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Abstract

In this work we demonstrate how to preprocess MRI data of prostate cancer to get discrete time

series. This series are smoothed into functional data by B-splie smoothing and di�erences are detected

between functions for malign tissue and functions for healthy tissue. Classi�cation of the tissues follows

biopsy results. By a functional t-test we identify an intervall with statistically signi�cant di�erence

between both groups of functions.

Keywords: Functional Data Analysis, Prostate Cancer, MRI, Functional t-Test, Functional ANOVA
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Notation, Abbrevation

� MRI Magnetic Resonance Imaging

� FDA Functional Data Analysis

� SLIC Simple Linear Iterative Clustering

� TVM Temporal Variation Matrix

� MSE Mean-Square-Error

� LOOCV Leave-One-Out Cross Validation

� BD Band Depth

� MBD Modi�ed Band Depth

� ANOVA Analyse of Variance
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1 Introduction

Prostate cancer is the most commonly diagnosed male malignancy worldwide and the fourth leading

cause of cancer death in men. This amounted worldwide to 1,414,249 newly diagnosed cases and 375,000

deaths from this disease in 2020 [11, 14, 27, 25, 22].

Biopsy is one of the "hands on" methods, to detect prostate cancer. But computer simulations showed,

that the risk to miss a cancer by sextant biopsy is estimated to approximately 25% [3]. Also a repeated

sextant biopsy of 118 males, failed to detect cancer in 27 men (23%) [16]. At the opposite magnetic

resonance images (MRI) are well known to detect cancer of di�erent kind noninvasively [20, 12, 5]. For

MRI the patients get an injection of contrast �uid, which reinforces visible di�erences between di�erent

tissues. The resulting image could be imagined as a three dimensional cube, cutted visually into two

dimensional slices. Each slice is a grayscale image, where the brightness represents the tissue's intensity

to react to the constrast �uid.

At present time, the processing and interpretation of prostate MRI data in clinical routine is entirely

performed by human experts (radiologists) who, while competent, are time-limited, cost-intensive, and

cannot be easily scaled to meet increasing imaging demands [13]. Furthermore, human performance is

dependent on experience and training, leading to signi�cant variability between observers [19, 7, 8].

A computer based method well used for comparing time series is functional data analysis (FDA) [18]. A

review of a large number of FDA related publications across various �elds of science has shown, that the

majority is related to biomedicine applications (21.4%) [28]. Even if FDA was used already for cancer

research [2] and biological image processing [26], the new approach to use the TVM in segmentiation

without implied anatomical classi�cation invited by Surkant in 2022 [24], makes the use of FDA as

planned in this thesis a fully new approach.

Within this method the MRIs of di�erent timesteps are merged slicewise by calculating pixel by pixel

the statistical standard deviation over time, getting a new image with equivalent slices named temporal

variation matrix (TVM, see equation (1)). Automated segmentation of the TVM is performed by simple

linear iterative clusterin (SLIC [1]). The resulting segments, named superpixels, are projected to the

original MRI images, grouping the pixels by intensity change over time. By calculating the intensity's

mean, each segment get a key value for each timestep, resulting into a discrete time series of intensities

for each segment of each slice of the MR-images.

This work will apply FDA methods onto the discrete time series resulting from the use of TVM and

SLIC. By doing so, this work will show how to di�er between curves representing healthy tissues

and curves representing cancerous tissues. Following methods will be helpful: (i) smoothing via B-

spline basis, (ii) discriptiv analysis of the resulting curves, (iii) label the curves by biopsy's result, (iv)

performing a functional t-test between the groups labeled "healthy" and "cancerous", (v) calculating

the maximum velocity of each curve in an intervall, determined by the t-test's results and (vi) use the

analyse of variance (ANOVA) method to set the group of functions classi�ed as "undetermined" in

context.

This research will show, that it is possible to di�er between the groups of "healthy" and "cancerous"

tissues with true positive's percentage of nearly 94% (15 out of 16). Statistical signi�cance is shown

by a functional t-test. Also the ANOVA shows that the group of functions classi�ed by the histologists
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as "undetermined" is less similar with the group of "ill" than with the group of "healthy". But the

di�erences between the groups of "ill" and "healthy" is nearly 4 times larger, which suggests to locate

the "undetermined" curves inbetween the "healthy" and "ill" ones.
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2 Literature Review

As mentioned above, FDA methods are well used in biomedicine �eld. Crawford et al [2] used the

FDA methods to detect glioblastoma multiforme, an agressive form of human brain cancer. Although

they used MRI data too, their preprocessing contained the construction of surfaces and shapes to spot

growing areas (probable cancer) in the brain. They developed a statistic, called "smooth Euler charac-

teristic transform", that summarizes shape information of glioblastoma multiforme MRI as a collection

of smooth curves. Onto this curves they apply FDA methods by using tumor shape information as a

covariate in regression frameworks. In opposite to this work, there were no contrast �uid used and also

the MRI data was recorded during separate visits instead at di�erent timesteps within one visit of the

patient, as it is the case in this work.

Ferro et al [6] collected a list of 30 studies using MRI techniques within the last 5 years. Around

one half of them used MRI, the other half used multiparametrial MRI as base. Only two did the

segmentation of the images semiautomatic instead of fully manually. The authors conclude that "to

accurately distinguish cancerous versus benign tissue, radiometrics has to bene�t from technological

improvement in segmentation, feature extraction, statistical analysis, multi-center, prospective RCTs to

be integrated in clinical practice and in decision-making protocols" [6]. In opposite to this the present

work does the segmentation full automated by the SLIC algorithm.

Sunoqrot et al [23] provide an overview about arti�cial intelligent (AI) methods to process prostate

MRIs. They focus on the availability of data, tools for prostate MRI and challenges to measure the

quality of results. For AI the existence of large, well curated and diverse datasets is crucial. Sunoqrot

et al collected 17 public datasets including a total of 3.369 prostate MRI cases. Actual there are

approaches to ease the access for institutions making their data available (Pro-Cancer-I platform [30])

aiming national and international medical data sharing regulations. Implemented AI is found in the

products of 11 vendors, �ve do automated anatomy segmentation, two generate heatmaps to help spot

tumors and 3 provide automated tumor detection. Problems occure, if developers want to benchmark

against this models. Either the access is not possible or they need to use the source code, install

libraries and make changes to �t the model. Possible solution are six mentioned platforms with access

to pre-trained models allowing benchmarking easily.

Tian et al [26] highlights the importance of FDA in dimension reduction and feature extraction,

spatial classi�cation in MRI studies, and the inverse problem in magneto-encephalography studies.

During a brain imaging experiment images are made every one to two seconds for a total time of one to

two minutes. This results in 200 to 1000 images. They judge FDA as a considerably e�ective approach

to handle the enormous amount of data, leading to better results in general, than commonly used

multivariate methods.
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3 Research

3.1 Data preparation - How to get prostate cancer into bits and bytes

By using the e�ect of magnetic �elds onto protons, present in any tissue of the human or animal

body, magnetic resonance imaging (MRI) produces noninvasively images of the inside of the body. In

di�erence to computer tomography (CT) there are not even x-rays needed. This makes MRI a visual

imaging method, suiting for the need of repetition, as it is given for observations of developments over

time. The resulting image represents a three dimensional cube of tissues, organs and similar. By

visually "cutting" this cube into slices a set of two dimensional images is formed, one image for each

slice. This results into a three dimensional matrix, where each value i represents a pixel at certain

coordinates x, y in a certain slice s. Because the MRI is repeated at certain timesteps, in total there

will be a 3D matrix for each timestep t.

For this research the dataset "P015" of one patient was used. Each slice of it's MRI has a dimension of

512 to 512 pixels. Each matrix includes 34 slices and there is one matrix for each of the 31 timesteps.

First step in preprocessing the data is the application of the method provided by Surkant et al [24].

It calculates the variance σ2 for each pixel i at coordinates x, y in the j-th slice sj over all timesteps

[t1, t2, ..., tT ] (see equation (1)) resulting in a three dimensional matrix named temporal variation matrix

(TVM).

i
(x,y),sj
TVM = σ2(i(x,y),sj ,t1 , i(x,y),sj ,t2 , ..., i(x,y),sj ,tT ) (1)

Next the SLIC algorithm [1] is used to segment the TVM automated. Herefor each slice was handled

separately, choosing 50 superpixel cluster centers Ck for each slice, with k = [1, 50] and that followed

by calculating distances between pixels in a 5 dimensional space. Three dimensions are caused by

the euclidean distance dlab (see equation (2)) in the color space, called CILAB. The remaining two

dimensions are caused by the euclidean distance dxy (see equation (3)) of the pixels by coordinates x, y.

dlab =
√

(lk − li)2 + (ak − ai)2 + (bk − bi)2 (2)

dxy =
√
(xk − xi)2 + (yk − yi)2 (3)

The overall distance DS between center Ck and neighbouring pixel i is the sum of the lab distance

and the xy distance normalized by the grid interval S =
√
N/K, where N is the number of pixels in

the whole image and K = 50 is the number of superpixel cluster centers [1]. By this distance DS the

neighbouring pixels will be assigned to the lowest distant cluster center Ck. Afterwards the segments are

projected onto all 34 matrices for 34 timesteps. To get one keyvalue for each segment at each timestep,

this research uses the mean as aggregation function for each segment. The end of this preprocessing

results in a discrete time series for each segment of each slice (see �gure(1)).

After �nishing preprocessing the data the methods of functional data analysis are used. First the

discrete time series data will be smoothed into continuous curves. Because the "P015" data is non-

periodic, this work chose the B-spline basis, following the recommendation of Ramsey and Silverman

[18].

A spline function Sk(t) is de�ned by (i) the order of polynomial segments it consists of and (ii) the
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Figure 1: Discrete time series of each classi�ed segment, patient data "P015".

sequence of knots τ , which are the points of matching between discrete time series and continuous

curves. The intervall over which a function is to approximated is divided into L subintervalls by τl,

where l = 1, ..., L− 1. Each intervall consists of a polynomial of order m, named spline. The B-spline

basis system was introduced in 2001 by de Boor (see equation (4),[4]).

S(t) =

m+L−1∑
k=1

ckBk(t, τ), (4)

where Bk(t, τ) is the value of the B-spline basis function de�ned by the sequence of knots τ at time

t, as well as ck is the coe�cient value. For this work we chose order m = 4 to get access also to the

�rst and second derivatives of the smoothed curves. Because the number of knots K = L − 1 de�nes

how close the smoothed curves will approximate the discrete time series, we need to choose K in an

attentive way. The aim is that the smoothing will not cause loss of information (if K is too small) or

over�tting by �tting for example noise (if K is too big). To choose the optimal number of knots, we

will execute the leave-one-out cross validation (LOOCV, [15]) for K = [4, 30].

LOOCV performs the smoothing with all but one of the discrete time series, called the training set,

and the test set (the one time series left out previously). In a second step the smoothed modell is

compared with the left out test set by mean-square-error (MSE). This two steps will be repeated until

all of the discrete time series happened to be the test set once. By calculating the mean of all MSE a
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key value is accessable to compare this smoothed model with others, using another value for K. The

best �tting smoothing will get the smallest mean of MSE (shown in �gure (3), left side). The smoothing

with the best �t, in accordance with the LOOCV, provides K = 10. The result of smoothing with this

parameters is shown in �gure (2).

Figure 2: Curves after B-spline smoothing with K = 10 basis functions

The last step of data preparation is the classi�cation of smoothed curves by biopsy data. Biopsy

means that material is extracted from a region of interest. Because of the shape of needles for doing so,

the taken probe has a cylindrical shape with a small diameter (see picture (3), right side). This probe

will be classi�ed by a histologist into "healthy", if no cancerous cells were found, or "ill", if cancerous

cells were found. A third group is present, classi�ed by histologists as "undetermined". Because biopsy

will possible touch more than one slice, it will have e�ect to the classi�cation of more than one segment

and so to more than one curve. The whole probe, and so all touched segments will be classi�ed as

"ill", even if cancerous and not cancerous cells were present in the probe at the same time. Contrary

to this, a probe will be classi�ed as "healthy" just in absence of cancerous cells. Because of that, we

decided to choose the class "healthy" over "ill", plus "healthy" over "undetermined", if one segment

was touched by two biopsies with di�erent result. In the data used for this work, this was the case for

10 probes, where "healthy" was chosen over "undetermined". This results into 39 curves, from which 10

are classi�ed as "undetermined" and not handled further, 16 are classi�ed as "ill" and 13 are classi�ed

as "healthy".
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Figure 3:
Left: Results for LOOCV of smoothing on K = [4, 30] basis functions: the minimum value appears for
K = 10 basis functions.
Right: An example of collected biopsy cores (sagittal view) [29].

3.2 Examination - Characteristics of classi�ed Curves

To examine the curves and get a �rst impression, the summary statistics mean and standard devi-

ation were calculated. For functional data the mean x (see equation(5)) is the average of the functions

point-wise across replications [18], where N is the total number of functions; i = 1, ..., N is the index

of each single function and xi(t) is the value of the function with index i at timestep t.

x(t) = N−1
N∑
i=1

xi(t) (5)

Similarly is the standard deviation std the square root of the point-wise calculated variance function

(see equation (6)), where terms are de�ned in the same way as in equation (5).

stdX(t) =

√√√√(N − 1)−1

N∑
i=1

[xi(t)− x(t)]2 (6)

The graphs are shown in �gure (4).

Next step in examining the functions is calculating the �rst and second derivative. The �rst derivative

gives some information about the velocity, the second one about the accumulation in the original data

[18]. The graphs are shown in �gure (5).

3.3 Di�erences - Methods to di�er between the groups of functions

At the �eld of FDA the band depth (BD [21]) gives the option to order all functions resulting from

smoothing of the discrete time series. With this order it is possible to detect outliers. By de�ning a

band of functions BD can give a rank of depth of single functions in this band. The smaller the value of

BD, the deeper the function is placed inside the band. Let J be the number of functions determining
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the band and n be the total number of functions with 2 ≤ J ≤ n and let B(Y1, . . . , Yj) be a band

de�ned by j random functions. Additional let G(y) be the subset of a plane, de�ned by the graph of

the function y(t) and let P be the probability measure. Then the band depth BD of function y in a

band of size J is de�ned as the sum of probability P , that the graph G(y) is a subset of each possible

band de�ned by each possible combination of functions Y1 to Yj with j = [2, . . . , J ].

BDJ(y, P ) =
J∑

j=2

BD(j)(y, P ) =
J∑

j=2

P [G(y) ⊂ B(Y1, . . . , Yj)] (7)

To calculate each possible combination of functions makes this method expensive in matters of com-

putational complexity. In contrast the modi�ed band depth (MBD) is less expensive. It measures for

a function y(t) the proportion of time it lays inside the band. If y(t) is part of the band all the time,

then MBD degenerates to BD [21]. By use of the MBD measure a boxplot for functions is possible (see

�gure (9)).

The functional t-test is a method to provide "a sense of the relative separation of two groups

of functions" [17]. For this work the absolute value of a t-statistic at each point t was calculated

by equation (8), where x1(t) is the mean of group 1 and similar x2(t) is the mean of group 2. By

using equation (8) we use the maximum value of the multivariate T-test as test statistic. We use a

permutation test to �nd a critical value of this statistic.

T (t) =
| x1(t)− x2(t) |√

1
n1
V ar[x1(t)] +

1
n2
V ar[x2(t)]

(8)

To construct a null distribution, the following steps are repeated 200 times: (i) the labels of the curves

are randomly shu�ed and (ii) the maximum of T (t) recalculated with the new labels. This provides a

reference to evaluate the maximum T (t) of the observed data.

The analyse of variance (ANOVA) is a common method to make a statement about the similarity

between groups of data. For functional data Ramsay and Silverman [18] provide a pointwise F test

statistic for the one-way analysis of variance (FANOVA). The null hypothesis for FANOVA (see equation

(9)) states, that the means µi(t) of l groups of independent random functions Xij(t), de�ned over a

closed and bounded intervall I = [a, b] are equal. The independent random functions Xij(t) are de�ned

with the index of the group i = 1, . . . , l and the index of the function in one group j = 1, . . . , ni, while

the number of functions n = n1 + · · ·+ nl and the timestep t ∈ I.

H0 : µ1(t) = · · · = µl(t), t ∈ I (9)

The F-statistic calculates the ratio between the normalized pointwise between-subject variation SSRn

and the normalized pointwise within-subject variation SSEn (see equation(10)). While l is the number

of groups, n is the number of all functions within all groups.

Fn(t) =
SSRn(t)/(l − 1)

SSEn(t)/(n− l)
(10)
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Gorecki and Smaga [9],[10] proved, that the F-statistic (see equation (10)) can be calculated approx-

imately equal based on the matrix of the inner product of a functional data object, as described by

Ramsay and Silverman [18] and a coe�cient calculated from the number of basis functions K, number

of functions in total n and number of groups l. Based on this facts, Gorecki and Smaga evolved the

permutation test (FP test) provided in the fanova.tests() function in the fdANOVA package of R pro-

gramming language. Their simulations suggest "that the FP test has better �nite sample properties

than the F -type and L2-norm based tests" [10]. For functional data containing few time steps the FP

test may also be better than the globalized pointwise F test (GFB test, resp. Fmaxb test) [10].
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4 Results

Figure 4: Mean (left side) and standard deviation (right side) of both groups of curves ("ill" in red;
"healthy" in green colour) and allover all curves (in black colour).

The mean of functions classi�ed as "healthy" constantly has a smaller functional average than the

allover mean. Similar the mean of the functions classi�ed as "ill" stays constantly above the allover

mean. With further timesteps the means' di�erence increases. This is also visible in the rapid increase

of the standard deviation from around timestep 10 to around timestep 15 for the "ill" and allover group.

After this increase the allover standard deviation is nearly three times the value of the beginning.

As one can see in �gure (5), both groups of functions in both derivatives are visibly sorted except of one

curve classi�ed as "ill", which is placed between curves classi�ed as "healthy". The �rst derivative shows

a clear di�erence in the maximum value of green ("healthy") and red ("ill") curves. By calculating the

maxima of each curve (see �gure (6)), it results in a threshold of value 68. Curves with a maximum

above 68 are the ones classi�ed as "ill", curves below 68 are the ones classi�ed as "healthy" (with one

exception as mentioned before).

To fortify the previous observation, that the groups di�er in the approximated intervall t[10, 15] a

funtional t-test (see �gure (8)) was performed. In the intervall t[8, 17] the p-value at each timestep is

smaller than 0.001. This proofs the hypothesis, that the group classi�ed as "healthy" is signi�cantly

di�erent from the group classi�ed as "ill" in that intervall.

The boxplot (see �gure (9)), based on the modi�ed band depth (MBD), does provide members of the

class "ill" and of the class "healthy" as outliers. Changing the threshold do not change this result,

because the boxplot provides symetrical more or less curves of both groups.

To get a perspective about the group of "undetermined" functions, this work decided to calculate an

analyse of variance (ANOVA) for di�erent combinations of the groups (see the results in table (1)).

While the F-statistic reaches a maximum in comparision of group "healthy" and "ill", it indicates
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Figure 5:
Left: First derivative - velocity ("healthy" in green, "ill" in red colour);
Right: Second derivative - accumulation ("healthy" in green, "ill" in red colour);

that this two groups are most di�erent from each other. The p-value is for all of the done tests

smaller than 2%, which is su�cciently signi�cant. The F-statistics in whole indicate, that the group

of "undetermined" functions is more similar to the group of "healthy" functions (F-statistic of 6.84),

than to the group of "ill" functions (F-statistic of 10.47). But the di�erence is not as large, as between

"healthy" and "ill", what suggests that the "undetermined" functions lay somewhere inbetween. This

supports also the functional ANOVA plot in �gure (10).

ANOVA for groups of... undet., ill, healthy ill, healthy undet., ill undet., healthy

p-value 0 0 0.001 0.015
F-statistic 20.70 40.88 10.47 6.84

Table 1: Results of the functional ANOVA test for di�erent combinations of groups of functions "un-
determined" (abbreviated as "undeter."), "ill" and "healthy".
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Figure 6: Maximum values of the �rst derivative in the intervall t[9, 14].

5 Conclusions

First hypothesis, that curves for cancerous tissue behaves as outliers in comparision to healthy

tissue did not prove true. But in researching the velocity, which is shown in the �rst derivative of the

curves, di�erences in healthy and cancerous tissue were noticeable with the naked eye. The group of

curves representing the healthy tissues reach a maximum velocity beneath the value of 68. Nearly all

curves (15 out of 16) in the group representing the cancerous tissues, reach a maximum velocity above

68. The one curve, not �tting into this scheme, could be misclassi�ed. A possible reason for this is the

previous discussed nature of biopsis, to classify the whole probe as cancerous, even if there was a mix

of cancerous and healthy tissue included. That this special curve represents a tissue segment in the

outer region of the prostate area seems to con�rm this assumtion.

By performing a pointwise t-test, it is clearly shown that both groups of curves are detectable di�erent.

Especially in the intervall t[9,14], where velocity reachs it's maxima, the groups of curves showed a

signi�cant di�erence (more than double of the maximum critical value).

This results could be biological explained by the behaviour of cancerous tissues, to have a more active

metabolism than their environment. In this way the contrast �uid may reach cancerous tissues earlier

and also in a higher amount than the surrounding tissues. This would lead to an earlier and higher rise

of intensity (in comparision to healthy tissues) in the MRI and in the end to the curves we observed

in this research. To substanciate this hypothesis, a broader base of data would be needed in minimum

two ways. First would be to include more patients into the analyse, so di�erences between individuals

can be researched. The second way would include more classi�ed segements in general per patient to

enlarge the ground truth of the data. This may be di�cult, because the biopsy is a method the most

patients feel uncomfortable with.

The ANOVA test showed, that the group of functions classi�ed by histologists as "undetermined" is in

the intensitiy's behavior more similar with the group classi�ed as "healthy", than with the one classi�ed
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Figure 7:
Left: Mean of the �rst derivatives;
Right: Standard deviation of the �rst derivatives;
(Curve of group "healthy" in green, "ill" in red, of all functions in black colour)

as "ill". In the evolvement of cancer the a�ected cells pass through a step by step process. During this

process they switch o� the check points one after another, which were originally developed by nature

to prevent unregulated growth. Because of this mechanism the threshold between "ill" and "healthy"

is not a clear border. The results imply, that the class of "undetermined" biopsies lays in this region

of tissue, not as healthy as it should be, but also not as ill as a clear diagnosis of cancer would need.

Besides the need to enlarge the base of data, there is a second possible improvement, which could be

worth further research. The SLIC algorithm can process pictures with 3 channels of colour (for example

RGB images, with red, green and blue channel). The TVM only allocates one of this channels because

it is in grayscale colour, so it is possible to add two more objects with information in the shape of the

TVM.

With this work we made a step to automate the process of MRI evaluation. When used on a regular

basis this can disburden the specialists who need to spend hours and hours of focussed work to interpret

the MRI of dozens of patients. On the long run it could reduce or even replace invasive methods as

biopsy, which carry a risk of unwelcome side e�ects and discomfort for the patients.
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Figure 8: Results of the functional t-test between the group of curves classi�ed as "cancerous" and the
group of curves classi�ed as "healthy".
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6 Appendix A

1 # please see end of code for details about

2 # version of R and the packages used

3 library(oro.dicom);

4 library(misc3d);

5 library(abind);

6 library(OpenImageR);

7 library(Rcpp);

8 library(rgl);

9 library(supercells);

10 library(sf);

11 library(terra);

12 library(fda);

13 library(dplyr);

14 library(ggplot2);

15 library(abind);

16 library(funFEM);

17 library(funHDDC);

18 library(plotly);

19 library(fda.usc);

20 library(fdANOVA);

21

22 ################################################

23 # START PREPROCESSING

24 ################################################

25

26

27 ##########

28 # Function to read DICOM files

29

30 prosReadDICOM <- function(path){

31 fil <- readDICOMFile(path)

32 #names(fil)

33 #head(fil$hdr)

34 #attributes(fil$img)

35

36 # patient ID

37 meta <- {}

38 meta$patID <- fil$hdr$value [28]

39 # cycle ID

40

41 # slice ID (for now number of slices)

42 meta$slices <- attributes(fil$img)[3]

43 # resolution high and width

44 meta$resH <- attributes(fil$img)[1]

45 meta$resW <- attributes(fil$img)[2]

46 # pixel intensity min , max and mean

47 meta$intMax <- max(fil$img)

48 meta$intMin <- min(fil$img)

49 meta$intMean <- mean(fil$img)
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50 fil$meta <- meta

51 return(fil)

52 }

53

54 ###############################################

55 # Please save raw P015 data plus biopsy.csv data at location specified in "path"

56 # also add an empty folder named "P015" there (used for "pathOUT ")

57 ###############################################

58

59 path <- 'C:/Users/Sabine/Studium/MA -2022/Daten/';

60

61 patfol <- list.files(path , pattern='^[0 -9]');

62 patfol <- patfol[order(nchar(patfol), patfol)];

63 for(pat in patfol){

64 print('################################# ');

65 print(pat);

66 print('################################# ');

67

68 pathIN <- paste0(path ,pat ,'/');

69 pathOUT <- paste0(path ,'/P',pat ,'/');

70

71 # -------------- LOOP OVER PATIENTS -----------------

72 #for(pat in patfol){

73 #####################################

74 # READ IN FILES

75 # PreProcessing for TVM

76 # read two files of "contrast", substract

77 timfol <- list.files(pathIN , pattern='contrast ');

78 timfol <- timfol[order(nchar(timfol), timfol)];

79

80 #############

81 # TVM BY VARIANCE: sum((each value - mean)^2) / number of values

82 fin <- prosReadDICOM(paste0(pathIN , '/', timfol [1]));

83 summe <- fin$img;

84

85 for(tistep in timfol [2: length(timfol)]){

86 fil <- prosReadDICOM(paste0(pathIN , '/', tistep));

87 summe <- abs(summe + fil$img);

88 }

89

90 mittel <- abs(summe/length(timfol));

91 quad <- abs(abs(fin$img - mittel)^2);

92

93 for(tistep in timfol [2: length(timfol)]){

94 fil <- prosReadDICOM(paste0(pathIN , '/', tistep));

95 quad <- abs(quad + abs( abs( fil$img - mittel)^2));

96 }

97

98 tvm3d <- abs(quad / length(timfol));

99

100 # have a look into slice 22 and 2 of the TVM
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101 image(tvm3d [,,22]);

102 image(tvm3d[,,2]);

103 saveRDS(tvm3d , paste0(pathOUT ,'TVM3D.rds'));

104

105 ###################################

106 # SLIC

107 # for each single Slice in TVM

108 # as agreed with Roman: each single slice done with SLIC , no whole 3D data in SLIC ,

"combine" afterwards

109 # make spatial raster from matrix

110 # calculate SLIC

111 # combine slices

112 # save as "Cells.rds"

113

114 tvm3d <- readRDS(paste0(pathOUT ,'TVM3D.rds'));

115 tvmCells <- array(NA,dim=dim(tvm3d));

116

117 for(i in c(1:dim(tvm3d)[3])){

118

119 raster <- rast(tvm3d[,,i]);

120 rasterSLIC <- supercells(raster , k = 500, compactness = 3, dist_fun = "euclidean"

, avg_fun = "mean");

121 #plot(raster);

122 #plot(st_geometry(rasterSLIC), add = TRUE , lwd = 0.2);

123 meta <- rasterize(rasterSLIC , raster , "supercells");

124 pol <- as.matrix(meta , wide=TRUE);

125 #image(pol);

126 tvmCells[,,i] <- pol;

127 }

128

129 saveRDS(tvmCells , paste0(pathOUT ,'Cells.rds'));

130

131 # # first maximize and minimize the graphic window

132 # # do not change size afterwards -.- nearly freeze

133 # layout(matrix (1:49 ,nr=7,byr=T));

134 # for(i in c(1:44)){

135 # image(tvmCells[,,i]);

136 # }

137

138 ###################################################

139 # Loop Over Timesteps after Adding Contrast Fluid

140

141 # AGGREGATION by mean

142 # result: discrete values over time for each supercell in each slice

143 # matrix[supercell ,time]

144

145 timfol <- list.files(pathIN , pattern='contrast ');

146 timfol <- timfol[order(nchar(timfol), timfol)];

147

148 # matrix[supercellID ,timestep ]= aggregationvalue

149 fdalist <- array();
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150 print("# of cells");

151 for(j in c(1:dim(tvmCells)[3])){ #init one matrix for each slice in TVM

152 print(max(tvmCells[,,j],na.rm=TRUE));

153 slice <- array(NA, dim=c(max(tvmCells[,,j],na.rm=TRUE),length(timfol)));

154 # name the slices by numbers from 1 to # of slices

155 assign(paste0("rawFDA_slice_", j), slice);

156 # store the names in a list

157 fdalist <- c(fdalist , paste0("rawFDA_slice_", j));

158 }

159 # delete first empty element from the list

160 fdalist <- fdalist [2: length(fdalist)];

161

162 # read the contrast files and aggregate

163 print("time");

164 for(ti in c(1:( length(timfol)))){ # for each timestep

165 #print("time");

166 print(ti);

167 fil1 <- prosReadDICOM(paste0(pathIN , timfol[ti]));

168 # fil1$img is the matrix of intensities

169 for(i in 1:dim(fil1$img)[3]){ # for each slice

170 #print(" slice ");

171 #print(i);

172 #print(max(tvmCells[,,i]));

173 for(supi in c(1:max(tvmCells[,,i],na.rm=TRUE))){ # for each supercell

174 #print("cell");

175 #print(supi);

176 alle <- which(tvmCells[,,i] == supi); # extract all pixels contained in

supercell

177 slice <- fil1$img[,,i];

178 agg <- mean(slice[alle]); ###### HERE choose aggregation function ######

179 #print(agg);

180 temp <- get(fdalist[i]); # get variable 's name of matrix for corresponding

slice

181 temp[supi ,ti] <- agg; # assign value (mean) for supercell at timestep

182 assign(fdalist[i], temp); # store new matrix under variable 's name

183 } #end supercells

184 } # end slices

185 } # end timesteps

186

187 for(mat in fdalist){ # for each matrix in the list of matrices per slice

188 saveRDS(get(mat),paste0(pathOUT ,mat ,'.rds')) # save matrix under variable 's name

189 }

190 image(get(fdalist [22])); # have a look into discrete values over time per segment

of slice 22

191

192 #BIOPSY MASK

193 #classify supercells by using the biopsy mask

194 mask <- prosReadDICOM(paste0(pathIN ,'biopsyMask.dcm'));

195 cells <- readRDS(paste0(pathOUT ,'Cells.rds'));

196 maske <- mask$img;

197 biplog <- c(NA ,NA); # initiate storage for supercell/biopsy -result pairs
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198 for(slice in c(1:dim(maske)[3])){

199 for(biop in c(1:max(maske))){

200 bio <- which(maske[,,slice] == biop);

201 temp <- cells[,,slice ];

202 if(length(bio) != 0){

203 supi <- temp[bio];

204 supi <- unique(supi);

205 #print(supi);

206 for(i in supi){

207 te <- slice*100+i; # i.e. supercell 14 of slice 22 becomes "2214"

208 #print(te);

209 biplog <- rbind(biplog , c(te,biop));

210 }

211 }

212 }

213 }

214 biplog <- biplog [2: dim(biplog)[1],]; # delete first empty value

215 biplog <- biplog[order(biplog [,1]) ,]; # order by number of biopsy

216 saveRDS(biplog , paste0(pathOUT ,'/biopsyCells.rds'));

217

218

219 #}

220

221 alarm();

222

223 ##########################################

224 # END PREPROCESSING

225 ##########################################

226

227 ##########################################

228 # START FDA ANALYSIS

229 ##########################################

230

231

232 pat <- "P015";

233 #################################################

234 # please adjust "pathOUT" to your needs #

235 #################################################

236 pathOUT <- paste0('C:/Users/Sabine/Studium/MA -2022/Daten/FDAdata/',pat ,'/');

237

238 # read in discrete time series

239 rawFDAfol <- list.files(pathOUT , pattern='rawFDA_slice ');

240 rawFDAfol <- rawFDAfol[order(nchar(rawFDAfol), rawFDAfol)];

241

242 # initiate an allover matrix and parallel a list with ordered matrices of all "

rawFDA_slice" files

243 # matrix[supercellID ,timestep ]= aggregationvalue

244 rawFDA <- readRDS(paste0(pathOUT ,rawFDAfol [1]));

245 rawFDAs <- list();

246 rawFDAs [[1]] <- readRDS(paste0(pathOUT ,rawFDAfol [1]));

247 i <- 1;
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248 for(rfda in rawFDAfol [2: length(rawFDAfol)]){

249 i <- i+1;

250 test <- readRDS(paste0(pathOUT ,rfda));

251 rawFDA <- rbind(rawFDA , test);

252 rawFDAs [[i]] <- test;

253 }

254

255 # CLASSIFY

256 # find classes

257 print("biopsy");

258 cate <- readRDS(paste0(pathOUT ,'/biopsyCells.rds'));

259

260 # read biopsys csv

261 pat2 <- gsub('P','',pat);

262 print("csv");

263 rawBio <- read.csv(file = paste0('C:/Users/Sabine/Studium/MA -2022/Daten/',pat2 ,'.

csv'), header=FALSE);

264 biop <- c();

265 for(b in rawBio$V2){

266 b <- gsub(" ", "", b, fixed = TRUE);

267 b2 <- switch(b, "Malignant" = 1, "Benign" = 2, "0"); # "Undetermined" = 0

268 biop <- c(biop , b2);

269 }

270 biop <- as.integer(biop);

271

272

273 # find class for supercells with more than one classification

274 # classes: 0 undefined , 2 healthy , 1 ill

275 unicate <- array(NA , 2);

276 for(cell in unique(cate [,1])){

277 a <- cate[which(cate == cell) ,2];

278 b <- biop[a];

279 print(cell);

280 print(b);

281 cl <- max(b); # chooses healthy over ill

282 unicate <- rbind(unicate , c(cell ,cl));

283 }

284 unicate <- unicate [2: dim(unicate)[1],] # delete NA row

285

286

287 # get discrete timeseries for classified supercells

288 cFDA <- array(NA ,length(rawFDA [1,])+1); # store classification and discrete time

series

289 ancest <- array(NA); # store slice -supercell / class pairs for labeling plots

290

291

292 for(thing in c(1:dim(unicate)[1])){

293 sc <- unicate[thing ,1]%%100; # number of supercell

294 sl <- (unicate[thing ,1]-sc)/100; # number of slice

295 cl <- unicate[thing ,2]; # classification

296
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297 ancest <- c(ancest , paste0(sl ,"-",sc));

298 cFDA <- rbind(cFDA , c(cl, rawFDAs [[sl]][sc ,]));

299 }

300 cFDA <- cFDA [2: dim(cFDA)[1],] # delete NA row

301 ancest <- ancest [2: length(ancest)]

302

303 # cFDA: first column is class , other values are discrete time series

304 # classes: 0 undefined , 2 healthy , 1 ill

305

306 # PLOT

307 dev.new();

308 colo <- switch(toString(cFDA [1,1]), "0" = "grey", "2" = "green", "1" = "red");

309

310 plot(c(1:( dim(cFDA)[2] -1)), cFDA [1,2:(dim(cFDA)[2])], type = "l", xlab = "time",

ylab = "f(time)", main = pat , col = colo , xlim=c(1,dim(rawFDA)[2]),ylim=c

(250 ,1750));

311 for(i in c(2:dim(cFDA)[1])){

312 colo <- "black";

313 colo <- switch(toString(cFDA[i,1]), "0" = "grey", "2" = "green", "1" = "red");

314 lines(cFDA[i,2:( dim(cFDA)[2])], lwd = 1, col = colo);

315 }

316

317

318 ###########################################

319 # FILTER

320 # only defined values (ill 1, or healthy 2)

321 fFDA <- cFDA[which(cFDA[,1] %in% c(1,2)) ,];

322 fancest <- ancest[which(cFDA[,1] %in% c(1,2))];

323

324 ###########################################

325 # VALIDATE SMOOTHING

326 mik <- 4; #number of minimal knots

327 mak <- 30; # number of maximal knots

328

329 a1 <- 2; #where starts time series (1 is class , 2 is first value of time series)

330 a2 <- dim(fFDA)[2]; #where ends time series

331 time_span <- a2 -1;

332 times_basis = seq(0,time_span ,1);

333

334 cva <- c(); # store values of cross validation

335 # smooth discrete time series for each number of knots , cross validate and store

result

336 for(knot in c(mik:mak)){

337 basisX <- create.bspline.basis(rangeval=c(min(times_basis)+1,max(times_basis)),

norder=4, nbasis=knot);

338 smoothX <- S.basis(c(min(times_basis)+1: max(times_basis)), basisX);

339 cv <- CV.S(t(fFDA[,a1:a2]), smoothX);

340 cva <- c(cva , cv);

341 }

342 # dev.new();

343 # plot(c(4:30) ,cva , ylim=c(0 ,1000)); # plot results of cross validations
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344

345 m <- min(cva);

346 i <- which(cva %in% m);

347 print("best number of knots by cross validation:");

348 print(i+mik -1);

349

350 ###########################################

351 # Smoothing Bspline

352

353 knot <- 10;

354

355 subtitle <- paste0(knot ," basis functions");

356 basis <- create.bspline.basis(rangeval=c(min(times_basis)+1,max(times_basis)), norder

=4, nbasis=knot);

357 Supi_obj <- smooth.basis(argvals = c(1: time_span), y = t(fFDA[,a1:a2]), fdParobj =

basis);

358

359 # classes: 0 undefined , 2 healthy , 1 ill

360 dev.new();

361 plot(Supi_obj$fd , col=c("red", "green", "gray")[fFDA [ ,1]]);

362 title(main="Smoothed ,original classes", sub = subtitle);

363 legend("topleft", fancest , fill=c("red", "green")[fFDA [,1]]);

364

365

366 ###########################################

367 # DERIVATIVES

368 # D1 => Velocity

369 # D2 => Acceleration

370

371 # first derivative allover

372 der1 <- deriv.fd(Supi_obj$fd ,1);

373 dev.new();

374 plot(der1 ,col=c("red", "green", "grey")[fFDA [,1]]);

375 #legend (" topleft", fancest , fill=c("red", "green")[fFDA [ ,1]]);

376 title(main="First Derivative", sub = subtitle);

377

378 # first derivative of class "ill"

379 derIll1 <- deriv.fd(Supi_obj$fd[which(fFDA [,1]%in% c(1))],1)

380 dev.new();

381 plot(derIll1 , col="red");

382

383 # first derivative of class "helathy"

384 derHeal1 <- deriv.fd(Supi_obj$fd[which(fFDA [,1]%in% c(2))],1)

385 dev.new();

386 plot(derHeal1 , col="green");

387

388 # second derivative allover

389 der2 <- deriv.fd(Supi_obj$fd ,2);

390 dev.new();

391 plot(der2 ,col=c("red", "green", "grey")[fFDA [,1]]);

392 #legend (" topleft", fancest , fill=c("red", "green")[fFDA [ ,1]]);
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393 title(main="Second Derivative", sub = subtitle);

394

395 # second derivative of class "ill"

396 derIll2 <- deriv.fd(Supi_obj$fd[which(fFDA [,1]%in% c(1))],2)

397 dev.new();

398 plot(derIll2 , col="red");

399

400 # second derivative of class "healthy"

401 derHeal2 <- deriv.fd(Supi_obj$fd[which(fFDA [,1]%in% c(2))],2)

402 dev.new();

403 plot(derHeal2 , col="green");

404

405

406 ########################################

407 # T-TEST

408 #

409 # pointwise t-test to see if groups of functions differ

410

411 # initial functions

412 dev.new();

413 tperm.fd(Supi_obj$fd[which(fFDA [,1]%in% c(1))], Supi_obj$fd[which(fFDA [,1]%in% c(2))

]);

414 # first derivative

415 dev.new();

416 tperm.fd(derIll1 , derHeal1);

417 # second derivative

418 dev.new();

419 tperm.fd(derIll2 , derHeal2);

420

421

422 ###########################################

423 # BOXPLOT

424 dev.new();

425 boxplot(Supi_obj$fd , method="MBD", factor =0.5);

426

427 dev.new();

428 boxplot(der1 , method="MBD", factor =0.5);

429

430 ############################################

431 # MEAN , STANDARD DEVIATION

432

433 # MEAN

434 mAll <- mean.fd(Supi_obj$fd); # allover mean

435 mIll <- mean.fd(Supi_obj$fd[which(fFDA [,1]%in% c(1))]); # mean of class "ill"

436 mHeal <- mean.fd(Supi_obj$fd[which(fFDA [,1]%in% c(2))]); # mean of class "healthy"

437

438 # plot all three means

439 dev.new();

440 plot(mAll , ylim=c(300 ,1500));

441 lines(mIll , col="red");

442 lines(mHeal , col="green");
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443 title(main="Means", sub="means of all (black), ill (red) and healthy (green) tissues"

);

444

445

446 dev.new();

447 plot(mIll$coefs , mHeal$coefs , type="l");

448 title(main="Compared means", sub="mean of ill (x) against mean of healthy (y) tissue"

);

449

450 # plot all functions plus the allover mean

451 dev.new();

452 colo <- switch(toString(fFDA [1,1]), "0" = "grey", "2" = "green", "1" = "red");

453 plot(c(1:( dim(fFDA)[2] -1)), fFDA [1,2:(dim(fFDA)[2])], type = "l", xlab = "time", ylab

= "f(time)", col = colo , xlim=c(1,dim(rawFDA)[2]),ylim=c(250 ,1750));

454 for(i in c(2:dim(fFDA)[1])){

455 colo <- "black";

456 colo <- switch(toString(fFDA[i,1]), "0" = "grey", "2" = "green", "1" = "red");

457 lines(fFDA[i,2:( dim(fFDA)[2])], lwd = 1, col = colo);

458 }

459 lines(mAll , col="black");

460 title(main="Original plus Mean", sub="all curves of ill (red) and healthy (green)

tissue , plus the mean (black) of all curves");

461

462 # plot means of first derivatives

463 mAllD1 <- mean.fd(der1);

464 mIllD1 <- mean.fd(derIll1);

465 mHealD1 <- mean.fd(derHeal1);

466 dev.new();

467 plot(mAllD1 , ylim=c(300 ,1500));

468 lines(mIllD1 , col="red");

469 lines(mHealD1 , col="green");

470 title(main="Means of first Derivative", sub="means of all (black), ill (red) and

healthy (green) tissues");

471

472 # STANDARD DEVIATION

473 sdAll <- sd.fd(Supi_obj$fd); #sd allover

474 sdIll <- sd.fd(Supi_obj$fd[which(fFDA [,1]%in% c(1))]); # sd for class "ill"

475 sdHeal <- sd.fd(Supi_obj$fd[which(fFDA [,1]%in% c(2))]); # sd for class "healthy"

476

477 dev.new();

478 plot(sdAll , ylim=c(0 ,400));

479 lines(sdIll , col="red");

480 lines(sdHeal , col="green");

481 title(main="Standard Deviations", sub="sd of all (black), ill (red) and healthy (

green) tissues");

482

483 # sd for the first derivatives

484 sdAllD1 <- sd.fd(der1);

485 sdIllD1 <- sd.fd(derIll1);

486 sdHealD1 <- sd.fd(derHeal1);

487
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488 dev.new();

489 plot(sdAllD1 , ylim=c(0 ,400));

490 lines(sdIllD1 , col="red");

491 lines(sdHealD1 , col="green");

492 title(main="Standard Deviations of the first Derivative", sub="sd of all (black), ill

(red) and healthy (green) tissues");

493

494 #############################################

495 # # PCA

496

497 # pcaAll <- pca.fd(Supi_obj$fd);

498 # plot.pca.fd(pcaAll);

499

500 # # strong first component , second at 0.7%

501 # # -> nearly all informations stored in the first component

502 # # if it would be points instead of functions , one dimension would be enough to show

differences

503

504 # # pcaIll <- pca.fd(Supi_obj$fd[which(fFDA [,1]%in% c(1))]);

505 # # plot.pca.fd(pcaIll);

506

507 # # pcaHeal <- pca.fd(Supi_obj$fd[which(fFDA [,1]%in% c(2))]);

508 # # plot.pca.fd(pcaHeal);

509

510 #####################################################

511 # MAXIMUM

512 # eval.fd(sequence ,fda -object);

513

514 se <- seq(2,30, length =2801); # 28 times x plus 1, x=100

515 fineFDA <- eval.fd(se,derAllover1); # 2 to 30 to cut infinite ends

516 maxs <- array(NA ,2);

517 for(c in c(1:dim(fineFDA)[2])){

518 cur <- fineFDA[,c];

519 m <- max(cur); # gives max

520 i <- which(cur %in% m); # gives coord for max

521 maxs <- rbind(maxs , c(i,m));

522 }

523 maxs <- maxs [2: dim(maxs)[1],];

524 plot(maxs);

525

526

527 # classified curves

528 #se <- seq(2,30, length =281); # 28*x+1, x=100

529 fineIll <- eval.fd(se,derIll1); # 2 to 30 to cut infinite ends

530 maxIll <- array(NA ,2);

531 for(c in c(1:dim(fineIll)[2])){

532 cur <- fineIll[,c];

533 m <- max(cur); # gives max

534 i <- which(cur %in% m); # gives coord for max

535 maxIll <- rbind(maxIll , c(i,m));

536 }
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537 maxIll <- maxIll [2: dim(maxIll)[1],];

538 points(maxIll , col="red");

539

540 fineHeal <- eval.fd(se,derHeal1); # 2 to 30 to cut infinite ends

541 maxHeal <- array(NA ,2);

542 for(c in c(1:dim(fineHeal)[2])){

543 cur <- fineHeal[,c];

544 m <- max(cur); # gives max

545 i <- which(cur %in% m); # gives coord for max

546 maxHeal <- rbind(maxHeal , c(i,m));

547 }

548 maxHeal <- maxHeal [2: dim(maxHeal)[1],];

549 points(maxHeal , col="green");

550

551 # plot maximum values of classified functions only

552 dev.new();

553 plot(maxIll , col="red", ylim=c(0 ,200), xlim=c(700, 1200), pch =19);

554 points(maxHeal , col="green", pch =19);

555

556 ###############################################

557 # ANOVA

558

559 bas <- create.bspline.basis(rangeval=c(min(times_basis)+1,max(times_basis)), norder

=4, nbasis =31);

560 crosspro <- inprod(bas , bas);

561 # select groups (0= undetermined , 1=ill , 2= healthy)

562 gr <- c(0,1,2); #c(1,2) or c(0,1) or ...

563 ob <- t(cFDA[,2:dim(cFDA)[2]])[,which(cFDA [,1]%in% gr)];

564 lab <- cFDA[which(cFDA [,1]%in% gr)];

565 fanova3 <- fanova.tests(group.label = lab , test = "FP",

566 params = list(paramFP = list(B.FP = 1000, basis = "own",

567 own.basis = ob ,

568 own.cross.prod.mat = crosspro

569 )));

570 summary(fanova3);

571

572 ###############################################

573 # details about used R and packages #

574 ###############################################

575 sessionInfo ()

576 # R version 4.2.1 (2022 -06 -23 ucrt)

577 # Platform: x86_64-w64 -mingw32/x64 (64-bit)

578 # Running under: Windows 10 x64 (build 19044)

579

580 # Matrix products: default

581

582 # locale:

583 # [1] LC_COLLATE=German_Germany.utf8 LC_CTYPE=German_Germany.utf8

584 # [3] LC_MONETARY=German_Germany.utf8 LC_NUMERIC=C

585 # [5] LC_TIME=German_Germany.utf8

586
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587 # attached base packages:

588 # [1] splines stats graphics grDevices utils datasets methods

589 # [8] base

590

591 # other attached packages:

592 # [1] fdANOVA_0.1.2 fda.usc_2.1.0 mgcv_1.8-40 nlme_3.1 -157

593 # [5] plotly_4.10.1 funHDDC_2.3.1 funFEM_1.2 elasticnet_1.3

594 # [9] lars_1.3 ggplot2_3.3.6 dplyr_1.0.10 fda_6.0.5

595 # [13] deSolve_1.33 fds_1.8 RCurl_1.98 -1.9 rainbow_3.7

596 # [17] pcaPP_2.0-2 MASS_7.3-57 terra_1.6-7 sf_1.0-8

597 # [21] supercells_0.9.1 rgl_0.109.6 Rcpp_1.0.9 OpenImageR_1.2.5

598 # [25] abind_1.4-5 misc3d_0.9-1 oro.dicom_0.5.3

599

600 # loaded via a namespace (and not attached):

601 # [1] bitops_1.0-7 doParallel_1.0.17 httr_1.4.4

602 # [4] backports_1.4.1 Deriv_4.1.3 tools_4.2.1

603 # [7] utf8_1.2.2 R6_2.5.1 KernSmooth_2.23 -20

604 # [10] DBI_1.1.3 lazyeval_0.2.2 colorspace_2.0-3

605 # [13] withr_2.5.0 tidyselect_1.2.0 compiler_4.2.1

606 # [16] cli_3.4.1 microbenchmark_1.4.9 scales_1.2.1

607 # [19] classInt_0.4-7 mvtnorm_1.1-3 proxy_0.4 -27

608 # [22] digest_0.6.29 tiff_0.1 -11 base64enc_0.1-3

609 # [25] jpeg_0.1-9 pkgconfig_2.0.3 htmltools_0.5.3

610 # [28] fastmap_1.1.0 htmlwidgets_1.5.4 rlang_1.0.6

611 # [31] SuppDists_1.1 -9.7 shiny_1.7.2 generics_0.1.3

612 # [34] jsonlite_1.8.0 mclust_5.4.10 magrittr_2.0.3

613 # [37] Matrix_1.4-1 munsell_0.5.0 fansi_1.0.3

614 # [40] lifecycle_1.0.3 grid_4.2.1 parallel_4.2.1

615 # [43] promises_1.2.0.1 lattice_0.20 -45 knitr_1.40

616 # [46] pillar_1.8.1 tcltk_4.2.1 codetools_0.2-18

617 # [49] kSamples_1.2-9 magic_1.6-0 glue_1.6.2

618 # [52] doBy_4.6.15 data.table_1.14.6 png_0.1-7

619 # [55] vctrs_0.4.2 httpuv_1.6.5 foreach_1.5.2

620 # [58] gtable_0.3.1 purrr_0.3.5 tidyr_1.2.1

621 # [61] ks_1.13.5 xfun_0.33 mime_0.12

622 # [64] broom_1.0.2 xtable_1.8-4 pracma_2.4.2

623 # [67] e1071_1.7-11 later_1.3.0 class_7.3-20

624 # [70] viridisLite_0.4.1 tibble_3.1.8 iterators_1.0.14

625 # [73] units_0.8-0 cluster_2.1.3 ellipsis_0.3.2

626 # [76] hdrcde_3.4
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