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LIST OF ABBREVIATIONS 

HMM – Hidden Markov Model 

MHMM – Multivariate Hidden Markov Model 

HHMM – Hierarchical Hidden Markov Model 

dHMM – Duration Hidden Markov Model 

PC – Principal Component 

ROC – receiver operator characteristic 

ATAC-Seq – Assay for Transposase-Accessible Chromatin with high-throughput sequencing 

ChIP-Seq – Chromatin immunoprecipitation followed by sequencing 

MNase-Seq – Micrococcal nuclease sequencing 

DNase-Seq – DNase I hypersensitive sites sequencing 

HGT – horizontal gene transfer 

HGHMM – Hierarchical generalized hidden Markov models 

NFR – nucleosome-free region 
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INTRODUCTION 

Nucleosomes play a part in gene regulation by controlling access to specific parts of DNA via 

granting access for transcription or restricting it. Understanding the factors that influence nucleosome 

positioning and how to identify their positions can provide insights into how genes are regulated.  

 

Nucleosomes are structural units that package DNA in eukaryotes. Each nucleosome consists of a 

histone octamer with 147 bp DNA wrapped around it. Nucleosomes and their positional patterns are 

at least partially responsible for chromatin structure and gene expression. 

 

 
Figure 1. Nucleosomes within DNA. Source: https://www.genome.gov/genetics-glossary/Nucleosome (accessed 14 May 
2023) 

 

Nucleosomes and DNA together make up chromatin. Chromatin itself is dynamic - remodelling is 

happening constantly across the whole genome (Sananbenesi and Fischer, 2015). It is a process 

that changes the architecture of chromatin and therefore allows and controls access to genomic DNA 

and its transcription. (Zhou et al., 2016) Chromatin remodelling happens in response to 

environmental stress and other conditions by sliding, spacing out, ejecting, and adding nucleosomes.  

 

Certain patterns of dinucleotides in nucleosomal DNA show very high stability and affinity to the 

histone octamer. Such patterns can be termed as packing (Pranckevičienė et al., 2020). In a stack 
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of aligned nucleosomal sequences these patterns manifest 

statistically as peaks (Supplementary figure 3) of dinucleotide 

occurrence frequency along a nucleosomal sequence.  

Some tools exist that can be used to identify nucleosome positions 

solely based on the DNA sequences (Pranckevičienė et al., 2020, 

Pranckevičienė et al., 2022).  Generally, these methods are not 

very accurate. Several tools have been developed to predict 

nucleosome positions using Hidden Markov Models (HMMs) that 

are claimed to be more accurate.  In this thesis we focus on Hidden 

Markov Model algorithms and tools for nucleosome mappings. 
HMMs are probabilistic models that can capture the underlying 

structure of a sequence (Eddy, 2004). The model can be applied to infer probability of a nucleosome 

being present at each position of the DNA sequence by analysing this sequence. Several studies, 

such as NuPoP (Xi et al., 2010), Hierarchical Generalized Hidden Markov Models (Moser and Gupta, 

2012), have shown that HMMs can accurately predict nucleosome positions in a variety of 

organisms. By comparing HMM predictions in different DNA sequences, such as healthy and 

diseased states, cell types and responses to stimuli, results can help identify differences in 

nucleosome positioning that are associated with gene expression and chromatin structure. 

An advantage that HMMs have over other nucleosome prediction methods (such as support vector 

machines or genomic signal processing (Peckham et al., 2007)) is their ability to model the 

dependence of nucleosome positioning on the sequence context. This means that the model can 

consider the specific DNA sequence in addition to other factors such as histone modifications. As 

more genomic data becomes available (Zhao et al., 2019), HMMs are likely to become even more 

powerful in predicting nucleosome positions because the amount of training sequences will increase. 

HMMs are often used to infer nucleosome positions within DNA, therefore it can prove useful to have 

multiple tools at our disposal to access easily (Tsui, 2013). At the moment we can find several useful 

tools for such analysis using HMMs. These tools include HMMRATAC (Tarbell and Liu, 2019), 

NuPoP (Xi et al., 2010), NucHMM (Fang et al., 2021).  While they are available, they have to be 

discovered and set up separately, with no way to have a complete workflow easily accessible. While 

this is possible to do, it can cause inconveniences and slowdowns when working with the tools for 

the first time or when tools do not have an easy-to-use interface which can slow down the research 

process and create unnecessary confusion when navigating between multiple platforms and tools. 

For such cases, we have decided to find useful tools to work with HMMs for nucleosome position 

prediction and integrate them together via an extensible custom software tool with already existing 

tools to create a complete workflow. This can provide a selection of tools easily with the possibility 

to compare results or to find the multiple approaches with data available. 

Figure 2. Stable nucleosome. 
(Onufriev and Schiessel, 2019) 
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AIM AND TASKS 

The aim of this thesis is to develop a Hidden Markov Model based computational nucleosome 

mapping tool. 

This aim comprises of the following tasks: 

• Create Hidden Markov model and implement an HMM based algorithm programmatically to 

predict nucleosome positions in a DNA sequence and provide for the model for use 

• Use known human and mouse nucleosomal sequences to train the HMM and use it to infer 

DNA properties 

• Test the trained model to map nucleosomes and calculate accuracy using 204 nucleosomal 

sequences in which a position of nucleosome is known  

• Integrate the developed HMM based tool into existing Galaxy instance 
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LITERATURE REVIEW 

Nucleosome positioning sequences play an important role in nucleosome positioning along other 

factors, such as epigenetic DNA modifications, plasticity, and chromatin remodelling complexes. The 

patterns of DNA sequences forming nucleosomes have been statistically categorized roughly into 

two groups – packing and regulatory – that differ in their dinucleotide composition and spatial 

dinucleotide frequency. The plasticity of DNA in these sites is an important factor that influences the 

addition of new, advantageous genes and the deletion of unnecessary ones. In the context of 

nucleosomes, packaging and regulating the expression of genes can indirectly influence the 

selection of the genes. The processes are closely related to HGT barrier and the size of the genome 

(Sela et al., 2018). However, positional accuracy problems still persist when mapping nucleosomes, 

which can impede research and lead to relatively inaccurate data - the results can have a success 

rate of 50% (Zhou et al., 2016). Further analysis of the connection between regulatory chromatin 

sites and DNA plasticity and rigidity is needed to understand their impact on the genome. For this 

thesis, a particular interest is placed on the effectiveness of Hidden Markov Models for such use. 

Various tools implement HMMs in different ways, although there is no integrated complete solution. 

Tools can be found on several platforms, such as NucPosDB (Shtumpf et al., 2022), Nucleosome 

Dynamics (Buitrago et al. 2019). Alongside the tools available, there is research that shows the 

results that such models can provide, and apart from the models themselves, there is a possibility to 

connect such tools in a unified workflow. 

Hidden Markov Models 
A Hidden Markov Model is a statistical model that can be used to analyse sequences of observations. 

A sequence is produced through a stochastic progression of multiple states. Each state represents 

a specific collection of labels that provide detailed information about a small portion of the subject or 

its constituent part, while observations are the visible data points produced by the states. HMMs are 

particularly useful when analysing sequences in which the states or categories of the underlying 

process generating the sequence are not directly observable. The goal is to define the next state by 

the current one (Eddy, 2004). 

 

In an HMM, the states of the underlying process are hidden or unknown, but the observations are 

visible or observable. The model consists of a set of states, a set of observations, and a set of 

probabilities that describe the relationships between the states and the observations.  

 

The key to using HMMs is to learn the model parameters from data, which involves estimating the 

probabilities of transitioning between states and emitting observations from each state. This is 

typically done using an algorithm called the Baum-Welch algorithm, which is a type of Expectation-
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Maximization algorithm that estimates the maximum likelihood parameters of the model (Eddy, 

2004).  

 

HMMs are used in a wide range of applications, including speech recognition, bioinformatics, and 

natural language processing. In bioinformatics, HMMs are particularly useful for analysing biological 

sequence data, such as DNA or protein sequences, and for identifying functional regions within these 

sequences. It can commonly be seen that one way to analyse the results of an HMM is the Viterbi 

algorithm which is used to find the most likely sequence of hidden states that generated a sequence 

of observations. In our case HMMs are particularly useful because they can capture the periodicity 

and spatial dependencies that are characteristic of nucleosome positioning. (Durbin et al., 1998) 

 

The model assumes that the sequence of observations was generated by an underlying process 

with a set of states, but the states themselves are hidden and not directly observable. Each state 

emits an observation, and the probability of emitting a particular observation depends on the current 

state of the process. 

 

Variations of HMMs 

Profile HMMs are a type of HMM that is used to represent a multiple sequence alignment, which is 

a collection of related sequences that have been aligned to identify conserved regions. Profile HMMs 

use the position-specific scoring matrix of the multiple sequence alignment to represent the emission 

probabilities of the states. This allows the model to capture the pattern of conservation and variation 

across the aligned sequences. (Durbin et al., 1998) 

 

Pair HMMs are used to align two sequences, such as a DNA or protein sequence and a reference 

sequence. Pair HMMs use two different sets of states, one for the query sequence and one for the 

reference sequence, and incorporate information about the substitution, insertion, and deletion 

probabilities of aligning two sequences. (Durbin et al., 1998) 

 

Multivariate hidden Markov models (MHMMs) extend the basic HMM framework to handle multiple 

sequences of observations. In an MHMM, each observation is a vector of measurements rather than 

a single scalar value. MHMMs allow the joint probability distribution of the observations to be 

modelled as a multivariate Gaussian distribution, and the transition probabilities between hidden 

states are modelled using a regular HMM. (Visser and Speekenbrink, 2022) 

 

Hierarchical hidden Markov models (HHMMs) extend the HMM framework to handle sequences of 

HMMs. In an HHMM, each hidden state corresponds to a separate HMM, and the transitions between 

the hidden states are themselves modelled as an HMM. HHMMs allow for a hierarchical structure of 



 10 

hidden states, where each level of the hierarchy corresponds to a different level of abstraction or 

granularity in the underlying process that generates the observations (Fine et al., 1998). 

The Galaxy Platform 
The Galaxy platform is an open-source bioinformatics platform designed to make it easier for 

researchers to perform data analysis and visualization of large biological datasets, such as DNA 

sequencing data, proteomics data, and other omics data. Galaxy was first developed in 2005 and 

has since been widely adopted by the scientific community. (Galaxy Community, 2022) 

 

The Galaxy platform provides a web-based interface that allows researchers to access a wide range 

of bioinformatics tools and workflows, without requiring them to have specialized computing or 

programming expertise. Users can upload their own data, perform analysis using a wide range of 

tools, and visualize and share their results. The platform also enables reproducibility by allowing 

researchers to share their workflows and data with others. 

 

The Galaxy platform has been used in a wide range of scientific research, including genomics, 

transcriptomics, metagenomics, and proteomics. It has been used to analyse data from a wide range 

of organisms, including humans, animals, plants, and microbes. The platform is constantly evolving, 

with new tools and features being added regularly by the community of developers and users. 

Investigated studies 

Hierarchical generalized hidden Markov models (HGHMM)  
The study (Moser and Gupta, 2012) discusses the use of hidden Markov models for statistical 

inference from genome tiling arrays, developing a hierarchical model robust to various sources of 

probe variability and measurement error and an explicit state duration model. The sources of 

variability are mainly from length restrictions and unknown length duration of states, exponential 

forgetting (Moser and Gupta, 2012). In the context of tiling-array data, which are series of hybridised 

short overlapping probes that cover the whole genome (Gupta, 2007), HMMs are useful for detecting 

true protein-DNA interactions because the spatially dependent structure of the tiling array suggests 

that models explicitly incorporating this dependence are more powerful (Moser and Gupta, 2012). 

 

However, HMMs are not directly suitable for assessing length-constrained features such as 

nucleosomes because they induce exponentially decaying state length distributions.  

 

(1) lim
!→#$

||	ρ% 	− 	ρ&%	|| = 0 	𝑎𝑙𝑚𝑜𝑠𝑡	𝑠𝑢𝑟𝑒𝑙𝑦 

Equation 1. Exponential forgetting of prediction filter or loss of memory of HMM. Start any two different initial state 
probability vector p0 and p’0 and after applying the same sequence of matrices, they generate two sequence of filtered state 
probability ρn and ρ’n. The distance of two sequences goes to 0 asymptotically almost surely (Ye et al., 2017). 
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To address this problem, a generalized Bayesian framework was introduced for statistical inference 

from genome tiling arrays, developing a hierarchical model that is robust to previously mentioned 

sources of probe variability and measurement error and an explicit state duration (Moser and Gupta, 

2012). 

Wavelets are mathematical functions that are used to represent complex signals by decomposing 

them into smaller blocks. These algorithms use wavelet analysis, which can help remove noise from 

data, to determine signals, which are used to model the probability that DNA sequence is part of a 

nucleosome via logistic regression, which is a method that analyses the relationship between 

categorical and independent variables via using a logistic function to model the probability of an 

event occurrence. The predicted logits, which are the natural logarithm of the odds of an event 

occurring and in this case are the outputs, also known as N-scores, are used to classify each 

sequence as a linker or nucleosome. These methods have been compared to other nucleosome 

classification approaches using an ROC-score, the area under a receiver operator characteristic 

(ROC) curve. The article concludes that combining sequence information with nucleosome 

positioning data can improve the accuracy of discovering transcription factor binding sites in complex 

organisms. 

The study (Moser and Gupta, 2012) describes two methods for analysing nucleosome positioning 

experiments using probe-specific models. The first method uses a hierarchical hidden Markov model 

approach to model the spatial dependence between probes, allowing for flexible modelling of the 

distribution of latent states. The second method uses a two-stage approach to determine sequence-

based characteristics that predict nucleosome positioning. A two-state hierarchical HMM is used, 

where at the coarsest level, different segment types may potentially have different nucleotide 

compositions. The increase in predictive power is tested via using data where nucleosome positions 

are known. The study's results indicated that the HGHMM-based methods had had a smaller 

discrepancy from real percentage of nucleosomal regions when compared to methods by (Yuan and 

Liu, 2008) and (Segal et al., 2006). HGHHM proved to be better in predicting nucleosome-rich 

regions than nucleosome-free regions, but the article suggests that while sequence factors are 

generally indicative of differences between nucleosomal and nucleosome-free regions, other 

chromatin measurements may need to be integrated for maximal predictive efficiency. They also 

showed that A/T-containing dimers and trimers are the top contributors to nucleosome positioning, 

and the 3rd principal component (PC), which is most strongly correlated with nucleosome 

positioning, depends heavily on C- and G-containing k-mers, suggesting that there may be 

mechanisms at work other than the rigidity of the DNA alone in positioning nucleosomes. 
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Genome-Scale Identification of Nucleosome Positions in S. cerevisiae 

In this approach, a HMM is trained on a set of nucleosome and linker sequences, which is used to 

generate a model that can predict the probability of a given sequence being a nucleosome or linker. 

The model is then used to predict the probability of each nucleotide being in a nucleosome or linker 

state along the DNA sequence. This probability profile can be thresholded to identify the start and 

end positions of nucleosomes and linkers. The main advantage of using HMMs is that they can 

capture long-range dependencies between nucleotide positions, which is important for accurately 

predicting nucleosome and linker boundaries. (Yuan et al., 2005) 

 

Genomic Sequence Is Highly Predictive of Local Nucleosome Depletion 

In this study (Yuan and Liu, 2008), a computational approach is presented to extract sequence 

features associated with nucleosome binding. The approach involves the use of the wavelet 

transformation to extract periodicity features and then uses a statistical model to select features 

associated with nucleosome positioning. The model has a significantly improved performance 

relative to previous studies in predicting genome-wide nucleosome positions. The study also 

identified long-range (>100 bp) or sequence-independent signals that are important for nucleosome 

positioning. The approach was used to analyse human genomic sequences, and the results were in 

good agreement with experimental data. (Yuan and Liu, 2008) 

Although computational methods that extract sequence features associated with nucleosome 

binding have been developed, the prediction accuracy is only modestly higher than random 

guessing, suggesting that there may be additional long-range (>100 bp) or sequence independent 

signals that are important for nucleosome positioning undiscovered by current models. Their method 

first makes use of the wavelet transformation (Addison, 2005) to extract periodicity features and then 

uses a statistical model to select features associated with nucleosome positioning. The model was 

able to predict in vivo nucleosome-enriched or nucleosome-depleted regions, negative correlation 

between promoter nucleosome occupancy and global transcription rates, depletion of nucleosomes 

at regulatory elements, and mutation of short DNA sequences that only leads to gradual changes of 

nucleosome occupancy. 

The article (Yuan and Liu, 2008) also discusses the development of a Hidden Markov Model to 

predict genome-wide nucleosome positions from tiling array data. The model uses the N-score to 

quantify the sequence preference of nucleosome binding and takes into account that the positions 

of neighbouring nucleosomes interfere with each other. The model predicts non-overlapping local 

peaks of the N-scores, representing the predicted nucleosome positions. The performance of the 

model was evaluated against non-chromosome III nucleosome positions, and it was found to have 

a lower false negative rate and false positive rate than random guessing. The article also discusses 

the enrichment of regulatory elements in low N-score regions and the reduced nucleosome 

occupancy at the TATA box. 
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HMMER 

HMMER is a tool for searching sequence databases for homologous protein or nucleotide 

sequences, using profile hidden Markov models. Although HMMER is primarily used for protein 

sequence analysis, it can also be used for nucleotide sequence analysis. (Potter et al., 2018; Mistry 

et al., 2013) 

One way to use HMMER for nucleosome position detection is to create an HMM based on the 

nucleosome sequence motif, which can be used to search genomic DNA for nucleosome positions. 

The nucleosome sequence motif is a pattern of DNA sequence that is characteristic of regions that 

are wrapped around a nucleosome. 

To create an HMM for nucleosome position detection, one approach is to train the model using a set 

of known nucleosome positions. This can be done by first extracting DNA sequences around the 

known nucleosome positions, and then using these sequences to generate a multiple sequence 

alignment. The multiple sequence alignment can then be used to build a profile HMM using HMMER. 

Once the HMM is created, it can be used to search genomic DNA for potential nucleosome positions. 

The HMMER search will return a list of genomic regions that match the HMM profile. These regions 

can then be further analysed to determine whether they are likely to be nucleosome positions. 

It's worth noting that HMMER is just one tool that can be used for nucleosome position detection, 

and there are many other methods and software packages available, such as HMMRATAC (Tarbell 

and Liu, 2019), NuPoP (Xi et al., 2010). Additionally, nucleosome position detection can be a 

challenging problem, and multiple methods are often used in combination to improve accuracy and 

reliability (Wheeler and Eddy, 2013). 

 

Overview of investigated studies 
Overall, studies show that Hidden Markov Models are not only a subject that is being researched to 

use in future studies. HMMs have already proven useful in multiple studies, including nucleosome 

position prediction. Such use of HMMs not only provide an improvement in accuracy or speeds, but 

it also allows to take note of other features that are not easily detectable. Such models have some 

intrinsic properties that can be applied to predict nucleosome positions in a way that matches what 

the provided sequences do not show initially. 

 

Investigated tools 

NucHMM 

The study (Fang et al., 2021) introduces a novel computational method called NucHMM, which 

integrates a hidden Markov model with the characteristics of nucleosome organization to identify cell 
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type-specific functional nucleosome states. The method is tested on publicly available data and 

offers insights into the interplay between nucleosome organization and the splicing process. (Fang 

et al., 2021) 

The algorithm is composed of three modules: initialization, training, and functioning. The training 

module trains multiple Hidden Markov Models and selects the best model based on the smallest 

Bayesian Information Criterion score (Fang et al., 2021). The functioning module defines functional 

nucleosome states based on genomic location, average number of nucleosomes, nucleosome 

phasing and spacing, and nucleosome positioning. The model is trained using ChIP-seq and MNase-

seq data from (The ENCODE Project Consortium, 2012) and is able to identify functional 

nucleosome states. The algorithm is able to identify 11 functional nucleosome states, each with a 

specific set of histone modifications, and can be used to determine the splicing potential of specific 

nucleosome states. The research implies that nucleosomes bearing H3K36me3, and H3K79me2 

histone tail modifications may have a significant impact on the process of skipping exon processing. 

The tool was tested on publicly available data of MCF7, H1, and IMR90 cells (The ENCODE Project 

Consortium, 2012). 

 

NuPoP 

The article (Xi et al., 2010) presents a method for modelling chromosomal DNA sequences using 

duration Hidden Markov Models (dHMMs). The dHMM used models two states, nucleosome, and 

linker, where the nucleosome state has a fixed length of 147 base pairs and the linker state has a 

variable length. The models were trained using a set of 503,264 yeast nucleosome DNA reads from 

454 pyrosequencing, and the method was used to estimate the nucleosome occupancy and histone 

binding affinity score at a specific position in the DNA sequence. Two models were trained - one for 

nucleosomes (trained with non-redundant nucleosome sequences – 4th order time-dependent 

Markov chain) and one for linker regions (8090 reads-free regions – homogeneous 4th order Markov 

chain). The optimal path was found using the Viterbi algorithm, and the nucleosome occupancy score 

was estimated using forward and backward algorithms. The authors stated that the dHMM model 

provided a more accurate result for nucleosome positions than previous methods. (Xi et al., 2010) 

 

 

nhmmer 

One more specific tool from the HMMER suite that can be used for nucleosome position prediction 

is nhmmer. 

As other tools fail to produce good results, profile hidden Markov models are introduced as a more 

sensitive and probabilistic approach to sequence comparison. They calculate the signal of homology 
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based on the more powerful Forward/Backward HMM algorithm that computes not just one best-

scoring alignment, but a sum of support over all possible alignments. (Wheeler and Eddy, 2013) 

As tools seem to mostly focus on protein search, the article introduces nhmmer, a tool that uses 

profile HMMs for DNA homology search at speeds nearly as fast as blastn with sensitive settings. 

nhmmer is designed to search one or more nucleotide queries against a nucleotide sequence 

database, and for each query, it searches the target database and outputs a ranked list of the hits 

with the most significant matches to the query. The hits are assigned a similarity score in bits, along 

with an E-value indicating the expected number of false positives at a threshold of the score 

(Supplemental image 1, Supplemental image 2, Supplemental image 3). 

nhmmer uses a series of acceleration filters that depend on simpler approximations of the final 

Forward score of a hit. These filters are based on those used in the HMMER3 protein search tools 

but have been modified to work in the context of long target sequences. The initial filter scans along 

the target sequence with a fast un-gapped Viterbi alignment, using a reduced-precision, 16-way 

vector-parallel approach (Farrar, 2007), which essentially is an optimization technique that allows 

the processing of 16 calculations simultaneously using a single instruction. Candidate alignments 

passing this filter then undergo the full rigor of a Forward/Backward alignment to the query. 

The tool was tested using the RMARK3 (Nawrocki and Eddy, 2013). 

The authors anticipate that nhmmer will benefit other domains of DNA sequence comparison that 

depend on discriminative detection of remote homologs. 

 

HMMRATAC 

Several assays exist to identify open chromatin regions, including the popular Assay for 

Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-Seq) assay. The article 

(Tarbell and Liu, 2019) introduces a new machine learning method called HMMRATAC that identifies 

open chromatin regions more accurately by decomposing an ATAC-seq dataset into different layers 

of coverage signals corresponding to nucleosome-free regions (NFRs) or nucleosomal regions and 

learning the relationships between these signals using a Hidden Markov Model. The algorithm also 

utilizes the Baum-Welch algorithm to train the Hidden Markov Model on the ATAC-seq data and can 

be used to evaluate the quality of the data by checking the length distribution of transposition 

fragments. HMMRATAC is also useful for identifying potential transcription factor binding sites and 

can be extended to identify differentially accessible regions between two or more conditions.  

 

The comparison of results and effectiveness was done with MACS2 (Gaspar, 2018), F-Seq (Boyle 

et al., 2008). Analysis done on human GM12878 cell line and human monocyte data from a publicly 

available database (Kodama et al., 2012). 
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HMMRATAC outperformed existing methods used for ATAC-seq analysis, including identifying 

active and/or open chromatin regions and can be integrated into a typical analysis pipeline for ATAC-

seq data. (Tarbell and Liu, 2019) 

ATAC-seq has advantages over other methods for identifying open chromatin regions, such as low 

starting material requirement and simple protocol and it outperforms other computational methods 

that integrate ChIP-seq, DNase-seq and FAIRE-seq. (Yan et al., 2020) 

 

Overview of Tooling 

Out of the 4 mentioned tools, 2 of them are readily available on the Galaxy platform. They can be 

integrated into the existing set of tools for nucleosome position prediction to expand the use cases 

and provide a more complete workflow that just using the tools on their own. While these tools are 

available, they are not directly a part of the instance of Galaxy and are not directly usable without 

additional configuration. The other two tools are publicly available on GitHub but are not a part of the 

Galaxy platform therefore they require additional wrappers to enable them and then the configuration 

mentioned to be able to use them in the Galaxy instance for a unified workflow.  

These tools will provide multiple choices of prediction possibilities and allow to work with separate 

implementations of algorithms, as each tool used has its own, as well as different types of data, that 

could be acquired from databases or uploaded by the user. Such flexibility and integration provide 

the user with easier access to mentioned tools without doing additional manual work and can not 

only save time, but provide explanations required to be able to quickly dive into the tool without prior 

knowledge. 

 

 

 

Literature analysis conclusion 
Overall, to discover what methods are being used and are readily available, we had to analyse types 

of hidden Markov models, existing tools, and algorithms. Hidden Markov Models themselves come 

in a variety of forms, a lot of which can be applied to nucleosome position detection. Such variations 

have already been used to create working software for nucleosome position detection with varying 

results. The Galaxy Platform provides a stable base for such tools, that is provided on clusters by 

the Galaxy Platform itself, as well as the ability to run it on a local machine. Tools can easily be used 

together with outputs easily transferable, without any programming knowledge, also it provides the 

tools required to have a complete workflow. While some are readily available for use or integration, 

others require a compatibility layer – a wrapper – to have the ability to be integrated. In this case, a 

variety of factors appear and can be taken into consideration when adding and using such tools. 

Such factors could be: 

• Speed of the algorithm 
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• Accuracy of prediction 

• Ease of use 

• Type of data used for prediction 

Overall, studies show that HMMs can prove useful in nucleosome position prediction, the method 

has a plethora of tools available for such cases, but it seems to lack a unified workflow, for which the 

Galaxy Platform provides a great scaffolding to be used together, alongside other required tools. 

However, this does not imply in any way that the tools are unusable on their own. 
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METHODS 

The 'Methods' section of this thesis outlines the computational approach and techniques employed 

to predict nucleosome positions. Accurate prediction of these positions is crucial for understanding 

chromatin organization, gene regulation, and DNA-protein interactions. The goal of each method is 

to find suitable parameters that provide good results and in the end pick the option that is the most 

suitable for nucleosome detection. 

Data 

Data sources and collection 

The data used in this study were obtained from publicly available FASTA files, encompassing a 

diverse range of biological samples. These included apoptotic human cells, CD4+ human cells, 

stress-resilient mice, stress-susceptible mice, and a control group of mice. Mice sequences were all 

named, and the human sequences were unnamed, therefore required additional processing. Said 

sequences were mostly 219 base pairs long, some of them had unfiltered missing bases and 

different lengths and had to be processed as well. Additionally, we utilized a set of 204 sequences 

from another study, selecting only the data with a predicted nucleosome centre range of up to 5 base 

pairs. The FASTA files provided a comprehensive dataset that allowed for the analysis of 

nucleosome positioning patterns across various cell types and conditions. 

 

The three datasets of mouse brain nucleus accumbens cells are available in Zenodo 

(https://zenodo.org/record/3813510, accessed 2 May 2023) (Pranckevičienė et al., 2022, Sun et al., 

2015). The nucleosome centre is predicted to be in the middle of the sequence in these datasets. 

The 204 sequence data available as a supplementary file to the dnapatterntools article 

(Pranckevičienė et al., 2022), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102330/bin/ijms-23-

04869-s001.zip (accessed 2 May 2023). After filtration, this dataset included sequences from these 

species: African green monkey, mouse, yeast, simian virus, frog, mouse mammary tumour virus, 

human, human immunodeficiency virus, rat, fruit fly. 

The datasets of apoptotic cells and CD4+ cells were received from the authors of Nucleosome loss 

in GC-Rich promoters article (Hosid and Ioshikhes, 2014) 

 

Dataset characteristics 

The dataset was characterized by a wide range of sequence sizes, with the number of sequences 

varying from around 140,000 to around 700,000 in the primary data sources. This diversity in the 

dataset allowed for the assessment of nucleosome prediction performance across different scales 

of data complexity. The smaller set of 204 sequences (Pranckevičienė et al., 2022), with a narrower 
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predicted nucleosome centre range, served as a complementary dataset to evaluate the specificity 

of our approach in detecting closely spaced nucleosome positions.  

 

Data pre-processing 

Prior to analysis, the raw FASTA sequences were pre-processed to ensure data quality and 

compatibility with the HMMER suite. The pre-processing steps included the removal of low-quality 

reads, contaminants, and any ambiguous bases. This resulted in a high-quality dataset ready for 

subsequent analysis with the HMMER suite and the custom TypeScript software. To facilitate the 

use of the pre-processed data in the HMMER suite, the custom software tool was employed to 

convert the cleaned sequences into a format compatible with nhmmer. For additional testing data, 

when training smaller HMMs, datasets were split up into two pieces – one for training and the other 

for testing the accuracy of the HMM on similar data. Another way to test was to cross-validate results 

by training the HMM on one dataset and testing the results on another. 

Software 

HMMER suite and multiple sequence alignment tools 

In this study, we utilized the HMMER suite (version 3.3) for sequence analysis, specifically employing 

nhmmer, hmmbuild, and nhmmscan tools. These tools were essential for the detection of 

nucleosome positioning patterns in the analysed sequences. Additionally, clustalO (version 1.2.4) 

(Sievers et al., 2011) and clustalW (version 2.1) (Thompson et al., 1994) were used for multiple 

sequence alignment, enabling the comparison of sequences and the identification of conserved 

regions across different samples. 

 

Custom software with NodeJS and TypeScript 

The custom software tool employed in this study was developed using TypeScript and ran on 

NodeJS (v20.1.0). This software was designed to pre-process and manipulate sequence data, 

facilitating its analysis with the HMMER suite and multiple sequence alignment tools. The custom 

software had several application modes, catering to different aspects of data processing and 

analysis. The software is compiled locally using the TypeScript compiler. A part of the dependencies 

and the use of software is done via the Node Package Manager (npm) and the compilation can be 

done via npm command provided with the software. The instructions on how to run the main 

functionality of the software are provided alongside it in a public GitHub repository 

(https://github.com/IndirasM/ts-hmmer, accessed 11 May 2023).  
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Custom software application modes 

The custom software tool offered various application modes, each serving a specific purpose in the 

data pre-processing and analysis pipeline. These modes included: 

• Generator: Produced data by generating 147 bp segments from each sequence, moving the 

window by 1 bp, and repeating the process. 

• Preparator: Cleaned and prepared files for hmmbuild use, with the option to merge multiple 

sequence files. 

• Merge: Combined sequences into one large sequence. 

• Lowercase For Alignment: Prepared files for MAFFT alignment by converting nucleotides to 

lowercase. 

• Split: Split input files into chunks of 100 sequences, performed multiple sequence alignment 

with ClustalO, and used hmmbuild to create a series of HMMs for each cluster, ultimately 

combining them into a single HMM database. 

• Sequence Naming: Added indices as names to sequences in FASTA files that lacked names. 

• Unique Filter: Filtered out non-unique sequences based on string uniquity. 

• Sequence shortener: Extracted a 140 bp section from the middle of each sequence, focusing 

on the centre of the nucleosome. 

• Filtered nhmmer runner: Executed the nhmmer command and output a filtered file with 0-hit 

outputs removed. 

 

Additional software and tools 

In addition to the aforementioned software, we employed MAFFT (version 7) (Katoh et al., 2002) to 

perform multiple sequence alignments on large files. MAFFT, running on a cluster, offered an 

experimental feature for aligning large files without the need for splitting them up, providing an 

alternative method for handling large datasets. Furthermore, we made use of the Galaxy Platform, 

specifically the FASTA filtering and merging tools provided by GalaxyProteomics, to assist in data 

manipulation and pre-processing. 

 

These application modes allowed for the versatile handling of sequence data throughout the analysis 

process, enhancing the efficiency and accuracy of the computational approach. 

Methodology 

Data preparation 

The methodology employed in this research consisted of several key steps, beginning with data 

preparation. This initial phase ensured that the sequence data was compatible with the HMMER 

suite and MAFFT. The custom software, as well as Filtering and Merging tools from 
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GalaxyProteomics were used on a local instance of the Galaxy Platform to prepare the data. To 

prepare, sequence length was set to be exactly 219 bp and duplicates were to be removed. 

The custom software was utilized to pre-process all of the previously mentioned data files. They 

were matched by the lengths of all sequences, ensuring consistency across the dataset. The custom 

software automatically figures out the most common length of the sequences in a FASTA file and 

uses the length to filter out unusable sequences. For the mouse datasets, the most common length 

was 219 bp while the apoptotic and CD4+ datasets did not require additional filtering for length as 

all were already 401 bp long. This software also filtered out sequences containing ambiguous 'N' 

symbols, as these could introduce uncertainty and bias into the analysis. In addition, the custom 

software was used to name unnamed sequences, namely the apoptotic and the CD4+ datasets. 

 

To further refine the dataset, Filtering and Merging tools available on a local instance of the Galaxy 

Platform were employed to obtain unique sequences. This step helped eliminate redundancy in the 

dataset and ensured that the analysis focused on distinct, biologically relevant nucleosome patterns. 

This filtering was done on the previously processed mouse datasets. 

 

After the cleaning of data, the conversion to lowercase was done on the control, resilient and 

susceptible mouse data sets to prepare it for multiple sequence analysis using MAFFT. With the pre-

processing complete, data was aligned on the MAFFT cluster using the standard parameters. For 

the apoptotic dataset, it was not possible to use the entire dataset as MAFFT currently accepts up 

to 700 000 sequences, therefore sequences were removed from the end and stayed with a 

remainder of 699 997 sequences. 

 

For the 204 sequences dataset, only the ones with the range of nucleosome centre of 5 or less were 

kept. They were exported as CSV, transferring to an unnamed FASTA format by hand, as there were 

only 33 sequences left and using the custom software the sequences were named. 

These prepared datasets allowed proceeding to the next step and training the HMMs. 

 

Dataset\Number of sequences Total number of sequences Filtered number of sequences 

Apoptotic 711873 711873 

CD4+ 581507 581506 

Control mouse 188835 105265 

Resilient mouse 179246 96855 

Susceptible mouse 179402 94523 

204-sequences 173 33 
Table 1. Sequences per dataset used. 
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Full dataset alignment HMM with automatic window selection 

The first method for predicting nucleosome positions within DNA involved creating HMMs from full 

alignments of the control, susceptible, and resilient mice datasets. This approach aimed to identify 

common patterns across the datasets that could be indicative of nucleosome positioning. This was 

done via using aligned datasets retrieved from the MAFFT software and creating a HMM by using 

the hmmbuild command (Supplementary image 4). 

 

With this strategy, both hmmbuild and nhmmer were used without a set --w_length parameter. The 

HMMER software was allowed to automatically determine the optimal window length for each HMM, 

based on the input sequences. This approach provided flexibility and allowed the software to adjust 

the window length according to the sequence data, potentially capturing subtle variations in 

nucleosome positioning patterns, but with the allowed freedom it can capture details of sequence 

parts which are outside of the 147 bp nucleosome DNA strand. 

 

The created HMM was used as a query against all the previously mentioned datasets by using the 

nhmmer program via one of the modes of the custom software, which allowed to filter out the results 

without hits on smaller datasets. nhmmer returned the hits that were matches between the HMMs 

and sequences and shows some sequences that were partially a match, but not enough to climb 

over the inclusion threshold to be considered a full match. Full matches are scored above an 

automatically set score inclusion threshold and their sequence start and end positions can be 

compared with known nucleosome positions, however, some results can be filtered out by the 

heuristic filters that speed up the search. In such cases the filters can be disabled by adding the --

max option for maximum sensitivity. In majority of cases only the true matches are important, 

however some possible ones were investigated. 

 

Full dataset alignment HMM with a hard-set window of 147 bp 

In contrast to the first approach, this strategy involved setting a hard window length of 147 bp for all 

HMMs. This length was chosen because nucleosomes typically wrap around 147 bp of DNA. By 

using a fixed window length, the HMMs were specifically tailored to capture patterns occurring within 

this biologically relevant length. 

 

In terms of implementation, the approach is identical to the first approach, but hmmbuild and nhmmer 

are both invoked using an additional --w_length=147 parameter. Setting this parameter essentially 

tells both the HMM and the search algorithm that the sequences of interest will not be longer than 

147 bp. The difference between this approach and the first one is that in this case, all the captured 

hits should show a pattern within a shorter window and therefore could capture less false positives. 

The result returned by nhmmer is presented in an identical manner to the first approach. 
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Dataset chunking and HMM database 

This method for predicting nucleosome positions within DNA focused on dividing the mouse datasets 

(control, susceptible, and resilient) into smaller chunks and creating a combined HMM database. 

This approach aimed to identify more specific patterns within smaller subsets of sequences and 

explore the potential of a comprehensive HMM database in capturing a broader range of nucleosome 

positioning patterns.  

 

To start with, the mouse datasets were divided into smaller chunks, each containing 100 sequences. 

Breaking down the datasets into smaller subsets allowed for a more focused analysis of sequence 

patterns, capturing localized similarities that might be overlooked in a larger, full-alignment-based 

approach as well as remove the possibility of adapting the model too strongly to training data. Each 

of the smaller chunks was aligned separately, and an HMM was trained for every small dataset. 

Once individual HMMs were trained for each chunk, a combined HMM database was created by 

incorporating all the individual HMMs. This comprehensive HMM database represented the collective 

patterns and variations present across all the smaller subsets of sequences. 

 

All datasets, including the control, susceptible, resilient mice, apoptotic human cells, CD4+ human 

cells, and the 204-sequence data, were subsequently analysed against the combined HMM 

database. All of the mentioned steps are triggered automatically by using the Split mode of the 

custom software written for the task. It essentially creates all the data step by step – outputs the split 

sequences, aligned files that are created via ClustalO (or ClustalW if options changed) 

(Supplementary Image 1) as well as each separate HMM and then connects them into a HMM 

database. Once a database is present, the Filtered nhmmer mode of the software can be run. If 

possible, the software will try to filter out results that showed no hits and only leave relevant output 

in the file. By searching for hits in the HMM database, this approach aimed to identify similar 

sequences across the different datasets, which could yield more hits and provide insights into 

nucleosome positioning. 

 

This method offered an alternative approach to nucleosome position prediction, focusing on smaller 

subsets of sequences and a comprehensive HMM database. Comparing the results obtained with 

the first method, which employed full alignments, allowed for a more in-depth understanding of 

nucleosome positioning patterns in the analysed datasets as well as provided improved sensitivity. 
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Smaller HMM database with reserved dataset part for testing 

This method for predicting nucleosome positions within DNA involved a similar approach to the 

second method, with the mouse datasets divided into smaller chunks and individual HMMs trained 

for each chunk. However, this method incorporated cross-validation by reserving a portion of the 

data for testing purposes. In contrast to the two other approaches, which were testing the viability of 

discovering nucleosome positions in general – even on training data - this approach aimed to assess 

the performance of the HMM database in predicting nucleosome positions on an independent 

dataset, providing insights into the generalizability of the predictions. 

 

A portion of the data was removed from the large datasets (control, susceptible, and resilient mice) 

and reserved for use as testing data. This step ensured that the HMM database was trained on a 

distinct set of sequences, enabling a more accurate evaluation of its predictive performance on 

unseen data. 

 

Similar to the second method, the remaining mouse datasets were divided into smaller chunks, each 

containing 100 sequences. This process allowed for a more focused analysis of sequence patterns 

within the smaller subsets of sequences. Each of the smaller chunks was aligned separately, and 

an HMM was trained for every small dataset. After training individual HMMs for each chunk, a 

combined HMM database was created by incorporating all the individual HMMs. 

 

With the HMM database created, the reserved testing data was analysed against it, searching for 

hits that could predict nucleosome positions. This step provided insights into the performance of the 

HMM database in predicting nucleosome positions on an independent dataset, gathered by hand 

from FASTA files, allowing for an evaluation of the generalizability and robustness of the predictions. 

The third method offered a more rigorous approach to nucleosome position prediction, incorporating 

cross-validation to assess the predictive performance of the HMM database on unseen data.  

 

Single sequence search against a HMM database with nhmmscan 

The final method employed for predicting nucleosome positions was the use of nhmmscan to test 

individual sequences against a pre-built HMM database. Unlike nhmmer, which is used for searching 

DNA sequence datasets, nhmmscan is designed to search an HMM database with a single query 

sequence or a small set of sequences. This approach is particularly useful when investigating 

specific sequences of interest or when a more targeted analysis is required. 

 

nhmmscan was applied to analyze sequences from the filtered 204-sequence dataset using the 

HMM database created in the second method, which was based on smaller chunks of the mouse 

datasets (control, susceptible, and resilient mice). By using nhmmscan, the research aimed to 
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identify potential nucleosome positioning patterns from a different angle within the 204-sequence 

data by comparing them against the HMM database to see if there are models that match this 

sequence. However – this mode requires hmmpress to be used to create database indexing support 

files. 

 

Low-yield tests 

Some testing scenarios seem to provide really low yields of usable results. These are the additional 

testing scenarios that were tried: 

• Unaligned FASTA HMMs 

• Maximum sensitivity tests 

• Inclusion score and E-value manipulation 

 

The first method attempted was the creation of HMMs using unaligned FASTA sequences. While 

HMMER is designed to work with aligned sequences, this approach sought to explore whether any 

meaningful patterns could be identified using unaligned data. Although some rare hits were obtained, 

they were mostly irrelevant and did not contribute significantly to the nucleosome position 

predictions. The limited success of this method likely stems from the fact that HMMER relies on 

aligned sequences to effectively capture conserved patterns and variations across the dataset, which 

are critical for accurate predictions. 

 

The second method involved adjusting the HMMER software settings to increase its sensitivity, 

allowing more heuristic filters to be passed. The rationale behind this approach was to identify 

potential hits that might have been overlooked with the default settings. However, this method rarely 

yielded any additional hits, and when they did occur, their relevance was uncertain. The lack of 

significant improvement in the predictions may suggest that the default settings of HMMER already 

provide a reasonable balance between sensitivity and specificity, and further increasing sensitivity 

does not necessarily lead to more accurate or meaningful results. 

 

The third method focused on manipulating inclusion scores and E-values in an attempt to identify 

more hits that could potentially indicate nucleosome positions. By relaxing the inclusion score and 

E-value thresholds, a greater number of entries were considered as valid. However, this approach 

seemed to artificially inflate the results, as many of the additional hits had low scores and did not 

match the expected patterns. This suggests that manipulating inclusion scores and E-values may 

compromise the specificity and reliability of the predictions, leading to an increased rate of false 

positives. 
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In summary, these three additional methods did not yield effective results for predicting nucleosome 

positions within DNA. The limitations and challenges encountered in these approaches highlight the 

importance of using well-established methods, such as sequence alignment and appropriate 

HMMER settings, to ensure accurate and reliable predictions 
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RESULTS 

The data shows that differently trained models have varying degrees of success with the goal being 

to find the most effective way to create the models as well as on how to search them. One of the 

main takeaways from the experiments is that when compared between all the methods, data shows 

that creating a HMM database has the best chance of providing the most accurate hits when 

searching sequences. One more important point of the results is data shows that hits are lower when 

comparing between different organisms – this leads to the idea that HMMs are likely to be organism-

specific and therefore new models would have to be trained for new organisms. A thing to note would 

also be that the HMMER suite automatic options for training and searching models are quite good, 

but some minor changes, such as the length of the read window, could still be required to achieve 

the best results. 

 

Full dataset alignment HMM with automatic window selection results 

The results of the full alignment HMM analysis using various datasets revealed a relatively low 

number of hits, with many instances in which no hits were detected at all. This outcome can be 

observed across the different datasets, including the 204-sequence dataset, control, resilient, 

susceptible, apoptotic, and CD4+ datasets.  

 

W = auto 204 Control Resilient Susceptible Apoptotic CD4+ 

Control 0 0 0 0 0 0 

Resilient 0 25 (16) 20 (7) 5 (0) 0 0 

Susceptible 0 29 (0) 31 (0) 9 (0) 0 0 
Table 2. HMMs trained on three full-alignment datasets queried against all the major datasets as well as the 204-sequence 
dataset. Total hits shown outside the parentheses and the hits that passed the inclusion threshold shown within 
parentheses. Automatic W length assigned. 

When the HMMs were constructed with a window length (W) set to 'auto', the hits for the control 

dataset yielded no matches across all other datasets. Enabling the maximum sensitivity mode did 

not provide additional hits. Although there were some hits detected with resilient and susceptible 

HMMs on the mouse datasets, most of the comparisons resulted in zero hits. 

 

When reviewing the concrete sequences that have passed the inclusion threshold, the only HMM 

that gave results was the one based on the resilient dataset. In the mouse datasets, the nucleosomal 

DNA is within the 36-37 and 183-184 base range. Supplementary table 1 shows that of all the 

sequences were matched with the HMM on Control dataset, only 37,5% of the sequences were 

within the nucleosome bp range. While the matches on the Resilient dataset were not in the range 

as shown in Supplementary table 2. 
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Several factors could contribute to the low hit numbers observed in this analysis. One possibility is 

that the sequences in the datasets have a high degree of variability, making it difficult for the HMMs 

to identify conserved patterns and predict nucleosome positions accurately. Additionally, the low hit 

numbers could also indicate that the HMMs generated from the various datasets might not be 

comprehensive enough to represent the full range of nucleosome positioning patterns present in the 

sequences. One more important factor is that multiple sequence alignment for a large amount of 

sequences introduced large amounts of gaps between bases, which causes the data to become 

quite bloated.  

 

The models for this are provided alongside the custom software in files named: 

• hmms/aligned-control.hmm 

• hmms/aligned-resilient.hmm 

• hmms/aligned-susceptible.hmm 

 

Full dataset alignment HMM with a hard-set window of 147 bp results 

The results of analysis using models with a hard-set window length of 147 bp showed a slight 

improvement in the number of hits compared to not providing one. However, the overall hit numbers 

were still relatively low, with many instances of no hits detected across the different datasets, 

including the 204-sequence dataset, control, resilient, susceptible, apoptotic, and CD4+ datasets. 

 

 

With the W value set, the control dataset yielded two hits with the 204-sequence dataset that did not 

pass the inclusion threshold, but no matches were found across all other datasets. The resilient and 

susceptible datasets showed marginally better results, with slightly more hits detected when 

compared with each other. Apoptotic and CD4+ datasets still had no hits. Despite this improvement, 

the majority of the comparisons still resulted in zero hits. Interestingly, the two hits on the 204 

sequences data were of Rat origin. An identical result of 37,5% within nucleosomal bp range was 

achieved. The reasons why this model is inaccurate could be very similar to why this one is 

inaccurate as well and even with the small improvements it is not capable of identifying nucleosome 

positions reliably. 

 

Table 3. HMMs trained on three full-alignment datasets queried against all the major datasets as well as the 204-sequence 
dataset. Total hits shown outside the parentheses and the hits that passed the inclusion threshold shown within 
parentheses. Trained with W length set as 147 bp. 

W = 147 204 Control Resilient Susceptible Apoptotic CD4+ 

Control 2 (0) 0 0 0 0 0 

Resilient 0 27 (19) 28 (16) 11 (0) 0 0 

Susceptible 0 29 (0) 29 (0) 9 (0) 0 0 
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The models for this are provided alongside the custom software in files named: 

• hmms/aligned-control-147.hmm 

• hmms/aligned-resilient-147.hmm 

• hmms/aligned-susceptible-147.hmm 

 

Results with dataset chunking and HMM database results 

Three separate HMM databases were used for this part, trained on control, resilient and susceptible 

datasets. The databases are provided alongside the custom software in files named: 

• hmms/hmm_db-controlm.hmm 

• hmms/hmm_db-resilientm.hmm 

• hmms/hmm_db-susceptiblem.hmm 

 

The results of the analysis using chunked HMMs, and databases demonstrated a significant 

improvement in the number of hits detected across all datasets compared to the earlier methods. A 

notable observation from this analysis is that all the models provided hits on every model when run 

on themselves. Hits were observed when running on human apoptotic and CD4+ datasets as well, 

which have not shown any hits with previous methods. 

 
 Total 

HMMs 

Control 

Hits 

Resilient 

Hits 

Susceptible 

Hits 

Apoptotic Hits CD4+ Hits 

Control DB 1053 1053 1044 1045 641 734 

Resilient 

DB 

969 960 969 956 573 670 

Susceptible 

DB 

946 942 931 946 570 651 

Table 4. Hit rates of HMMs within the databases. Every model has hits when working with its own dataset. 

 

These results highlight the idea that chunking and using smaller HMMs can prove a lot more 

responsive in generally detecting similar patterns within sequences, however, this data is a lot more 

difficult to process due to the fact that every single HMM outputs its own data as if ran by itself, 

therefore cross-validation between separate HMMs becomes a lot more complex. 

For the control database, the largest number of hits for a single HMM was 7323, for resilient DB – 

5044, for susceptible – 5033, but within the mouse datasets, each of the FASTA files had around 50 

models that had >1000 hits for each of the databases.  

 



 30 

 
 

These results seem to show that a lot of results are considered high confidence hits. After reviewing 

the results, most of them seem to be recognized either as an entirety or a large part of the whole 

sequence. Within apoptotic sequences of the control database 19 out of 31 sequences have at least 

partial coverage or are fully within nucleosomal bp range. 

 

For validation of the results, we checked if the hits were within nucleosomal bp range, HMMs with 

highest hit counts were selected and the percentage of sequences that hit and were within the range 

were calculated. Results of the database search against the dataset it was trained on was omitted 

due to it matching lots of entire sequences instead of fitting within a range. 

 

Overall, these results show the capacity of smaller HMMs to capture a lot more sequences that 

match the patterns, although these numbers are still small when comparing to the number of 

sequences within the databases, as the numbers within range from hundreds of thousands. 

  

 Control hits Resilient hits Susceptible 

hits 

Apoptotic hits CD4+ 

hits 

Control DB N/A 6360 (5129) 6618 (5244) 444 (31) 338 (34) 

Resilient 

DB 

5044 (3684) N/A 4692 (1997) 525 (318) 699 (376) 

Susceptible 

DB 

5033 (3045) 4365 (2660) N/A 462 (309) 482 (297) 

Table 5. Hits of the most sensitive HMM within a database with hits above inclusion threshold within parentheses. 
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Results with smaller HMM database with reserved dataset part for testing 

Results of testing with a reserved dataset are as follow: 

 Total HMMs tested Number of HMMs with results 

10 Sequences from 

Control 

(Supplementary list 1) 

1053 53 

10 Sequences from 

Resilient 

(Supplementary list 2) 

969 9 

10 Sequences from 

Susceptible 

(Supplementary list 3) 

946 34 

Table 6. Table of total HMMs in a database and the number of HMMs hit with 10 sequence query files. 

When in contrast of the results of the previous method, the numbers become underwhelming. They 

seemingly show that either the sequences are highly variable and the picked sequences are not 

suitable for such search, or the models fail to capture details required for new sequences to be 

properly detected. A more extensive reserved dataset could be tested to determine if these results 

are consistent across a broader range of sequences, however, this still shows the shortcomings of 

the model as sequences of similar origin are rarely considered hits within the entire database. 

 

 HMMs 

with hits 

Sequences 

with hits 

Sequences 

over 

inclusion 

threshold 

Sequences within 

nucleosomal bp 

acceptance window 

Percentage of 

sequences 

within window 

Control 53 71 63 34 54% 

Resilient 9 9 7 6 86% 

Susceptible 34 37 23 19 83% 
Table 7. Table of calculated results for the number of relevant hits. Nucleosomal bp acceptance window includes 1) hit of 
an almost entire sequence 2) Partial hit on one of the sides that includes at least half of a nucleosomal window 3) A hit 
entirely within the nucleosomal bp window. 

In conclusion, the results of testing with a reserved dataset highlight the challenges associated with 

predicting nucleosome positions using HMM models. While the hits that were made were over 50% 

in accuracy, the low amount of hits overall does not show this as an acceptable use of discovering 

nucleosomes. The underwhelming results suggest the need for further investigation into the causes 

of these discrepancies, including potentially high variability within the sequences and limitations in 

the HMM models themselves. According to this result, the main issue with this type of searching is 

sensitivity, however it is not the heuristic filters that are not passing. By addressing these challenges 
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and refining the methods employed, it may be possible to improve the accuracy, reliability and 

sensitivity of nucleosome position predictions. 

 

Single sequence search against a HMM database with nhmmscan 

Search of HMMs that match the filtered 204 sequence dataset has provided some results, however 

none of them passed the inclusion threshold and therefore cannot be considered reliable. A few 

queries had results that have showed up more than once, which might be worth considering. 

 

 Control DB Resilient DB Susceptible DB Total hits 

Rat 4 1 2 7 

Yeast 1 1 0 2 

Human – Seq 1 0 2 0 2 

Simian Virus – Seq 1 0 0 2 2 

Simian Virus – Seq 2 1 1 0 2 

Human – Seq 2 1 1 2 4 

Human – Seq 3 1 0 2 3 
Table 8. Data of hits that were not within the inclusion threshold but had more than one hit. 

All the sequences fit into the bp range for nucleosomes. The rat sequence has picked up the most 

hits, however, all of them are low confidence and will likely not be a good indicator of nucleosome 

positioning. 

 

 

 204 sequence hits 

Control Database 7 

Resilient Database 9 

Susceptible Database 4 
Table 9. Number of HMMs within the database that were hit when called with the filtered 204 sequence data. 

The results of testing the filtered 204-sequence dataset against the control, resilient, and susceptible 

HMM databases using nhmmscan revealed that some sequences were able to find hits within the 

databases. This suggests that these sequences contain patterns that match the HMMs in the 

databases. However, an important observation is that none of the hits passed the inclusion threshold, 

indicating that the hits might not be strong enough to be high confidence predictions. 

 

There are several possible reasons for the low number of hits passing the inclusion threshold. One 

potential explanation is that the HMM databases might not adequately represent the data that the 
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databases were trained on. This implies that patterns likely differ between organisms as the filtered 

204 sequence dataset includes only a single sequence of mouse DNA. 

 

Custom software 

The custom software developed for this study proved to be a useful tool in facilitating the data 

preparation and analysis process for predicting nucleosome positions and came through as one of 

the results of this study. Through its various application modes, it offered a versatile and efficient 

approach to managing and processing the input data, as well as preparing data for use with other 

bioinformatics tools such as HMMER, MAFFT, and the Galaxy Platform. 

 

One of the primary strengths of the custom software was its ability to handle large amounts of data 

effectively. The modes that are available aided both with the initial investigation of the capabilities of 

HMMER as well as actual investigation and data preparation part. Furthermore, the custom software 

was adept at performing necessary pre-processing tasks with a streamlined approach. These 

preprocessing steps were critical to ensuring the consistency of the input data, ultimately providing 

data that is tailored for this study. The software also can be easily extended and is able to invoke 

the use of other bioinformatics tools from within. 

 

In conclusion, the custom software significantly contributed to the results of this study by streamlining 

data preparation and analysis processes, as well as effectively interfacing with other essential 

bioinformatics tools. However, due to results not showing increased capabilities over other 

nucleosome detection tools, the decision was not to integrate it with the Galaxy Platform and provide 

the tool as a standalone entity. 

 

Overview of results 

Overall, out of all the methods that have provided results, the search using a database of small 

HMMs proved the most useful and provided amounts of hits that are a lot higher than any other 

method. This shows us that the small HMMs are more capable of capturing sequence structure and 

are less likely to forget the initially learned details. The final approach of using nhmmscan did not 

provide overwhelmingly great results, however, it does allow us to find the most sensitive HMMs 

easier and might provide insights into the chunk of the dataset that it was trained on. 
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DISCUSSION 

Results of methods 

Results have shown that the intended computational prediction of nucleosome positions was not as 

capable as hoped. In contrast to the other tools available for a similar purpose, this study with the 

main tool – the HMMER suite – has yielded wildly varying results, with the best results being shown 

by applying HMM databases. However the search was not fruitless and still managed to show 

capacity of detection with the use of HMM databases showing an affinity for such task. 

 

The initial tests with fully aligned large datasets have only shown rare hits that cannot cover the 

datasets with useful results. Both with the familiar and unfamiliar datasets the results have been 

either non-existent or could easily be disregarded due to being in such low numbers. The 

modification of the read window does have some impact on the results, but overall, it is negligible. 

However, without the multiple sequence analysis, even if there were hits, data would not be accurate 

as there would be no clear continuity of the position on where the nucleosome is. This is likely not 

the best approach as multiple sequence analysis on a large training set can skewer the training data. 

 

The second part of the study yielded results that were better. HMM databases seem to be capable 

of capturing a lot more details of sequences. Alongside capturing and matching sequences to HMMs, 

it has shown the ability to completely recognize the training datasets as well as recognize datasets 

of similar origin with good numbers. Apart from recognizable datasets, it has shown the ability to 

match some datasets of completely different origin. Even though the databases were trained on 

mouse sequences, human apoptotic and CD4+ results manage to show hits and therefore provide 

some insight into possibilities of some similarities between nucleosome position properties within 

DNA, although the amount of hits is not as high, which can lead us to the notion that the created 

HMMs are quite organism-specific. It should be kept in mind though, that the results of large HMM 

databases are not easily manageable and might require additional software. 

 

Further testing with data cut from the same datasets, however, was not performing as well as 

expected. Even with sequences of similar origin the models seem to have underperformed when 

comparing to previous test. This could indicate a couple of things: one could be that datasets are 

highly variable, and it is rather difficult to capture enough details to recognize the majority of 

sequences well. Another could be that the datasets were too small and included rather obscure 

variants of sequences. 

 

Testing from a reverse angle with nhmmscan – instead of finding sequences that match HMMs, 

looking for HMMs that match the sequences – also seemed to show rather low yields of hits. This 
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could either show that HMMs were not as well adapted to multiple kinds of sequences, especially 

different origin organisms, but it could also indicate that the few hits that were present found particular 

features that were matching the mouse databases. Another point worth mentioning is that such 

searching could be a good way to find indications of which HMMs are the most versatile and provide 

the most information on their own as database results can be difficult to manage. 

 

Custom software 

The custom software has played a large role in this study. It was likely possible to use a variety of 

tools that are available for similar purposes but having everything within one piece of software has 

helped streamline the research immensely. The choice of programming language might not be the 

most conventional for biological data, but the platform has shown high adaptability as well as the 

ability to process data quickly. The software is also easily expandable to have even more entries to 

streamline the process as well as integrate with other tools that can be ran locally. 

There are a few points that could be improved in the future: 

• Integration with APIs of software such as MAFFT 

• Parsing of large amounts of nhmmer results and calculating coverage of the entire dataset 

• Inclusion of all the necessary tools or improving existing parts, so that there is no need to 

jump between platforms for filtering data 

Integrations would allow to do all of the processes entirely within the confines of the custom software, 

however multiple sequence alignments with large amounts of data pose challenges, as they can 

take a lot of time even when running on high-power processing clusters. The ability to parse a large 

number of results into a more readable format with extracted information could prove useful as well. 

It could show coverages of data in more depth as well as provide insights into how the models are 

performing with both familiar and unfamiliar data. As for the inclusion of remaining tools – the filtering 

part is partially implemented, but it is not completely reliable as of the moment of this study and 

implementing such features in the future could help with the streamlining of the process. 

 

Discrepancies with existing literature 

When considering investigated tools and research, this research did not seem to match the results 

of other projects, however the results were not fruitless. Created HMMs did not show the capacity to 

reliably extract features or did with very limited results, but a HMM database shows the possibility 

that this could be tailored even further as a number of hits have been found. This could be due to 

several reasons. Such reasons could be that the use of HMMER is too tailored for a different purpose 

and cannot be reliably repurposed. Another reason could be that this particular task requires a 

different type of HMM that is not provided as is and such significant results as with other projects did 

not occur. Another issue could be the choice of methods and would require further investigation of 
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possible methods and comparison with current ones. If work is to be continued with HMMER when 

searching for nucleosomes, then it is likely worth noting that models seem to show the best results 

when the data is of the same origin as the trained model. 

 

Limitations 

The limitations of this research became apparent after seeing the results of performance with data 

cut from the same datasets. Results seem to show numbers that are too low to consider the tool for 

extensive use when predicting nucleosome positions, especially when comparing to other methods, 

such as calculating the position of the nucleosome. The results also show that the use of large 

multiple sequence alignment file for the creation of a single HMM does not appear to be a good way 

to predict positions, especially when comparing to a database of smaller HMMs. 

 

Future research 

Considering the results of the research, there are a few avenues of possible future research for this 

topic. One topic could be the calculations for coverage of data to show the performance of specific 

HMMs or HMM databases on data as there have been varying results. Such tooling could be 

implemented into the custom software and possibly integrated into other platforms. One more area 

of interest could be the investigation of reusability of HMM databases on different types of organisms 

and the investigation of the matching features that were captured. Finally, one more topic could be 

the integration of machine learning for nucleosome detection as that could possibly expand the 

feature detection capabilities even more than HMMs. 

 

Out of all the models that were tested within the databases, we have selected the most sensitive 

model, as the database as a whole does not provide a singular approach to results, and have created 

a prototype sequence that can be further tested on (Supplementary sequence 1). 
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CONCLUSIONS 

To conclude, the results have shown that with selected tools and data the capabilities of the created 

model are lacking, but still managed to get results when working with data of the same origin. The 

model was created and is available for further testing and investigation. From the model with the 

best results, we’ve created a prototype sequence that can be further investigated. Alongside it, the 

results have shown varied success when testing the models created on the data of one organism to 

map nucleosome positions within another with further investigation being required, although the 

results were not as good as anticipated when testing with filtered 204 sequence data. HMM 

databases show a high affinity for detecting nucleosome positions and could likely be tailored even 

further with more specialized data, but it has to be done keeping in mind that HMMs seem to be quite 

specific to the organism that it was trained on. Multiple sequence alignment was a necessary step, 

however it shows better results when it is done in small chunks. 

A crucial part of this research was the software developed that allowed us to speed up the research 

and streamline the entire process. The tool is available as open-source software to use and tailor for 

custom tasks with documentation available on the basic functions and capabilities of the software, 

however, the decision was made to not integrate it into galaxy as there is not enough utility as of 

now to be used alongside different workflows. Despite the discrepancies between the obtained 

results and existing literature, this research provides a foundation for future studies and 

advancements in nucleosome position prediction. 
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RECOMMENDATION 

Based on the results of this study, for the purpose of computational mapping of nucleosomes the 

recommendation to explore and optimize the parameters and methodologies employed can be 

made. Optimization of parameters such as fine-tuning the HMMER suite or other tools could prove 

crucial. It could also be useful incorporating machine learning techniques to improve predictive 

accuracy. Secondly, considering the variability in sequences observed, it would be beneficial to 

expand the scope of datasets used, incorporating a wider range of organisms and cell types to 

develop more robust and generalizable models but this could be rather difficult as it requires a lot of 

sequences with confirmed nucleosome positions. Furthermore, as the custom software 

demonstrated usefulness in streamlining data preparation and analysis, continued development and 

optimization of such tools are encouraged to enhance their applicability in similar research projects. 
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SUMMARY 

This study on DNA properties of computationally mapped nucleosome positions was done by Indiras 

Maziukas, Vilnius University, for the systems biology study programme, supervised by doc. dr. Erinija 

Pranckevičienė. 

This study aimed to develop a Hidden Markov Model based computational nucleosome mapping tool 

and integrate it into an existing Galaxy instance, addressing the need for accurate and user-friendly 

tools in nucleosome position prediction. The HMM-based algorithm was created and trained using 

known human and mouse nucleosomal sequences and tested on 204 nucleosomal sequences with 

known nucleosome positions. Custom software was employed for data preparation and analysis, 

streamlining the workflow with documentation available for its use. The HMM-based tool and 

additional helper tools were not integrated into the Galaxy Platform, but the platform itself was used. 

Despite the model's limited accuracy in predicting nucleosome positions when compared to existing 

literature, valuable insights were gained regarding the challenges and limitations of computational 

predictions in this field. The study highlights the importance of optimizing parameters and 

methodologies, expanding the scope of datasets. Overall, this research contributes to the growing 

body of knowledge in nucleosome position prediction and supports further efforts to understand the 

complex mechanisms underlying gene regulation and chromatin structure. 
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SUMMARY IN LITHUANIAN  

Skaičiavimais nustatytų nukleosomų pozicijų DNR savybių tyrimą atliko Vilniaus universiteto sistemų 

biologijos programos studentas Indiras Maziukas, prižiūrėjo doc. dr. Erinija Pranckevičienė. 

Šio tyrimo tikslas buvo sukurti paslėptu Markovo modeliu pagrįstą nukleosomų pozicijų radimo įrankį 

ir integruoti į egzistuojantį „Galaxy“ platformos egzempliorių taip sprendžiant tikslių ir patogių naudoti 

nukleosomų padėčių prognozavimo įrankių poreikį. Paslėptuoju Markovo modeliu pagrįstas 

algoritmas buvo sukurtas ir apmokytas naudojant žinomas žmogaus ir pelės nukleosomų turinčias 

DNR sekas ir išbandytas naudojant 204 sekas su žinomomis nukleosomų pozicijomis. Duomenų 

paruošimui ir analizei buvo naudojama pritaikyta programinė įranga, kuri supaprastino darbo eigą. 

Kartu buvo pateikta pritaikytos programinės įrangos dokumentacija. HMM pagrįsta priemonė ir 

papildomi pagalbiniai įrankiai nebuvo integruoti į "Galaxy" platformą, tačiau pati platforma buvo 

naudojama duomenų paruošimui. 

Lyginant su esama literatūra, modelio tikslumas buvo ribotas, bet nepaisant to gauta vertingų įžvalgų 

apie šios srities kompiuterinių prognozių iššūkius ir apribojimus. Tyrime pabrėžiama parametrų ir 

metodikų optimizavimo svarba, plečiant duomenų rinkinių apimtį. Apskritai šis tyrimas prisideda prie 

augančio žinių kiekio nukleosomų padėties prognozavimo srityje ir padeda toliau stengtis suprasti 

sudėtingus mechanizmus, kuriais grindžiamas genų reguliavimas ir chromatino struktūra. 
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APPENDICES 

 

 

 

  

Sequence index Start range End range Within nucleosome 

range (36-37:183-

184) or envelops 

whole 

1 176 55 Yes 

2 136 52 Yes 

3 122 38 Yes 

4 113 26 No 

5 100 11 No 

6 1 90 No 

7 97 211 No 

8 105 217 No 

Supplementary table 1. Matches within resilient full alignment HMM on Control dataset. Data had duplicate matches due 
to how HMM learned. Of all sequences matched with the HMM only 37,5% of sequences were within the nucleosome 
range. 

Sequence index Start range End range Within nucleosome 

range (36-37:183-

184) or envelops 

whole 

1 1 90 No 

2 142 218 No 
Supplementary table 2. Matches within resilient full alignment HMM on Resilient dataset. Data had duplicate matches due 
to how HMM learned. Of all sequences matched with the HMM, none of sequences were within the nucleosome range. 
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Supplementary list 1. 10 randomly selected DNA sequences from within the control mouse dataset 

that were cut out and tested with as the reserved dataset part listed for reproducibility. 

Control dataset: 

• chr4,118606503,118606503,NM_146399,chr4,118606545,118606545,chr4,118606479,118

606578,SRR1138261.32964085,118606545,33.749600,60::chr4:118606459-118606678,41 

• chr19,39188387,39188387,NM_001011707,chr19,39188585,39188585,chr19,39188576,39

188675,SRR1138263.118304988,39188585,23.104900,60::chr19:39188556-39188775,197 

• chr7,51986851,51986851,NM_001289839,chr7,51987165,51987165,chr7,51987091,51987

190,SRR1138263.45779761,51987165,35.136100,60::chr7:51987071-51987290,313 

• chr10,128548540,128548540,NM_146267,chr10,128548966,128548966,chr10,128548957,

128549056,SRR1138261.65653082,128548966,30.678200,60::chr10:128548937-

128549156,425 

• chr2,147536428,147536428,NR_046014,chr2,147536800,147536800,chr2,147536762,147

536861,SRR1138262.18766657,147536800,24.610900,60::chr2:147536742-

147536961,371 

• chr3,90074070,90074070,NR_105979,chr3,90074105,90074105,chr3,90074012,90074111

,SRR1138263.26231029,90074105,33.507800,60::chr3:90073992-90074211,34 

• chr9,124036281,124036281,NM_009917,chr9,124036333,124036333,chr9,124036330,124

036429,SRR1138263.81552729,124036333,25.022800,60::chr9:124036310-124036529,51 

• chr2,103252254,103252254,NM_001145813,chr2,103252390,103252390,chr2,103252293,

103252392,SRR1138261.14699530,103252390,33.513700,60::chr2:103252273-

103252492,135 

• chr3,30135490,30135490,NM_021442,chr3,30135513,30135513,chr3,30135432,30135531

,SRR1138262.25336638,30135513,22.527800,60::chr3:30135412-30135631,22 

• chr13,119503505,119503505,NM_008002,chr13,119503971,119503971,chr13,119503879,

119503978,SRR1138263.98737536,119503971,25.522500,60::chr13:119503859-

119504078,465 
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Supplementary list 2. 10 randomly selected DNA sequences from within the resilient mouse dataset 

that were cut out and tested with as the reserved dataset part listed for reproducibility. 

Resilient dataset: 

• chr9,123891781,123891781,NM_007718,chr9,123892693,123892693,chr9,123892594,123

892693,SRR1138266.86813920,123892693,28.817500,60::chr9:123892574-

123892793,911 

• chr4,115557004,115557004,NM_001320545,chr4,115557074,115557074,chr4,115557036,

115557135,SRR1138266.36889304,115557074,20.028900,60::chr4:115557016-

115557235,69 

• chr5,114062363,114062363,NM_001359060,chr5,114062467,114062467,chr5,114062453,

114062552,SRR1138265.43730717,114062467,27.328000,60::chr5:114062433-

114062652,103 

• chr19,4156791,4156791,NM_021485,chr19,4157632,4157632,chr19,4157605,4157704,SR

R1138265.121210514,4157632,21.641400,60::chr19:4157585-4157804,840 

• chr6,120153827,120153827,NM_198884,chr6,120154736,120154736,chr6,120154695,120

154794,SRR1138264.48535273,120154736,26.270100,60::chr6:120154675-

120154894,908 

• chr2,163552306,163552306,NM_007398,chr2,163552389,163552389,chr2,163552353,163

552452,SRR1138264.15880021,163552389,20.178000,60::chr2:163552333-163552552,82 

• chr13,61035515,61035515,NM_001145799,chr13,61036370,61036370,chr13,61036369,61

036468,SRR1138264.82281809,61036370,26.066800,51::chr13:61036349-61036568,854 

• chr7,143523898,143523898,NR_040459,chr7,143524173,143524173,chr7,143524103,143

524202,SRR1138266.53570937,143524173,24.322700,60::chr7:143524083-

143524302,274 

• chr18,35097068,35097068,NM_010481,chr18,35097544,35097544,chr18,35097539,35097

638,SRR1138266.121169829,35097544,20.944300,60::chr18:35097519-35097738,475 

• chr1,42705044,42705044,NR_027826,chr1,42705914,42705914,chr1,42705817,42705916

,SRR1138265.1851497,42705914,20.003000,60::chr1:42705797-42706016,869 
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Supplementary list 3. 10 randomly selected DNA sequences from within the susceptible mouse 

dataset that were cut out and tested with as the reserved dataset part listed for reproducibility. 

Susceptible dataset: 

• chr9,123891781,123891781,NM_007718,chr9,123891903,123891903,chr9,123891851,123

891950,SRR1138269.89069291,123891903,38.817100,60::chr9:123891831-

123892050,121 

• chr2,112399838,112399838,NM_001165935,chr2,112400646,112400646,chr2,112400646,

112400745,SRR1138268.15465319,112400646,20.968300,60::chr2:112400626-

112400845,807 

• chr3,130993408,130993408,NM_027816,chr3,130994173,130994173,chr3,130994161,130

994260,SRR1138267.25318998,130994173,24.607200,60::chr3:130994141-

130994360,764 

• chr15,75755112,75755112,NM_031201,chr15,75755667,75755667,chr15,75755653,75755

752,SRR1138267.90291332,75755667,25.230600,60::chr15:75755633-75755852,554 

• chr10,3515901,3515901,NM_001304937,chr10,3516563,3516563,chr10,3516464,3516563

,SRR1138267.56777218,3516563,20.885100,60::chr10:3516444-3516663,661 

• chr14,50857577,50857577,NM_146363,chr14,50858431,50858431,chr14,50858332,50858

431,SRR1138268.69559723,50858431,22.807500,60::chr14:50858312-50858531,853 

• chr6,66586816,66586816,NM_001166719,chr6,66587085,66587085,chr6,66586991,66587

090,SRR1138268.52036602,66587085,23.440500,60::chr6:66586971-66587190,268 

• chr2,85193151,85193151,NM_001011534,chr2,85194097,85194097,chr2,85194073,85194

172,SRR1138269.14016542,85194097,24.488800,60::chr2:85194053-85194272,945 

• chr5,104728305,104728305,NM_008318,chr5,104728330,104728330,chr5,104728329,104

728428,SRR1138269.45153205,104728330,28.663100,60::chr5:104728309-104728528,24 

• chr17,27259609,27259609,NM_026063,chr17,27260217,27260217,chr17,27260190,27260

289,SRR1138269.119026800,27260217,37.006700,60::chr17:27260170-27260389,607 
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Supplementary Image 2. Hit above the inclusion threshold shown in HMMER output. Note the exclamation point in the 
beginning of the fields. 

 
Supplementary Image 3. Hit below the inclusion threshold shown in HMMER output. Note the question mark in the 
beginning of the fields. 

 
Supplementary Image 4. List of hits between a HMM and sequences. 

 
Supplementary Image 5. A part of the HMM created via hmmbuild. 
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Supplementary Image 6. Excerpt from a MSA file after alignment. 

 

 

  

 

 

Supplementary Figure 1. Representation of patterns as peaks. (Pranckevičienė et al., 2020) 
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Supplementary sequence 1. This sequence was the output of the best performing model from all 

the databases. This was the result of the database created from the control mouse dataset. 

 

>alignment141-sample1 

CCAGCAATGGAGATGATATAATTATATACGCATCACACAAACTGCATATTCTTACAGCTA 

ATATTTTTGAAACGAAGTGGTTCCGAAATCTGCTCCCTTTGACATTGACTTACTACTATT 

TTGATACATGAATTCTGTGGCATTACTGACCTTAGGATGCCGCGCACAAGACTATAAGGC 

TGCTCCTTGAAGGACTACCTTTTTATATAATAGATGGCTATTGTTCCAGACCGTTTCTGT 

CGATAAAGGCATGAATTTAGTGGGCCTAACTATCATTGTCATATATTAGTATACAAGGCG 

CACAAGTACAACATGATAACGAAAGTGGATTCTGCTATTCGATAGAGCCGATGAGCCGCC 

CTTGACAGGACTCTGATCTCTAAGAGAGCACAAGATAAAACTGTAGGAGGTATCTACATA 

TCCAAAAGCTGATGATAACAACGCCAATAAGAGTACTGTTGTACGCAACCAGAGTACCAA 

CAATTATTGTCCTAGTACAGGCCACGTAAAATACTGGGAACAAGTCACACATGTAAAGGT 

CTATCACGTTGAGGACACACGCTCGAACGGGCTCATCAAAGCCGAGAAGATCTGGAGAAC 

AGAATGCCAAAACCTCTACCCAAGACAATTGCAACAAACACGCAGCACTAGCGGTGGTTC 

CAAGGATGGTGCAATGGCTTGCAAATGTCGAGGTATCGCTCATAGACCATAACTGTTTGA 

ACAAAGGTCTCTGCATGTAGTGGGCTGCAAAGAGGCCCTAAAAAAAGTGGAATCAGGCTC 

AGTTAACGGAGATGGTCTTCTTATCCCATCGAAAGTCTTAGTAACTCGGATGAACTCGGA 

ACGGATTGAACAATCTCCAGAATTGACATAGTGCTGAGGCATTACACCGGAGAATTCTAA 

GAAGGGAGTCATATCCGTTAGTGCAATGAGAAGTGCACCAACTTTGTGACAATGTAGTTT 

CCGAAAATTCACAAGACAAATAATGCTTTTATAAAAGCAGTAACTTGTGCAAGGTCCGAA 

ACAATGGATTCCTATTGTAGCCATGTCCCATTAGTGTAGGACCGTCCTTTGAATGATGCG 

AGCTTACACTGGCGGTCTGTGGCTTACATTCCATAGCAACTTGTCACCCTAGCTTTTCTA 

AGGGTGATTAGGAAGTAGGCATGCAG 


