When constructing prompts
for LLMs, these requirements can be incorporated by specifying constraints and standards
the software needs to meet, such as budget, scalability, data privacy or user experience
guidelines.

Together, functional and non-functional requirements form the framework for managing soft-
ware development projects. Functional requirements drive the creation of the system’s capabilities,
directly impacting the system’s functionality. Non-functional requirements ensure that the system
is reliable, efficient and user-friendly, contributing to the overall quality and performance. A bal-
anced focus on both is essential for developing a comprehensive and effective software solution.

Integrating formal requirements into the construction of prompts for AutoGPT could increase
the reliability of LLMs in software development. Effective prompt construction requires balancing
between detailed requirements and maintaining prompt clarity. A well-designed prompt should
combine both functional and non-functional requirements. This approach ensures that prompts
are not only technically accurate but also contextually rich, leading to more reliable and effective
software development for data analysis.

2.4 Datasets Selection

This subsection discusses the criteria for selecting appropriate datasets for this thesis. The choice
of datasets is crucial in ensuring the validity and relevance of the research findings, as they pro-
vide the foundation for testing and evaluating the AutoGPT’s performance in practical software
development for data analysis scenarios.

The primary objective of selecting datasets is to evaluate the capabilities of AutoGPT in soft-
ware development for data analysis. The focus on collecting high-quality datasets that are diverse
and from different domains, including traffic accidents, health data from a watch, sports and trans-
actional data. This diversity ensures a comprehensive assessment of AutoGPT’s adaptability and
performance in different data contexts. It allows the study to cover a wide range of data analysis
scenarios, from individual health tracking to broader societal issues.

The selection criteria prioritize non classic tutorial datasets but datasets that more likely were
not part of the GPT-4 model’s training data. This approach aims to test how effectively LLMs
reason and adjust to new, unseen data. However, to ensure the datasets’ relevance and quality,
there is a focus on popular data topics widely analyzed in the field. This balance between novelty
and familiarity is testing AutoGPT’s versatility and robustness.

Three datasets are included in the analysis to provide a broad spectrum of data types and
contexts. This number is optimal to ensure a thorough analysis without complicating the research
process or inflating OpenAI’s operational costs, allowing for a detailed exploration of AutoGPT’s
capabilities in each case. The datasets are collected from various sources:
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• Apple Health Data: This dataset includes multiple dimensions such as steps, heart rate,
hand-washing, sleep and workouts. The focus for this thesis is on steps and workout metrics.
The choice of these metrics offers insights into daily health and activity patterns, providing
a real-world application scenario for data analysis. It is personal data collected via Apple
Watch and iPhone over multiple years.

• Traffic Accidents in Lithuania: This dataset provides data on traffic accidents, including
year and month of occurrence, county, a flag indicating if an intoxicated person caused the
accident and the accident count. The dataset presents a perspective on public safety and
regional traffic issues. Lithuanian traffic accidents data from the Department of Statistics
Lithuania (open data, downloaded in CSV format [27]).

• Bitcoin Transaction Hashes: Extracted from BigQuery public data (see Listing 1), this
dataset involves transaction hashes from Bitcoin blockchain, adding a fintech dimension
to the analysis. It also requires the use of more advanced data extraction and processing
techniques.

Each dataset was manually exported from its source for reproducability and for AutoGPT to
load them from the local machine where it runs. Preprocessing was minimal, primarily focusing
on format conversion to ensure compatibility and readability for AutoGPT. Data was mainly kept
raw to challenge AutoGPT’s ability to handle and analyze unrefined data. Due to cost constraints
and API usage limits, smaller subsets of the datasets were selected for the experiments.

The personal nature of the Apple Health data is ethically compliant, used with author’s consent.
Other datasets, being publicly available, do not pose privacy concerns. Although diverse and
complex, the datasets are manageable in size, allowing detailed analysis without overwhelming
the processing capabilities of a personal laptop or excessive use of the OpenAI API.

AutoGPT’s performance will be evaluated on its ability to automate software development for
data analysis across these datasets. This will include analyzing its effectiveness in interpreting data,
generating insights and developing appropriate software solutions. A comparative analysis across
different datasets will highlight AutoGPT’s adaptability to varying data types and complexities.

While the chosen datasets are diverse, there is an acknowledgment of limitations in their scope
and representation. The relevance of these datasets to specific domains may not comprehensively
cover all possible scenarios in software development for data analysis.

The selection of these datasets is integral part in assessing the versatility and effectiveness of
AutoGPT in software development for data analysis. The diversity of these datasets, combined
with minimal preprocessing, provides a robust framework for assessing AutoGPT’s capabilities
across various domains and scenarios.

2.5 Performance Evaluation Strategy

In this subsection, a comprehensive strategy for evaluating the performance of Large Language
Models (LLMs) in automating software development for data analysis is described. This evalu-
ation strategy is critical for assessing the effectiveness, efficiency and adaptability of AI agents,
such as AutoGPT, in automating software development processes within practical applications.

The primary objective of creating the evaluation framework is to appropriately evaluate the
capabilities of AutoGPT in software development for data analysis. The focus is on creating a
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robust framework that would help to evaluate various practical aspects of LLM usage in process
automation, helping to conduct a comparative analysis of its performance.

The experimental approach utilizes three distinct prompt construction techniques across three
diverse datasets. For each experimental setup, data on several key metrics are recorded to compre-
hensively evaluate AutoGPT’s performance. These metrics include:

• Steps to Completion: This metric shows a number of interactions between the user and
AutoGPT required to reach the final goal. It assesses the level of user involvement needed
for successful task completion, indicating how intuitive and autonomous AutoGPT is in
software development tasks. It is important to mention, in the most common scenario, user
has to provide only the first prompt and further is only required to authorize each action
performed by AutoGPT. In other words, it calculates AI agent’s steps required to complete
the task.

• Total Runtime: This metric measures the total time from the initiation to the completion of
a task by AutoGPT, essentially tracking the operational duration of the AI agent. It reflects
the efficiency of AutoGPT in processing and completing assigned tasks, providing insight
into its practical usability in terms of runtime.

• API Request Count: This measures the number of API requests made by AutoGPT during
the execution of each task. It serves as an indicator of how frequently AutoGPT communi-
cates with OpenAI’s API.

• Token Utilization: This metric evaluates the amount of tokens used by AutoGPT in each
session. It is important for understanding the AI agent’s efficiency in process automation
and for assessing the cost-effectiveness.

• Operational Cost: This metric calculates the associated costs in dollars of running Auto-
GPT experiments, consisting of API usage fees. It provides insights into the financial aspects
of AutoGPT usage.

• Requirement Fulfillment: This metric evaluates if the final output generated by AutoGPT
meets the predefined formal requirements. The analysis is categorized into three distinct
levels:

– Not Met: The output does not comply with the established formal requirement.

– Partially Met: The output meets some parts of the formal requirement but has defi-
ciencies.

– Fully Met: The output completely adheres to the specified formal requirement.

This metric serves as a measure of quality, ensuring that the outputs not only solve the
task but also adhere to specific standards and protocols. It directly assesses the quality of
the output in terms of specified standards and requirements completion. It helps to iden-
tify areas where AutoGPT needs improvement in understanding and complying to formal
requirements.

Each metric is designed to provide a comprehensive understanding of AutoGPT’s performance,
highlighting its strengths and areas for improvement in automating software development for data
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analysis tasks. This set of metrics will help to create a comparable, multidimensional analysis of
AutoGPT capabilities.

AutoGPT autonomously selects the most appropriate OpenAI model for each specific task,
analyzing the task’s nature and choosing the most suitable model from OpenAI’s range. This
process is automated, leveraging the strengths of different models to efficiently handle various
tasks without requiring continuous user input. Consequently, the last three metrics ("API Request
Count", "Token Used" and "Operational Cost") are differentiated based on the model versions used
in the experiments:

• GPT-3.5-turbo: This version is an advanced iteration that precedes GPT-4, offering sig-
nificant improvements in language understanding and generation capabilities compared to
its predecessors. GPT-3.5-turbo provides a balance between computational efficiency and
sophisticated language processing, making it suitable for a wide range of tasks that require
a high level of language comprehension and output quality.

• GPT-4: It is the latest and most advanced model in the GPT series at the time of this
study. GPT-4 is a large multimodal model that can solve difficult problems with greater
accuracy than any of OpenAI’s previous models. It has a broader general knowledge base
and advanced reasoning capabilities, making it able to handle complex tasks and providing
more accurate responses across various domains.

• Text-embedding: A model focused on generating text embeddings, which are numerical
representations of text data. It is part of OpenAI’s models that emphasize efficient text
representation for various NLP tasks. Unlike GPT-3.5 and GPT-4, which are more focused
on language generation and interaction, Text-embedding is specialized in converting text
into a form that can be easily processed and analyzed by AI systems.

This differentiation not only allows an evaluation of AutoGPT’s overall performance but also an
understanding of how different model versions impact accuracy and operational costs. By com-
paring these metrics across models and datasets, insights are gained into each model’s efficiency
and cost-effectiveness in real-world applications.

This evaluation strategy is essential for validating AutoGPT’s capabilities together with iden-
tifying areas of improvement and exploring its potential applications in real-world scenarios.
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3 Experiment Setup

3.1 Preprocessing of Datasets

This subsection outlines the preprocessing steps applied to each dataset used in this study. With
a focus on evaluating AutoGPT’s ability to process and analyze data in a relatively raw state, the
preprocessing efforts were intentionally minimal, primarily focusing on format conversion and
essential data cleaning.

Each dataset was manually exported from its source to ensure reproducibility and to allow
AutoGPT to load them from the local machine where it operates. Preprocessing was minimal,
primarily focusing on format conversion to ensure compatibility and readability for AutoGPT.
Data was mainly kept raw to challenge AutoGPT’s ability to handle and analyze raw data.

• Apple Health Data: Data was manually extracted from a personal iPhone in a single ex-
port.xml file. A custom script extract_apple_health_from_xml.py was then run,
which was specifically designed to parse and extract hand-washing, step count and workout
data from the XML file. Subsequently, these data points were saved into three distinct files:
hand_washing.csv, step_count.csv and workout.csv. This process ensured that the data was
structured and formatted in a manner that was easily accessible by AutoGPT. Step count and
workout datasets schemas can be found in Table 10 and Table 11 correspondingly.

• Traffic Accidents in Lithuania: Road accidents data has been extracted from Lithuanian
State Data Agency and saved as a CSV file on December 12, 2023 [27]. The specific in-
dicator chosen was "Number of road accidents in which people were injured," found under
"Indicators of road accidents" in the "Road transport" category of the "Transport and com-
munication" section. Following dimensions filters were applied:

– Time Period: The entire range from January 2005 to October 2023.

– Road Accidents: Both available categories were chosen, including "Number of road
traffic accidents" and "Number of road traffic accidents by drivers under alcoholic
affect".

– Administrative Territory: Focused solely on the county level, including all 10 counties
in Lithuania.

Full dataset schema can be found in Table 12.

• Bitcoin Transaction Hashes: The Bitcoin transaction hashes were extracted from a public
BigQuery dataset. To manage the scope and relevance of the data, only the 1000 most recent
observations were selected from October 2023 (Appendix C.3). During preprocessing, only
the transaction hashes were kept, which serve as a unique identifier for each transaction on
the blockchain. This focused approach ensured the dataset was manageable and suitable
for analysis while preserving the essential characteristics of the blockchain data. Dataset
schema can be found in Table 13.

In all cases, the chosen datasets were capped to 100 samples to manage computational and cost
constraints effectively. This sample size was considered sufficient for preliminary analysis and for
testing the functionality of AutoGPT generated codes, although it may not capture the full diversity
or represent the entire dataset comprehensively. It is also important to mention that the main goal
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for each dataset is to automate software development process for data analysis. Thus, majority of
AutoGPT generated codes were also rerun on full datasets in order to test their effectiveness.

The preprocessing steps for each dataset have been designed to make them ready for analysis
with AutoGPT while maintaining their raw characteristics. The minimal preprocessing approach
was chosen to challenge and assess AutoGPT’s capabilities in handling and analyzing data that
is not fully prepared for analysis. This aligns with thesis objective to evaluate AutoGPT’s per-
formance in practical, real-world scenarios and helps to perform a comprehensive assessment of
AutoGPT’s adaptability and performance across a range of datasets.

3.2 Setting up AutoGPT for Data Analysis

This subsection describes the configuration process of AutoGPT, outlining the technical setup and
model parameters used in the experiments.

Most of the data extraction and preparation related code was written in Python. Only "Bitcoin
Transaction Hashes" were extracted through BigQuery in the Google Cloud console by running
SQL query (shown in Appendix C.3).

All datasets were manually exported from their respective sources and stored locally in the
auto_gpt_workspace subfolder, located within the main AutoGPT directory. This subfolder serves
as the default location for AutoGPT to save its results.

Basic setup requires to have Python and Docker installed on the system. AutoGPT has been
setup following the instructions provided in the official AutoGPT GitHub page, selecting the rec-
ommended setup with Docker. The use of Docker, a containerization technology, allows for the
creation, deployment and execution of applications in a controlled and isolated environment, which
is crucial for maintaining consistency across experiments.

In this thesis, version v0.4.7 of AutoGPT was used, which mainly uses OpenAI’s GPT-4 API.
This version was the latest AutoGPT stable version during the thesis writing. One of the prerequi-
sites for using this system involves setting up an OpenAI billing account, which is necessary due
to the limitations imposed on API calls. This setup ensures uninterrupted access to the OpenAI’s
most recent GPT models. AutoGPT is designed to autonomously select the most suitable OpenAI
model for each specific task, based on an analysis of the task’s nature.

Considering the primary goal of the thesis, which is to automate the process of software devel-
opment for data analysis, emphasis was placed on model reproducibility, accuracy and consistency
over creative output. Thus, the "temperature" setting for the GPT models was adjusted to 0.2. This
parameter in the ChatGPT API influences the randomness or creativity of the model’s responses,
with a value range between 0 and 1. A lower temperature value, like 0.2, leads to more focused
and deterministic outputs, aligning with the need for precision in automated software development
tasks.

3.3 Executing Prompt Construction

This subsection explores three different complexities of prompt construction: simple natural lan-
guage prompts, advanced structured prompts and prompts integrating both functional and non-
functional requirements. This exploration is crucial to understanding how varying levels of speci-
ficity in prompts influence the performance of AutoGPT in automated software development, pro-
viding insights into the balance between guiding precision and creative freedom in AI interactions.
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Additionally, this subsection includes a comprehensive presentation of all prompts and formal
requirements for each dataset used in Section 4.

In this thesis, three different complexities of prompt construction are explored:

• Simple Natural Language Prompts: These prompts are straightforward and phrased in
everyday language. They typically require a basic level of understanding and do not involve
complex instructions or multiple steps. The focus is is on assessing how AI agents like
AutoGPT respond to user-friendly, simple, conversational prompts. These prompts are easy
and quick to compose, requiring minimal effort.

• Advanced Structured Prompts: These prompts are more detailed and follow a specific
structure by providing clearer goals for AutoGPT. They often involve multiple steps or re-
quire the AI to process and integrate multiple pieces of information. This category aims to
analyze AutoGPT’s performance in handling tasks by providing more complex, structured
and informative prompts. Writing these prompts demands a moderate level of effort, as they
require a clear understanding of the task at hand and the ability to articulate it in a structured
and detailed manner.

• Prompts Integrating Both Functional and Non-Functional Requirements: These prompts
combine functional requirements (what needs to be done) with non-functional requirements
(how it should be done, under what constraints or conditions). This type of prompt is de-
signed to assess the AI’s proficiency in delivering complete solutions that meet both the
technical and practical needs of a project. Creating these prompts involves a high level
of effort and expertise. The writer must not only define the formal requirements but also
seamlessly incorporate then into prompt construction.

Each category represents a different level of sophistication in prompt engineering. Moving
from simple natural language prompts to prompts integrating both functional and non-functional
requirements, the complexity increases, requiring more advanced understanding and specificity.
This approach help to perform a comparative and exploratory analysis in the context of automated
software development, focusing on how functional and non-functional requirements impact the
decision quality of AI agents like AutoGPT.

In the following subsubsections, the exact prompts used in the experiments and the formal
requirements for each dataset are provided. This inclusion ensures a transparent and detailed view
into the experimental setup. Given that the thesis has the same purpose for each dataset, it is
important to mention that a majority of non-functional requirements overlap.

3.3.1 Formal Requirements and Prompts for Apple Health Data

In this subsubsection, the focus is on the Apple Health Data, specifically detailing the formal
requirements and the three types of prompts used in the analysis. This dataset, including key
health metrics such as steps and workouts, offers valuable insights into personal health patterns
and physical activity trends. The primary goal with the Apple Health Data is to conduct an analysis
of daily step counts, organized by day of the week and calculate the number of workouts by year
and workout type. This approach aims to uncover patterns and correlations in the data, providing
a nuanced understanding of personal health habits across time and activity type.
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Formal Requirements This part outlines the formal requirements for the Apple Health Data
analysis, including both functional and non-functional aspects. These requirements are essential to
ensure that the analysis is complete and comply with the stated objectives. They are also especially
crucial for the development of the third type of prompt.

Functional Requirements For the analysis of the Apple Health Data, the following func-
tional requirements were established:

• The system must import and process data from separate .csv files: step_count.csv and work-
out.csv. Use the creationDate as the date reference for all analyses.

• All data preparation and analyses should be performed using Python.

• Calculate daily step count together with 7 days rolling average and create a graph from it
where x axis shows date and y axis shows steps count.

• Calculate daily average step count grouped by the day of the week. Provide bar chart where
x axis shows day of the week and y axis shows daily average step count.

• Count number of workouts grouped by year and type of workout (workoutActivityType col-
umn). Provide bar chart where x axis shows year, y axis shows workouts count and bars are
split and colored by the type of workout.

• Create a dashboard / R Shiny app including performed analysis. Add all created graphs to it.

• Provide 2-4 actionable insights.

• Write a user guide and documentation.

Non-Functional Requirements The non-functional requirements for the system are as fol-
lows:

• Easy to understand graphs and tables. Dashboard should be easy to navigate, intuitive.

• Ability to handle large amounts of data efficiently.

• The project should be developed within a predefined budget and ongoing operational costs
should be reasonable.

These requirements describe the analysis approach for the Apple Health Data and are integral
to achieving the research objectives. Furthermore, they play a crucial role in the development of
the third type of prompt, which integrates both functional and non-functional requirements.

Simple Natural Language Prompt This prompt for the Apple Health Data was designed to be
intuitive and easy to understand. It is phrased in everyday language and aim to initiate basic data
analysis tasks.

"Analyze Apple Health Data for step count and workout frequency using Python, from
respective .csv files available in the workspace and present the findings in an R Shiny
report."
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Advanced Structured Prompt This prompt represent a more sophisticated level of interaction.
It is more detailed and structured, providing specific instructions and clear objectives for data
analysis.

"Analyze Apple Health Data using Python, from respective .csv files:
’data_to_read/workout_100.csv’ and ’data_to_read/step_count_100.csv’. Perform all
data preparation and analyses using Python and compile a final report using R Shiny.
Use the ’creationDate’ as the date reference for all analyses. The tasks include com-
puting the daily step count and its 7-day rolling average, visualizing these trends in a
graph, summarizing average step counts by day of the week in a bar chart, counting
workouts annually by type (workoutActivityType) in a bar chart."

Prompt Integrating Both Functional and Non-Functional Requirements This prompt is the
most complex. It not only specify what analytical tasks need to be performed (functional require-
ments) but also consider how these tasks should be executed (non-functional requirements).

"Using Python, analyze Apple Health Data from ’data_to_read/workout_100.csv’ and
’data_to_read/step_count_100.csv’, focusing on step count and workouts, with ’cre-
ationDate’ as the date reference. Calculate the daily step count and 7-day rolling
average, presenting it in a graph with dates on the x-axis and step counts on the y-axis.
Summarize daily average step count by weekday in a bar chart and count workouts
by year and type in another bar chart, with years on the x-axis and counts on the
y-axis, differentiated by workout type (workoutActivityType). Create an intuitive,
easy-to-navigate R Shiny dashboard to display these analyses and provide 2-4 action-
able insights. Include efficient data handling, even with large datasets and ensure the
project stays within budget, with reasonable operational costs. Accompany with a
user-friendly guide and documentation."

3.3.2 Formal Requirements and Prompts for Traffic Accidents in Lithuania

In this subsubsection focuses on the Traffic Accidents in Lithuania dataset, detailing the formal
requirements and the three types of prompts used in the thesis. This dataset provides valuable
insights into traffic accidents in Lithuania, categorizing them by year, month, county and whether
they were caused by drivers under the influence of alcohol. The primary goal with this dataset is to
conduct a comprehensive analysis of monthly traffic accidents and to compare accident counts by
county, along with assessing the proportion of accidents caused by drivers under the influence of
alcohol. This analytical approach is intended to reveal any observable trends and patterns within
the data.

Formal Requirements This part defines the formal requirements for the analysis of the Traf-
fic Accidents in Lithuania dataset, including both functional and non-functional aspects. These
requirements are essential not only for ensuring the completeness of the analysis but also for the
development of the third type of prompt.

Functional Requirements For the analysis of the Traffic Accidents in Lithuania, the follow-
ing functional requirements were established:
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• The system should be able to import Lithuanian traffic accidents data provided in a single
.csv file data_to_read/traffic_accidents_100.csv.

• All data preparation and analyses should be performed using Python.

• Calculate the total number of road traffic accidents every month to see if there’s any trend
or seasonality. Plot it like a curve where x axis shows year and month, and y axis shows the
number of road traffic accidents.

• Compare the total number of road traffic accidents to those caused by drivers under the
influence of alcohol over time. Plot it like a curve where x axis shows year and month, and
y axis shows the number of road traffic accidents split by if accident was caused by driver
under the influence of alcohol or not.

• Calculate the total number of accidents in each county and the proportion of road traffic
accidents by drivers under alcoholic affect in each county. Visualize it using a bar chart
where x axis shows county and y axis shows number of accidents colored by if accidents
caused by drivers under alcoholic affect.

• Create a dashboard / R Shiny app. Add all graphs and tables described in functional require-
ments.

• Provide 2-4 insights from analysis performed.

• Write a user guide and documentation.

Non-Functional Requirements The non-functional requirements for the system are as fol-
lows:

• Easy to understand graphs and tables. Dashboard should be easy to navigate, intuitive.

• Ability to handle large amounts of data efficiently.

• The project should be developed within a predefined budget and ongoing operational costs
should be reasonable.

These requirements describe the analysis approach for the Traffic Accidents in Lithuania and
are integral to achieving the research objectives. Additionally, they are crucial in the development
of the third type of prompt, which integrates both functional and non-functional requirements.

Simple Natural Language Prompt This prompt for the Traffic Accidents in Lithuania was
designed to be intuitive and easy to understand. It is phrased in everyday language and aim to
initiate basic data analysis tasks.

"Analyze Traffic Accidents in Lithuania data from ’data_to_read/traffic_accidents_100.csv’
available in the workspace for monthly trends in road accidents and distribution be-
tween counties taking into account the impact of alcohol on these accidents using
Python and present the findings in an R Shiny report."
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Advanced Structured Prompt This prompt represent a more sophisticated level of interaction.
It is more detailed and structured, providing specific instructions and clear objectives for data
analysis.

"Analyze Lithuanian traffic accidents using Python from
’data_to_read/traffic_accidents_100.csv’ file. Transform data to a wide format using
"Administrative territory" and "Road accidents" columns. Perform all data prepara-
tion and analyses using Python and compile a final report using R Shiny. Calculate
monthly accident count and compare accidents involving alcohol, display in a curve
graph. Calculate the total number of accidents in each county and the proportion of
road traffic accidents by drivers under alcoholic affect in each county and show in bar
charts. Provide key insights from the analysis."

Prompt Integrating Both Functional and Non-Functional Requirements This prompt is the
most complex. It not only specify what analytical tasks need to be performed (functional require-
ments) but also consider how these tasks should be executed (non-functional requirements).

"Analyze the Lithuanian traffic accidents data from
’data_to_read/traffic_accidents_100.csv’ using Python. Focus on identifying monthly
and yearly trends in road accidents, including a comparison with alcohol-related inci-
dents. Present these trends in curve graphs, with the x-axis showing year and month
and the y-axis the number of accidents. Additionally, analyze and display in a curve
the total number of accidents split by alcohol-related and not. Calculate the total num-
ber of accidents in each county and the proportion of road traffic accidents by drivers
under alcoholic affect in each county. Visualize it using a bar chart. Create an R Shiny
dashboard to display these analyses, ensuring the dashboard is intuitive and can han-
dle large datasets efficiently. The project should stay within budget, with reasonable
operational costs. Include a user guide and documentation with 2-4 actionable insights
derived from the data."

3.3.3 Formal Requirements and Prompts for Bitcoin Transaction Hashes

This subsubsection outlines the formal requirements and the three types of prompts for analyzing
Bitcoin Transaction Hashes. The dataset includes only Bitcoin transaction hashes, necessitating the
extraction of additional details such as timestamps, amounts and other relevant information from
a provided API. Moreover, the data retrieved from the API requires processing to become human-
readable. As is well-known in data analysis, the process of data processing plays a very significant
role and results significantly depend on efficient and correct data extraction and preparation. Thus,
this approach emphasizes more on data extraction from the API and the preparation step than on
the analytical insights part.

Formal Requirements This part specifies the formal requirements for analyzing Bitcoin Trans-
action Hashes, emphasizing the extraction and preparation of data from an API, followed by basic
statistical analysis. The importance of data processing is underscored, acknowledging its signifi-
cant role in influencing the outcomes of the analysis.
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Functional Requirements The key functional requirements for the analysis of Bitcoin Trans-
action Hashes are:

• The system must import and process data from data_to_read/bitcoin_transactions_100.csv.

• All data preparation and analyses should be performed using Python.

• Extract available information for each Bitcoin transaction hash using https://blockchain.info/rawtx/$tx_hash
API, where tx_hash is transaction hash provided in dataset.

• Transform unix timestamps extracted from the API to human-readable datetime (YYYY-
MM-DD hh:mm:ss).

• Convert transaction values to BTC currency. blockchain.info API provide transaction values
in Satoshi, given that 1 BTC is equal to 100 million Satoshis.

• Analyze data by extracting the first and last timestamps in given dataset, provide in score-
cards.

• Calculate the total count of transactions together with total revenue in BTC and provide in
scorecards.

• Calculate the total count of transactions together with total revenue in BTC daily and provide
in a curve chart where x axis represent date and first y axis shows transaction count and
second y axis shows revenue.

• Create a dashboard / R Shiny app including performed analysis. Add all created graphs to it.

• Provide 2-4 actionable insights.

• Write a user guide and documentation.

Non-Functional Requirements The non-functional requirements for the analysis system in-
clude:

• Easy to understand graphs and tables. Dashboard should be easy to navigate, intuitive.

• Ability to handle large amounts of data efficiently.

Given the nature of the data and the analysis process, these requirements are crucial in en-
suring that the extraction and preparation of data from the API are executed efficiently and cor-
rectly, setting a foundation for meaningful statistical analysis. Additionally, they are crucial in
the development of the third type of prompt, which integrates both functional and non-functional
requirements.

Simple Natural Language Prompt This prompt for the Bitcoin Transaction Hashes was de-
signed to be intuitive and easy to understand. It is phrased in everyday language and aim to initiate
basic data analysis tasks.

"Analyze the Bitcoin transaction data from ’data_to_read/bitcoin_transactions_100.csv’
file. Use the blockchain.info API to extract details like timestamps and transaction
values. Summarize analysis timeframe, main trends and daily transaction activities.
Present the findings in a R Shiny report."
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Advanced Structured Prompt This prompt represent a more sophisticated level of interaction.
It is more detailed and structured, providing specific instructions and clear objectives for data
analysis.

"Analyze the Bitcoin transaction data from ’data_to_read/bitcoin_transactions_100.csv’
using Python. Extract transaction information using the blockchain.info API, includ-
ing timestamps (convert from Unix format to YYYY-MM-DD hh:mm:ss) and values
(convert from Satoshi to BTC). Provide a basic summary of the analysis timeframe,
total transactions and revenue in BTC, along with a daily breakdown of transactions
and revenue. Present this data in an R Shiny dashboard."

Prompt Integrating Both Functional and Non-Functional Requirements This prompt is the
most complex. It not only specify what analytical tasks need to be performed (functional require-
ments) but also consider how these tasks should be executed (non-functional requirements).

"Develop a Python script to process ’data_to_read/bitcoin_transactions_100.csv’. Use
https://blockchain.info/rawtx/$tx_hash API for extracting information from each Bit-
coin transaction hash, where tx_hash is the transaction hash listed in the dataset.
Transform Unix timestamps to human-readable format (YYYY-MM-DD hh:mm:ss)
and convert transaction values from Satoshi to Bitcoin (1 BTC equals 100 million
Satoshis). Analyze the dataset to identify the first and last timestamps and display
these in scorecards. Compute the total number of transactions and the overall revenue
in Bitcoin, showcasing these figures in scorecards. Additionally, create a curve chart
to display the daily transaction count and revenue in Bitcoin, with dates on the x-
axis and transaction counts and revenue figures on separate y-axes. Build an intuitive
and efficient R Shiny dashboard to present these analyses. Include a user guide and
documentation with 2-4 actionable insights derived from the data."
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4 Experiment

This section presents the results and findings from experiments conducted with AutoGPT, focus-
ing on its ability to automate the software development process for data analysis across three dis-
tinct datasets: Apple Health Data, Traffic Accidents in Lithuania and Bitcoin Transaction Hashes.
Each experiment leverages the methodologies and prompts described in previous sections, ex-
ploring specific data analysis questions and unique data processing approaches applied to each
dataset. The aim is to demonstrate AutoGPT’s capabilities in real-world scenarios, testing its pro-
ficiency in writing Python code for data preparation and analysis, as well as creating R Shiny
reports. The experiments progress from simple natural language prompts to more structured ones
and finally to prompts integrating both functional and non-functional requirements. This compre-
hensive approach provides a detailed comparative review of the AI agent’s performance across
varying prompt complexities and datasets, concluding with the identification of limitations and
challenges. The results offer valuable insights into the impact of functional and non-functional
requirements on the decision quality of Large Language Models (LLMs) and their effectiveness in
process automation tasks.

4.1 Analysis and Findings

This subsection presents the experimental results and findings on AutoGPT’s ability to automate
software development for data analysis. It is organized based on the three types of prompts —
simple natural language prompts, advanced structured prompts and prompts integrating both func-
tional and non-functional requirements — followed by a comparative analysis of these three cate-
gories. It provides a comparative review of AutoGPT’s performance across various prompt types
and datasets.

4.1.1 Simple Natural Language Prompts

The first part of the experiment focused on testing AutoGPT’s performance using simple natu-
ral language prompts, which require significantly less effort to write compared to other types of
prompts. Despite this simplicity, it is crucial that the prompts are informative enough for the AI
agent to understand the main requirements and conduct the appropriate analysis. This section
presents the execution of simple natural language prompts, highlighting how effectively AutoGPT
interpreted and responded to these prompts. It concludes with an analysis of the results, emphasiz-
ing AutoGPT’s proficiency and limitations in handling basic, conversational prompts.

Quantitative results for each dataset describing main metrics are presented in Table 1. Each
metric description provided in Subsection 2.5.

Apple Health Data In the initial step, AutoGPT successfully identified the correct files. It wrote
a Python script to read these files into a Python dictionary and then saved the output in a new JSON
file. However, the R Shiny report generated by AutoGPT was empty, it only loaded the previously
generated JSON file without displaying any content.

It took 16 steps to completion, mainly due to two reasons: debugging, which added four addi-
tional steps to fix an error and retry the script execution, and information search, which included
three web_search commands to gather information on how to build an R Shiny dashboard. The

33



task’s complexity was further increased as it involved processing two CSV files, requiring more
steps and additional API calls to OpenAI, potentially leading to higher operational costs.

AutoGPT did not provide any analytical insights or documentation and was unable to test the
R script directly. However, it did provide guidance on script execution:

"INFO SPEAK: I cannot execute the R script directly. Please execute the ’gener-
ate_shiny_report.R’ script using R to create the R Shiny report."

In summary, while AutoGPT using a simple natural language prompt for Apple Health Data
successfully generated appropriate goals (see Listing 3), the final output was not sufficient to
derive any meaningful insights and the generated analysis lacked reproducibility.

Traffic Accidents in Lithuania In this experiment, AutoGPT completed the initial steps of
loading the data and writing a Python script for data aggregation in 2 steps. However, instead of
loading the data file directly into the Python script, AutoGPT read the provided file and inserted
the data into the script. The Python script successfully aggregated the data and printed the results,
which AutoGPT then copied and saved to a JSON file. This approach deviated from the required
approach of writing a script to handle these tasks programmatically.

One significant challenge was AutoGPT’s tendency to perform the analysis directly, rather
than focusing on developing software for this purpose. This issue led to the prompt being run
multiple times with adjustments, but each attempt resulted in an error due to exceeding the context
length limit. It also made AI agent to fail creating a dashboard, providing instructions and insights.

In summary, while AutoGPT was able to set appropriate goals for the Traffic Accidents in
Lithuania dataset using a simple natural language prompt (detailed in Listing 6), it faced difficulties
in creating a reproducible and efficient workflow. Although it managed to save the analysis results
in a JSON file and write a Python script for data aggregation, it was unable to develop a functional
R Shiny report and inserted data into the scripts reduced reproducibility.

Bitcoin Transaction Hashes In this part of the experiment, AutoGPT correctly identified the
required blockchain.info API and successfully extracted the necessary information, saving the raw
data to a JSON file. However, instead of scripting this extraction process, AutoGPT performed
theses steps manually, leading to results that cannot be reproduced or applied to the full dataset.

Then AutoGPT wrote separate Python scripts for each simple descriptive statistic, executed
these scripts and stored results in text files. However, rather than integrating these results pro-
grammatically into the R Shiny report, AutoGPT manually inserted the text file contents into the
report. As a result, the report, as shown in Figure 4, lacked visualizations and the Key Performance
Indicators (KPIs) were not formatted into a human-readable format, remaining in the same format
as extracted from the API.

To summarize, while AutoGPT set appropriate goals for the Bitcoin transaction hashes dataset
(see Listing 9) and managed to write Python scripts for statistical analysis, the lack of reproducibil-
ity and direct data manipulation limited the usefulness of the results. The major drawback was
AutoGPT’s approach of directly extracting and handling data, which restricted potential scripts
scalability and reusability for larger datasets.

Summary The experiments with simple natural language prompts revealed that AutoGPT’s per-
formance is notably sensitive to the precise wording of the prompt. Simple prompts, requiring
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Figure 4. R Shiny Dashboard Created by AutoGPT Using Simple Natural Language Prompt for
Bitcoin Transaction Hashes

minimal effort to create, led to varying results based on subtle changes in language. On average,
tasks took about 7 minutes to run, with operational costs ranging between 1.4 to 1.69 dollars. The
Bitcoin Transaction Hashes dataset showed the best results in both data processing and final report
generation. However, a common limitation across all datasets was the lack of reproducible code
and the absence of instructions or insights. Additionally, AutoGPT often attempted to conduct
analyses directly rather than writing scripts for them as instructed, affecting the reproducibility
and scalability of the solutions.

Table 1. AutoGPT Results Using Simple Natural Language Prompts

Metric Apple Health
Data

Traffic Accidents
in Lithuania

Bitcoin Transac-
tion Hashes

Steps to Completion 16 6 13
Total Runtime 7m3,466s 6m36,543s 6m43,710s

API Request Count
GPT-3.5 19 11 12
GPT-4 15 10 14
Text Embedding 6 8 10

Token Utilization
GPT-3.5 27561 17178 15722
GPT-4 50843 41069 45763
Text Embedding 20867 11945 8318

Operational Cost
GPT-3.5 0.04 0.03 0.02
GPT-4 1.64 1.37 1.48
Text Embedding 0.01 0 0

4.1.2 Advanced Structured Prompts

The second part of experiment was to test AutoGPT performance when shifting from simple nat-
ural language prompts to more advanced structured prompts. These structured prompts provide
additional context and information, requiring greater effort to construct but potentially leading to
higher quality results. This part presents the execution process of advanced structured prompts,
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detailing how effectively AutoGPT interpreted and responded to them. The following paragraphs
explore the outcomes of using these prompts, highlighting AutoGPT’s proficiency and limitations
in handling software development tasks for data analysis.

Quantitative results for each dataset describing main metrics are presented in Table 2. Each
metric description provided in Subsection 2.5.

Apple Health Data AutoGPT created multiple Python scripts: two for data processing and one
for each graph, saving the generated graphs as PNG files. Subsequently, it developed an R Shiny
dashboard containing three tabs, each corresponding to a specific analysis. However, the dash-
board was non-functional initially, as AutoGPT did not test it and manual intervention was needed
to move the PNG files to the appropriate folder for R Shiny. The final dashboard is provided in
Figure 5.

Figure 5. R Shiny Dashboard Created by AutoGPT Using Advanced Structured Prompt for Apple
Health Data

While AutoGPT did not provide explicit insights or documentation, it did include a comment
on how to execute the created R Shiny file. Notably, the software developed by AutoGPT was
tested on the full dataset, where it functioned correctly, demonstrating that all analyses were re-
producible and could be applied to the full dataset scope.

In summary, AutoGPT successfully generated the necessary Python scripts for data processing
and analysis and created a final report that included all requested graphs. The scripts were reusable
on the full dataset. However, a drawback was that the graphs were generated in Python and saved
as PNG files, rather than being directly created in R, which would have been a more integrated
approach for the R Shiny dashboard.

Traffic Accidents in Lithuania In this task, AutoGPT correctly identified the file to be pro-
cessed but directly inserted the file data into the Python script rather than loading it from the file.
This approach reduced the reproducibility of the code, as editing would be required to rerun the
experiment with the full dataset.

The Python script transformed the data as needed and saved it to a new CSV file. This file was
then used in an R Shiny report to generate the graphs. The report, illustrated in Figure 6, feature
three separate tabs for each graph.
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Figure 6. R Shiny Dashboard Created by AutoGPT Using Advanced Structured Prompt for Traffic
Accidents in Lithuania

While AutoGPT developed a correct plan based on the provided prompt (see Listing 7), the
analyses in the final report slightly deviated from the original request. No additional insights or
specific instructions were provided, except for a brief comment on executing the R Shiny file.

In summary, although AutoGPT successfully set appropriate goals for the Traffic Accidents in
Lithuania dataset with an advanced structured prompt (see Listing 7), it faced challenges in fully
adhering to these goals. The primary issues were the lack of a fully reproducible workflow ,due to
direct insertion of data into the Python script, and the deviation of the generated graphs from the
requested analyses.

Bitcoin Transaction Hashes In this experiment, AutoGPT started by reading the provided file
and directly inserting its data into the Python script, rather than specifying data load in the script
itself. This approach reduce reproducibility, as editing the script would be necessary to apply it to
the full dataset.

Subsequently, AutoGPT correctly identified and utilized the blockchain.info API to extract the
required information, which was then saved into a new CSV file. The AI agent also wrote three
additional Python scripts for data processing and aggregation, successfully converting values as
requested.

The creation of the R Shiny dashboard involved several steps: three for searching for instruc-
tions and one for the actual dashboard development. The resulting dashboard, as shown in Figure
7, met the requested criteria, displaying well-formatted and accurate KPIs. However, these KPI’s
data were inserted into the R script as text by AutoGPT, with only the graph being generated from
the data file created by AutoGPT.

In conclusion, AutoGPT demonstrated the ability to write well-structured Python scripts for
data processing and handled the more complex data preparation required for the Bitcoin Transac-
tion Hashes dataset. It successfully created R Shiny dashboard containing all required information.
However, the primary drawback was AutoGPT’s tendency to hardcode data into the scripts, which
significantly reduced the reproducibility, reusability, and scalability of the generated code.

Summary for Advanced Structured Prompts The transition from simple natural language
prompts to advanced structured prompts demonstrated significant improvements in the quality
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Figure 7. R Shiny Dashboard Created by AutoGPT Using Advanced Structured Prompt for Bitcoin
Transaction Hashes

of analysis. AutoGPT was able to write higher-quality data processing scripts and create more
consistent and accurate dashboards for each dataset.

On average, tasks with advanced structured prompts took approximately 6.5 minutes to run,
with operational costs ranging between 1.11 to 1.87 dollars. Notably, the Apple Health Data
experiment required the most steps and API requests, resulting in higher operational costs. This
was primarily due to AutoGPT inefficiency by performing and testing each analysis separately.
Despite these complexities, AutoGPT autonomously debugged one script.

On the other hand, the Traffic Accidents in Lithuania dataset reduced costs and required the
fewest steps and incurred the lowest operational costs of all the datasets. This suggests increased
efficiency in task execution for this specific dataset.

However, a recurring limitation across datasets was the lack of reproducible code and the
absence of detailed instructions or insights. AutoGPT frequently conducted analyses directly, by-
passing the creation of scripts, which impacted the reproducibility and scalability of the solutions.
Notably, only the Apple Health Data experiment produced a fully reproducible outcome on the
full dataset without any modifications except moving generated images to a folder where R Shiny
can load them.

In conclusion, while advanced structured prompts led to more refined and accurate analyses,
the experiments highlighted the need for further advancements in AutoGPT’s ability to generate
reproducible and scalable code, particularly in the context of complex data processing tasks.

4.1.3 Prompts Integrating Both Functional and Non-Functional Requirements

In the third part of the experiment, the focus shifted to evaluating AutoGPT’s performance with
prompts that integrate both functional and non-functional requirements. Given the increased com-
plexity and specificity of these prompts, they demand even more effort to construct. Thus, the
expectation was that such detailed prompts would lead to faster, more cost-effective and higher-
quality results compared to the simpler and structured prompt types previously tested. The as-
sumption was that a highly specific prompt, giving clear instructions to the Large Language Model
(LLM), would yield outputs that are more precise, accurate and better aligned with the user’s ex-
pectations. This section examines how these comprehensive prompts were executed and discusses
the outcomes of these tests.
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Table 2. AutoGPT Results Using Advanced Structured Prompts

Metric Apple Health
Data

Traffic Accidents
in Lithuania

Bitcoin Transac-
tion Hashes

Steps to Completion 16 7 13
Total Runtime 5m57,947s 8m14,552s 6m38,277s

API Request Count
GPT-3.5 10 7 8
GPT-4 16 7 13
Text Embedding 2 4 10

Token Utilization
GPT-3.5 14530 12916 4225
GPT-4 57701 29264 48402
Text Embedding 7884 3332 1801

Operational Cost
GPT-3.5 0.02 0.02 0.01
GPT-4 1.85 1.09 1.57
Text Embedding 0 0 0

Quantitative results for each dataset, highlighting the main metrics, are presented in Table 6.
Detailed descriptions of each metric can be found in Subsection 2.5.

Apple Health Data AutoGPT created several Python scripts: one for data renaming and saving,
two for chart creation and three for data processing and aggregation. Similar to the advanced
structured prompts, it generated graphs within the Python scripts and saved them as PNG files.
However, as a significant improvement, the R Shiny dashboard this time utilized graphs created in
R, not just the PNG images. The generated report is shown in Figure 8.

Figure 8. R Shiny Dashboard Created by AutoGPT Using Prompt Integrating Both Functional and
Non-Functional Requirements for Apple Health Data

Although AutoGPT could not run the R Shiny dashboard itself, it provided clear instructions for
dashboard execution and interpretation of the graphs. This guidance included steps for installing
necessary software and packages, running the dashboard and insights based on the visualizations.

Furthermore, the software created by AutoGPT was tested on the full dataset, confirming that
analysis is reproducible and could be applied on full dataset.
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In assessing the fulfillment of requirements, AutoGPT’s performance with the Apple Health
Data Fully Met 6 out of 8 functional requirements and 2 out of 3 non-functional requirements, as
shown in Table 3. This demonstrates a high level of completion, though it fell short in providing
insights and user documentation. While the graphs were labeled, well structured in separate tabs,
there was room for improvement in their readability.

Table 3. Requirement Fulfillment for Apple Health Data

Completion Status
Requirement Not Met Partially Met Fully Met

Functional Requirements
The system must import and process data from sepa-
rate .csv files: step_count.csv and workout.csv. Use
the creationDate as the date reference for all analyses.

+

All data preparation and analyses should be performed
using Python.

+

Calculate daily step count together with 7 days rolling
average and create a graph from it where x axis shows
date and y axis shows steps count.

+

Calculate daily average step count grouped by the day
of the week. Provide bar chart where x axis shows day
of the week and y axis shows daily average step count.

+

Count number of workouts grouped by year and type
of workout (workoutActivityType column). Provide
bar chart where x axis shows year, y axis shows work-
outs count and bars are split and colored by the type
of workout.

+

Create a dashboard / R Shiny app including performed
analysis. Add all created graphs to it.

+

Provide 2-4 actionable insights. +
Write a user guide and documentation. +

Non-Functional Requirements
Easy to understand graphs and tables. Dashboard
should be easy to navigate, intuitive.

+

Ability to handle large amounts of data efficiently. +
The project should be developed within a predefined
budget and ongoing operational costs should be rea-
sonable.

+

In summary, AutoGPT showed notable progress with prompts integrating both functional and
non-functional requirements. It successfully developed Python scripts that efficiently processed
data and generated a comprehensive final report, including all requested graphs. A significant ad-
vancement was that these scripts were fully reusable with the complete dataset, and all graphs were
generated directly in R, accompanied by brief execution instructions from AutoGPT. Furthermore,
both the steps required for completion and the overall operational costs were reduced compared to
earlier prompts, indicating an improvement in efficiency.
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However, despite these advancements, AutoGPT did not produce reliable form of documen-
tation or actionable insights and there was still room for improvement in the readability of the
generated graphs. These areas represent potential opportunities for further enhancement in Auto-
GPT’s capabilities for comprehensive data analysis tasks.

Traffic Accidents in Lithuania In this experiment, AutoGPT directly inserted data from the
provided file into the Python script, rather than dynamically loading it, thus limiting the repro-
ducibility of the experiment. Modifications to the code would be necessary to apply it to the full
dataset. The Python script initially replaced missing values and saved the processed data into a
new CSV file.

Subsequently, another Python script was developed to analyze the data, producing a PNG file
that depicted monthly trends in traffic accidents, categorized by alcohol-related and non-alcohol-
related accidents. AutoGPT also created an R Shiny dashboard, which utilized the files it generated
to display a dashboard with two tabs. However, the data representation in the report lacked clarity
and readability. The generated report is showcased in Figure 9.

Figure 9. R Shiny Dashboard Created by AutoGPT Using Prompt Integrating Both Functional and
Non-Functional Requirements for Traffic Accidents in Lithuania

AutoGPT included a user guide within the report, providing instructions on how to interpret
the graphs.

The assessment of requirement fulfillment revealed that AutoGPT’s performance with the Traf-
fic Accidents in Lithuania dataset was lacking. As detailed in Table 4, it fully met only 2 out of
8 functional requirements and failed to meet 3, with mixed results for the non-functional require-
ments. While it successfully created a dashboard, the inserted data within the Python script and the
failure to include all requested graphs, along with issues in graph readability, marked significant
areas for improvement.

In summary, AutoGPT’s handling of the Traffic Accidents in Lithuania dataset with prompt
integrating both functional and non-functional requirements demonstrated mixed outcomes. While
it successfully processed the data and created an R Shiny dashboard, the approach to data handling
in Python scripts was a major limitation, affecting the reproducibility of the analysis. The gener-
ated dashboard, although operational, exhibited issues with the clarity and readability of the data
presentation. Additionally, AutoGPT’s performance in fulfilling the specified requirements was
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Table 4. Requirement Fulfillment for Traffic Accidents in Lithuania

Completion Status
Requirement Not Met Partially Met Fully Met

Functional Requirements
The system should be able to import Lithuanian
traffic accidents data provided in a single .csv file
data_to_read/traffic_accidents_100.csv.

+

All data preparation and analyses should be performed
using Python.

+

Calculate the total number of road traffic accidents ev-
ery month to see if there’s any trend or seasonality.
Plot it like a curve where x axis shows year and month,
and y axis shows the number of road traffic accidents.

+

Compare the total number of road traffic accidents to
those caused by drivers under the influence of alcohol
over time. Plot it like a curve where x axis shows year
and month, and y axis shows the number of road traf-
fic accidents split by if accident was caused by driver
under the influence of alcohol or not.

+

Calculate the total number of accidents in each county
and the proportion of road traffic accidents by drivers
under alcoholic affect in each county. Visualize it us-
ing a bar chart where x axis shows county and y axis
shows number of accidents colored by if accidents
caused by drivers under alcoholic affect.

+

Create a dashboard / R Shiny app. Add all graphs and
tables described in functional requirements.

+

Provide 2-4 insights from analysis performed. +
Write a user guide and documentation. +

Non-Functional Requirements
Easy to understand graphs and tables. Dashboard
should be easy to navigate, intuitive.

+

Ability to handle large amounts of data efficiently. +
The project should be developed within a predefined
budget and ongoing operational costs should be rea-
sonable.

+

suboptimal, as it met only a fraction of the functional requirements and showed varied results for
non-functional requirements. The inclusion of a user guide for graph interpretation was a positive
aspect, yet the overall execution indicated a need for improvements.

Bitcoin Transaction Hashes In this task, AutoGPT demonstrated its proficiency by writing
effective Python scripts for data processing and analysis. The script accurately loaded data from
the file, utilized the provided API correctly, and performed the requested transformations.

42



AutoGPT also succeeded in creating an aesthetically pleasing R Shiny report, which featured
well-formatted Key Performance Indicators (KPIs) at the top and the required graph at the bottom.
However, the R script was not executable and required minimal user corrections due to an incorrect
separator and a missing library.

A notable accomplishment of AutoGPT in this instance was its ability to generate well-structured
documentation and real data-based insights, marking a significant improvement over the other
prompts.

The generated report is showcased in Figure 10.

Figure 10. R Shiny Dashboard Created by AutoGPT Using Prompt Integrating Both Functional
and Non-Functional Requirements for Bitcoin Transaction Hashes

In assessing the fulfillment of requirements, AutoGPT’s performance with the Bitcoin Trans-
action Hashes dataset Partially Met only 1 functional requirement due to the need of minimal
correction for R Shiny dashboard to work. Other requirements are treated as Fully Met (see Table
5). This demonstrates a high level of completion.

In summary, AutoGPT’s handling of the Bitcoin Transaction Hashes dataset with prompt in-
tegrating both functional and non-functional requirements was notably effective, especially in the
areas of data processing and analysis. The Python scripts developed by AutoGPT were profi-
cient in loading and transforming data and the AI agent’s use of the provided API was accurate.
A major improvement was observed in the R Shiny report, which was better designed, featuring
well-formatted KPIs and a required graph.
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Table 5. Requirement Fulfillment for Bitcoin Transaction Hashes

Completion Status
Requirement Not Met Partially Met Fully Met

Functional Requirements
The system must import and process data from
data_to_read/bitcoin_transactions_100.csv.

+

All data preparation and analyses should be performed
using Python.

+

Extract available information for
each Bitcoin transaction hash using
https://blockchain.info/rawtx/$tx_hash API, where
tx_hash is transaction hash provided in dataset.

+

Transform unix timestamps extracted from the
API to human-readable datetime (YYYY-MM-DD
hh:mm:ss).

+

Convert transaction values to BTC currency.
blockchain.info API provide transaction values in
Satoshi, given that 1 BTC is equal to 100 million
Satoshis.

+

Analyze data by extracting the first and last times-
tamps in given dataset, provide in scorecards.

+

Calculate the total count of transactions together with
total revenue in BTC and provide in scorecards.

+

Calculate the total count of transactions together with
total revenue in BTC daily and provide in a curve
chart where x axis represent date and first y axis shows
transaction count and second y axis shows revenue.

+

Create a dashboard / R Shiny app including performed
analysis. Add all created graphs to it.

+

Provide 2-4 actionable insights. +
Write a user guide and documentation. +

Non-Functional Requirements
Easy to understand graphs and tables. Dashboard
should be easy to navigate, intuitive.

+

Ability to handle large amounts of data efficiently. +

However, the R Shiny script required minimal user corrections to function correctly, indicating
a slight gap in AutoGPT’s testing and execution capabilities. Despite this, AutoGPT excelled in
providing well-structured documentation and real data-based insights, a significant advancement
over its performance with other datasets. This achievement demonstrates AutoGPT’s potential
in generating comprehensive and insightful analysis, aligning closely with user expectations and
requirements. The overall performance showed a high level of requirement fulfillment, marking
a substantial step forward in the AI’s ability to handle complex data analysis tasks with precision
and depth.
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Summary In summary, the use of prompts integrating both functional and non-functional re-
quirements marked an advancement in AutoGPT’s performance across all datasets. These com-
prehensive prompts led to more detailed and precise Python scripts for data processing and anal-
ysis, indicating a higher level of understanding and execution by AutoGPT. Notably, there was a
marked improvement in the creation of R Shiny dashboards, which featured better formatting and
more insightful data representations compared to earlier prompts.

With the Apple Health Data, AutoGPT successfully generated multiple Python scripts and an
improved R Shiny dashboard, showing an enhanced ability to integrate analyses directly into the
dashboard. For the Traffic Accidents in Lithuania dataset, despite facing challenges with direct
data insertion in Python scripts, AutoGPT managed to produce a dashboard, although with some
issues in data readability. The Bitcoin Transaction Hashes dataset saw the most significant im-
provement, with AutoGPT not only generating effective scripts and a visually appealing dashboard
but also providing valuable data-based insights, setting a new benchmark for its performance.

However, across all datasets, certain limitations persisted. The most notable was the inability
to create fully reproducible and scalable code due to the tendency of inserting data into scripts.

Overall, this part of the experiment demonstrated that more specific and detailed prompts lead
to more accurate and useful outcomes from AutoGPT, though attention to enhancing code repro-
ducibility and scalability remains a crucial area for future development.

Table 6. AutoGPT Results Using Prompts Integrating Both Functional and Non-Functional Re-
quirements

Metric Apple Health
Data

Traffic Accidents
in Lithuania

Bitcoin Transac-
tion Hashes

Steps to Completion 12 6 13
Total Runtime 6m4,523s 5m28,235s 8m52,616s

API Request Count
GPT-3.5 8 3 7
GPT-4 12 6 13
Text Embedding 4 2 7

Token Utilization
GPT-3.5 13748 5633 3808
GPT-4 38779 25979 46331
Text Embedding 8469 2376 1504

Operational Cost
GPT-3.5 0.02 0.01 0
GPT-4 1.29 0.74 1.5
Text Embedding 0 0 0

4.1.4 Prompt Types Comparison

This subsubsection presents a comparative review of AutoGPT’s performance across the different
types of prompts and datasets. This comparison will highlight how varying levels of prompt speci-
ficity and complexity influenced the quality, accuracy and efficiency of AutoGPT’s responses and
its ability to fulfill the specified requirements.

Among the different prompt types, prompts integrating both functional and non-functional
requirements consistently led to the most effective results. They created better quality scripts for
data processing and analysis, produced more refined dashboards and even demonstrated potential
in generating meaningful insights and documentation.
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Table 7. Requirement Fulfillment Analysis

Completion Status Count
Dataset Not Met Partially Met Fully Met

Functional Requirements
Apple Health Data 1 1 6
Traffic Accidents in Lithuania 3 3 2
Bitcoin Transaction Hashes 0 1 10

Non-Functional Requirements
Apple Health Data 0 1 2
Traffic Accidents in Lithuania 1 1 1
Bitcoin Transaction Hashes 0 0 2

For the Traffic Accidents in Lithuania dataset, a consistent trend was observed: it utilized
the least amount of OpenAI’s API resources across all prompt types (see Table 8). This trend
highlights the efficiency of AutoGPT in handling this particular dataset, regardless of the prompt
complexity. Also, When comparing simple natural language prompt with a prompt integrating
both functional and non-functional requiremnets operational costs decreased almost twice: from
1.5 to 0.75 dollars.

In the case of the Apple Health Data, not only did the quality of results improve with the most
complex prompts, but there was also a significant decrease in operational costs. This improvement
underscores the effectiveness of highly specific prompts in guiding AutoGPT to deliver more
accurate and cost-efficient outcomes.

Notably, in the case of the Bitcoin Transaction Hashes dataset, the operational costs did not
significantly fluctuate across the different types of prompts. This consistency suggests that the
complexity of the prompts did not significantly impact the resource utilization for this particular
dataset, indicating a level of stability in AutoGPT’s performance regardless of prompt specificity.

The trend of decreasing API request counts with increasing prompt specificity and complexity
was consistent across all datasets (see Table 9). This trend suggests that more specific prompts
enable AutoGPT to execute tasks with greater precision and less resource utilization.

This decrease is more visible in GPT-3.5 API requests, suggesting its higher sensitivity to
prompt specificity. In contrast, while GPT-4 also showed a decreasing trend, the reduction in
API requests was not as significant. This difference may indicate variations in how AutoGPT
differentiate GPT model selection based on prompt complexity and specificity.

Overall, this comparative analysis across different datasets and prompt types shows a general
trend: as the complexity of prompts increases, so does the efficiency and quality of the outputs
produced by AutoGPT. However, the relatively stable operational costs for the Bitcoin Transaction
Hashes dataset across different prompts, suggest that the influence of prompt complexity might
differ depending on the nature of the dataset. Such insights show the importance of adjusting
prompts to the specific characteristics and requirements of the dataset to optimize the performance
of AI tools like AutoGPT in software development for data analysis tasks.

Given that creating prompts with formal requirements can demand a significant investment of
time, it becomes crucial to balance this effort against the potential improvements in output qual-
ity. When compared to advanced structured prompts, the decision to use more complex prompts
should be carefully considered, ensuring that the improvement in output quality justifies the ad-
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Table 8. Results Aggregated (Prompt 1 - Simple Natural Language Prompts; Prompt 2 - Advanced
Structured Prompts; Prompt 3 - Prompts Integrating Both Functional and Non-Functional Require-
ments

Dataset Name Metric Prompt 1 Prompt 2 Prompt 3

Apple Health
Data

Steps to Completion 16 16 12
Total Runtime 7m3,466s 5m57,947s 6m4,523s
API Request Count 40 28 24
Token Utilization 99271 80115 60996
Operational Cost 1.69 1.87 1.31

Traffic
Accidents in
Lithuania

Steps to Completion 6 7 6
Total Runtime 6m36,543s 8m14,552s 5m28,235s
API Request Count 29 18 11
Token Utilization 70192 45512 33988
Operational Cost 1.4 1.11 0.75

Bitcoin
Transaction
Hashes

Steps to Completion 13 13 13
Total Runtime 6m43,710s 6m38,277s 8m52,616s
API Request Count 36 31 27
Token Utilization 69803 54428 51643
Operational Cost 1.5 1.58 1.5

Table 9. AutoGPT API Request Count Grouped by Dataset, Prompt and GPT Model Used (Num-
ber by dataset name indicates prompt number: Prompt 1 - Simple Natural Language Prompts;
Prompt 2 - Advanced Structured Prompts; Prompt 3 - Prompts Integrating Both Functional and
Non-Functional Requirements
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ditional time and effort required. These insights emphasize the need for a strategic approach in
prompt construction, balancing complexity with practicality, to use the full potential of LLM in
data analysis.

4.2 Limitations and Challenges

This subsection delves into the various limitations and challenges encountered throughout the
experiments with AutoGPT. Recognizing these limitations is significant for understanding the
current boundaries of LLM capabilities in software development for data analysis tasks and for
guiding future improvements and research directions. The following paragraphs will describe key
areas where AutoGPT faced difficulties or where the experimental design could be refined.

Technical Limitations of AutoGPT In our experiments, AutoGPT faced a range of techni-
cal limitations that impacted its overall performance. One significant challenge was the context
window limitation, which occasionally led to breakdowns in processing, especially when dealing
with large datasets or loading extensive pages. This limitation reflects a need for more efficient
data handling capabilities in AI systems. Additionally, AutoGPT sometimes struggled with un-
derstanding and efficiently executing complex prompts, leading to incomplete or inaccurate task
fulfillment. Another notable limitation was AutoGPT’s inability to generate comprehensive docu-
mentation and actionable insights. This shortfall indicates a gap in the AI’s capability to not only
process data but also to meaningfully interpret and communicate complex analytical tasks. Addi-
tionally, AutoGPT was unable to test and run R scripts, despite being deployed in a custom Docker
image with R installed. This issue points to a limitation in its scripting capabilities. There were
also instances where AutoGPT became stuck in repetitive loops, working on the same task with-
out yielding productive results, which highlights a need for better task management and execution
strategies within the AI’s operational framework.

Data Handling and Reproducibility Throughout our experimentation, data handling and script
reproducibility emerged as significant challenges. AutoGPT frequently attempted to execute anal-
yses directly and insert data into scripts rather than creating reusable scripts. While this direct
approach might yield immediate results, it significantly reduces the reproducibility and scalability
of the solutions. This tendency towards inefficient data handling points to a broader issue within
the current AI agents capabilities. It underscores the need for more sophisticated methodologies
that can generate versatile and robust scripts, enabling more dynamic data handling. Enhancing
these capabilities is critical for ensuring that AI solutions can be effectively scaled and adapted to
various data analysis scenarios, meeting the diverse needs of real-world applications.

Operational Costs and Efficiency Throughout the experiments with AutoGPT, it was observed
a consistent trend that the API request count decreased as the specificity and complexity of the
prompts increased. This pattern indicates that more detailed prompts lead to more precise task
execution by AutoGPT, ultimately resulting in lower resource utilization and potentially more cost-
effective operations. However, the use of GPT-4 API, which is relatively expensive, posed certain
limitations. Inefficiencies such as the need for debugging and addressing repetitive tasks can
increase the operational costs. Consequently, due to budgetary constraints, it was not possible to
run the experiments on full datasets, more datasets or in continuous mode. At the beginning of this
thesis, the options for running Large Language Models (LLMs) locally were limited, necessitating
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reliance on costly LLM APIs. This reliance on external APIs introduces significant considerations
for the practical deployment of AI technologies like AutoGPT in data analysis tasks, especially
in resource-constrained environments. Finding a balance between the complexity of tasks and
operational efficiency remains a critical challenge for the deployment of AI agents like AutoGPT.

Sensitivity to Prompt Structure and Order A notable limitation observed in the experiments
with AutoGPT was its significant sensitivity to the structure and order of words in the prompts.
This characteristic has critical implications for how prompts should be constructed to guide Au-
toGPT effectively. It was discovered that properties or tasks meant to be universally applicable
in an AutoGPT task need to be stated at the beginning of the prompt. AutoGPT tends to create
tasks in the order presented in the prompt. For example, if a file name is mentioned towards the
end of the prompt, AutoGPT is likely to interpret it as an instruction to load data at a later stage
in the task sequence. This behavior underscores the need for careful and strategic prompt design,
ensuring that the most critical elements are positioned early in the prompt to direct AutoGPT’s
task prioritization and execution order appropriately.

Summary and Future Research Directions To summarize, our experiments with AutoGPT
highlighted several key limitations and challenges, ranging from technical limitations to efficiency
concerns. These findings pave the way for future research directions focused on enhancing AI
agent’s understanding of complex tasks, improving code reproducibility and scalability and op-
timizing resource utilization. Future improvements in AI algorithms could address these limita-
tions, leading to better solutions for automated software development for data analysis. Continued
exploration in this field is essential to unlock the full potential of AI agents in automating and
streamlining complex analytical processes.
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Results and Conclusions

This section presents the results and draws conclusions from comprehensive experiments with
AutoGPT, conducted across various datasets and using three different prompt types. Central to this
thesis is the exploration of the impact that integrating functional and non-functional requirements
into prompt construction has on the automation of software development for data analysis.

Extensive literature review highlighted a growing trend: the increasing role of artificial intel-
ligence and machine learning in data analytics, with Large Language Models (LLMs) playing a
pivotal role. Despite this trend, there exists a gap in academic research, particularly regarding the
capabilities of AI agents in software development for data analysis and the influence of formal
requirements on LLM results.

To address this gap, three diverse datasets were carefully selected and robust testing protocols
were established. This setup allowed us to conduct a detailed comparative analysis of different
prompt complexities on distinct datasets. The experiment was structured to progressively assess
AutoGPT’s capabilities, starting from simple natural language prompts, advancing to more struc-
tured prompts and finally constructing prompts that integrated both functional and non-functional
requirements.

Results

1. Performed extensive experiments on testing AutoGPT capabilities in automation of software
development for data analysis. AutoGPT was able to generate well-written Python scripts
for data processing and create informative R Shiny dashboards with visual data represen-
tations. Notably, for one dataset, AutoGPT even produced actionable insights along with
documentation.

2. The operational efficiency and associated costs of using AutoGPT were influenced by the
complexity of the prompts. More sophisticated prompts resulted in fewer API requests,
implying greater task execution efficiency. Comparing simple natural language prompts
with those integrating formal requirements, the average operational cost decreased by $0.34
(from $1.53 to $1.19). However, the cost associated with OpenAI’s API calls remained a
limiting factor, influencing the scope of the experiments.

3. Sensitivity to the structure and wording of prompts has been observed in AutoGPT. This
aspect is crucial for prompt construction, as it significantly impacts how AutoGPT interprets
and executes tasks.

4. The experiments revealed AutoGPT’s effectiveness in meeting formal requirements with
prompts tailored for this purpose:

• For Apple Health Data, AutoGPT fully met 6 out of 8 functional requirements and 2
out of 3 non-functional requirements.

• With Traffic Accidents in Lithuania, it met 2 out of 8 functional requirements and 1
out of 3 non-functional requirements.

• For Bitcoin Transaction Hashes, it successfully fulfilled 10 out of 11 functional re-
quirements and both non-functional requirements.
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Conclusions

1. Our experiments demonstrated AutoGPT’s capability to perform basic data analysis tasks.
It successfully wrote scripts for data processing, extracted data from APIs and presented
the results in R Shiny dashboards. Additionally, AutoGPT showed potential in generating
actionable insights and creating documentation, marking a significant step in AI-assisted
data analysis.

2. The effort involved in constructing prompts with formal requirements must be weighed
against the expected improvement in output quality. Complex prompts can enhance output
precision but require more time and effort to create. This necessitates a strategic approach
in prompt construction, optimizing the balance between complexity and practical utility to
fully leverage LLM capabilities in data analysis.

3. Strategic prompt design is crucial, with the placement of critical elements early in the prompt
playing a key role in directing AutoGPT’s task execution. This approach ensures that im-
portant tasks are prioritized and executed first.

4. While not all formal requirements were fully met in our experiments, the inclusion of these
requirements could significantly improve the efficiency and quality of AutoGPT’s results,
showing their value in prompt construction.

AutoGPT demonstrates potential as an autonomous AI agent, capable of improving efficiency
or performing certain tasks. However the tasks it handled were relatively simple and within the
capabilities of a junior data analyst. Although AutoGPT completed these tasks, its current capa-
bilities are not yet suited for production-level solutions. Crafting effective prompts for AutoGPT,
even for simple tasks, can be time-consuming. Additionally, the cost-effectiveness of using the
GPT-4 API compared to hiring a data analyst needs careful consideration. While AutoGPT shows
promise in certain areas, its role as a replacement for human analysts is still limited.
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Appendices
A Bitcoin Transaction Hashes Query

Listing 1. SQL query for "Bitcoin Transaction Hashes" extraction from Bigqeuery

1 SELECT transactions.hash

2 FROM ‘bigquery-public-data.crypto_bitcoin.transactions‘ AS
transactions

3 WHERE transactions.block_timestamp_month = "2023-11-01"

4 ORDER BY transactions.block_timestamp DESC
5 LIMIT 1000

B AutoGPT Example

Listing 2. Example terminal message for initial user’s input for AutoGPT

1 Welcome to Auto-GPT! run with ’--help’ for more information

.

2 Create an AI-Assistant: input ’--manual’ to enter manual

mode.

3 Asking user via keyboard...

4 I want Auto-GPT to: I want Auto-GPT to: Perform data

analysis on localy available .csv file called duomenys.

csv.

5 NOTE:All files/directories created by this agent can be

found inside its workspace at: /app/auto_gpt_workspace

6 DataGPT has been created with the following details:

7 Name: DataGPT

8 Role: an autonomous data analysis AI that specializes in

performing advanced data analysis on locally available .

csv files to provide valuable insights and help make data

-driven decisions.

9 Goals:

10 - Utilize advanced data analysis techniques to extract

meaningful insights from the duomenys.csv file and

present them in a clear and understandable manner.

11 - Identify patterns, trends, and correlations within the

data to uncover hidden relationships and provide

actionable recommendations based on the analysis.

12 - Perform thorough data cleansing and preprocessing to

ensure the accuracy and reliability of the analysis

results.

56



13 - Offer customizable analysis options, allowing the user to

specify the desired analysis techniques, such as

descriptive statistics, data visualization, regression

analysis, or clustering.

14 - Provide efficient and timely analysis results, ensuring

that the user can make informed decisions quickly based

on the insights gained from the duomenys.csv file.

15 Using memory of type: JSONFileMemory

16 Using Browser: chrome

17 DATAGPT THOUGHTS: I need to read the duomenys.csv file to

start analyzing the data.

18 REASONING: Reading the file is the first step in the data

analysis process. Once I have the file contents, I can

proceed with data cleansing, preprocessing, and analysis.

19 PLAN:

20 - Read duomenys.csv

21 - Clean and preprocess data

22 - Perform advanced data analysis

23 - Provide insights and recommendations

24 CRITICISM: I should be cautious not to make assumptions

about the data before reading and analyzing it.

25 SPEAK: I will start by reading the duomenys.csv file.

26

27 NEXT ACTION: COMMAND = read_file ARGUMENTS = {’filename’: ’

duomenys.csv’}

28 Enter ’y’ to authorise command, ’y -N’ to run N continuous

commands, ’n’ to exit program, or enter feedback for

DataGPT...

29 Asking user via keyboard...

30 Input:

C Dataset Schemas

This appendix provides detailed schemas for all datasets utilized in this study. Each schema in-
cludes comprehensive information like column names, data types and descriptions of fields within
the datasets. The purpose is to offer a clear understanding of the datasets used in the experiments.

C.1 Apple Health Data

This subsection presents the schema for the Apple Health Data used in the study, it consists from
two tables: step count and workout.

C.1.1 Step Count

This part describes the schema for the Step Count dataset extracted from Apple Health.
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Table 10. Schema for Apple Health table - step_count.csv

Field name Type Description
sourceName String The name of the data source, typically the owner’s device.
sourceVersion String The version of the software from which data is collected.
device String A string representation of the device including identifier,

name, manufacturer, model, hardware, and software de-
tails.

unit String The measurement unit for the recorded data, typically
’count’.

creationDate DateTime The date and time when the data record was created, in-
cluding timezone.

startDate DateTime The starting date and time for the data measurement period,
including timezone.

endDate DateTime The ending date and time for the data measurement period,
including timezone.

value Integer The numerical value recorded or measured for the data.

C.1.2 Workout

This part describes the schema for the Workout dataset extracted from Apple Health.

Table 11. Schema for Apple Health table - workout.csv

Field name Type Description
workoutActivityType String The type of workout activity, e.g., Cycling, Rowing,

Strength Training.
duration Float The duration of the workout activity.
durationUnit String The unit of measurement for the duration, typically ’min’

for minutes.
sourceName String The name of the data source, typically the owner’s device.
sourceVersion String The version of the software from which data is collected.
creationDate DateTime The date and time when the data record was created, in-

cluding timezone.
startDate DateTime The starting date and time for the data measurement period,

including timezone.
endDate DateTime The ending date and time for the data measurement period,

including timezone.

C.2 Traffic Accidents in Lithuania

This part describes the schema for the Traffic Accidents in Lithuania dataset.
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Table 12. Schema for Traffic Accidents in Lithuania dataset

Field name Type Description
Time String The time period when the data was recorded in year and

month format (YYYYMM).
Indicator String A description of the indicator being measured, such as the

number of road accidents.
Administrative terri-
tory

String The name of the administrative region or county where the
data applies.

Road accidents String The category of road accidents being reported, such as ac-
cidents involving injuries or those involving alcohol.

Unit String The unit of measurement for the data, typically ’units’.
Value Integer The numerical value representing the count of road acci-

dents; may be empty if data is not available.

C.3 Bitcoin Transaction Hashes

This part describes the schema for the Bitcoin Transaction Hashes dataset.

Table 13. Schema for Bitcoin Transaction Hashes dataset

Field name Type Description
hash String A unique identifier for a Bitcoin transaction, typically a 64-

character hexadecimal string.

D AutoGPT Generated Goals

This appendix presents initial information generated by AutoGPT from natural language prompts
for each dataset and prompt type. It includes AI agent’s name, role and goals.

D.1 Apple Health Data

D.1.1 Simple Natural Language Prompts

Listing 3. Goals Generated by AutoGPT Using Simple Natural Language Prompt for Apple Health
Data.

1 INFO HealthDataAnalyzerGPT has been created with the

following details:

2 INFO Name: HealthDataAnalyzerGPT

3 INFO Role: an AI assistant specialized in analyzing health

data using Python and presenting the findings in an R

Shiny report. It helps users make sense of their step

count and workout frequency data from Apple Health,

providing valuable insights for better health and fitness

management.
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4 INFO Goals:

5 INFO - Develop a Python script to read and analyze step

count and workout frequency data from the respective .csv

files in the workspace.

6 INFO - Extract meaningful insights from the data, such as

average step count per day, weekly workout frequency, and

trends over time.

7 INFO - Generate an R Shiny report that presents the findings

in a visually appealing and interactive manner.

8 INFO - Ensure the accuracy and reliability of the analysis

by implementing robust data validation and error handling

mechanisms.

9 INFO - Provide clear and concise documentation on how to use

the Python script and interpret the findings in the R

Shiny report.

D.1.2 Advanced Structured Prompts

Listing 4. Goals Generated by AutoGPT Using Advanced Structured Prompt for Apple Health
Data.

1 INFO DataAnalysisGPT has been created with the following

details:

2 INFO Name: DataAnalysisGPT

3 INFO Role: an AI data analyst that specializes in analyzing

health data using Python and R Shiny. It assists in

performing data preparation, analysis, and report

generation for health-related datasets.

4 INFO Goals:

5 INFO - Utilize Python to read and analyze the ’workout_100.

csv’ and ’step_count_100.csv’ files, using the ’

creationDate’ as the date reference for all analyses.

6 INFO - Compute the daily step count and its 7-day rolling

average, and visualize these trends in a graph.

7 INFO - Summarize the average step counts by day of the week

in a bar chart.

8 INFO - Count workouts annually by type (workoutActivityType)

and present the results in a bar chart.

9 INFO - Compile a final report using R Shiny, incorporating

the analyzed data and visualizations to provide a

comprehensive overview of the health data analysis.

D.1.3 Prompts Integrating Both Functional and Non-Functional Requirements
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Listing 5. Goals Generated by AutoGPT Using Prompt Integrating Both Functional and Non-
Functional Requirements for Apple Health Data.

1 INFO DataAnalysisGPT has been created with the following

details:

2 INFO Name: DataAnalysisGPT

3 INFO Role: an AI data analyst that specializes in analyzing

Apple Health Data using Python. It provides comprehensive

insights into step count and workouts, with a focus on

efficient data handling and cost-effective operations.

The AI also creates an intuitive R Shiny dashboard for

easy navigation and includes a user-friendly guide and

documentation.

4 INFO Goals:

5 INFO - Perform efficient data handling and analysis of Apple

Health Data from ’data_to_read/workout_100.csv’ and ’

data_to_read/step_count_100.csv’ using Python, with ’

creationDate’ as the date reference.

6 INFO - Calculate the daily step count and 7-day rolling

average, and present it in a graph with dates on the x-

axis and step counts on the y-axis.

7 INFO - Summarize the daily average step count by weekday in

a bar chart.

8 INFO - Count workouts by year and type, and present the data

in a bar chart with years on the x-axis and counts on

the y-axis, differentiated by workout type (

workoutActivityType).

9 INFO - Create an intuitive and easy-to-navigate R Shiny

dashboard to display the analyses and provide 2-4

actionable insights.

10 INFO - Ensure efficient data handling, even with large

datasets, while staying within budget and maintaining

reasonable operational costs.

11 INFO - Include a user-friendly guide and documentation to

assist users in utilizing the AI’s capabilities

effectively.

D.2 Traffic Accidents in Lithuania

D.2.1 Simple Natural Language Prompts

Listing 6. Goals Generated by AutoGPT Using Simple Natural Language Prompt for Traffic
Accidents in Lithuania.

1 INFO TrafficAnalyzerGPT has been created with the following

details:
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2 INFO Name: TrafficAnalyzerGPT

3 INFO Role: an autonomous agent specialized in analyzing

traffic accidents data and providing insights on monthly

trends and distribution between counties in Lithuania. It

is proficient in Python and can generate an R Shiny

report to present the findings.

4 INFO Goals:

5 INFO - Analyze the traffic accidents data from ’data_to_read

/traffic_accidents_100.csv’ to identify monthly trends in

road accidents in Lithuania.

6 INFO - Determine the distribution of traffic accidents

between counties in Lithuania using the provided data.

7 INFO - Investigate the impact of alcohol on traffic

accidents and analyze its correlation with accident

severity.

8 INFO - Utilize Python to perform data analysis and generate

meaningful insights from the traffic accidents data.

9 INFO - Create an R Shiny report to present the findings of

the analysis in an interactive and visually appealing

manner.

D.2.2 Advanced Structured Prompts

Listing 7. Goals Generated by AutoGPT Using Advanced Structured Prompt for Traffic Accidents
in Lithuania.

1 INFO TrafficAnalyzerGPT has been created with the following

details:

2 INFO Name: TrafficAnalyzerGPT

3 INFO Role: an AI data analyst that specializes in analyzing

traffic accidents using Python and R Shiny. It provides

comprehensive insights and visualizations to help

understand the patterns and trends in traffic accidents

in Lithuania.

4 INFO Goals:

5 INFO - Perform data preparation and analysis using Python to

transform the data from the ’data_to_read/

traffic_accidents_100.csv’ file into a wide format, using

the "Administrative territory" and "Road accidents"

columns.

6 INFO - Compile a final report using R Shiny, incorporating

the Python analysis results, to provide a comprehensive

overview of the traffic accidents in Lithuania.

7 INFO - Calculate the monthly accident count and compare

accidents involving alcohol, displaying the results in a

curve graph to visualize the trends over time.
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8 INFO - Calculate the total number of accidents in each

county and the proportion of road traffic accidents by

drivers under alcoholic affect in each county, and

present the results in bar charts for easy comparison.

9 INFO - Provide key insights from the analysis to help

understand the patterns, trends, and potential factors

contributing to traffic accidents in Lithuania.

D.2.3 Prompts Integrating Both Functional and Non-Functional Requirements

Listing 8. Goals Generated by AutoGPT Using Prompt Integrating Both Functional and Non-
Functional Requirements for Traffic Accidents in Lithuania.

1 INFO DataAnalysisGPT has been created with the following

details:

2 INFO Name: DataAnalysisGPT

3 INFO Role: an autonomous agent specialized in data analysis

and visualization using Python and R. It assists in

analyzing and interpreting large datasets, providing

actionable insights and creating intuitive dashboards for

efficient data exploration.

4 INFO Goals:

5 INFO - Analyze the Lithuanian traffic accidents data from ’

data_to_read/traffic_accidents_100.csv’ using Python,

focusing on identifying monthly and yearly trends in road

accidents, including a comparison with alcohol-related

incidents.

6 INFO - Present the identified trends in curve graphs, with

the x-axis showing year and month and the y-axis showing

the number of accidents.

7 INFO - Analyze and display in a curve the total number of

accidents split by alcohol-related and non-alcohol-

related incidents.

8 INFO - Calculate the total number of accidents in each

county and the proportion of road traffic accidents by

drivers under alcoholic affect in each county.

9 INFO - Create an intuitive R Shiny dashboard to display the

analyses, ensuring efficient handling of large datasets

and staying within budget with reasonable operational

costs.

10 INFO - Include a user guide and documentation with 2-4

actionable insights derived from the data.
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D.3 Bitcoin Transaction Hashes

D.3.1 Simple Natural Language Prompts

Listing 9. Goals Generated by AutoGPT Using Simple Natural Language Prompt for Bitcoin
Transaction Hashes.

1 INFO BitcoinAnalyzerGPT has been created with the following

details:

2 INFO Name: BitcoinAnalyzerGPT

3 INFO Role: an AI data analyst that specializes in analyzing

Bitcoin transaction data to provide valuable insights and

trends. It utilizes the blockchain.info API to extract

details such as timestamps and transaction values, and

presents the findings in a comprehensive R Shiny report.

4 INFO Goals:

5 INFO - Analyze the Bitcoin transaction data from the ’

data_to_read/bitcoin_transactions_100.csv’ file using the

blockchain.info API.

6 INFO - Summarize the analysis timeframe, including the start

and end dates of the data.

7 INFO - Identify and analyze the main trends in the Bitcoin

transaction data, such as transaction volume, transaction

values, and transaction frequency.

8 INFO - Analyze the daily transaction activities, including

the number of transactions per day, average transaction

values, and any significant fluctuations or patterns.

9 INFO - Present the findings in a visually appealing and

informative R Shiny report for easy interpretation and

decision-making.

D.3.2 Advanced Structured Prompts

Listing 10. Goals Generated by AutoGPT Using Advanced Structured Prompt for Bitcoin Trans-
action Hashes.

1 INFO CryptoAnalyzerGPT has been created with the following

details:

2 INFO Name: CryptoAnalyzerGPT

3 INFO Role: an autonomous agent specialized in analyzing

cryptocurrency transaction data using Python and

extracting information from the blockchain.info API. It

provides a comprehensive analysis of Bitcoin transaction

data, including timestamps and values, and presents the

results in an R Shiny dashboard.

4 INFO Goals:
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5 INFO - Utilize Python to analyze the Bitcoin transaction

data from ’data_to_read/bitcoin_transactions_100.csv’ and

extract transaction information using the blockchain.

info API.

6 INFO - Convert the timestamps from Unix format to YYYY-MM-DD

hh:mm:ss and the values from Satoshi to BTC.

7 INFO - Provide a basic summary of the analysis timeframe,

total transactions, and revenue in BTC.

8 INFO - Generate a daily breakdown of transactions and

revenue.

9 INFO - Present the analyzed data in an R Shiny dashboard for

easy visualization and exploration.

D.3.3 Prompts Integrating Both Functional and Non-Functional Requirements

Listing 11. Goals Generated by AutoGPT Using Prompt Integrating Both Functional and Non-
Functional Requirements for Bitcoin Transaction Hashes.

1 INFO DataProcessingGPT has been created with the following

details:

2 INFO Name: DataProcessingGPT

3 INFO Role: an autonomous agent specialized in data

processing and analysis, designed to assist in developing

Python scripts for processing and analyzing datasets. It

provides expertise in handling various data formats,

transforming timestamps, converting values, and

generating visualizations. Additionally, it can assist in

building intuitive and efficient R Shiny dashboards for

presenting data analyses, along with user guides and

documentation.

4 INFO Goals:

5 INFO - Develop a Python script to process the ’data_to_read/

bitcoin_transactions_100.csv’ dataset, extracting

information from each Bitcoin transaction hash using the

https://blockchain.info/rawtx/$tx_hash API. Transform

Unix timestamps to human-readable format (YYYY-MM-DD hh:

mm:ss) and convert transaction values from Satoshi to

Bitcoin (1 BTC equals 100 million Satoshis).

6 INFO - Analyze the dataset to identify the first and last

timestamps and display these in scorecards. Compute the

total number of transactions and the overall revenue in

Bitcoin, showcasing these figures in scorecards.

7 INFO - Create a curve chart to display the daily transaction

count and revenue in Bitcoin, with dates on the x-axis

and transaction counts and revenue figures on separate y-

axes.

65



8 INFO - Build an intuitive and efficient R Shiny dashboard to

present the analyses, including the scorecards and the

curve chart. The dashboard should provide a user-friendly

interface for interacting with the data and should be

visually appealing.

9 INFO - Include a comprehensive user guide and documentation

that explains the Python script, the R Shiny dashboard,

and provides 2-4 actionable insights derived from the

data. The user guide should be clear, concise, and easy

to follow, enabling users to replicate the analyses and

understand the insights derived from the data.
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