ASiTps N
VILNIUS UNIVERSITY
FACULTY OF MATHEMATICS AND INFORMATICS
INSTITUTE OF COMPUTER SCIENCE
DEPARTMENT OF COMPUTATIONAL AND DATA MODELING

Information Technologies 4th year Final Bachelor Thesis

Automation of Computer Networks

Kompiuteriniy tinkly automatizavimas

Done by:

Aras Urbonas

Supervisor:
Lekt. Eduardas Kutka

Vilnius
2024

Contents

Abstract 3
Santrauka 4
Introduction 5
1 Analysis 6
1.1 Approaches to Computer Network Management 6

1.2 Existing Solutions for Network Automation 6

1.3 Network Automation using Software-Defined Networking 7
1.3.1 SDN Concepts and Principles 7

1.3.2 SDN Models and Their Advantages 9

1.3.3 SDN Challenges and Drawbacks 11

1.3.4 Feasibility of Implementing SDN in a Corporate Network 12

1.4 Network Automation using Open Source IT Automation Tools 13
1.4.1 Overview of Open Source Automation Tools 14

1.4.2 Advantages of Open Source Automation Tools 16

1.4.3 Limitations of Open Source Automation Tools 17

1.4.4 Choosing Suitable Open Source Software for Network Automation 17

2 Implementation Example 19
2.1 Mini-world Scenario oL 19

2.2 Technological Considerations 19

2.3 Tools and Technologies i 19

2.4 Structureof the System L 20

2.5 Environment and Networking Setup 21

2.6 Declarative and Imperative Scriptso oL 22
Conclusions and Recommendations 24
Future Work 25
References 26

Abstract

Currently, computer networks are expanding, mainly due to the surging demand for online
services. This makes configuration of networks by traditional means increasingly challenging.
Better solutions for network management are needed. In such an environment, network automation
seems enticing, promising to reduce the amount of human hours required, as well as reducing
chances for errors. Thus, the purpose of this work was to analyze the possible ways to automate
common network management tasks. This includes the analysis of the methodologies, tools and
technologies that have the potential to automate computer networks, as well as providing an
example of an implementation using freely available open-source, multi-platform tools to automate
a situation, hardly feasible for manual configuration: firewall rule creation for virtual resources.

Santrauka
Kompiuteriu tinkly automatizavimas

Siuolaikiniai kompiuteriy tinklai spariai pleciasi. Vienas i§ pagrindiniy veiksniy lemianciy
Sig plétra, tai auganti paklausa jvairioms nuotolinéms paslaugoms. D¢l Sios plétros, kompiuteriniy
tinkly konfigiiravimas tradiciniais metodais tampa vis labiau nepraktiskas. Tyrimai rodo, jog
didzioji dalis kompiuteriniy tinkly valdymo procediry vis dar vykdomos rankiniais metodais. Nauji,
modernus sprendimai yra reikalingi tam, kad patobulinti kompiuteriniy tinkly patikimuma, sauguma
bei sumazinti laiko kiekj, kurj sistemy administratoriai praleidZia pastoviems, pasikartojantiems
konfigiiravimo darbams. Taigi, Sio darbo tikslas yra analizuoti galimus kompiuteriniy tinkly
automatizavimo budus, bei apZvelgti technologijas bei metodus, skirtus $iai uzduociai jgyvendinti.
Be to, Siame darbe taip pat pateikiamas pavyzdys, naudojantis atviro kodo automatizacijos bei
virtualizacijos jrankius tam, kad pademonstruoti kompiuteriniy tinkly automatizavimo galimybes
naudojant nemokamai ir lengvai prieinamas technologijas. UZduotis pasirinkta Siam pavyzdZziui:
virtualiy resursy automatinis diegimas, bei ugniasienés taisykliy priskyrimas jiems.

Introduction

In the current era of information technologies, computer networks are becoming more and more
sophisticated. The demand for cloud services is rising. Many traditionally offline services are
moving online. Networks are expanding in scope and complexity, due in large part to the rise
of virtual networks and virtualized networking equipment. This presents an issue - configuration
of modern, corporate computer networks is time consuming and error prone. This is especially
relevant as simple mistakes in network configurations often lead to downtime and thus, loss of
business continuity.

One possible solution to alleviate some of these shortcomings is the automation of computer
networks. Potential tasks that could be automated include switching and routing configurations,
network device configuration backups, inventorization as well as monitoring for errors, among
others. Fortunately, most networking devices, particularly ones in the enterprise sphere, are
accessible via a secure shell connection, are configurable via command-line and support open
management protocols. Thus preexisting open source tools can often be used to automate networking
equipment configuration changes. Furthermore, technologies such as software defined networking
promise network management centralization via protocols such as OpenFlow. Thus providing the
ability to control networks from a single point, allowing to easily manage network devices and apply
changes automatically. One of the objectives for this work is to analyze the possible technologies
and methodologies using which, networks can be automated.

Firewall and access control list rules are particularly enticing to automate. Their functions are
especially crucial, due to their role in network security. Along with that, they can bring down
connectivity between networks when improperly configured. A modern network often contains not
one, but many firewalls and access control lists. Thus configuring access for a host to a server may
require connecting to multiple networking devices and configuring firewall rules on each one. With
this manual process being time consuming and human-error prone, the automation of such access
rules is particularly relevant. Additionally, virtualization of hosts and network devices allows to
automate not only configuration changes, but also to automate deployment. Virtualization platforms
may also often have built-in firewalls which integrate well with automation. This enables the
possibility to automate the entire process of host deployment, as well as configuration of firewalls
and access control lists to give access to the exact network resources required for the hosts. This
has the ability to improve network security, while also removing the need for manual human
intervention each time a virtual host is created. Thus, a second goal of this work is to provide
an example use case and minimal implementation for automation of firewall rules in a virtual
environment.

1 Analysis

1.1 Approaches to Computer Network Management

Many of the networks which form the backbone of numerous organisations have been formed
gradually. Over time expanding and changing to meet the changing needs of their parent orga-
nizations. Changes most often being configured manually. Multiple contemporary sources state
that up to 95% of networking configuration tasks are done manually [12] [18], often via static
configurations, often joined by the use of dynamic routing protocols such as OSPF, BGP, among
others.

As a network grows in size and complexity it becomes harder to manage manually. Relatively
simple tasks, such as adding hosts and defining which resources they are allowed to access becomes
a time-consuming task. It can require not only the configuration of layer 2 switch ports, but
also connection to numerous devices to configure firewalls and access-control lists. As well as
potentially adding or appending static routes.

There are some proposed solutions to these shortcomings, a major one being Software-Defined-
Networking (SDN). [1] [11]. It promises automation and simplification of management, though
implementing it may require rather major changes to existing network infrastructure.

The use of open-source automation tools for including automation in workflows is also relevant.
Appending existing processes, such as firewall and ACL configurations can bring the benefits of
reduced human workload and increased scalability and security without the need for to up-root
large parts of existing network infrastructure.

1.2 Existing Solutions for Network Automation

Utilizing modern technologies such as software-defined network to implement network automa-
tion may be beneficial, as the centralized control plane would mean that configuration changes
would only need to be done in a single place. This would mean that changes to the way network
devices forward data could be applied automatically, without the need to manually connect to
numerous devices.

Though, network automation does not necessarily have to involve the most contemporary
technologies, languages or protocols. Tools such as shell scripts can be used to achieve a certain
level of automation. However, utilizing more modern declarative scripting tools and template
engines may often prove to be more efficient in many scenarios. Using a combination of declarative
scripts, templates and shell scripts could make it feasible to automate the process of configuring
multiple servers and network devices, via a single script or playbook. This approach would not
require purchasing any new equipment or software as all the mentioned technologies are open-
source and widely compatible with existing network equipment hardware, firmware and software.
While this approach would not constitute as true software-defined networking, it would be a good
example of how infrastructure-as-code tools can be achieved a certain level of network automation,
without the need to overhaul the network topology.

Additionally, in virtualized environments, platforms have tools and features that lend themselves
well to automation. For example, in some virtualization platforms, firewall configurations for a
particular container or virtual machine are applied immediately when a file, that is synchronized
across a cluster is changed. Thus a simple shell script could be used to make changes to firewall
rules that apply to one or more virtual machines.

1.3 Network Automation using Software-Defined Networking

One of the possible ways to implement computer network automation involves the use of
"Software-Defined Networking’ - commonly shortened to SDN. This option of automating computer
networks will be explored further in this subsection.

1.3.1 SDN Concepts and Principles

One of the main principles of software-defined networking is the separation of the data and
control planes. [4] The data plane is responsible for the transmission of packets using lower level
protocols. Conversely, the control plane is tasked with managing and controlling the network using
higher level protocols for switching and routing, such as MPLS, BGP and OSPF, among others.

In order to better understand the significance of separating the aforementioned planes, it is
important to firstly observe the data and control planes in a traditional network structure. In
traditional networks, the data and control planes exist on the same physical network device (be it
router, switch, firewall, et cetera). Thus, the distinction between the data and control planes in a
traditional network is mostly a logical divide, with the planes coexisting and operating on the same
hardware, with the respective operating systems and other software of the devices handling the
responsibilities of both planes. With this in mind, the diagram below illustrates the location of data
and control planes in a traditional hierarchical network, containing routers, layer 3 switches along
with layer 2 switches.

Router @ Router @
Control Data Control Data
Plane Plane Plane Plane

L3 Switch L3 Switch

% Control % Data % Control g Data

Plane Plane Plane Plane

< <
< <=

Control Data Control Data
Plane Plane Plane Plane

Figure 1. Diagram With The Locations of Data and Control Planes in a Traditional Network

L2 Switch L2 Switch

In software-defined networking these planes are separated into different devices. Along with this
decoupling, the control plane is to be centralized to a single point, device or entity, thus enabling
the centralized control of networking devices. The diagram below illustrates this separation in a
software-defined network structure separation via a similar hierarchical network to the one shown
in the traditional network diagram.

Centralised Controller

Centralized
Control
Plane

Router % . |Router %
Data Data
Plane Plane

L3 Switch | L3 Switch

% Data % Data
Plane Plane
—p

L2 Switch

L2 Switch -
<= -,
<

Data Data
Plane Plane

Figure 2. Diagram With The Locations of Data and Control Planes in a Software-Defined Network

Since the control plane is the entity that is tasked with regulating, segmenting and routing network
traffic, centralizing it into a single point could make automating network tasks easier, since, changes

would only have to be made in one centralized point (the centralized control plane) and would not
have to be made across many separate devices. Thus saving time and reducing the chances for
errors.

1.3.2 SDN Models and Their Advantages

Software-defined networking is a rather broad set of principles, denoting the ways for software
based controllers to interface with the hardware. Thus multiple models of SDN are recognized. [2]
Including, but not limited to:

* Open SDN - characterized by the use of open-source protocols, such as OpenFlow to control
network devices.

* SDN by APIs - application programming interfaces are used to control the data plane of
network devices or for communication with higher level applications.

* SDN Overlay Model - this model runs a virtual network on existing hardware, using tunnels
to create connections with virtual or physical sites.

* Hybrid SDN - combines a software-defined network with traditional network infrastructure.
This allows to introduce SDN gradually, in stages, minimizing disruptions to traffic.

In this subsection, these software-defined networking approaches will be analyzed, comparing
each of their advantages. It is important to note, that these models more closely resemble guidelines
and principles, and not concrete implementations. Thus there may be a fair amount of overlap
between them. As of writing, there does not seem to be a consensus for what constitutes a specific
model, as aspects of certain models can be integrated with the implementations of other models.
Having acknowledged this, it is important to further analyze the aforementioned models.

The main characteristic of Open SDN is the use of open-source standards, protocols and
technologies to implement a software-defined network architecture. The most commonly used
protocol to achieve this is OpenFlow. OpenFlow is an open standard maintained by the non-
profit Open Networking Foundation. OpenFlow version 1.0 was released in 2009, with limited
functionality. With the release of OpenFlow 1.1 in 2011, gaining full VLAN and MPLS support,
among other improvements. [3] Currently, in the SDN sphere, OpenFlow is the de facto standard
for communication between the centralized control plane and the hardware of network devices
(commonly referred to as southbound communication). As OpenFlow is not a proprietary standard,
the main advantage is that it can be used and integrated into the various network devices, regardless
of the vendor or manufacturer. Additionally, it is important to note that, despite OpenFlow being
the commonly accepted standard for southbound communication, protocols such as NETCONF and
RESTCONEF can also be used as southbound interfaces between the centralized control plane and
network devices.

In SDN implementations, APIs are commonly seen alongside OpenFlow, rather than in place
of it. APIs in software-defined networks are seen as better suited for northbound communication.
That is, interfacing between the centralized control plane and applications via higher level pro-
tocols. Common use cases for such northbound APIs is connecting application layer firewalls,
load balancers and various security appliances to the SDN controller. Furthermore, southbound
protocols such as RESTCONF can enable the communication between the centralized controller
and network hardware via REST APIs. Ths use of such northbound APIs enables integration with

9

other automation tools, as well as integration with other services, for example: network monitoring

systems.
The Diagram below shows an example where OpenFlow is used for southbound communication

and APIs for northbound integration.

Applications
Network Cloud
Monitoring Orchestration
Appliction Application

Automation
Tool

A

Northbound Northbound
APls Communication

Centralised Control Plane

SDN Controller

Routing Firewall
Rules

<<protocol>> Southbound
OpenFlow Communication

Network Infrastructure

= G

Switch L3 Switch Router

Figure 3. Example of an SDN Implementation with OpenFlow and Northbound APIs

The SDN Overlay Model is characterized by having an additional virtual network over of
existing network hardware and infrastructure. The physical network devices remain unchanged,
only the data flowing through the network acquires additional tags, denoting their participation in
the new overlay network. This can be implemented using the Virtual Tunnel Endpoint (VTEP)
technology. Multiple vendors, mainly Juniper and VMware currently offer such a solution for SDN
using some of their proprietary tools. The advantages of such an implementation is that existing
network hardware remain unaffected, both the devices and their configurations can stay unchanged.
This reduces overhead both in terms of hardware cost and labour associated with re-configuration.
Additionally, it enables the use of centralized automation, as well as the ability to automate the
creation of new virtual networks. The downside being that such an overlay model will likely involve

10

using proprietary software and the remaining infrastructure will still have to be maintained in a
manual way, when changes to the physical hardware are required.

A hybrid SDN approach uses a combination of traditional network infrastructure and adds SDN
enabled network devices and structure in a gradual way. This approach allows for a more gradual
move a software-defined network, while keeping some of the existing legacy hardware running.
This means that downtime can be contained to parts of the network during the move to SDN. This
can enable a more organic and natural move towards the new network structure, without the need to
uproot all existing network infrastructure all at once.

Thus to conclude this part, it is apparent that different approaches and models of software-
defined networking have their own unique strengths and advantages. It as also evident that the
models often have overlap between themselves, which can, at times, make it difficult to distinguish
which particular model would be best to use. Fortunately, many of the models can be freely
combined and used alongside each other, as open protocols such as OpenFlow allow their use across
different hardware and software vendors, in different scenarios.

1.3.3 SDN Challenges and Drawbacks

Having gone through the analysis of different models of software-defined networks and their
advantages, it is important to consider the potential challenges and drawbacks of implementing an
SDN network structure.

One potential challenge in implementing SDN is obtaining network hardware that support the
required software-defined networking protocols, such as OpenFlow. Even tough OpenFlow is an
open standard, for which specifications and technical data is available for all vendors of network
equipment, not all have seemed to fully implement support for said protocol. For example, the
networking giant Arista Networks lists OpenFlow capability in the data sheet for their 7050SX
Series of data center switches. [14] However, the latest supported on said switches version is listed
as OpenFlow 1.3, which lacks some more advanced features from newer versions. Additionally,
other models of switches from certain other vendors may only support OpenFlow 1.0, which is
fairly limited, or not have any OpenFlow support whatsoever. Thus requiring the replacement of
such hardware in order to implement an Open SDN network model. An organization which seeks
to implement SDN, will incur significant costs to procure and replace existing network hardware.
As well as having to consider the human hours required for the configuration of the new network
structure.

Performance is another consideration of the move to a software-defined network. Some models
of SDN, such as the overlay model have an obvious downside, as they rely on additional virtualiza-
tion as well as tagging, which runs over the existing network infrastructure, introducing performance
overhead. Other models may also negatively impact performance, since many network devices
have traditionally highly integrated hardware, which had the control and data planes combined
in one. The separation of the aforementioned planes may thus negatively impact performance, as
vendor may not yet have perfected this concept.

An additional challenge to consider when implementing SDN is reliability of the network.
All models of software-defined networking involve some kind of centralization of the control
plane. This introduces a single point of failure. Traditional networks normally seek to avoid such
cases by segmenting the network and using redundant devices to eliminate or at least reduce the
impact of the failure of a single device. In a software-defined network, the loss of the centralized
control plane would have far reaching consequences for IT resource availability and by extension

11

business continuity. This makes the SDN controller a particularly vulnerable part of the network.
Furthermore, this vulnerability extends to network security. As a breach of the central controller
would mean an attacker would likely have vast and far reaching control over the network. These
challenges would have to be carefully considered and rectified before the move to a new network
structure.

Having analyzed some potential challenges and drawbacks of software-defined networks it
is clear that the move to such a structure will require significant resources, as well as careful
considerations in terms of network security and reliability.

1.3.4 Feasibility of Implementing SDN in a Corporate Network

Having considered the advantages and challenges of SDN, is it now possible to discuss the
feasibility of implementing a software-defined network in a organizations IT infrastructure.

In terms of costs, there may be major variations depending on the size and complexity of
the network in question. In the case of a medium sized network, where the majority of network
equipment is relatively modern and from a well supported vendor, the costs may not be major, as
there may be little to no need to replace equipment, in case that it supports Open SDN protocols
such as OpenFlow. In a medium sized network, that is well designed, uses a hierarchical network
structure, implementing SDN may not require many human hours to reconfigure the equipment
either. Of course, a proof-of-concept environment for testing would still be required, as networking
is especially crucial to the business continuity of an organization. Thus, any changes would need to
be well planned, and many different scenarios and various contingency plans would need to be put
in place before any making any changes to the existing network.

Conversely, if a network is of a larger scale, is made up of large amounts of legacy equipment
or has a more chaotic structure implementing software-defined networking will require significant
resources. In such a case, replacing the legacy network hardware will be necessary. Reconfiguration
of the network may also take a lot longer, especially in the case of redundant loops, which had
been left intentionally or by human error. Other considerations, such as spanning-tree protocol
mismatches may also prove the network to be more fragile when attempting changes, which may
make some SDN models, such as the hybrid model more difficult to implement.

Having considered these factors, it is important to observe examples of a successful move
to a software-defined network in certain organizations. The notable one being the multinational
technology giant Google. The company adopted software-defined networking rather early, as they
had already presented details about their SDN network in the 2013 Open Networking Summit.
They described using an Quagga open-source software alongside OpenFlow. In terms of hardware,
Google was not satisfied with any of the network hardware available at the time. This led the giant
to design their own switches using existing silicon to satisfy their needs. [15] A significant amount
of time has passed since then, though, as was seen in the example of Arista 7050SX series datacenter
network switches, currently hardware still may not support the latest protocols and features.

This example has shown that a move to a software-defined network is possible, even for a very
large organization such as Google. Though, as was seen regarding the lack of existing hardware,
among other challenges shows that implementing SDN may not be optimal for most organizations.
Thus, exists a need for implementations of network automation, which do not require such major
changes to network infrastructure. Even after more than a decade from the release of the first
OpenFlow versions, many organizations nevertheless use a traditional network structure, where the
data and control planes exist on the same hardware devices.

12

1.4 Network Automation using Open Source IT Automation Tools

After having analyzed software-defined networking, it is evident that it not a solution that is suitable
for all organizations. This may be due to a variety of factors, which had been discussed in the
previous subsections. Thus, other kinds of solutions are necessary to implement computer network
automation.

The UML use case diagram below pictures some potential use cases for open-source automation
tools for network automation.

Open Source Network Automation Tools

Apply Network Device
Configurations

Backup Network Device
Configurations

Maintain Network Device
Version History

Maintain Inventory of
Network Devices

Network

Administrator onitor Network for Errors

and Changes

Provision Virtualized
Network Resources

Figure 4. UML Use Case Diagram for using Open Source IT Automation Tools to Implement
Network Automation

Additionally, the analysis of software-defined network had made apparent the existence of
networks, which may use SDN for some parts, but still may require other solution for managing
certain parts of network infrastructure. For example, when an overlay model is used, leaving the
need continue managing the control plane of the hardware devices, or in a hybrid model where
parts of the network remain using traditional networking plane structure. For the aforementioned
reasons, the following analysis will discuss and evaluate the suitability of various open-source I'T
automation tools.

13

1.4.1 Overview of Open Source Automation Tools

In order to understand the capabilities and aspects of automation that can be achieved using
open-source automation tools. Firstly it is imperative to establish categories of automation tools
according to their common use cases in the sphere of computer network management. Analyzing
tools according to their category is appropriate, since tools in same category may either have a
major overlap in features, thus having similar use cases. Conversely, some tools in same category
can have complementary features and integrate well with each other. Thus, the paragraphs below
will analyze categories of open-source tools suitable for network automation, as well as the specific
tool therein.

Network Configuration Management Tools These types of tools are commonly described as
suites of software tools, designed for automating configuration tasks, often using declarative scripts,
which have to ability to be configure multiple devices using a single run of a script. The use of
such scripts, in combination with the use of version control systems for storing various imperative
and declarative scripts, code snippets and configuration files creates the basis for Infrastructure as
code (IaC). IaC being a set of processes that use the automated management of IT infrastructure,
including networking, as a basis for improving the deployment times, reliability and scalability of
IT infrastructure. Examples of such tool suites include Ansible, Puppet, Chef and Saltstack. All
of the aforementioned tools have similar use cases and considerable communities around them.
All of these tools support the most popular devices from major vendors such as Cisco and Arista.
Alongside that, the nature of these tools allows wide support with Linux and UNIX systems, thus
many of them can be used with popular open-source networking operating systems such as VyOS
and Pfsense. Such these tools use a principle of having a central control node, that connects to
network devices via protocols such as SSH (or Telnet for legacy devices) and can run certain
sets of commands via scripts, upload configuration files. In such a way allowing for automated
configuration of network devices, without the need to connect to each device manually and run
commands by hand. Though evidently, this requires writing or obtaining these configuration
scripts in the first place. That, combined with the setup time and expertise required, means that
implementing automation of a network using these tools will require an investment of human hours
by operations teams. the number of hours of course dependent of the proficiency and experience of
network administrators with the specific automation tool at hand. The setup time required may also
depend of the size and structure of a specific network.

For example: an Ansible master playbook could be used, in conjunction with Jinja templates
and plug-ins for different device operating systems. While running the playbook, the control node
would connect to each network device and make the required changes. For example, adding a
firewall or access control list rule in each device in such a way as to allow the host virtual machine
to gain access to a virtual server located in a server on another network. This playbook would only
need to be written once and via the use of template variables and parameters could be run many
times, when needed, to allow new host virtual machines access to said virtual server.

The UML deployment diagram shown below is an example of a network topology, and how
connections to network devices would be made upon running an Ansible playbook or similar script.
It demonstrates the use case of such an Ansible playbook for automation of configuration for
multiple access-control lists and firewalls.

14

Ansible Control Node

UNIX based OS

Ansible

<<protocol>>.

ssH /[

<<protocol>>
SSH

Router

Router

Linux Based Switch OS
Linux Based Switch OS

Firewall
\ Firewall

/ <<protocol>>
<<protocol>> SSH
SSH
Switch
Switch
Linux Based Switch OS

Linux Based Switch OS

<<protocol>>
SSH

\

Physical Server Physical Server

Linux Based Hypervizor OS

Linux Based Hypervizor
os

ost Virtual

Server
W Firewall

T

Figure 5. UML Deployment Diagram Showing Use of an Ansible playbook for Configuring ACLs
and Firewalls

Additionally, infrastructure as code tools such as Terraform may be used in cloud-native
environments, deployed on cloud providers such as Amazon AWS, Microsoft Azure or Google
Cloud.

There also exists a variety of proprietary, vendor specific network automation and configuration
management tools, such as Cisco DNA Center, Junos PyEZ or HPE Intelligent Management Center.
These tools will not be analyzed and discussed, since their nature goes beyond the scope of this
paper, which focuses on the analysis of open-source tools, protocols and standards.

Network Monitoring and Inventory Management Tools Such types of tools provide auto-
mated or partly-automated discovery, monitoring, configuration versioning, among other related
features. This category of open-source network automation tools include monitoring systems
such as LibreNMS or Grafana as well as configuration versioning tools such as RANCID or Oxi-
dized. Examples of automation in such systems include automatic discovery and inventorization
of network devices with tools like LibreNMS and automatically collecting and saving versions
of configurations with tools like RANCID or Oxidized. The tools mentioned also have varying
levels of integration between each other. For example, Oxidized and LibreNMS have the ability to

15

integrate, forming a system in which automated inventory of network devices is kept and allows
system administrators to view device configurations and their versions in a timely and convenient
manner via a web interface, without the need to manually connect to each device. LibreNMS also
has the ability to integrate with Grafana for altering and data visualization via a back-end database
such as Prometheus or Graphite.

The use of the aforementioned tools and the like can save time, as well as aid in troubleshooting,
as well as help make network changes. As they provide a reference point, in case of configuration
versioning systems. Many of them also may provide altering in cases of configuration changes,
errors or outages. Such features of the tools mentioned have the ability to greatly help network
administrator to improve the reliability of the networks at hand.

Network Automation in Virtual Environments Network automation can be especially important
in the case of virtual environments. This is due to the ability for vast scalability and rapid deployment
of new virtual machines or containers. This means that manual configuration may not even be a
viable option in cases where hundreds of virtual hosts are deployed. Fortunately, virtualization
platforms can provide support for automating certain features of the networks therein. For example
the open-source virtualization platform Proxmox Virtual Environment has a rather user friendly
firewall solution based on iptables. [6] While it may not provide sufficient levels of automation in
and of itself, due to the Debian Linux based nature of the Proxmox Virtual Environment platform,
existing automation systems could be used to automate aspects of firewall deployment and firewall
rules.

1.4.2 Advantages of Open Source Automation Tools

The deployment and use of open-source automation tools brings various benefits to network ad-
ministrators and the networks within their realm of responsibility. As was described in the overview
section, such tools are able to automate common processes of computer network configuration, as
well as increase observability of the IT infrastructure in an organization. The observability may
even extend beyond the networking sphere, as the aforementioned tools have to ability to monitor
servers alongside network devices. This can alert system administrators of outages that may be
unrelated to the network, for example, they may alert of unfavorable environmental conditions such
as temperatures, as well as monitor the power drawn by devices in a datacenter. Thus, implementing
certain systems for the use of network automation has positive effects that extend beyond the
management of network devices.

Another important aspect of open-source network automation tools in multi-vendor support.
As the tool suites are not managed or maintained by one particular vendor, they support most
equipment currently in use in datacenters across the world. The use of protocols, such as SSH and
SNMP mean that automation can be achieved not only with the latest hardware, but also with much
of the legacy equipment that may be over a decade old. This a key advantage that provides much
improved flexibility, compared to some of the alternatives in the network automation sphere.

Additionally, the cost of deploying many of those system may be far lower than fully integrating
previously mentioned technologies, such as software-defined networking. Assuming that an
organization has existing private cloud infrastructure that allows the deployment of virtual machines,
as well as administrators with moderate proficiency, these systems can be deployed at little cost.
The open-source tools mentioned often do not require the purchase of licenses, even for commercial
use. Some projects such as Observium, may have been commercialized, though open-source forks

16

can often fill the void and provide similar capability at no cost, with the increased transparency that
comes with an open-source initiative.

1.4.3 Limitations of Open Source Automation Tools

Evidently, open-source projects, developed and maintained by their respective communities may
also have limitations. Many of the projects mentioned, such as LibreNMS and Oxidized have rather
small teams of people working on them, often part-time. This means that bug fixes, improvements
and new features may not be released at a timely manner. Additionally, the lack backing from major
organization or vendor means that support will be available only from the community, which uses
the same systems. This can sometimes be a benefit, as issues can be identified and documented
by multiple persons and in different scenarios. The downside, of course is that when a bug or
problem has been identified, it may require waiting a considerable amount of time to be fixed, or
require work-arounds which include manual code patching which may also not be ideal for many
organizations. An example of this can be seen with open-source the network device configuration
versioning tool Oxidized. The latest version of the Pfsense open-source software router/firewall
is not compatible with the latest version of Oxidized. This issue has been identified and a manual
code-fix provided. [10] The fix has also been merged into the development branch of Oxidized,
though, at the time of writing these fixes have not yet been addressed in the latest release of Oxidized
(0.29.1). This example highlights a particular disadvantage of using open-source systems. Though,
it is pertinent to emphasise that this disadvantage may be relative in comparison to other solutions.
An active community, even one where changes to releases are made slowly is still favorable, in
comparison to a commercial project that is no longer maintained, which may the cases with some
legacy systems still in use.

1.4.4 Choosing Suitable Open Source Software for Network Automation

When seeking to choose a set of tools suitable for the network of a particular organization it is
important to consider multiple factors at play. When choosing network configuration management
tools, an organization needs to first consider the vendors and operating systems of the network
devices that are a part of the networks, within the respective scope of management. The set of tools
chosen has to have the modules needed to properly interface with and run commands and scripts on
the existing network devices. Future growth may also need to be considered, that is, is the chosen
set of tools likely to support hardware that is to be integrated into the network in the short to medium
term. Another important factor to consider is the experience and expertise of the personnel of the
operations team. Since different sets of tools use different scripting languages for configurations,
for example, some use domain-specific languages, such as in case of Puppet and Chef, and others,
like Ansible and Saltstack use YAML. Familiarity with the underlying programming languages
may also need to be considered. Since the familiarity of staff with the programming language that a
system in use is written in, may help speed up deployment and allow more in-depth troubleshooting
or even creating new modules based on specific needs. Additionally, Chef and Puppet are older and
more established, which may be favorable for organizations in which stability is a priority. While
Ansible and Saltstack may be favorable in use cases where the tasks are more simple. [17] In terms
of capability, none of the systems in question should be discounted, as all may provide robust and
extensive support for the automation of various kinds of network configurations. For example, with
Ansible, automation of IP address assignment to interfaces, as well as BGP routing configurations
can be applied. [7]

17

Choosing open-source network monitoring and inventory management tools, entails the chal-
lenges of finding the projects that have not been commercialized and still have an active community.
For example, the once popular network device configuration backup tool RANCID (Really Awe-
some New Cisco conflg Differ) seems to be getting less popular and receiving less maintenance
than its self-proclaimed replacement Oxidized. Based on data from respective Github repositories,
RANCID currency having the latest release 3.13 launched in October of 2020 [9], while Oxidized
had the latest release 0.29.1 in April of 2023 [16]. Along with the more active community, Oxidized
seems to be the rather obvious choice as of writing. Though in cases where there is already an
existing system in place which works for the needs of an organization, replacing it with Oxidized,
which as mentioned still has compatibility issues with popular networking software systems (such
as Pfsense) may not be deemed desirable. Additionally, it is important to keep in mind that network
device configuration backups may be performed in a fully or partially automated way using tools
such as Ansible. When it comes to network monitoring, alterting and inventory upkeep options
such as LibreNMS, Cacti, Nagios, as well as Prometheus and Grafana are available. The choice
may depend on the administrators preferences and familiarity with the systems in questions, though
LibreNMS, the community based fork of latest GPL-licensed of Observium version, is a strong
contender. It has the ability to scan predefined networks and subnets for new devices, that it can then
add to its monitoring inventory via configured SNMP credentials. It also has the ability to integrate
with many of the aforementioned systems, such as Nagios, Proxmox Virtual Environment, Rancid
and Oxidized [5]. This makes LibreNMS a worthy addition to many different organizations network
management technology stack, integrating well with other systems to seek network automation.
Picking automation tools in environments where extensive virtualization is used may depend on the
virtualization platforms and tools used. Many cloud providers, such as Microsoft Azure, Amazon
AWS, Google Cloud and others may have their own solutions for implementing network automation,
potentially completing many tasks behind the scenes, out of the management scope of the customer,
using such cloud services. In the case that an organization uses a self-hosted private cloud, tools
such as Ansible, Puppet, Chef and others may be used for provisioning and configuring virtual
network resources. Private cloud tool vendors, such as VMware, may also provide proprietary
automation tools that may be better suited to their particular platform. Additionally, tools such as
Terraform may be well suited for cloud environment as well, though it seems like the organization
behind Terraform, like many other creators of open-source automation tools, has taken steps to
restrict access to their code base by changing the licensing of Terraform.

This trend provides a bleak outlook and may have long term implications. As more and more
useful, widely used tools move away from open-source licensing, access to freely available network
automation may be shrinking. This may present future challenges for organizations which do not
have the resources to acquire licensing, while additionally reducing transparency. This also makes
network management more complex, as tools that are currently open and free to use may at any
point become commercialized, with the open-source versions loosing future support, updates for
new hardware and software as well as crucial security patches. Fortunately, numerous communities
of programmers, system and network administrators exist, providing forks and updates, making the
features of formerly open-source network management and automation tools, such as Observium,
once again open to all.

18

2 Implementation Example

The following subsections will describe a scenario as well as provide example implementing the
use of using open-source automation tools for computer network management. This example will
deliberately be minimal, providing automation only for a very limited portion of a wider network.
Due to limited resources it has been decided that such a proof-of-concept will be sufficient to
illustrate the possibility of network automation, as well as some of the capabilities of open-source
automation tools and technologies.

2.1 Mini-world Scenario

The potential scenario where this example could be applied is an organization, which has preex-
isting infrastructure, including private and public networks, subnets and servers. This organization
has personnel with the expertise to manage self-hosted cloud infrastructure and are familiar with
Linux and some of the common open-source automation tools. A new project is being carried out.
It requires the setup of a new cluster for the deployment of virtual resources. It has been decided
that a firewall will be needed to restricts the hosts from accessing each other, only having access
to a web server, hosted in the same cluster. Since many hosts are planned to be deployed, it was
decided that automation of host deployment, as well as the automated configuration of firewall
rules will be needed. Thus the organization will need a solution of how to accomplish such tasks,
utilizing tools and expertise that is already available.

2.2 Technological Considerations

For the implementation of the network automation example, it has been consciously and de-
liberately decided that exclusively open-source tools will be used. This commitment has been
established due to both practical and ideological considerations. The tools chosen had to be freely
available and widely used, having robust documentation. The example had to be a model, proving
that network automation is achievable without extensive investments or resources, is realistic to
accomplish for many organizations around the globe. Additionally, the software chosen had to
be vendor-agnostic, meaning that it can be run on a vast majority of hardware, only requiring the
support for industry standard instruction sets and virtualization technologies. Thus, this model has
to provide the basis, proving that proprietary, commercial solutions and not mandatory to implement
network automation.

2.3 Tools and Technologies

This subsection will list and describe the specific tools and technologies that were chosen and
used for the implementation example. Firstly, the open-source Proxmox Virtual Environment
virtualization platform was chosen. It is based on Debian Linux, is lightweight, has robust doc-
umentation, an active community. Importantly for this project, it contains a rather user friendly
firewall based on iptables. A key point being that firewalls rules and configurations are easily
accessible and can be configured both in the web-interface and by manipulating configuration files
via scripts or commands. This provides the key ability to set needed firewall rules using a graphical
interface, observe the configuration applied in the configuration file and potentially duplicate the
rules without having to worry about specific syntax of the firewall configuration files.

19

Secondly, for the deployment of hosts inside of the Proxmox Virtual Environment, it was
decided to utilize LXC Linux containers. Due to the minimal nature of the example, it was
imperative to make the system as lightweight as possible, requiring minimal hardware resources
to replicate. The performance advantage of LXC, as well as containers comes from the fact that
containers share the kernel with the host, while traditional virtual machines such as KVM run
a separate, additional kernel for each virtual machine. The performance benefits of containers,
including LXC are well proven, especially in terms of disk and network IO throughput. [13]

Furthermore, the open-source automation toolset Ansible was chosen for automating the deploy-
ment of LXC containers on Proxmox VE, as well as for applying firewall rules and configurations
to the newly created hosts. The decision to choose Ansible was one of personal familiarity, as
well as robust community support. An open-source Ansible Role for deploying LXC containers
on Proxmox had already been published on Github, thus simplifying the deployment automation
process. [8] The containers being deployed were Debian 10 and Debian 11 containers, with Debian
having been chosen due to being lightweight as well as famously stable.

Additionally, shell scripting was also utilize to run the Ansible Playbook (which deploys an
LXC container and applies firewall configuration) multiple times, with different hostname, VMID
and IP parameters. This may be a bit of a crude way to accomplish the deployment of multiple
hosts, though for this particular implementation example this was deemed efficient and sufficient.

2.4 Structure of the System

In this subsection, the structure of the example system will be provided and described. For
the deployment of the system itself, the OpenNebula Sunstone virtualization platform, provided
by Vilnius University, Faculty of Mathematics and Informatics. This platform can in essence
be substituted for most any virtualization platform, bare-metal server or personal computer, as
the system was made with the purpose of multi-platform compatibility in mind. Next, a Debian
Linux virtual machiene was used, and Proxmox Virtual Environment was deployed on top. When
using other platforms or bare-metal hardware it would be favorable to use the ISO provided by
Proxmox and install from scratch, though this option was deemed not feasible for the deployment
on OpenNebula of VU MIF. Inside of the Proxmox Virtual Environment (PVE), the iptables-based
firewall, included with PVE was setup, allowing the creation of firewall rules via the web-interface,
commandline or scripts. Next, a Debian 11 LXC container for hosting the Ansible automation
toolset was deployed, in which, the required Ansible Role, Ansible Playbook and shell script were
uploaded and constructed. Next, an example web server was created, in order to demonstrate the
use of firewall rules. The IP address of which is noted in the variables of the Ansible Playbook.
From the Ansible LXC container, the series of imperative and declarative scripts is then executed,
deploying multiple hosts, along with their appropriate firewall rules, via a single shell command.
During the runtime of the scripts, the Ansible container connects via SSH to the virtual machine on
which the Proxmox Virtual Environment is running, as well as contacting the Proxmox API in order
to create the aforementioned host containers with the desired network configurations. The UML
deployment diagram below demonstrates these interactions, as well as shows the overall structure
of the example system.

20

<<executionEnvionment
VU MIF OpenNebula Sunstone Virtual Environment

<<node>>
Debian Linux Virtual Machine

<<executionEnvionment
Proxmox Virtual Environment

<<node>>

<<node>> Web Server LXC Container
Host LXC Container
Apache
Web Server
Service

<<node>>
Host LXC Container

<<node>>
Ansible LXC Container

<<node>> Ansible
Host LXC Container Automation

Toolset
<<deploy>>/ <<artifact>>
/ Shell Script

<<procotol>>]
Proxmox VE HTTPS <=deploy>> <<artifact>>
Firewall // Ansible Playbook

Proxmox VE <<procotol>> <<artifact>>
API SSH Ansible Role

Figure 6. UML Deployment Diagram of the Example System

2.5 Environment and Networking Setup

In order to demonstrate the network automation example, an environment for deploying the
virtual resources had to first be created and properly configured. Firstly, a Debian 11 Linux virtual
machine was created in the OpenNebula Sunstone virtual environment. In order to install the
Proxmox Virtual environment on the aforementioned virtual machine, appending the sources list in
/etc/apt/sources.list.d/ was required, as well as adding the GPG key for the Proxmox VE repository.
Proxmox VE 7.4-16 was then installed using the Debian apt package manager. The port 8006 for
the web interface then had to be forwarded via OpenNebula Sunstone, so as to allow the access to
the Proxmox VE web interface. Upon accessing the web interface, two Linux bridges were created
to act as virtual switches for the example network. One of the Linux bridges (vimbr0), containing the
virtual machine interface eth0, as well as having the IP address assigned by OpenNebula: 10.0.0.114,
was for access to the 10.0.0.0/8 network of virtual resources in OpenNebula, as well as connecting
to the 10.0.0.1 gateway for internet access. The second Linux bridge (vmbrl), was created for
internal network of the Proxmox VE for hosts, the web server, as well as the Ansible container.
The network address being 192.168.1.0/24. This network does not have any associated interfaces
or ports on the virtual machine, thus, it is isolated from the rest of the network of OpenNebula
virtual machines. This was done as to not interfere with the wider university network and avoid
IP collisions or other disruptions to the faculty network infrastructure. The Proxmox VE firewall

21

also had to be enabled. This had to be done in two places of the web interface: in the *Datacenter’
section, as well as for the specific node *Debian’, setting the default input and output policies to
>ACCEPT’. Furthermore, the container for the Ansible automation suite was deployed, though
it, unlike the other containers required access to the internet for installing the required packages
as well as pulling the Ansible Role for the automated deployment of subsequent containers. For
this, an additional interface was created for the virtual machine in OpenNebula Sunstone, as to get
an additional IP address that would be used for the Ansible container and allow for it to connect
to the 10.0.0.1 gateway, thus getting access to the internet. For simplicity and stability, static IP
assignment was used for the 192.168.1.0/24 network. It is important to note, that extensive security
hardening had not been performed. That means that in some places of the example system, root
users are used, simple passwords or other practices that may be considered insecure in a production
environment. These decisions were taken to make the example system easy to test and troubleshoot,
as well as being quicker to set up. Common security guidelines, such as robust passwords were
however followed in the parts of the system which face the wider faculty networks and access the
internet. Having acknowledged that, the setup continues. The Ansible container was populated with
the all required software for the automated deployment of LXC containers and firewall rules. The
web server container was deployed using the automated scripts. The IP of the web server was noted
and set in the Ansible playbook variables, thus the subsequently deployed host containers are able
to access only the web server container, all other outgoing traffic with destination addresses other
than the web server IP 192.168.1.250 being rejected.

2.6 Declarative and Imperative Scripts

In order to achieve the goals of demonstrating network automation in an example environment, a
combination of imperative and declarative scripts was utilized. Declarative meaning that the desired
state was described, with the software then seeking to create said state. Conversely, imperative
meaning that the steps and their order required to create resources were specified via a set of
commands in a script, in a similar way to procedural programming.

For the creation of the LXC containers, a preexisting open-source Ansible Role was utilized.
[8]. The parameters for execution being set via variables in the Ansible Playbook titled pve-ct-
deploy-playbook.yaml and command-line arguments in the shell script mass-deploy.sh, which runs
the Playbook.

The playbook was also appended with tasks, which create and apply the aforementioned
Proxmox VE firewall rules, via the use of a Jinja template, that resides in the templates directory
and is titled example.fw.

Some of the parameters for the Ansible Role, responsible for LXC container creation being:

* pve_vmid - the VMID to be used in Proxmox VE to identify the container;

pve_hostname - the hostname of the container;
* pve_node - the node on which the container is to be deployed;

* api_user - the username and authentication method (Linux PAM or PVE) for the Proxmox
VE API ;

* pve_apipass - the password for the Proxmox VE API user;

* pve_api_host - IP address or domain name for connecting to the Proxmox VE API;

22

* pve_template - the template from which the LXC container is to be created;

* pve_netif - network interface configuration for the LXC container;

* pve_cores - number of CPU cores assigned to the LXC container;

* pve_mem - amount of memory (in megabytes) to be assigned to the LXC container;
* pve_swap - the amount of disk space used for the swap memory;

* pve_guest_pass - the password for the LXC container;

* pve_dns - the DNS server IP for the LXC container;

* pve_storage - the storage to be used for deploying the LXC container (for example: local or
ceph cluster);

» pve_disk_size - size of the disk for the LXC container;
* pve_ssh - public SSH key that is to be set in the LXC container;
* pve_onboot - specify whether to start the container upon the Proxmox VE node boot.

An additional parameter web_server_ip was utilized in the aforementioned firewall rule template
example.fw. It is defined in the pve-ct-deploy-playbook.yaml and denotes the IP of the web server
that the host containers need to have access to.

Furthermore, the aforementioned shell script mass-deploy.sh was created and used to run the
Ansible playbook multiple times with certain incremental parameters via a loop. The incremental
parameters being pve_ct_ip, pve_hostname, pve_vmid. For simplicity, the values of these three
parameters are tied to the VMID. This introduces a limitation on the VMIDs that can be specified,
as well as IP addressing. Since the final octet of the container IPv4 address is set to the VMID, the
VMID has to be between 1 and 254, while also avoiding any of the address endings already in use,
such as .1 for the Linux bridge, .102 for the Ansible container and .250 for the web server. The
VMID range is passed to the shell script in 2 arguments: first argument being the VMID of the first
container to be created and the second argument being the number of containers to be created. The
script will then increment each VMID, IP address and hostname suffix by +1 for each container
that is to be deployed.

23

Conclusions and Recommendations

In conclusion, the two major goals set out for this work were achieved. One of them being
the analysis of network automation methodologies, tools and technologies. During the course
of the analysis it was found that software-defined networking will often require major changes
to the network infrastructure, requiring major investments in hardware, as well as human hours.
An alternative, in the form of open-source automation tools, was found. Tools such as Oxidized,
LibreNMS and Ansible were proven to be able to automate some common, yet important tasks, such
as network device configuration backup, inventory keeping and updating as well as configuration
changes, applying configurations to new physical or virtual devices, hosts. Though a negative
trend in the sphere of open-source automation tools was noticed. That being privatization and
commercialization of formerly open-source projects. A few notable ones being Observium and
more recently: Terraform. Thankfully, open-source forks (such as LibreNMS, being a fork of
Observium) are stepping in to provide some of the same features, while having open licensing.
Though it is not clear how some of these projects will evolve and if they will be supported in the
long term.

Another goal of the project was to give an implementation example, enabling network au-
tomation using open-source tools. It was decided to automate the deployment and firewall rule
configuration for virtual resources. This was achieved by the use of the Proxmox Virutal Envi-
ronment, along with Ansible and shell scripts. With the series of scripts being used to deploy
LXC containers in Proxmox VE, as well as to apply their respective firewall rules. This example
demonstrated that certain network tasks can be automated using freely available, open automation
tools in a vendor-agnostic environment, with the example system being widely compatible with
different hardware or virtual machine environments.

Overall, this work has clearly shown the importance of open technologies, standards and tools. It
is important to contribute to the development and maintenance of open-source tooling, as it provides
benefits to all, especially in cases where purchasing proprietary, vendor specific automation products
is not feasible. The open source community is providing crucial management and automation tools,
helping to configure and maintain networks, that have a major impact on many of our lives.

24

Future Work

As the given implementation model is just a minimal example of what is possible with open-
source automation tooling. To make it suitable for production use, resources such as a DHCP
server and NAT router would have to be deployed for the example network, with additional security
hardening having to be performed as well. Moreover, work on maintaining and creating open-source
automation tooling is crucial, as some tools that were already available were of great help, making
it possible to automate deployment and configurations without having to design, create and program
tooling from the ground up.

Additional research and analysis into preexisting open-source network automation tooling would
also be of use, as exploring the combinations and integration among numerous suites may uncover
particularly useful combinations, allowing to automate many more processes.

25

References

[1] Muhammad Awais, Muhammad Asif, Maaz Bin Ahmad, Togeer Mahmood, and Sundus
Munir. Comparative analysis of traditional and software defined networks. Department of
Computer Science, Lahore Garrison University, Lahore, Pakistan, 2021.
https://ieeexplore.ieee.org/abstract/document/9526236.

[2] VMware by Broadcom. What is software-defined networking (sdn)? Broadcom Inc., 2023.
https://www.vmware.com/topics/glossary/content/software-defined-networking.html.html.

[3] Chang Ching-Hao and Dr. Ying-Dar Lin. OpenFlow Version Roadmap. National Yang Ming
Chiao Tung University, Taiwan, 2015.
http://speed.cis.nctu.edu.tw/~ydlin/miscpub/indep_frank.pdf.

[4] Stuart Clark, Hazim Dabhir, Jason Davis, and Quinn Snyder. Automation. Cisco Certified
DevNet Professional DEVCOR 350-901 Official Cert Guide, 2022.
https://www.ciscopress.com/articles/article.asp?p=3145761&seqNum=4.

[5] LibreNMS contributors. LibreNMS Docs, 2024.
https://docs.librenms.org/.

[6] Proxmox VE contributors. Firewall, 2023.
https://pve.proxmox.com/mediawiki/index.php?title=Firewall&oldid=11840.

[7] Anirban Dattal, A. T. M. Asif Imran, and Chinmay Biswas. Network Automation: Enhancing
Operational Efficiency Across the Network Environment. Department of Information and
Communication Technology, Bangladesh University of Professionals, Dhaka, 2022.
https://icrrd.com/public/media/21-03-2023-154115Network%20Automation.pdf.

[8] Noe Gonzalez. Ansible Roles: Proxmox. GitHub, Inc, 2022.
https://github.com/engonzal/ansible_role_proxmox.

[9] Github User haussli. RANCiD Tags. GitHub, Inc, 2023.
https://github.com/haussli/rancid/tags.

[10] Github User jcheger. Release 0.29.1 breaks pfsense and opnsense config. GitHub, Inc, 2023.
https://github.com/ytti/oxidized/issues/2771.

[11] Hyojoon Kim and Nick Feamster. Improving network management with software defined
networking. Georgia Institute of Technology, 2013.
https://ieeexplore.ieee.org/abstract/document/6461195.

[12] Aladhami Mahmood Mazin, Ruhani Ab Rahman, Murizah Kassim, and Abd Razak Mahmud.
Performance analysis on network automation interaction with network devices using python.
Faculty of Electrical Engineering, Universiti Teknologi MARA, Malaysia, 2021.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9431823&tag=1.

[13] Roberto Morabito, Jimmy Kjillman, and Miika Komu. Hypervisors vs. lightweight virtualiza-
tion: a performance comparison. Ericsson Research, NomadicLab, Jorvas, Finland, 2015.
https://ieeexplore.ieee.org/stamp/stamp.jsp ?tp=&arnumber=7092949.

26

https://ieeexplore.ieee.org/abstract/document/9526236
https://www.vmware.com/topics/glossary/content/software-defined-networking.html.html
http://speed.cis.nctu.edu.tw/~ydlin/miscpub/indep_frank.pdf
https://www.ciscopress.com/articles/article.asp?p=3145761&seqNum=4
https://docs.librenms.org/
https://pve.proxmox.com/mediawiki/index.php?title=Firewall&oldid=11840
https://icrrd.com/public/media/21-03-2023-154115Network%20Automation.pdf
https://github.com/engonzal/ansible_role_proxmox
https://github.com/haussli/rancid/tags
https://github.com/ytti/oxidized/issues/2771
https://ieeexplore.ieee.org/abstract/document/6461195
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9431823&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7092949

[14] Arista Networks. 70508X Series 10/40G Data Center Switches Data Sheet, 2020.
https://www.arista.com/assets/data/pdf/Datasheets/7050S X-128_64_Datasheet_S.pdf.

[15] Brent Salisbury. Inside Google’s Software-Defined Network. Informa PLC, London, United
Kingdom, 2013.

https://www.networkcomputing.com/networking/inside-googles-software-defined-network.

[16] Alexander Schaber. Oxidized Releases. GitHub, Inc, 2023.
https://github.com/ytti/oxidized/releases.

[17] Deeksha Srivastava. Chef vs. Puppet vs. Ansible vs. Saltstack: A Com-
plete Comparison. Successive Digital, 2021. https://medium.com/successivetech/
chef-vs-puppet-vs-ansible-vs-saltstack-a-complete-comparison-9af8f1790c0d.

[18] Cisco Systems. Use network automation to design, provision, and manage your network for
improved business efficiency. Cisco Systems, Inc., 2023.
https://cisco.com/c/en/us/solutions/automation/network-automation.html#~why-cisco.

27

https://www.arista.com/assets/data/pdf/Datasheets/7050SX-128_64_Datasheet_S.pdf
https://www.networkcomputing.com/networking/inside-googles-software-defined-network
https://github.com/ytti/oxidized/releases
https://medium.com/successivetech/chef-vs-puppet-vs-ansible-vs-saltstack-a-complete-comparison-9af8f1790c0d
https://medium.com/successivetech/chef-vs-puppet-vs-ansible-vs-saltstack-a-complete-comparison-9af8f1790c0d
https://cisco.com/c/en/us/solutions/automation/network-automation.html#~why-cisco

	Contents
	Abstract
	Santrauka
	Introduction
	1 Analysis
	1.1 Approaches to Computer Network Management
	1.2 Existing Solutions for Network Automation
	1.3 Network Automation using Software-Defined Networking
	1.3.1 SDN Concepts and Principles
	1.3.2 SDN Models and Their Advantages
	1.3.3 SDN Challenges and Drawbacks
	1.3.4 Feasibility of Implementing SDN in a Corporate Network

	1.4 Network Automation using Open Source IT Automation Tools
	1.4.1 Overview of Open Source Automation Tools
	1.4.2 Advantages of Open Source Automation Tools
	1.4.3 Limitations of Open Source Automation Tools
	1.4.4 Choosing Suitable Open Source Software for Network Automation

	2 Implementation Example
	2.1 Mini-world Scenario
	2.2 Technological Considerations
	2.3 Tools and Technologies
	2.4 Structure of the System
	2.5 Environment and Networking Setup
	2.6 Declarative and Imperative Scripts

	Conclusions and Recommendations
	Future Work
	References
	References

