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Abstract

In this work we demonstrate how to preprocess MRI data of prostate cancer to get discrete time
series. This series are smoothed into functional data by B-splie smoothing and differences are detected
between functions for malign tissue and functions for healthy tissue. Classification of the tissues follows
biopsy results. By a functional t-test we identify an intervall with statistically significant difference

between both groups of functions.
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Notation, Abbrevation

MRI Magnetic Resonance Imaging

FDA Functional Data Analysis

SLIC Simple Linear Iterative Clustering
TVM Temporal Variation Matriz

MSE Mean-Square-Error

LOOCYV Leave-One-Qut Cross Validation
BD Band Depth

MBD Modified Band Depth

ANOVA Analyse of Variance



1 Introduction

Prostate cancer is the most commonly diagnosed male malignancy worldwide and the fourth leading
cause of cancer death in men. This amounted worldwide to 1,414,249 newly diagnosed cases and 375,000
deaths from this disease in 2020 |11, 14, 27, 25, 22].

Biopsy is one of the "hands on" methods, to detect prostate cancer. But computer simulations showed,
that the risk to miss a cancer by sextant biopsy is estimated to approximately 25% [3]. Also a repeated
sextant biopsy of 118 males, failed to detect cancer in 27 men (23%) [16]. At the opposite magnetic
resonance images (MRI) are well known to detect cancer of different kind noninvasively [20, 12, 5]. For
MRI the patients get an injection of contrast fluid, which reinforces visible differences between different
tissues. The resulting image could be imagined as a three dimensional cube, cutted visually into two
dimensional slices. Each slice is a grayscale image, where the brightness represents the tissue’s intensity
to react to the constrast fluid.

At present time, the processing and interpretation of prostate MRI data in clinical routine is entirely
performed by human experts (radiologists) who, while competent, are time-limited, cost-intensive, and
cannot be easily scaled to meet increasing imaging demands [13|. Furthermore, human performance is
dependent on experience and training, leading to significant variability between observers [19, 7, §].

A computer based method well used for comparing time series is functional data analysis (FDA) [18]. A
review of a large number of FDA related publications across various fields of science has shown, that the
majority is related to biomedicine applications (21.4%) [28|. Even if FDA was used already for cancer
research [2| and biological image processing [26], the new approach to use the TVM in segmentiation
without implied anatomical classification invited by Surkant in 2022 [24], makes the use of FDA as
planned in this thesis a fully new approach.

Within this method the MRIs of different timesteps are merged slicewise by calculating pixel by pixel
the statistical standard deviation over time, getting a new image with equivalent slices named temporal
variation matrix (TVM, see equation (1)). Automated segmentation of the TVM is performed by simple
linear iterative clusterin (SLIC [1]). The resulting segments, named superpixels, are projected to the
original MRI images, grouping the pixels by intensity change over time. By calculating the intensity’s
mean, each segment get a key value for each timestep, resulting into a discrete time series of intensities
for each segment of each slice of the MR-images.

This work will apply FDA methods onto the discrete time series resulting from the use of TVM and
SLIC. By doing so, this work will show how to differ between curves representing healthy tissues
and curves representing cancerous tissues. Following methods will be helpful: (i) smoothing via B-
spline basis, (ii) discriptiv analysis of the resulting curves, (iii) label the curves by biopsy’s result, (iv)
performing a functional t-test between the groups labeled "healthy" and "cancerous", (v) calculating
the maximum velocity of each curve in an intervall, determined by the t-test’s results and (vi) use the
analyse of variance (ANOVA) method to set the group of functions classified as "undetermined" in
context.

This research will show, that it is possible to differ between the groups of "healthy" and "cancerous"
tissues with true positive’s percentage of nearly 94% (15 out of 16). Statistical significance is shown
by a functional t-test. Also the ANOVA shows that the group of functions classified by the histologists



as "undetermined" is less similar with the group of "ill" than with the group of "healthy". But the
differences between the groups of "ill" and "healthy" is nearly 4 times larger, which suggests to locate

the "undetermined" curves inbetween the "healthy" and "ill" ones.



2 Literature Review

As mentioned above, FDA methods are well used in biomedicine field. Crawford et al [2] used the
FDA methods to detect glioblastoma multiforme, an agressive form of human brain cancer. Although
they used MRI data too, their preprocessing contained the construction of surfaces and shapes to spot
growing areas (probable cancer) in the brain. They developed a statistic, called "smooth Euler charac-
teristic transform", that summarizes shape information of glioblastoma multiforme MRI as a collection
of smooth curves. Onto this curves they apply FDA methods by using tumor shape information as a
covariate in regression frameworks. In opposite to this work, there were no contrast fluid used and also
the MRI data was recorded during separate visits instead at different timesteps within one visit of the
patient, as it is the case in this work.

Ferro et al [6] collected a list of 30 studies using MRI techniques within the last 5 years. Around
one half of them used MRI, the other half used multiparametrial MRI as base. Only two did the
segmentation of the images semiautomatic instead of fully manually. The authors conclude that "to
accurately distinguish cancerous versus benign tissue, radiometrics has to benefit from technological
improvement in segmentation, feature extraction, statistical analysis, multi-center, prospective RCTSs to
be integrated in clinical practice and in decision-making protocols" [6]. In opposite to this the present
work does the segmentation full automated by the SLIC algorithm.

Sunogrot et al [23] provide an overview about artificial intelligent (AI) methods to process prostate
MRIs. They focus on the availability of data, tools for prostate MRI and challenges to measure the
quality of results. For Al the existence of large, well curated and diverse datasets is crucial. Sunoqrot
et al collected 17 public datasets including a total of 3.369 prostate MRI cases. Actual there are
approaches to ease the access for institutions making their data available (Pro-Cancer-1I platform [30])
aiming national and international medical data sharing regulations. Implemented AT is found in the
products of 11 vendors, five do automated anatomy segmentation, two generate heatmaps to help spot
tumors and 3 provide automated tumor detection. Problems occure, if developers want to benchmark
against this models. Either the access is not possible or they need to use the source code, install
libraries and make changes to fit the model. Possible solution are six mentioned platforms with access
to pre-trained models allowing benchmarking easily.

Tian et al [26] highlights the importance of FDA in dimension reduction and feature extraction,
spatial classification in MRI studies, and the inverse problem in magneto-encephalography studies.
During a brain imaging experiment images are made every one to two seconds for a total time of one to
two minutes. This results in 200 to 1000 images. They judge FDA as a considerably effective approach
to handle the enormous amount of data, leading to better results in general, than commonly used

multivariate methods.



3 Research

3.1 Data preparation - How to get prostate cancer into bits and bytes

By using the effect of magnetic fields onto protons, present in any tissue of the human or animal
body, magnetic resonance imaging (MRI) produces noninvasively images of the inside of the body. In
difference to computer tomography (CT) there are not even x-rays needed. This makes MRI a visual
imaging method, suiting for the need of repetition, as it is given for observations of developments over
time. The resulting image represents a three dimensional cube of tissues, organs and similar. By
visually "cutting" this cube into slices a set of two dimensional images is formed, one image for each
slice. This results into a three dimensional matrix, where each value ¢ represents a pixel at certain
coordinates x,y in a certain slice s. Because the MRI is repeated at certain timesteps, in total there
will be a 3D matrix for each timestep ¢.

For this research the dataset "P015" of one patient was used. Each slice of it’s MRI has a dimension of
512 to 512 pixels. Each matrix includes 34 slices and there is one matrix for each of the 31 timesteps.
First step in preprocessing the data is the application of the method provided by Surkant et al [24].
It calculates the variance o? for each pixel i at coordinates z,y in the j-th slice s; over all timesteps
[t1,t2, ..., t7] (see equation (1)) resulting in a three dimensional matrix named temporal variation matrix
(TVM).

ng‘;f;])ngj - UQ(i(rvy)vsj,tl j@Wsita Z'(Ivy)vsj’tT) (1)
Next the SLIC algorithm [1] is used to segment the TVM automated. Herefor each slice was handled
separately, choosing 50 superpixel cluster centers C}, for each slice, with k& = [1,50] and that followed
by calculating distances between pixels in a 5 dimensional space. Three dimensions are caused by
the euclidean distance dj,;, (see equation (2)) in the color space, called CILAB. The remaining two

dimensions are caused by the euclidean distance d,, (see equation (3)) of the pixels by coordinates z, y.

diab = /(I — 11)2 + (ag — a;)? + (b — b;)? (2)
dmy = \/(xk - xi)2 + (yk - yi)2 (3)

The overall distance Dg between center C; and neighbouring pixel ¢ is the sum of the lab distance
and the xy distance normalized by the grid interval S = \/]\7/7 , where N is the number of pixels in
the whole image and K = 50 is the number of superpixel cluster centers [1|. By this distance Dg the
neighbouring pixels will be assigned to the lowest distant cluster center Cy. Afterwards the segments are
projected onto all 34 matrices for 34 timesteps. To get one keyvalue for each segment at each timestep,
this research uses the mean as aggregation function for each segment. The end of this preprocessing
results in a discrete time series for each segment of each slice (see figure(1)).

After finishing preprocessing the data the methods of functional data analysis are used. First the
discrete time series data will be smoothed into continuous curves. Because the "P015" data is non-
periodic, this work chose the B-spline basis, following the recommendation of Ramsey and Silverman
[18].

A spline function S(t) is defined by (i) the order of polynomial segments it consists of and (ii) the
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Figure 1: Discrete time series of each classified segment, patient data "P015".

sequence of knots 7, which are the points of matching between discrete time series and continuous
curves. The intervall over which a function is to approximated is divided into L subintervalls by 7,
where [ = 1,..., L — 1. Each intervall consists of a polynomial of order m, named spline. The B-spline

basis system was introduced in 2001 by de Boor (see equation (4),[4]).

m+L—1

St)= > Bi(t,T), (4)

k=1

where By(t,7) is the value of the B-spline basis function defined by the sequence of knots 7 at time
t, as well as ¢ is the coefficient value. For this work we chose order m = 4 to get access also to the
first and second derivatives of the smoothed curves. Because the number of knots K = L — 1 defines
how close the smoothed curves will approximate the discrete time series, we need to choose K in an
attentive way. The aim is that the smoothing will not cause loss of information (if K is too small) or
overfitting by fitting for example noise (if K is too big). To choose the optimal number of knots, we
will execute the leave-one-out cross validation (LOOCV, [15]) for K = [4, 30].

LOOCYV performs the smoothing with all but one of the discrete time series, called the training set,
and the test set (the one time series left out previously). In a second step the smoothed modell is
compared with the left out test set by mean-square-error (MSE). This two steps will be repeated until

all of the discrete time series happened to be the test set once. By calculating the mean of all MSE a



key value is accessable to compare this smoothed model with others, using another value for K. The
best fitting smoothing will get the smallest mean of MSE (shown in figure (3), left side). The smoothing
with the best fit, in accordance with the LOOCYV, provides K = 10. The result of smoothing with this

parameters is shown in figure (2).

Curves after Smoothing on 10 basis Functions
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Figure 2: Curves after B-spline smoothing with K = 10 basis functions

The last step of data preparation is the classification of smoothed curves by biopsy data. Biopsy
means that material is extracted from a region of interest. Because of the shape of needles for doing so,
the taken probe has a cylindrical shape with a small diameter (see picture (3), right side). This probe
will be classified by a histologist into "healthy", if no cancerous cells were found, or "ill", if cancerous
cells were found. A third group is present, classified by histologists as "undetermined". Because biopsy
will possible touch more than one slice, it will have effect to the classification of more than one segment
and so to more than one curve. The whole probe, and so all touched segments will be classified as
"ill", even if cancerous and not cancerous cells were present in the probe at the same time. Contrary
to this, a probe will be classified as "healthy" just in absence of cancerous cells. Because of that, we
decided to choose the class "healthy" over "ill", plus "healthy" over "undetermined", if one segment
was touched by two biopsies with different result. In the data used for this work, this was the case for
10 probes, where "healthy" was chosen over "undetermined". This results into 39 curves, from which 10
are classified as "undetermined" and not handled further, 16 are classified as "ill" and 13 are classified
as "healthy".

10
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Figure 3:

Left: Results for LOOCYV of smoothing on K = [4, 30] basis functions: the minimum value appears for
K = 10 basis functions.

Right: An example of collected biopsy cores (sagittal view) [29].

3.2 Examination - Characteristics of classified Curves

To examine the curves and get a first impression, the summary statistics mean and standard devi-
ation were calculated. For functional data the mean T (see equation(5)) is the average of the functions
point-wise across replications [18], where N is the total number of functions; i = 1,..., N is the index

of each single function and x;(t) is the value of the function with index i at timestep ¢.

T(t) = N"1) ai(t) (5)

Similarly is the standard deviation std the square root of the point-wise calculated variance function

(see equation (6)), where terms are defined in the same way as in equation (5).

stdx(t) = | (N —=1)~! Z[fvi(t) — (1) (6)

The graphs are shown in figure (4).
Next step in examining the functions is calculating the first and second derivative. The first derivative
gives some information about the velocity, the second one about the accumulation in the original data

[18]. The graphs are shown in figure (5).

3.3 Differences - Methods to differ between the groups of functions

At the field of FDA the band depth (BD [21]) gives the option to order all functions resulting from
smoothing of the discrete time series. With this order it is possible to detect outliers. By defining a
band of functions BD can give a rank of depth of single functions in this band. The smaller the value of

BD, the deeper the function is placed inside the band. Let J be the number of functions determining

11



the band and n be the total number of functions with 2 < J < n and let B(Y3,...,Y;) be a band
defined by j random functions. Additional let G(y) be the subset of a plane, defined by the graph of
the function y(¢) and let P be the probability measure. Then the band depth BD of function y in a
band of size J is defined as the sum of probability P, that the graph G(y) is a subset of each possible
band defined by each possible combination of functions Y; to Y; with j =[2,...,J].

<

J
BD,(y,P)=>»_ BDY(y,P)=> P[G(y) C B(Y1,...,Y;)] (7)
i=2 j=2

To calculate each possible combination of functions makes this method expensive in matters of com-
putational complexity. In contrast the modified band depth (MBD) is less expensive. It measures for
a function y(t) the proportion of time it lays inside the band. If y(¢) is part of the band all the time,
then MBD degenerates to BD [21]. By use of the MBD measure a boxplot for functions is possible (see
figure (9)).

The functional t-test is a method to provide "a sense of the relative separation of two groups
of functions" [17]. For this work the absolute value of a t-statistic at each point ¢ was calculated
by equation (8), where Z1(t) is the mean of group 1 and similar Zs(¢) is the mean of group 2. By
using equation (8) we use the maximum value of the multivariate T-test as test statistic. We use a
permutation test to find a critical value of this statistic.

ry = PO 70| .
\/ LVarley(t)] + L Varles(t))

To construct a null distribution, the following steps are repeated 200 times: (i) the labels of the curves
are randomly shuffled and (ii) the maximum of T'(¢) recalculated with the new labels. This provides a
reference to evaluate the maximum 7'(t) of the observed data.

The analyse of variance (ANOVA) is a common method to make a statement about the similarity
between groups of data. For functional data Ramsay and Silverman [18| provide a pointwise F test
statistic for the one-way analysis of variance (FANOVA). The null hypothesis for FANOVA (see equation
(9)) states, that the means p;(t) of | groups of independent random functions X;;(t), defined over a
closed and bounded intervall I = [a, b] are equal. The independent random functions X;;(t) are defined
with the index of the group ¢ = 1,...,[ and the index of the function in one group j = 1,...,n;, while

the number of functions n = ny + -+ - + n; and the timestep t € 1.

Ho:p(t)=---=m(t),tel (9)

The F-statistic calculates the ratio between the normalized pointwise between-subject variation SSR,
and the normalized pointwise within-subject variation SSE,, (see equation(10)). While [ is the number

of groups, n is the number of all functions within all groups.

_ S8R, (1)/(1—1)
T SSEL(8)/(n—1)

F(t) (10)

12



Gorecki and Smaga [9],[10] proved, that the F-statistic (see equation (10)) can be calculated approx-
imately equal based on the matrix of the inner product of a functional data object, as described by
Ramsay and Silverman [18] and a coefficient calculated from the number of basis functions K, number
of functions in total n and number of groups [. Based on this facts, Gorecki and Smaga evolved the
permutation test (FP test) provided in the fanova.tests() function in the fdANOVA package of R pro-
gramming language. Their simulations suggest "that the FP test has better finite sample properties
than the F-type and L?-norm based tests" [10]. For functional data containing few time steps the FP
test may also be better than the globalized pointwise F' test (GFB test, resp. Fmaxb test) [10].

13



4 Results

Means Standard Deviations

1200 1400
|

300
1

1000

mean value
600 800
1 1
value
100 200
1 I

400
|

T T T T T T T T T T T T T T
0 5 10 15 20 25 30 0 3 10 15 20 29 30

time time
means of all (black). ill (red) and healthy {areen) tissues sd of all (black), ill (red) and healthy (green) tissues

Figure 4: Mean (left side) and standard deviation (right side) of both groups of curves ("ill" in red;
"healthy" in green colour) and allover all curves (in black colour).

The mean of functions classified as "healthy" constantly has a smaller functional average than the
allover mean. Similar the mean of the functions classified as "ill" stays constantly above the allover
mean. With further timesteps the means’ difference increases. This is also visible in the rapid increase
of the standard deviation from around timestep 10 to around timestep 15 for the "ill" and allover group.
After this increase the allover standard deviation is nearly three times the value of the beginning.

As one can see in figure (5), both groups of functions in both derivatives are visibly sorted except of one
curve classified as "ill", which is placed between curves classified as "healthy". The first derivative shows
a clear difference in the maximum value of green ("healthy") and red ("ill") curves. By calculating the
maxima of each curve (see figure (6)), it results in a threshold of value 68. Curves with a maximum
above 68 are the ones classified as "ill", curves below 68 are the ones classified as "healthy" (with one

exception as mentioned before).

To fortify the previous observation, that the groups differ in the approximated intervall ¢[10,15] a
funtional t-test (see figure (8)) was performed. In the intervall ¢[8,17] the p-value at each timestep is
smaller than 0.001. This proofs the hypothesis, that the group classified as "healthy" is significantly
different from the group classified as "ill" in that intervall.

The boxplot (see figure (9)), based on the modified band depth (MBD), does provide members of the
class "ill" and of the class "healthy" as outliers. Changing the threshold do not change this result,
because the boxplot provides symetrical more or less curves of both groups.

To get a perspective about the group of "undetermined" functions, this work decided to calculate an
analyse of variance (ANOVA) for different combinations of the groups (see the results in table (1)).

While the F-statistic reaches a maximum in comparision of group "healthy" and "ill", it indicates

14



First Derivative Second Derivative
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Figure 5:
Left: First derivative - velocity ("healthy" in green, "ill" in red colour);
Right: Second derivative - accumulation ("healthy" in green, "ill" in red colour);

that this two groups are most different from each other. The p-value is for all of the done tests
smaller than 2%, which is sufficciently significant. The F-statistics in whole indicate, that the group
of "undetermined" functions is more similar to the group of "healthy" functions (F-statistic of 6.84),
than to the group of "ill" functions (F-statistic of 10.47). But the difference is not as large, as between
"healthy" and "ill", what suggests that the "undetermined" functions lay somewhere inbetween. This

supports also the functional ANOVA plot in figure (10).

ANOVA for groups of... | undet., ill, healthy | ill, healthy | undet., ill | undet., healthy
p-value 0 0 0.001 0.015
F-statistic 20.70 40.88 10.47 6.84

Table 1: Results of the functional ANOVA test for different combinations of groups of functions "un-
determined" (abbreviated as "undeter."), "ill" and "healthy".

15
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Figure 6: Maximum values of the first derivative in the intervall ¢[9, 14].

5 Conclusions

First hypothesis, that curves for cancerous tissue behaves as outliers in comparision to healthy
tissue did not prove true. But in researching the velocity, which is shown in the first derivative of the
curves, differences in healthy and cancerous tissue were noticeable with the naked eye. The group of
curves representing the healthy tissues reach a maximum velocity beneath the value of 68. Nearly all
curves (15 out of 16) in the group representing the cancerous tissues, reach a maximum velocity above
68. The one curve, not fitting into this scheme, could be misclassified. A possible reason for this is the
previous discussed nature of biopsis, to classify the whole probe as cancerous, even if there was a mix
of cancerous and healthy tissue included. That this special curve represents a tissue segment in the
outer region of the prostate area seems to confirm this assumtion.

By performing a pointwise t-test, it is clearly shown that both groups of curves are detectable different.
Especially in the intervall t[9,14]|, where velocity reachs it’s maxima, the groups of curves showed a
significant difference (more than double of the maximum critical value).

This results could be biological explained by the behaviour of cancerous tissues, to have a more active
metabolism than their environment. In this way the contrast fluid may reach cancerous tissues earlier
and also in a higher amount than the surrounding tissues. This would lead to an earlier and higher rise
of intensity (in comparision to healthy tissues) in the MRI and in the end to the curves we observed
in this research. To substanciate this hypothesis, a broader base of data would be needed in minimum
two ways. First would be to include more patients into the analyse, so differences between individuals
can be researched. The second way would include more classified segements in general per patient to
enlarge the ground truth of the data. This may be difficult, because the biopsy is a method the most
patients feel uncomfortable with.

The ANOVA test showed, that the group of functions classified by histologists as "undetermined" is in

the intensitiy’s behavior more similar with the group classified as "healthy", than with the one classified

16
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Figure 7:

Left: Mean of the first derivatives;

Right: Standard deviation of the first derivatives;

(Curve of group "healthy" in green, "ill" in red, of all functions in black colour)

as "ill". In the evolvement of cancer the affected cells pass through a step by step process. During this
process they switch off the check points one after another, which were originally developed by nature
to prevent unregulated growth. Because of this mechanism the threshold between "ill" and "healthy"
is not a clear border. The results imply, that the class of "undetermined" biopsies lays in this region
of tissue, not as healthy as it should be, but also not as ill as a clear diagnosis of cancer would need.
Besides the need to enlarge the base of data, there is a second possible improvement, which could be
worth further research. The SLIC algorithm can process pictures with 3 channels of colour (for example
RGB images, with red, green and blue channel). The TVM only allocates one of this channels because
it is in grayscale colour, so it is possible to add two more objects with information in the shape of the
TVM.

With this work we made a step to automate the process of MRI evaluation. When used on a regular
basis this can disburden the specialists who need to spend hours and hours of focussed work to interpret
the MRI of dozens of patients. On the long run it could reduce or even replace invasive methods as

biopsy, which carry a risk of unwelcome side effects and discomfort for the patients.
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Figure 8: Results of the functional t-test between the group of curves classified as "cancerous" and the
group of curves classified as "healthy".
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6 Appendix A

# please see end of code for details about

# version of R and the packages used
library (oro.dicom) ;
library(misc3d);
library (abind) ;
library (OpenImageR) ;
library (Rcpp) ;
library (rgl);
library (supercells) ;
library (sf);

library (terra);
library (fda) ;
library (dplyr);
library (ggplot2);
library (abind) ;

i library (funFEM) ;

library (funHDDC) ;
library(plotly);

library (fda.usc);
library (£dANOVA) ;

HAEHBERAHBRA AR AR A HBAA BB AR R B AR R R RRA R RRR SR RRHHREH

# START PREPROCESSING

HAHRERAH AR A A RARAHBRR BB BRAH B AR A RRA BB RER AR RAHHREH

HU#HHHHHRY
# Function to read DICOM files

prosReadDICOM <- function(path){
fil <- readDICOMFile (path)
#names (£fil)
#head (£il$hdr)
#attributes (fil$img)

# patient ID

meta <- {}

meta$patID <- fil$hdr$value [28]
# cycle ID

# slice ID (for now number of slices)

meta$slices <- attributes (fil$img) [3]

# resolution high and width
meta$resH <- attributes(fil$img) [1]
meta$resW <- attributes(fil$img) [2]
# pixel intensity min, max and mean
meta$intMax <- max(fil$img)
meta$intMin <- min(fil$img)

meta$intMean <- mean(fil$img)
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50 fil$meta <- meta

51 return (fil)

54 HHHHHHAAFARARAAA AR AR R A AR AR B R A AR AR BB A AR AR SRR R RA

55 # Please save raw P015 data plus biopsy.csv data at location specified in "path"
56 # also add an empty folder named "P015" there (used for "pathOUT")

57 RHHHHHHAAAHHRHHAAR AR BH AR AR BB R AR AR AR B AR R SRR HAAH

50 path <- ’C:/Users/Sabine/Studium/MA-2022/Daten/’;

61 patfol <- list.files(path, pattern=’"[0-9]17);
62 patfol <- patfoll[order (nchar (patfol), patfol)];
63 for (pat in patfol){

64 print (’ #######HHH GRS HSHAHAHHA B RHEHSHEH ) ;

65 print (pat);

66 print (’ #######HG GG HSH BB EAH BB EHEHEL ) ;

68 pathIN <- pasteO(path,pat,’/’);

69 pathOUT <- pasteO(path,’/P’,pat,’/’);

70

O LOOP OVER PATIENTS -----------------
72 #for (pat in patfol){

73 HAHBERAHBERAHBER SRR AR AR SR AR HBERAH

74 # READ IN FILES

75 # PreProcessing for TVM

76 # read two files of "contrast", substract

77 timfol <- list.files(pathIN, pattern=’contrast’);
78 timfol <- timfol[order (nchar (timfol), timfol)];

80 HHBHHR B R AR
81 # TVM BY VARIANCE: sum((each value - mean)~2) / number of values
82 fin <- prosReadDICOM(pasteO(pathIN, °/’, timfoll[1]1));

83 summe <- fin$img;

85 for(tistep in timfol[2:length(timfol)]){

86 fil <- prosReadDICOM (pasteO(pathIN, ’/’, tistep));
87 summe <- abs(summe + fil$img);
88 }

920 mittel <- abs(summe/length(timfol));
91 quad <- abs(abs(fin$img - mittel) ~2);
92

93 for(tistep in timfol[2:length(timfol)]){

94 fil <- prosReadDICOM (pasteO(pathIN, ’/’, tistep));
95 quad <- abs(quad + abs( abs( fil$img - mittel)~2));
96 }

97
08 tvm3d <- abs(quad / length(timfol));
99

100 # have a look into slice 22 and 2 of the TVM
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101

102

103

104

106

107

108

109

110

111

112

113

114

136

137

138

139

140

141

143

144

145

146

147

148

149

image (tvm3d[,,22]);
image (tvm3d [, ,2]);
saveRDS (tvm3d, pasteO(pathOUT,’TVM3D.r

HAEHBEAHH RS R RSB AAAH R AR H BRI HREH

#
#

H O B H

SLIC

for each single Slice in TVM

ds?’));

as agreed with Roman: each single slice done with SLIC,

"combine" afterwards

make spatial raster from matrix
calculate SLIC

combine slices

save as "Cells.rds"

tvm3d <- readRDS(pasteO(pathOUT,’ TVM3D
tvmCells <- array(NA,dim=dim(tvm3d));

for(i in c(1:dim(tvm3d) [3])){

raster <- rast(tvm3d[,,i]);

rasterSLIC <- supercells(raster, k =

, avg_fun = "mean"

#plot (raster) ;

#plot (st _geometry (rasterSLIC), add =
meta <- rasterize(rasterSLIC, raster
pol <- as.matrix(meta, wide=TRUE);
#image (pol);

tvmCells[,,i] <- pol;

saveRDS (tvmCells, pasteO (pathOUT,’Cell

H OB OH R

#

# first maximize and minimize the gr
# do not change size afterwards -.-
layout (matrix (1:49 ,nr=7,byr=T));
for(i in c(1:44)){

# image (tvmCellsl[,,i]);

}

.rds’));

500, compactness

TRUE, 1lwd = 0.2);

, "supercells");

s.rds’));

aphic window

nearly freeze

EEE TSI ITTEITTIT LTI IT LTI TETEE R
# Loop Over Timesteps after Adding Contrast Fluid

#
#
#

AGGREGATION by mean

no whole 3D data in SLIC,

3:

dist_fun

result: discrete values over time for each supercell in each slice

matrix [supercell ,time]

timfol <- list.files(pathIN, pattern=’
timfol <- timfol[order (nchar (timfol),

contrast’);
timfol)];

# matrix[supercelllID,timestepl=aggregationvalue

fdalist <- array();
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161

162

163

164

165

166

168

169

170

171

173

174

175

176

185

186

187

188

189

190

191

192

193

194

195

196

197

print ("# of cells");

for(j in c(1l:dim(tvmCells) [3])){ #init one matrix for each slice in TVM
print (max (tvmCells[,,j],na.rm=TRUE)) ;
slice <- array(NA, dim=c(max(tvmCells([,,j],na.rm=TRUE),length(timfol)));
# name the slices by numbers from 1 to # of slices
assign(pasteO("rawFDA_slice_", j), slice);
# store the names in a list
fdalist <- c(fdalist, pasteO("rawFDA_slice_", j));

}

# delete first empty element from the list

fdalist <- fdalist[2:length(fdalist)];

# read the contrast files and aggregate
print ("time");
for(ti in c(1:(length(timfol)))){ # for each timestep
#print ("time") ;
print (ti);
fill <- prosReadDICOM(pasteO(pathIN, timfolltil));
# fill$img is the matrix of intensities
for(i in 1:dim(fil1$img) [3]1){ # for each slice
#print ("slice");
#print (i) ;
#print (max (tvmCells[,,i]));
for(supi in c(l:max(tvmCells[,,i],na.rm=TRUE))){ # for each supercell
#print ("cell");
#print (supi);
alle <- which(tvmCells[,,i] == supi); # extract all pixels contained in
supercell
slice <- fill$imgl[,,i];
agg <- mean(slicel[allel); ###### HERE choose aggregation function ######
#print (agg) ;
temp <- get(fdalist[il); # get variable’s name of matrix for corresponding
slice
temp [supi,ti] <- agg; # assign value (mean) for supercell at timestep
assign(fdalist[i], temp); # store new matrix under variable’s name
} #end supercells
} # end slices

} # end timesteps

for(mat in fdalist){ # for each matrix in the list of matrices per slice
saveRDS (get (mat) ,paste0 (pathOUT ,mat,’.rds’)) # save matrix under variable’s name
}
image (get (fdalist [22])); # have a look into discrete values over time per segment
of slice 22

#BIOPSY MASK

#classify supercells by using the biopsy mask

mask <- prosReadDICOM(pasteO (pathIN,’ ’biopsyMask.dcm’));
cells <- readRDS(pasteO(pathQUT,’Cells.rds’));

maske <- mask$img;

biplog <- c(NA,NA); # initiate storage for supercell/biopsy-result pairs

25



for(slice in c(1l:dim(maske) [3]1)){
for (biop in c(1:max (maske))){
bio <- which(maskel[,,slice] == biop);
temp <- cells[,,slicel;
if (length(bio) != 0){
supi <- templ[bio];
supi <- unique (supi);
#print (supi);
for(i in supi){
te <- slice*100+i; # i.e. supercell 14 of slice 22 becomes "2214"
#print (te);
biplog <- rbind(biplog, c(te,biop));

}

biplog <- biplogl[2:dim(biplog) [1],]; # delete first empty value
biplog <- biploglorder (biplogl[,1]) ,]; # order by number of biopsy
saveRDS (biplog, pasteO(pathQUT,’/biopsyCells.rds’));

#}

alarm() ;

EEEFEEEEEE RS EE RS R EE RS

# END PREPROCESSING
HAEHBEAAH B AR R AR AR AR BARA AR AR SR AR SRR ER S AR

7 RREHHAHARAAHARA A B AR AR AR R A BB R B RAR AR RAHHRHRH

# START FDA ANALYSIS
EEEEEF TR ESEE RS RS RS EEE

pat <- "PO15";

HEHBERHHBRAH B AR AR B AR BB AR AR B RA R R B AR R RS H R AR HHRRS

# please adjust "pathOUT" to your needs #

HEHBERAH AR H B AR B HBAA BB BRA R R RA R BB AR HR AR BRRRHHHEHS

path0OUT <- paste0(’C:/Users/Sabine/Studium/MA-2022/Daten/FDAdata/’,pat,’/’);

# read in discrete time series
rawFDAfol <- list.files(pathOUT, pattern=’rawFDA_slice’);
rawFDAfol <- rawFDAfol[order (nchar(rawFDAfol), rawFDAfol)];

# initiate an allover matrix and parallel a list with ordered matrices of all "
rawFDA_slice" files

# matrix[supercelllID,timestep]l=aggregationvalue

rawFDA <- readRDS (paste0 (pathQOUT,rawFDAfol[1]));

rawFDAs <- list();

rawFDAs [[1]] <- readRDS(pasteO(pathOUT,rawFDAfol[1]));

i <- 1
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for(rfda in rawFDAfol[2:length(rawFDAfol)]){
i <- i+1;
test <- readRDS (pasteO (pathOUT,rfda));
rawFDA <- rbind(rawFDA, test);
rawFDAs[[i]] <- test;

# CLASSIFY

# find classes

print ("biopsy");

cate <- readRDS(pasteO(pathOUT,’/biopsyCells.rds’));

# read biopsys csv
pat2 <- gsub(’P’,’’,pat);

print ("csv");

rawBio <- read.csv(file = paste0(’C:/Users/Sabine/Studium/MA-2022/Daten/’,pat2,’.

csv’), header=FALSE);
biop <- c();
for(b in rawBio$V2){
b <- gsub(" ", "", b, fixed = TRUE);
b2 <- switch(b, "Malignant" = 1, "Benign" = 2, "0"); # "Undetermined" = 0
biop <- c(biop, b2);
}
biop <- as.integer(biop);

# find class for supercells with more than one classification
# classes: 0 undefined, 2 healthy, 1 ill
unicate <- array(NA, 2);
for(cell in unique (cate[,1]1)){
a <- catel[which(cate == cell) ,2];
b <- bioplal;
print (cell);
print (b);
cl <- max(b); # chooses healthy over ill
unicate <- rbind(unicate, c(cell,cl));
}

unicate <- unicate[2:dim(unicate)[1],] # delete NA row

# get discrete timeseries for classified supercells

cFDA <- array(NA,length(rawFDA[1,])+1); # store classification and discrete time

series

ancest <- array(NA); # store slice-supercell / class pairs for labeling plots

for (thing in c(l:dim(unicate) [1])){
sc <- unicate[thing,1]17%%100; # number of supercell
sl <- (unicate[thing,1]-sc)/100; # number of slice

cl <- unicate[thing,2]; # classification
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304

305

306

307

309

310

316

317

318

319

320

ancest <- c(ancest, pasteO(sl,"-",sc));

cFDA <- rbind (cFDA, c(cl, rawFDAs[[sl]][sc,1));
}
cFDA <- cFDA[2:dim(cFDA)[1],] # delete NA row

ancest <- ancest[2:length(ancest)]

# cFDA: first column is class, other values are discrete time series

# classes: 0 undefined, 2 healthy, 1 ill

# PLOT

dev.new () ;

colo <- switch(toString(cFDA[1,1]), "O" = "grey", "2" = "green", "1" = "red");

plot (c(1:(dim(cFDA) [2]-1)), cFDA[1,2:(dim(cFDA)[2])], type = "1", xlab = "time',
ylab = "f(time)", main = pat, col = colo, xlim=c(1l,dim(rawFDA) [2]) ,ylim=c

(250,1750) ) ;
for(i in c(2:dim(cFDA) [11)){
colo <- "black";
colo <- switch(toString(cFDA[i,1]), "O" = "grey", "2" = "green", "1" = "red");
lines (cFDA[i,2:(dim(cFDA)[2])], 1lwd = 1, col = colo);

BHEHBHAHAHB AR R ARG R A B HH AR AR AR H RS

# FILTER

# only defined values (ill 1, or healthy 2)
fFDA <- cFDA[which(cFDAL[,1] %in% c(1,2)),1;
fancest <- ancest[which(cFDA[,1] %in’% c(1,2))1;

HAHRERABH R AR AR A RARSHRAA BB RRA BB RRR R R AR R HH
# VALIDATE SMOOTHING

5 mik <- 4; #number of minimal knots

mak <- 30; # number of maximal knots

al <- 2; #where starts time series (1 is class, 2 is first value of time series)
a2 <- dim(fFDA) [2]; #where ends time series
time_span <- a2-1;

times_basis = seq(0,time_span,1);

cva <- c(); # store values of cross validation

5 # smooth discrete time series for each number of knots, cross validate and store

result

5 for (knot in c(mik:mak)){

basisX <- create.bspline.basis(rangeval=c(min(times_basis)+1,max(times_basis)),
norder=4, nbasis=knot);

smoothX <- S.basis(c(min(times_basis)+1:max(times_basis)), basisX);

cv <- CV.S(t(fFDA[,al1:a2]), smoothX);

cva <- c(cva, cv);

}

2 # dev.new();

# plot(c(4:30),cva, ylim=c(0,1000)); # plot results of cross validations
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344

345 m <- min(cva) ;

346 1 <- which(cva %in% m);

347 print ("best number of knots by cross validation:");
348 print (i+mik-1) ;

349

350 HEHHARAAARAARAARAASR AR AAR A AR A AR AR SR RS R

351 # Smoothing Bspline

353 knot <- 10;

355 subtitle <- pasteO(knot," basis functions");

356 basis <- create.bspline.basis(rangeval=c(min(times_basis)+1,max(times_basis)), norder
=4, nbasis=knot);

357 Supi_obj <- smooth.basis(argvals = c(l:time_span), y = t(fFDA[,al1:a2]), fdParobj =

basis) ;

359 # classes: O undefined, 2 healthy, 1 ill

360 dev.new () ;

361 plot (Supi_obj$fd, col=c("red", "green", "gray")[fFDAL[,1]11);
362 title (main="Smoothed ,original classes", sub = subtitle);

363 legend ("topleft", fancest, fill=c("red", "green")[fFDA[,11]);
364

365
366 HHEHHHHHHHEERHERARAHA AR EAAAA S A S A AR AR AR BRBRERY
367 # DERIVATIVES

368 # D1 => Velocity

360 # D2 => Acceleration

371 # first derivative allover
372 derl <- deriv.fd(Supi_obj$fd,1);

373 dev.new () ;

374 plot (derl,col=c("red", "green", "grey") [fFDA[,1]]1);

375 #legend ("topleft", fancest, fill=c("red", "green") [fFDA[,1]1]);
376 title (main="First Derivative'", sub = subtitle);

377

378 # first derivative of class "ill"

379 derI1ll <- deriv.fd(Supi_obj$fd[which (fFDA[,1]1%in% c(1))]1,1)
380 dev.new () ;

381 plot (derIlll, col="red");

382

383 # first derivative of class "helathy"

384 derHeall <- deriv.fd(Supi_obj$fd[which(£fFDAL[,1]1%in% <c(2))]1,1)
385 dev.new () ;

386 plot (derHeall, col="green');

387

388 # second derivative allover

380 der2 <- deriv.fd(Supi_obj$fd,2);

390 dev.new () ;

301 plot (der2,col=c("red", "green", "grey")[fFDA[,1]1]1);

302 #legend ("topleft", fancest, fill=c("red", "green") [fFDA[,11]);
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303 title (main="Second Derivative'", sub = subtitle);

394

305 # second derivative of class "ill"

306 derI1l2 <- deriv.fd(Supi_obj$fdl[which(£FDA[,1]1%in% c(1))1,2)
397 dev.new () ;

308 plot (derIll2, col="red");

399

100 # second derivative of class "healthy"

101 derHeal2 <- deriv.fd(Supi_obj$fd[which(£fFDA[,1]1%in% c(2))1,2)
102 dev.new () ;

103 plot (derHeal2, col="green');

106 HEHHHEHAA SRS RS RS HAH SRS A S B SEHES

407 # T-TEST

08 #

409 # pointwise t-test to see if groups of functions differ

410

411 # initial functions

112 dev.new () ;

413 tperm.fd(Supi_obj$fdlwhich (£FDAL[,1]1%in% c(1))], Supi_obj$fdlwhich (£fFDA[,11%in% c(2))
I

414 # first derivative

1415 dev.new () ;

116 tperm.fd (derIlll, derHeall);

1417 # second derivative

118 dev.new () ;

119 tperm.fd (derI1ll2, derHeal2);

420 HHERRBHHBABAHBARAHBAHAHBAHAH AR BRABABRHRAHAHS

423 # BOXPLOT

124 dev.new () ;

125 boxplot (Supi_obj$fd, method="MBD", factor=0.5);

127 dev.new () ;
128 boxplot(derl, method="MBD'", factor=0.5);

430 HHHHABHHAAHBHARHRAABHRERAAHRAR SRR H R AR SR BRRS
431 # MEAN, STANDARD DEVIATION

433 # MEAN

434 mA1l <- mean.fd(Supi_obj$fd); # allover mean

435 mI1l <- mean.fd(Supi_obj$fd[which(fFDA[,11%in% c(1))]); # mean of class "ill"

436 mHeal <- mean.fd(Supi_obj$fd[which (fFDA[,1]1%in% <c(2))]1); # mean of class "healthy"

438 # plot all three means

439 dev.new () ;

440 plot (mAll, ylim=c(300,1500));
141 lines (mIll, col="red");

442 lines (mHeal, col="green');
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443

461

462

463

464

465

466

title (main="Means",

)

dev.new () ;

sub="means of all (black),

plot (mIll$coefs, mHeal$coefs, type="1");

title(main="Compared means",

)

# plot all functions plus the allover mean

dev.new () ;

colo <- switch(toString(fFDA[1,1]), "O" = "grey", "2" = "green", "1" = "red");

plot (c(1:(dim(£FDA) [2]-1)),

fFDA[1,2:(dim(£FDA) [2])], type

= "1", xlab = "time'",

= "f(time)", col = colo, xlim=c(l,dim(rawFDA) [2]),ylim=c(250,1750));
for(i in c(2:dim(£fFDA) [1]1)){

colo <- "

black";

colo <- switch(toString (fFDA[i,1]), "0" = "grey", "2" =

lines (fFDA[i,2: (dim(£fFDA) [2])],

}
lines (mAll,

title(main="0riginal plus Mean',

tissue,

# plot means of first derivatives

col="black");

lwd = 1, col = colo);

ngeenn’ nq{n = "red");

sub="all curves of ill (red) and healthy (green)

plus the mean (black) of all curves");

mAl1D1 <- mean.fd(derl);
mI1llD1 <- mean.fd(derIlll);

mHealD1l <-
dev.new () ;
plot (mA11D1
lines (mI11D

mean.fd(derHeall) ;

, ylim=c (300,1500));

1, col="red");

lines (mHealD1l, col="green");

title(main="Means of first Derivative", sub='"means of all

healthy

2 # STANDARD

(green) tissues");

DEVIATION

sdAll <- sd.fd(Supi_obj$fd); #sd allover

sdI1l <- sd.fd(Supi_obj$fd[which (fFDAL[,11%in% c(1))1);

sdHeal <- sd.fd(Supi_obj$fd[which (fFDA[,1]1%in¥% c(2))1); #

dev.new () ;
plot (sdAll,
lines (sdIll

ylim=c (0,400));

, col="red");

lines (sdHeal, col="green");

title (main="Standard Deviations',

green) tissues");

# sd for the first derivatives

sdA11D1 <-
sdI1l1lD1l <-
sdHealD1l <-

sd.fd(derl);
sd.fd(derIlll);
sd.fd(derHeall);

sub="sd of all (black),
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(black), ill (red) and

# sd for class "ill"

sd for class "healthy"

i1l (red) and healthy (

i1l (red) and healthy (green) tissues"

sub="mean of ill (x) against mean of healthy (y) tissue"

ylab



188 dev.new () ;

489 plot (sdA11D1, ylim=c (0,400));

1900 lines (sdI1llD1, col="red");

401 lines (sdHealD1l, col="green");

1492 title(main="Standard Deviations of the first Derivative", sub="sd of all (black), ill
(red) and healthy (green) tissues");

493

104 HRHBHABHBAABBRARHRAABHRERBHBARA SR AR H B AR SRR RAHH

195 # # PCA

496

497 # pcalll <- pca.fd(Supi_obj$fd);

1908 # plot.pca.fd(pcadll);

499

500 # # strong first component, second at 0.7%

500 # # -> mnearly all informations stored in the first component

502 # # if it would be points instead of functions, one dimension would be enough to show

differences

504 # # pcalll <- pca.fd(Supi_obj$fd[which(fFDAL[,1]1%in% c(1))1);
505 # # plot.pca.fd(pcalll);

507 # # pcaHeal <- pca.fd(Supi_obj$fdlwhich(£fFDA[,1]1%in% c(2))1);
508 # # plot.pca.fd(pcaHeal);

510 HAHRARAHARAHHARAHBRAHHAAAHRAABHRAR AR AR HR AR AR RRHHRERE
511 # MAXIMUM
512 # eval.fd(sequence ,fda-object) ;

514 se <- seq(2,30, length=2801); # 28 times x plus 1, x=100

515 fineFDA <- eval.fd(se,derAlloverl); # 2 to 30 to cut infinite ends
516 maxs <- array(NA,2);

517 for(c in c(1:dim(fineFDA) [2])){

518 cur <- fineFDA[,c];

519 m <- max(cur); # gives max

520 i <- which(cur %in% m); # gives coord for max
521 maxs <- rbind(maxs, c(i,m));

522 }

523 maxs <- maxs[2:dim(maxs) [1],];

524 plot (maxs) ;

527 # classified curves

528 #se <- seq (2,30, length=281); # 28*x+1, x=100

520 fineIll <- eval.fd(se,derIlll); # 2 to 30 to cut infinite ends
530 maxIll <- array(NA,2);

531 for(c in c(l:dim(fineIll) [2]1)){

532 cur <- fineIlll[,c];

533 m <- max(cur); # gives max

534 i <- which(cur %in% m); # gives coord for max
535 maxIll <- rbind(maxIll, c(i,m));

536 }
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maxIll <- maxI11[2:dim(maxI1l) [1],];

¢ points (maxIll, col="red");

fineHeal <- eval.fd(se,derHeall); # 2 to 30 to cut infinite ends
maxHeal <- array(NA,2);
for(c in c(l:dim(fineHeal) [2])){

cur <- fineHeall[,c];

m <- max(cur); # gives max

i <- which(cur %in% m); # gives coord for max

maxHeal <- rbind(maxHeal, c(i,m));

}

: maxHeal <- maxHeal[2:dim(maxHeal) [1],];

points (maxHeal, col="green");

# plot maximum values of classified functions only
dev.new () ;
plot (maxIll, col="red", ylim=c(0,200), xlim=c (700, 1200), pch=19);

points (maxHeal, col="green", pch=19);

s HAHHAERAH AR A HARAH B AR A HRRAAH AR R A BB HRAA AR RAH RS

# ANOVA

bas <- create.bspline.basis(rangeval=c(min(times_basis)+1,max(times_basis)), norder

=4, nbasis=31);
crosspro <- inprod(bas, bas);

# select groups (O=undetermined, 1=ill, 2=healthy)

562 gr <- c(0,1,2); #c(1,2) or c(0,1) or

ob <- t(cFDA[,2:dim(cFDA) [2]1]) [,which(cFDA[,1]1%in% gr)l;
lab <- cFDA[which(cFDAL[,1]1%in% gr)l;

5 fanova3 <- fanova.tests(group.label = lab, test = "FP",
params = list(paramFP = 1list(B.FP = 1000, basis = "own",
own.basis = ob,
own.cross.prod.mat = crosspro
2));

summary (fanova3) ;

XTI TR I EEEE LI EE S
# details about used R and packages #
EEE TR E IR R R R TR E R T

sessionInfo ()

s # R version 4.2.1 (2022-06-23 ucrt)

# Platform: x86_64-w64-mingw32/x64 (64-bit)
# Running under: Windows 10 x64 (build 19044)

# Matrix products: default

locale:

[1] LC_COLLATE=German_Germany.utf8 LC_CTYPE=German_Germany.utf8
[3] LC_MONETARY=German_Germany.utf8 LC_NUMERIC=C

[6] LC_TIME=German_Germany.utf8

H O OH OH R
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HOH OH R

attached base packages:

[1]

splines stats

[8] base

graphics grDevices utils datasets methods

other attached packages:

# [1]
# [5]
# [9]

[13]
[17]
[21]
[25]

fdANOVA_0.1.2
plotly_4.10.1
lars_1.3
deSolve_1.33
pcaPP_2.0-2
supercells_0.9.1
abind_1.4-5

fda.usc_2.1.0
funHDDC_2.3.1
ggplot2_3.3.6
fds_1.8
MASS_7.3-57
rgl_0.109.6
misc3d_0.9-1

mgcv_1.8-40 nlme_3.1-157
funFEM_1.2 elasticnet_1.3
dplyr_1.0.10 fda_6.0.5
RCurl_1.98-1.9 rainbow_3.7
terra_1.6-7 sf_1.0-8
Rcpp_1.0.9 OpenImageR_1.2.5

oro.dicom_0.5.3

# loaded via a namespace (and not attached):

HOH O O = O O OH OH OH OH OH OH OB OH O OB OH OH OB OH OH O

# [1]
# [4]
# [7]

[10]
[13]
[16]
[19]
[22]
[25]
[28]
[31]
[34]
[37]
[40]
[43]
[46]
[49]
[52]
[55]
[58]
[61]
[64]
[67]
[70]
[73]
[76]

bitops_1.0-7
backports_1.4.1
utf8_1.2.2
DBI_1.1.3
withr_2.5.0
cli_3.4.1
classInt_0.4-7
digest_0.6.29
jpeg_0.1-9
fastmap_1.1.0
SuppDists_1.1-9.7
jsonlite_1.8.0
Matrix_1.4-1
lifecycle_1.0.3
promises_1.2.0.1
pillar_1.8.1
kSamples_1.2-9
doBy_4.6.15
vctrs_0.4.2
gtable_0.3.1
ks_1.13.5
broom_1.0.2
el071_1.7-11
viridisLite_0.4.1
units_0.8-0
hdrcde_3.4

doParallel_1.
Deriv_4.1.3
R6_2.5.1
lazyeval_0.2.
tidyselect_1.

0.17 httr_1.4.4
tools_4.2.1
KernSmooth_2.23-20

2 colorspace_2.0-3

2.0 compiler_4.2.1

microbenchmark_1.4.9 scales_1.2.1

mvtnorm_1.1-3
tiff_0.1-11
pkgconfig_2.0
htmlwidgets_1
shiny_1.7.2
mclust_5.4.10
munsell_0.5.0
grid_4.2.1
lattice_0.20-
tcltk_4.2.1
magic_1.6-0
data.table_1.
httpuv_1.6.5
purrr_0.3.5
xfun_0.33
xtable_1.8-4
later_1.3.0
tibble_3.1.8
cluster_2.1.3

proxy_0.4-27
base64enc_0.1-3
.3 htmltools_0.5.3
.5.4 rlang_1.0.6
generics_0.1.3
magrittr_2.0.3
fansi_1.0.3
parallel_4.2.1

45 knitr_1.40
codetools_0.2-18
glue_1.6.2

14.6 png_0.1-7

foreach_1.5.2
tidyr_1.2.1
mime_0.12
pracma_2.4.2
class_7.3-20
iterators_1.0.14
ellipsis_0.3.2
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