VILNIUS UNIVERSITY
FACULTY OF MATHEMATICS AND INFORMATICS
DEPARTMENT OF SOFTWARE ENGINEERING

Extracting TLA™ Specifications out of Elixir
Programs

TLA™ specifikacijy iSskyrimas i$ Elixir programy

Master’s Thesis

Author: Deividas Brazénas

(signature)

Supervisor: doc. dr. Karolis Petrauskas

(signature)

Reviewer: partn. doc. Viaceslav Pozdniakov

(signature)

Vilnius — 2023

Abstract

In this research, we investigate a methodology that ensures the compliance of Elixir
programs with TLA™ specifications, developed by software engineers. The main component
for linking the Elixir code with TLA™ specifications are translation rules. These rules were
defined and utilized during the implementation of a translation method, which is capable of
converting sequential Elixir code into TLA™ specifications. The correctness of the generated
specifications is evaluated through model checking and refinement techniques, while the cor-
rectness of the translation method is ascertained by converting the generated specifications
back to Elixir code and by conducting unit tests of the source program.

Keywords: TLA™, PlusCal, Elixir, Formal methods, Distributed systems.

Santrauka

Siame tyrime nagrinéjamas metodas, padedantis uztikrinti Elixir programos atitikima
programinés jrangos inzinieriaus kurtai TLA™ specifikacijai. Vertimo taisyklés, skirtos Elixir
koda paversti j PlusCal kalbos konstrukcijas, yra esminé kodo susiejimo su specifikacija dalis.
Sios taisyklés buvo apibréztos ir panaudotos jgyvendinant vertimo jrankj, nuoseklyjj Elixir
kodg paverciant] j TLA™T specifikacija. Sugeneruoty specifikacijy teisingumas tikrinamas
modelio tikrinimu ir tikslinimu, o teisingas vertimo jrankio veikimas uztikrinamas konver-
tuojant sugeneruotg specifikacija atgal i Elixir kodg ir vykdant pirminés programos vienety
testus.

Raktiniai ZodZiai: TLA™, PlusCal, Elixir, Formalus metodai, ISskirstytos sistemos.

CONTENTS

INTRODU CTION e e 5
1 EXTRACTING SPECIFICATIONS FROM SOURCE CODEooooiiii. 8
1.1 Model-Driven Engineeringo 8
1.2 Model-Driven Reverse Engineering........... ..o, 8
1.2.1 Main Challengescoouiiii e 9

1.2.2 General Characteristicsooooiiiii i e 9

1.2.3 Standardized Models....... ... 10

1.2.4 FrameworK.oo 11

1.3 Reverse Engineering Higher-Level Abstractions...................ooooiiii ... 11
1.4 Assessing Correctness of the Generated Model............, 12
1.5 Approaches for Extraction 13
1.5.1 Dedicated Parsersoooiiii 13

1.5.2 DSL Definition ToOlSoiiii 14

1.5.3 Program Transformation Languages..................oooiiiiiiiiiiiii ... 14

1.6 Existing Tools 14
1.6. 1 MODISCO .« vttt e e 15

1.6.2 Gra2Mol ... 15

1.6.3 2T L AT 16

1.6.4 Bandera.........oooiiiii 17

1.6.5 Stepwise Abstraction Extractor........ 18

2 ELIXIR IN DISTRIBUTED COMPUTING ..o 21
2.1 Type Definitionst 21
2.2 Value Updatingo.oiiiii e 22
2.3 Function Specifications......... ..o 22
2.4 Pattern Matching. 22
2.0 GUATAS .o 22
2.6 €aSE STatEIMENTS. ... ittt 23
2.7 ComprenenSIONSttt 23
2.8 PTOCESSES .ottt 24
2.9 Abstract Syntax Treeooouiii 24

3 OVERVIEW OF TLAT SYNTAX ..ottt 26
3.1 Bracha RBC Protocol e 26
3.2 Bracha RBC Protocol’s TLA™ Specificationcciiiiiiiiiiiiiiiiannn. 27
3.3 Declarations, Definitions, and Assumptions ..., 27
3.4 Behaviors. ..o 29
3.5 Behavioral Propertieso 30
3.6 Specification 31
3.7 Formal Specification Refinement 33

4 OVERVIEW OF PLUSCAL SYN T AX oo 34
4.1 Declaration of Variables. 34
4.2 Operator Definitionso 34
4.3 Macro Definitions. 35
4.4 ProCedUTeS .. .vit ettt e e 35
4.5 Process Declarations 36
4.6 Labels ..o 36
4.7 Translation to TL AT L. 36

5 TLAT TRANSMUTATION ...t 38

D.1 Translations 38
D.LL SUIUCHULE oot e e 39

5.1.2 Translation Ruleso 39

6 PRINCIPAL SOLUTION .. 42
6.1 Translation Rules..........o o 42
6.1.1 Additional Context Properties oo 43

0. 1.2 Dy DS ittt 43

6.1.3 Return Value o 44

6.1.4 Empty Value Assignment............... i 45

6.1.5 Mathematical Operators........... ..o 45

6.1.6 Conditionals 47

6.1.7 Enumerable. 48

0. 1.8 VA oottt 49

6.1.9 Function Calls. 51

6.2 Translation Method o1
6.2.1 Creating a Specification Generation Configuration............................. 52

6.2.2 Creating a Model Checking Configurationooiiiia.. 54

6.2.3 Translating Elixir Code to PlusCal Specification 54

6.2.4 Generating TLA™ Specification from PlusCal Specification 55

6.2.5 Model Checking for Generated Specifications...................... ...,)

6.2.6 Including Translation Method Into the Build Pipeline......................... 56

6.3 EXperiment 56
6.3.1 Protocol’s Implementation in Elixir 57

6.3.2 Generated Specificationsooiiiiiiii 58

6.4 Correctness and Completeness.ooiii i 59
TR S R 01 1 13 8 =1 59

6.4.2 CompPletenesst 64

6.0 DISCUSSION . .o\ttt et e e 65
RESULTS AND CONCLUSIONS . e 67
REFE REN CE S o e e 68

Introduction

As more and more large-scale distributed systems are being developed, subtle but
severe issues often arise in the production environment. This is a pretty common issue as
distributed systems may be complex to understand — even a few interacting agents can lead
to tens of thousands or even millions of unique system states. At that scale, it is impossible
to test or even reason about every possible edge case. Thus, an obscure series of interactions
among the components may lead to catastrophic issues. For example, when Amazon’s Elastic
Compute Cloud (EC2) hit a race condition, it caused serious downtime for major systems
on the Internet [Teall].

Formal verification is one approach to help programmers ensure the correctness of
distributed systems. Formal verification of a program is the mathematical proof that it does
what is expected of it. Creating a formal verification of the system’s design may prevent
subtle bugs from reaching the production environment, and finding bugs would be hard to
find in any other technique [NRZ"15].

One of the formal specification languages, that has been successfully used on many
projects in the industry (Compaq [LSTT01], Intel [BL0O2], Paxos consensus algorithm
[Lam05], Pastry distributed key-value store [LMW11]), is TLA™, which stands for Tem-
poral Logic of Actions. It was created by Leslie Lamport and released in 1999. TLA™ is a
language for modeling software above the code level and hardware above the circuit level.
It is based on mathematics and does not resemble any programming language [Lam02].

TLAT as a formal specification language is used in many worldwide-known companies,
one of them being Amazon. Since 2011, engineers at Amazon have been using TLA™ to help
solve complex design problems in critical systems that store and process data on behalf of
their customers [New14]. In order to safeguard that data, Amazon relies on the correctness
of an ever-growing set of algorithms for replication, consistency, concurrency control, fault
tolerance, auto-scaling, and other coordination activities. Achieving correctness in these
areas is a significant engineering challenge. These algorithms interact in complex ways to
achieve high availability on cost-efficient infrastructure while coping with relentless rapid
business growth. As of February 2014, Amazon has used TLA™ on 10 large complex real-
world systems [New14]. In every case, TLAT has added significant value, either preventing
subtle, severe bugs from reaching production or giving enough understanding and confidence
to make aggressive performance optimizations without sacrificing correctness [New14]. Exec-
utive management of Amazon is now proactively encouraging teams to write TLA™ specs for
new features and other significant design changes. In addition, in annual planning, managers
are now allocating engineering time to use TLA™ [New14].

One reason for creating a specification of the system is to check if it does what we want
it to. This can be done with model checking. Model checking is a computer-assisted method
for the analysis of dynamical systems that state-transition systems can model [CHV*18].
This is achieved by verifying liveness and safety properties in all possible states of a finite-

state system [Lam02]. Model checking can be viewed as a sophisticated form of testing.

5

Testing is not a substitute for good programming practice, but we do not release programs
for others to use without testing them. Model checking algorithms prior to submitting them
for publication should become the norm [Lam06]. For example, TLA™ specifications can be
checked with TLC, which works by checking invariance properties of a finite-state model of
the specification [YML99].

For all software artifacts, at least two types of entities are of interest for verification:
the final version of the design requirements and the source code that implements them. The
main problem is that even though the system may have a perfect formal specification before
the implementation, critical mistakes may be introduced during the development phase. It
is great if these issues are detected in the pull requests or testing, but sometimes they are
not, and system users are at significant risk. The gap between the formal specification and
implementation may be reduced by using specific programming languages that allow the ver-
ification (ADA [AT20], Spec# [DeL04]), generating code from specifications (APTS [LHO§],
TLA™ [Maf19]), or extracting specifications from the code. The latter way will be considered
in the research as it allows the software engineers to concentrate on the programming, thus
avoiding the formal specifications becoming an obstacle when quick changes are required.

One of the popular programming languages primarily used for heavily trafficked web-
sites and highly scalable distributed applications is Elixir, which was released in 2012. Elixir
leverages the Erlang VM (BEAM), known for running low-latency, distributed, and fault-
tolerant systems [Tea]. Furthermore, as Elixir language is permeated with metaprogramming
(a programming technique in which computer programs can treat other programs as their
data), it allows the software engineer to access and manipulate its Abstract Syntax Tree
(AST) [McC15]. That is useful for extracting TLA™ specifications from the source code.

Research Object

The research object of the thesis is the verification of Elixir programs by extracting

TLA™ specifications from the program’s source code.

Aim and Objectives of the Research

Master’s thesis aims to create a method for extracting the TLA™ specification from
the sequential parts of the system’s source code that would help to reduce the gap between
the specification and implementation.

Objectives for achieving the goal of the Master’s thesis:

1. Determine the State of the Art for extracting specifications from the code. Identify and
analyze the existing code-to-specification transformation and transformation validation

methods for various programming and specification languages.

2. Propose a code-to-specification transformation method for extracting the TLA™ spec-

ifications out of sequential parts of the Elixir programs.

3. Implement the proposed transformation rules for specification extraction from the

Elixir source code.

4. Prove or model check validity and adequateness of the extracted specifications. The
transformation result will be considered adequate if it will allow defining refinement
mapping between the high-level specification of the algorithm in question and the ex-
tracted specification. We expect to show the validity of the transformation by keeping
the rules as simple as possible or using other methods found during the State of the

Art analysis in this area.

Research Hypothesis

It is possible to extract correct TLA™ specifications from sequential Elixir code so that
they can be used to show the relation between a high-level (human-written) specification of

an algorithm and its implementation in the Elixir code.

Research Method

The research will be carried out using the formal qualitative research method. The ex-
tracted specifications will be proven correct or model-checked with the existing tools (TLAPS
or TLC).

Publication of Research Results

The research was presented in Lithuanian MSc Research in Informatics and ICT (lt.
Lietuvos magistranty informatikos ir I'T tyrimai) conference and published in the proceedings
[BP23].

1 Extracting Specifications from Source Code

Using specifications and models to design complex systems is a standard approach
in traditional engineering domains. For example, the construction of complex and critical
software for aircraft or medicine cannot be imagined without various specialized system
models. Models help understand a complicated problem and its potential solutions through
abstraction. Therefore, it is clear that software systems, which are often among the most

complex engineering systems, can benefit from using models and modeling techniques [Sel03].

1.1 Model-Driven Engineering

Model-Driven Development (MDD) or Model-Driven Engineering (MDE) is a software
engineering approach that applies models and model technologies to raise the abstraction
level. At that level, developers are creating and evolving the software in order to simplify
and formalize the various activities and tasks that comprise the software life cycle [HT06].
This paradigm is based on the assumption that "Everything is a model” [Bez05]. Due to this
reason, MDE relies on three main concepts: metamodel, model, and model transformation.
A metamodel defines the model’s possible element types and structures that conform to it,
similar to the relationship between grammar and corresponding programs in the program-
ming area. There exist two types of model transformations — model-to-model (i.e., Eclipse
ATL [Bez08]) or model-to-text (i.e., Eclipse Acceleo [Eclal).

Despite the many advantages that good high-level formal software specifications bring
to software design, verification by reasoning techniques, validation by simulation and testing,
and documentation are still rare in the software industry (except in the case of mission-
critical systems). Restrictive time and money constraints under which software is developed
and the dynamic nature of software evolution are the most commonly cited problems that
raise many challenges in keeping design and documentation up to date. The need for good
software specifications is further underlined by the fact that most software engineers need
to work on a system that was not designed or developed by them and the growing demand

to document and reimplement legacy software systems [FPM119].

1.2 Model-Driven Reverse Engineering

Reverse engineering source code to formal models is called Model-Driven Reverse En-
gineering (MDRE). Favre [Fav04] defines MDRE as ”producing descriptive models from
existing systems that were previously produced somehow.” The purposes of models can vary
from generating formal specifications of the system to generating UML models, business
rules, or evaluating quality [RFZ17].

Usually, the MDRE process consists of two steps [RFZ17]:

1. Model generation from the source artifacts of the system.

2. Achieving a specific goal (e.g., model checking, re-documenting, etc.) by exploiting
the model.

In Model-Driven Reverse Engineering, the source code often is the only available source
of wisdom, so MDRE solutions start from a system model with a low abstraction level (the
source code) and try to build views at higher abstraction levels. Consequently, numerous
system views are needed, each corresponding to a different model. The models’ generation
from source code and model transformations can be automated. After that, the produced
models may be analyzed by domain experts or appropriate tools and used for levering the
model-driven development.

There are two main groups of MDRE solutions [BCD*14]:

« Specific — reverse engineering a system from a single technology, having a predefined
scenario in mind (e.g., MedaEdit+ [Met], Columbus [FBT02]);

e General - creating the basis for any other type of manipulation in later steps of the

reverse engineering process (e.g., Moose [Tec], MoDisco [BCD*14]).

1.2.1 Main Challenges

Based on the problems stated above, Model-Driven Reverse Engineering should be able

to overcome the following challenges [BCD*14]:

o To avoid information loss due to the heterogeneity of systems — for ensuring the
high quality of the overall MDRE process, it is crucial to be able to retrieve as many

artifacts as possible from the systems that are often technically heterogeneous;

o To improve comprehension of the systems — one of the main goals of MDRE is to
improve the understanding of complicated systems. It requires going beyond the pro-
vision of simple low-level representations and deriving higher-level abstractions that

contain the most relevant information;

« To manage scalability — most of the systems are usually large and complicated. For
this reason, MDRE techniques should be able to load, query, and transform extensive

models;

» To adapt/port existing solutions to different needs — many MDRE solutions depend
on technology or scenario. That means that they target a specific technology or reverse-
engineering scenario. Thus, MDRE solutions should be generic and largely reusable in

various contexts.

1.2.2 General Characteristics

Model-Driven Reverse Engineering should fulfill the following characteristics [BCD*14]:

e Genericity — an MDRE approach should be based on technology-independent stan-

dards (e.g., metamodels) and customizable model-based components;

o Extensibility - an MDRE approach should rely on a decoupling of the represented

information (models) and the next steps of the process;
e Automation - an MDRE approach should be partially or totally automated;

 Full/Partial Coverage — source artifacts should include interrelated components at

different abstraction levels;

o Direct (re)use and integration — the various elements of the MDRE approach and its

results (i.e, models) should be designed for reuse.

1.2.3 Standardized Models

Object Management Group (OMG) launched the Architecture Driven Modernization
(ADM) Task Force [Grob] due to the growing interest in the MDRE field. Its main objective
is to propose standard metamodels useful for modernization projects (e.g., migrations from
obsolete technologies to more recent ones).

The first metamodel that ADM introduced is the Knowledge Discovery Metamodel
(KDM) [Groc|, with the primary purpose of defining a shared and complete representation,
which guarantees the interoperability of different tools, and efficiently supporting mainte-
nance, evolution, assessment, and modernization activities. The model is defined with a
level of detail where it is capable of representing the structural concepts of object-oriented
and imperative languages (e.g., classes, methods, functions, modules) [RFZ17].

ADM also defined the Abstract Syntax Tree Metamodel (ASTM) [Groa] metamodel to
better support source code analysis activities. It represents the Abstract Syntax Tree (AST)
of virtually any programming language, allowing analysis tools to target the metamodel
instead of the specific language’s AST. The model defines what is called Generic ASTM
(GASTM) (e.g., definitions that recurrently apply to Abstract Syntax Trees of most pro-
gramming languages). The model also allows extensions, called Specialized ASTM (SASTM),
to handle features specific to a single programming language [RFZ17].

Even though it sounds splendid to have a standard model and use reverse engineering
tools created by other researchers, the reuse of standardized models (e.g., KDM or ASTM)
is limited. One of the reasons might be that these models have extensive specification
documents, which span hundreds of pages. This factor may be discouraging for the use
of standard models as, most often, it is more simple to incrementally define ad-hoc meta-
model that meets specific requirements [RFZ17]. Another problem is that sometimes these
standardized models have scalability issues when handling extensive models (i.e., MoDisco
authors reported this problem [BCD*14]).

10

1.2.4 Framework

[BCD™14] proposes a three-layer Model-Driven Reverse Engineering framework archi-

tecture, which is presented in Figure 1.

Use Cases

Technologies

Infrastructure

Figure 1. MDRE Framework Architecture.

Genericity and automation are provided via the Infrastructure layer as a set of basic
bricks independent of any reverse engineering scenario. Such components offer generic meta-
models and model transformations that have extensible model navigation, customization,
and orchestration capabilities. In addition, they often come with the corresponding generic
interfaces and extension features required for the components from the other layers to be
plugged in [BCD*14].

The Technologies layer, which is built on top of the Infrastructure one, provides
technology-dedicated components that stay independent from any specific reverse engineer-
ing scenario. Such components can be either technology-specific metamodels or their cor-
responding model discoverers and related transformations. They are the concrete bricks
addressing the different kinds of systems to be potentially reverse engineered [BCD*14].

The final Use Cases layer provides some reuse and integration examples, which can be
relatively simple demonstrators or more complete ready-to-use components implementing a
given reverse engineering process. Such components are used for the realization of actual
integration between components from the Infrastructure and Technologies layers. They can

be either reused as-is or extended/customized for a different scenario [BCD*14].

1.3 Reverse Engineering Higher-Level Abstractions

In order to alleviate the concerns stated above, since early on [CC90] a significant
amount of effort has been put into reverse engineering higher-level abstractions from existing
systems. The action of automatically obtaining raw models from the system to be reverse-
engineered is called Model Extraction [BCD*14].

Figure 2 shows what elements are involved in the model extraction from code that
conforms to a grammar. This process is a text-to-model transformation 7" with its input a
program P that conforms to the grammar definition G. The transformation uses P as either
an Abstract Syntax Tree or a Concrete Syntax Tree. The execution of T builds a target
model Mr that conforms to a target metamodel MMy, It represents the information to

be extracted, which is usually more complex than a syntax tree. The extraction process is

11

driven by a specification of the mappings between the grammar elements and the metamodel
elements [CC90].

Mapping
G — MMy

Figure 2. Model extraction process from source code.

There are two types of model discovery implementation — two-step approach and direct
approach. In a two-step approach, a standardized model (e.g., GASTM) is firstly obtained
from the system and then transformed into a language-specific model (e.g., TLA* model). In
the direct approach, the language-specific model is built directly from the system’s abstract
syntax tree.

Having the process split into two steps reduces the complexity of each step and can
be reused in similar MDRE applications with ease. On the contrary, if these benefits are
not relevant to the user (e.g., he does not want the tool to be reusable in other approaches),
one can decide to go with the direct approach as it involves fewer artifacts and offers better
performance. Nevertheless, both approaches should obtain the model of the represented

system at the same level of abstraction [BCD114].

1.4 Assessing Correctness of the Generated Model

The working principle of the model generator is similar to the compiler’s, which trans-
lates the source code to the machine code. Thus, the same ways of assessing the correctness
of generated artifacts should apply. [PA19] offers advice on how a compiler’s correctness can

be verified, which is presented in Figure 3.

v

Source Language S Compile Target Language T

meaning meaning

¥ h 4

Decode Semantics of T

Fy

Semantics of S

Figure 3. Process for assessing the correctness of the compiler.

The source language S is given a meaning by the source semantics and the target

language T is given a meaning by the target semantics. When compiling S to 7, the two
12

semantics are related. If the semantics of the target program that was produced by the
compiler relates to the semantics of the source program (expressed by decode function), the
compiler might be considered as correct. It might not be identical, but should be "somehow
compatible with the semantics of source code” [PA19].

During the specification generation, some less-relevant data (e.g., code comments) is
sliced away. This means that some of the code elements will not be preserved after the
decoding generated specification, but that will not change the algorithm’s behavior. Thus,
the source code and decoded generated specification should be equivalent.

One of the ways to verify that both artifacts are equivalent is the Translation validation

[PSS98] can be used. The concept of this process is depicted in Figure 4.

| ~Not OK—=>(_Counter Example
Compiler Analyzer

—OK

Proof Script

Proof Checker

Figure 4. The concept of Translation Validation.

Both the Source and Target programs are passed as inputs to the Analyzer program. If
it finds that the generated program correctly implements the source program, it generates a
detailed proof script, which is examined and confirmed by the Proof Checker. If the analyzer
fails to find correspondence between the source and target programs, it produces a counter-
example. It consists of a scenario in which the generated code behaves differently than the

source code. This means that the compiler is faulty and needs to be fixed [PSS98].

1.5 Approaches for Extraction

There exist numerous ways to extract the model from the source code. In this work,
we review only the most popular ones.
1.5.1 Dedicated Parsers

The most frequently chosen strategy is creating a dedicated parser [IM12]. A dedicated
parser can provide a specific solution that performs parsing and model generation tasks when

given a grammar and a target metamodel. The parser is in charge of extracting an abstract

13

or concrete syntax tree from the source code, and the model generator traverses this syntax
tree to generate the target model [IM12].

Developing a dedicated parser is a time-consuming and expensive task because the
syntax tree traversals must be hardcoded to collect scattered information and resolve ref-
erences. In addition, mappings are also hardcoded, which burdens maintainability. The

effort required is usually alleviated by automatically extracting an AST from the source
code [IM12].

1.5.2 DSL Definition Tools

The definition of textual DSLs aimed to express models in MDD solutions is another
scenario in which a grammarware-modelware mapping is necessary. Since textual DSL def-
inition tools must implement one of these mappings in order to provide the functionality
of converting DSL programs into models and vice versa. These tools generate a dedicated
parser and a DSL editor from the specification of the DSL’s abstract and concrete syntaxes.
They may therefore be considered as an alternative to developing a dedicated parser [IM12].

These tools support two approaches in order to specify both the abstract and the con-
crete syntaxes. In grammar-based tools, such as Xtext [Eclb] and TEF [Sch08], the developer
uses an EBNF-like notation to specify both the grammar, including rules intended to specify
the mapping for the corresponding metamodel and the concrete syntax. In some cases, such
as in Xtext, the metamodel can also be automatically generated from the specification. On
the other hand, metamodel-based tools, such as EMFText [Dev] and TCS [MLH'06], have
as input a metamodel with annotations that specify the concrete syntax, and the grammar

is automatically generated from this annotated metamodel [IM12].

1.5.3 Program Transformation Languages

Program transformation languages, such as Stratego/XT [Str|] and TXL [NSE], could
be used to extract models from source code by expressing the abstract syntax as context-free
grammar rather than a metamodel. However, when such languages are used, the following

limitations are encountered [IM12]:

1. A program transformation execution is a program conforming to a grammar. A tool
for bridging grammarware and modelware would still be needed to obtain the model

conforming to the target metamodel.

2. Grammar reuse is not promoted because each toolkit uses its grammar definition lan-

guage. Moreover, each toolkit only provides a limited number of GPL grammars.

1.6 Existing Tools

As this is not a new problem in the software engineering field, there exist numerous

tools that allow code-to-specification transformations.

14

1.6.1 MoDisco

MoDisco (Model Discovery) is an open-source Eclipse project for model-driven reverse
engineering of I'T systems. The primary goal of this tool is to provide support for activ-
ities dealing with legacy systems and ranging from understanding and documentation to
evolution, modernization, and quality assurance [BCD*14]. The ADM Task Force of OMG
cites MoDisco as an implementation example of its standards KDM, Structured Metrics
Metamodel (SMM), and ASTM [RFZ17].

MoDisco approach consists of two main steps — model discovery, which builds the initial
abstract model of the system, and model understanding, which analyzes the initial models
and generates derived models to obtain the desired view of the system [BCD*14].

In order to fulfill the main characteristics of a Model-Driven Reverse Engineering sys-
tem (Section 1.2.2), MoDisco follows a strategy of switching from a heterogeneous world
of systems to a more homogeneous world of models immediately. The main principle that
MoDisco uses is to quickly get initial models representing the system’s artifacts without
losing any of the information required for the process. These models are used as a starting
point for the considered MDRE scenario. They are sufficiently accurate for that but do not
represent any actual increase in the abstraction or detail levels. The resulting models can
be seen as (full or partial) abstract syntax graphs that bridge the syntactic gap between
the worlds (i.e., technical spaces) of source code, configuration files, etc., and the world of
models. From this point on, any reverse engineering task on the system can be executed by

using these models as a valid input representation [BCD*14].

1.6.2 Gra2Mol

Gra2MoL (Grammar-to-Model Transformation Language) is a Domain-Specific Lan-
guage (DSL) tailored to the extraction of models from general-purpose programming lan-
guages (GPL) code. This DSL is a text-to-model transformation language that can be
applied to any code conforming to grammar [IM12].

Figure 5 shows an example of how Gra2MoL is used. A Gra2MoL definition consists of a
set of rules, where every rule expresses the mapping between a grammar element and a model
element. The Gra2MoL definition shown in the example is very simple, and only contains
the rule named example which transforms a methodDeclaration grammar element into
the Method metamodel element according to the from and to parts of the rule. The mapping
part expresses how the information of the model element is gathered from the information
in the syntax tree. In this example, the name attribute of the Method model element is first
initialized by accessing the Name grammar element of the methodDeclaration grammar
element received by the rule (variable mDec). The params reference is then initialized by
using the q1 query, which collects every param grammar element representing the parameters
of the method. Note that mappings are specified explicitly, and a specific query language is
used to traverse the syntax tree [IM12].

15

methodDeclaration: rule 'example' Method
Name "(" param ")" from methodDeclaration mDec -
to Method name : String
queries
gl : /mDec///#param;
param: mappings 0..*| params
Type Name param? name = mDec.Name; Parameter
; params = ql; name : String
end_rule
grammar mapping rule metamodel

Figure 5. Simple example of a Gra2MoL mapping definition [IM12].

1.6.3 C2TLA*

C2TLA™ is the specifications extractor for C programs. The specification and verifi-
cation process is illustrated in Figure 6. The first step of the process is to translate from an
implementation provided by one or more .c files to a TLAT. Before translation, the C files
are parsed and normalized according to CIL (C Intermediate Language). Normalization to
CIL makes programs more amenable to analysis and transformation. After obtaining the
AST of the C program, C2TLA™ generates the TLA™T specification. The whole system is
composed of TLAT modules resulting from C translation or manual specifications that come
from different sources [MLHT14].

After all the modules are integrated to form the complete specification given to TLC to
generate the model and verify the properties (or refinements), if a property is not satisfied,
TLC reports a trace that leads to the incorrect state. TLC also provides coverage informa-
tion, i.e., the number of times each action was “executed” to construct a new state. Using
this information, it is possible to identify actions that are never “executed” and might indi-

cate an error in the specification. Both the trace and coverage information can be translated
back to C [MLH'14].

16

C files
i.kl Optionnal Requirement

modules properties
|

I
C2TLA+ |
Translator |

1
I
I
I
|
A 4

Integration ™ ¥ |
=
=0 Ol D
TLA+ modules
1 Parameters.tla G%{?ffled TLA+ TLA+
modu h’; modules ~ properties
Runitime.tla '
TLC = = = Automatic specification

model checker ——— Manual specification

yes no

Coverage TLA+ error trace

Figure 6. Specification and Verification process of C2TLAT [MLH"14].

1.6.4 Bandera

Bandera is a component-based Java programs model extractor. One of the primary
goals of Bandera is to provide automated support for the model construction and error trace
interpretation techniques [CDH™00].

Specifically, Bandera uses slicing to automate irrelevant component elimination, ab-
stract interpretation to support data abstraction, and a model generator that allows signif-
icant flexibility in setting bounds for various system components. The tool also includes a
collection of data structures for automatically mapping model-checker error traces back to
the source level and facilities for graphical navigation of these traces. Bandera relies on con-
ventional dataflow, control-flow, and dependency analyses, slicing and specialization trans-
formations, as well as several supplementary analyses to produce compact models [CDH™*00].

Bandera uses a component-based architecture for model extraction to maximize scala-
bility, flexibility, and extensibility. The architecture of Bandera is similar to an optimizing
compiler. Compilers use multiple intermediate languages to stage the transformation to ma-
chine code, Bandera uses multiple intermediate languages to stage the transformation from
Java to model-checker input languages. Just as a conventional compiler relies on sophis-
ticated static analyses and transformations to produce optimized code, Bandera relies on
conventional dataflow, control flow, dependency analyses, slicing, and specialization trans-
formations [CDH™00].

1.6.4.1 Soot/Jimple

Bandera is built on top of the Soot compiler framework, which translates Java pro-
grams to the intermediate language Jimple - one of several intermediate languages supported
by Soot. The authors of Bandera developed a Java-to-Jimple-to-Java compiler (JJJC) for

maintaining a close correspondence between a Java source code and Jimple representation.

17

Given a node in a program’s Jimple representation, JJJC can return the corresponding node

in the Java abstract syntax tree for the program, and vice versa [CDH*00].

1.6.4.2 Slicer

Given a program P and some statements of interest C' = {5y, ..., sy} from P called the
slicing criterion, a program slicer will compute a reduced version of P by removing statements
of P that do not affect the computation at the criterion statements C. When checking a
program P against a specification ¢, Bandera uses slicing to remove the statements of P
that do not affect the satisfaction of ¢. Thus, the specification ¢ holds for P if and only if
¢ holds for the reduced version of P (i.e. the reduction of P is sound and complete with
respect to ¢) [CDHT00].

1.6.4.3 Abstraction-Based Specializer

The Bandera Abstraction-Based Specializer (BABS) provides automated support for
reducing model size via data abstraction. This is useful when a specification to be checked
does not depend on the program’s concrete values but instead depends only on the properties
of those values. With an appropriate definition of abstraction, the specialization engine will
transform the source code into a specialized version where all concrete operations and tests

are replaced with abstract versions that manipulate tokens representing the abstract values
[CDH™00].

1.6.4.4 Back End

The Bandera back end is like a code generator, taking the sliced and abstracted program
and producing verifier-specific representations for targeted verifiers. The back end accepts
a restricted form of Jimple and produces BIR (Banderas Intermediate Representation). For
each supported model checker, there is also a translator component that accepts the program
represented in BIR and generates input for that model checker [CDH™00].

BIR is a guarded command language for describing state transition systems. The
primary purpose of BIR is to provide a simple interface for writing translators for target
verifiers-to use Bandera with a new verifier, one must only write a translator from BIR to
the input language of the verifier [CDH"00].

1.6.5 Stepwise Abstraction Extractor

Another approach to generating code directly from AST into formal specification is
to derive formal software specifications by a sequence of (semi) automated transformations.
Every transformation increases the level of abstraction of the previous specification in the
sequence. This process can be done in a (semi) automated way and thus result in a valu-
able tool to improve the current software (reverse) engineering practices. The simple but

critical observation in this regard is that the process of stepwise refinement from high-level

18

specification down to implementation provided by the ASM method can be applied in re-
verse order. Thus, it may be used for the (semi) automated extraction of high-level software
specifications from source code [FPM™19].

The stepwise abstraction method consists of two phases — Ground specification extrac-

tion and iterative high-level specification extraction [FPMT19].

1.6.5.1 Ground Specification Extraction

Ground specification extraction is the first step of parsing the system’s source code
to translate it into a behaviorally equivalent ASM. Here the term behaviorally equivalent is
used in the precise sense of the ASM thesis, i.e., in the sense that behaviorally equivalent
algorithms have step-by-step the same runs. Thus the ground specification is expected to
have the same core functionality as the implemented system [FPM*19].

This phase has two steps in it [FPM*19]:

1. By means of eKnows!, the source code is parsed into a generic AST representation.
Besides concrete language syntax, this intermediate representation also abstracts from

language-specific semantics regarding control flow.

2. Rules for rewriting AST nodes related to control flow (e.g., loop, conditional state-
ments) and assignment statements are provided. This eliminates intermediate variables
and constructs assignment statements that only contain input/output parameters of

the analyzed algorithms.

1.6.5.2 Iterative High-Level Specification Extraction

After the ground specification extraction phase is completed, the ground ASM spec-
ification is used as a base to extract higher-level specifications through a semi-automated
iterative process. The implementation of the method must, at this point, present the user
with different options to abstract away ASM rules and data [FPM™19].

1.6.5.3 Advantages of Stepwise Abstraction Method

The stepwise extraction of specifications via Abstract State Machines has the following
benefits [FPM™*19]:

e Precise yet succinct and easily understandable specifications at desired levels of ab-

straction;

» Each abstraction/refinement step can be proven correct if needed. This enables, for

instance, proving that the implementation satisfies the requirement;

Thttps://www.scch.at /scch/presse-medien /detail /software-analyse-habt-in-programmen-verstecktes-

wissen

19

Only the first abstraction from source code to ASM rules depends on the program-
ming language of the implementation. Subsequent abstractions only rely on general

principles and transformations of ASM rules;

The initial abstraction from source code to ASM can potentially be done entirely

automatically via rewriting rules;
Can be used for reverse engineering/understanding source code;

Can be used for producing finite state machines for model-based testing. For instance,

using a refinement of the extracted high-level ASM models to finite state machines.

20

2 Elixir in Distributed Computing

Elixir is a dynamic, functional language for building scalable and maintainable appli-
cations [Tea].

The motivation for generating code from Elixir source code is based on several reasons:

1. Reliable concurrency and inter-process communication from Erlang’s virtual machine
(BEAM) usage, which is essential to support concurrent and distributed systems that

are a focus of TLAT.

2. The function paradigm is declarative over operational, similar to the TLA' syntax.

This helps to keep correspondence between definitions in each language.

3. BEAM provides platform transparency, making the generated code suitable for a bigger

number of environments.

4. Relatively new programming language with modern syntax.

Now we will analyze an algorithm Wasper? to understand better what Elixir language

constructs are used in the development of distributed computing algorithms.

2.1 Type Definitions

Defining custom types helps to communicate the intention of the code and increases
its readability. Custom types can be defined within the modules via the @type attribute.
Custom types provide a more descriptive alias of the type and are helpful when used together
with function specifications (see Section 2.3). Custom types in Elixir are implemented via
the map structure [Tea).

The syntax of type definition is to put the custom type name on the left side of the : :
and the properties of the type on the right side. An example of struct type definition can
be seen in Listing 1.

@type t(obj) :: %GPA{

mod: module(),

obj: obj,

me: any,

process own: boolean()

Listing 1: Custom type definition in Elixir.

2https://github.com/kapel395/wasper (the repository is private at the time of writing).
21

2.2 Value Updating

As variables in Elixir are immutable (variable’s value cannot change during the execu-
tion of a program), in order to update a value, it should be reassigned to the variable. As
update is a common operation, Elixir has a syntactic sugar for this, using | operator [Teal.

This operation can be seen throughout the Wasper algorithm (see Listing 2).
gpa = %{gpa | obj: obj}

Listing 2: Struct value update in Elixir.

2.3 Function Specifications

Function specifications are used for documenting the function signatures. In code,
function specifications are written with the @spec attribute, typically placed immediately
before the function definition. Specifications can describe both public and private functions.
The function name and the number of arguments used in the @spec attribute must match
the function it describes. Function specifications can use both built-in types provided by
Elixir, like integer or boolean, and user-declared types [Tea].

The syntax of function specification is to put the function and its input on the left side
of the :: and the return value’s type on the right side. An example of function specification
can be seen in Listing 3.

@spec input(t(obj), any()) :: ret(t(obj)) when obj: any()
def input(gpa = %GPA{mod: mod, obj: obj}, input) do

handle result(gpa, mod.handle input(obj, input))
end

Listing 3: Function signature specification via the attribute in Elixir.

2.4 Pattern Matching

Another commonly used construct is pattern matching. It allows developers to easily
destructure data types such as tuples, lists, or maps and is one of the foundations of recursion
in Elixir [Tea]. In Wasper algorithm, pattern matching is used often used for destructing
inputs of a function (see Listing 4).
def message(gpa = %GPA{mod: mod, obj: obj}, message) do

handle result(gpa, mod.handle message(obj, message))
end

Listing 4: Pattern matching function’s input parameters in Elixir.

2.5 Guards

In Elixir, guards are a way to augment pattern matching with more complex checks.

They are allowed in a predefined set of constructs where pattern matching is allowed. Guard
22

clause places further restrictions on the parameters in a function, such as the data type
or allowed number range. Guards can be used in functions, case expressions, anonymous
functions, and other places. If no guard clause is matched, the exception is raised [Tea]. An

example of guard usage in the Wasper algorithm can be seen in Listing 5.

defp combined msgs(peers, msgs, outputs) when map size(msgs) == 0 do
end
defp combined msgs(peers, msgs, outputs) do

end

Listing 5: Function guards in Elixir.

2.6 Case Statements

A case statement can be considered as a replacement for the switch statement in im-
perative programming languages. Case takes a variable/literal and applies pattern matching
to it with different cases. If any case matches, Elixir executes the code associated with that
case and exits the case statement. If no match is found, it exits the statement with an
CaseClauseError that displays no matching clauses were found [Tea]. An example of the
case statement in Wasper algorithm can be seen in Listing 6.
case step do

{:next, next est} when target r =r -> ...
{:next, next est} when target r>r -> ...

:same -> ...
end

Listing 6: Case statement in Elixir.

2.7 Comprehensions

In Elixir, it is common to loop over an Enumerable, often filtering out some results and
mapping values into another list. Comprehensions are syntactic sugar for such constructs —
they group those common tasks into the for special form. Comprehensions can return the
result as a list or can insert into the different data structures by passint the :into option
to the comprehension [Tea]. The latter way is used more often in the Wasper distributed
algorithm (see Listing 7)

msgs = for p <- peers, into: %{}, do: {p, [{:READY, i, m, h}]1}

Listing 7: Comprehension in Elixir.

23

2.8 Processes

In Elixir, all code runs inside processes. Processes are isolated from each other, run
concurrent to one another and communicate via message passing. Processes are not only
the basis for concurrency in Elixir, but they also provide the means for building distributed
and fault-tolerant programs [Tea].

Elixir’s processes should not be confused with operating system processes. Processes
in Elixir are extremely lightweight in terms of memory and CPU. Because of this, it is not
uncommon to have tens or even hundreds of thousands of processes running simultaneously
[Tea).

Wasper uses send and receive functions for communication and specifies a timeout
with after function, which will execute if no messages arrive in specified amount of time
(see Listing 8).
receive do

{:stdout, "~os pid, more} ->
read(n - byte size(partial),

%{state | read buf: more},
[partial | accl)

after
10000 -> {:error, :timeout}
end

Listing 8: Data receive process in Elixir.

2.9 Abstract Syntax Tree

Elixir supports metaprogramming, which allows manipulating the programs dynami-
cally — this is achieved by manipulating abstract syntax tree (AST), which is the represen-
tation of code as a tree-based data structure. Elixir uses this data structure to run Elixir
code: either by interpreting it directly: executing the commands in the AST by recursively
walking it; or by compiling it: translating the AST into another format, namely BEAM
bytecode instructions, which then are saved to disk as .beam files. In runtime, these .beam
files are then loaded and executed more efficiently than the interpreter can [Sch19]. This
process is presented in Figure 7.

Elixir AST node is represented by a tuple of 3 elements {marker, metadata, chil-
dren}. Marker is some kind of an atom (an atom is a constant whose value is its own
name. In some languages it is simply a symbol) and metadata is a keyword list that contains
annotations about the metadata node (line number, file, column number, etc.). The children
is either a list of child AST nodes or an atom 7, The Elixir expression 2 * x looks like this
{:*%, [1, [2, {:x, [1, nil}]} in Elixir AST.

24

Macro

expansion
4 A MyModule
|::> | AST | :{> -
\ / .beam
Code to AST AST to BEAM

parser

bytecode compiler

Figure 7. How Elixir compiler uses AST.

AST is a regular Elixir data structure. It can be parsed and manipulated by the code

— it is possible to write a parser that walks the tree and uses pattern matching to pluck

specific chunks of code and manipulate or evaluate them.
An AST of the function from Listing 4 is presented in Listing 9. Note that for the

reader’s convenience, the metadata node is replaced with an underscore (_) as, in this case,

it does not contain any useful information.

{:def, , I
{:message, , [
{:=, ., I
{:gpa, _, nil},
{:%, _, [
{: aliases , , [:GPA]l},
{%{}, 1
mod: {:mod, , nil},
obj: {:obj, _, nil}1}1}1},
{:message, , nil}1}, [
do: {:handle result, , [
{:gpa, _, nil},
{{:., ., I
{:mod, , nil}, :handle messagel}, , I
{:obj, , nil},
{:message, , nil}1}1}11}

Listing 9: AST of the message function from Wasper.

25

3 Overview of TLA' Syntax

TLA™ [Lam02] is the specification language of the Temporal Logic of Actions (TLA).
TLA is a variant of linear temporal logic introduced by Leslie Lamport for specifying and
reasoning about concurrent systems.

The main principles of TLA™ will be presented by analyzing Bracha reliable broadcast

protocol.

3.1 Bracha RBC Protocol

Bracha’s Reliable Broadcast is one of the most important build blocks for Byzantine
Fault Tolerant protocols in the Asynchronous model. In this standard setting, there are n
parties, where one is designated as the leader. The malicious threshold adversary can control
at most f < n/3 parties. The leader has some input value M, and a party that terminates
needs to output a value [Bra87].

The protocol satisfies the following properties:

o Agreement — if an honest node outputs a message M and another honest node outputs

a message M’ then M =M’
o Validity — if the broadcaster is honest, all honest nodes eventually output the message;

o Totality — if the honest node outputs a message, then every honest node eventually

outputs a message.

We have used the algorithm presented in the [DXR21] article as it doesn’t imply sending
ECHO messages upon receiving T+1 READY messages. The pseudo-code from [DXR21] is
presented in Algorithm 1. The ¢ means that "Given a network of n nodes, of which up to ¢

could be malicious”.

Algorithm 1 Pseudo code of Bracha RBC [DXR21].

// broadcaster node only
input M
send (PROPOSE, M) to all nodes
// all nodes
input P(-) // predicate P(-) returns true unless otherwise specified
upon receiving (PROPOSE, M) from the broadcaster do
if P(M) then
send (ECHO, M) to all nodes
upon receiving 2t + 1 (ECHO, M) messages and not having sent a READY message do
send (READY, M) to all nodes
: upon receiving ¢ + 1 (READY, M) messages and not having sent a READY message do
send (READY, M) to all nodes
: upon receiving 2t + 1 (READY, M) messages do
output M

— = = = =
w22

26

The protocol uses three types of messages: PROPOSE, ECHO, and READY. A (PROPOSE,
M) message means that process p wishes to broadcast the value M. A (ECHO, M) message
means that its sender knows that p sent M because it received (PROPOSE, M) message from
p. A (READY, M) message means that its sender knows that M is the only value sent by
p and that it is ready to accept M because it received enough (ECHO, M) or (READY, M)
messages. When a process receives enough (READY, M) messages, it Accepts M as the value
sent by p, knowing that all other correct processes are bound to accept M too [Bra87].

The protocol is divided into steps corresponding to the message types. In each step, a
process waits until it receives enough messages that permit it to send the next message type
(including those received at previous steps), then it sends a message to all the processes and
moves to the next step [Bra87].

The protocol has the following steps:
e Broadcast, which sends the message (PROPOSE, M) to all nodes;

e Receive Propose, which sends the message (ECHO, M) once p receives (PROPOSE, M)

message,

o Receive Echo, which sends a (READY, M) message (if that was not sent yet) once p
receives 2t + 1 (ECHO, M) messages;

o Receive Ready Support, which sends a (READY, M) message (if that was not sent yet)
once p receives t + 1 (READY, M) messages;

e Receive Ready Output, which sets output to M once p receives 2t + 1 (READY, M)

messages.

3.2 Bracha RBC Protocol’s TLA* Specification

The implementation of a TLA™ specification for a Bracha reliable broadcast protocol
(see section 3.1) can be found in a Wasp (node software developed by the IOTA Foundation
to run the IOTA Smart Contracts (ISC in short) on top of the IOTA Tangle repository 3.

The specification implements the protocol’s steps, defined in Section 3.1. Model check-
ing is used to check whether the specified protocol satisfies the required properties.

Note that the TLA™ specification of Bracha RBC uses simple TLA™ constructs and

does not cover complex scenarios, but should be enough to explain the main principles.

3.3 Declarations, Definitions, and Assumptions

TLA™ specifications are partitioned into modules. The beginning of the module’s body

consists of declarations, definitions, and assumptions. They are presented in Figure 8.

3https://github.com/iotaledger/wasp/blob/develop/packages/gpa/rbc/bracha/BrachaRBC.
tla

27

Usually, bigger specifications are made up of a number of modules. One module can be
included in another by using EXTENDS statement at the beginning of the module [Lam02].
Bracha RBC specification uses FiniteSets and Naturals modules that are standard mod-
ules of the TLA™T.

In TLA™, a declaration is a statement that introduces a new symbol or variable into the
specification. Two types of declarations are used most frequently — constants and variables.
Constant declarations introduce a new constant symbol with a fixed value that remains the
same throughout the specification. The value of the constant is defined in the model checking
configuration instead of the specification. Variable declarations introduce a new variable that
can take on different values during execution. Usually, all variables of the module are listed
inside the vars tuple (the symbol £ means equal by definition) [Lam02).

In TLAT, a definition is a statement that assigns a name to a TLA+ expression or
formula and can be used as a shorthand for that expression or formula throughout the
specification [Lam02]. The Bracha RBC specification has multiple definitions in order to
make the specification simpler and more readable. For instance, TypeOK definition checks
whether the specified variables are correct. This definition is invoked as invariant — it should
be satisfied at every step.

In TLA™, an assumption is a statement that is taken to be true without proof and is
used to simplify the specification or reasoning about it. Assumptions in TLA™ are similar to
axioms or postulates in other mathematical systems and are often used to define the basic
properties of the system being modeled or to introduce additional constraints or assumptions
that simplify the specification [Lam02]. The Bracha RBC specification contains multiple
assumptions, one of them being NodeAssms. It defines that sets of correct and faulty nodes
are finite, that no node is correct and faulty at the same time, and that there is at least one

correct node.

28

: MODULE BrachaRBC
EXTENDS FiniteSets, Naturals

Constants

CONSTANT CN
CONSTANT FN
CONSTANT Value

Correct nodes.
Faulty nodes.
The broadcasted value.

Variables

VARIABLE bcNode The broadcaster node.
VARIABLE bc Value
VARIABLE predicate
VARIABLE output
VARIABLE msgs

vars = (beNode, beValue, predicate, output, msgs)

Value broadcasted by a correct BC' node.
Predicates received by the nodes.

Output for each node.

Messages that were sent.

Definitions

AN = CNUFN All nodes.

N = Cardinality(AN) Number of nodes in the system.

F = Cardinality(FN) Number of faulty nodes.

Q1F = {q € SUBSET AN : Cardinality(q) = F + 1} Contains > 1 correct node.
Q2F = {q € SUBSET AN : Cardmality() = 2 * F —l— 1} Contains > F' + 1 correct nodes.
QNF = {q € SUBSET AN : Cardinality(q) = Max quorum.

QXF = {q € SUBSET AN : Cardinality(q) = ((N + F) +2)+1} Intersection is F + 1.

NotValue = CHOOSE v : v
Msg = [t:{"PROPOSE”

¢ Value
“ECHO", “READY"}, src : AN, v : Value]

Ipm € msgs : pm.t = “PROPOSE” A pm.src
Jem € msgs : em.t = "ECHO” A em.src
drm € msgs : rm.t = "READY" A rm.src

HaveProposeMsg(n, vs)
HaveEchoMsg (n, vs)
HaveReadyMsg (n, vs)

nApm.v € vs
nA\em.v € vs
nArmov € vs

I IPll2

TypeOK =
A msgs C Msg
A bcNode € AN
AV bcNode € CN A beValue € Value

V beNode € FN A beValue = NotValue

A predicate € [CN — BOOLEAN |
A output € [CN — Value U { NotValue}]
Assumptions

ASSUME QuorumAssms = N > 3% F
ASSUME NodesAssms =

A IsFiniteSet(CN)
A IsFiniteSet(FN)
A CNNFN={}
A CON #{}

ASSUME ValueAssms = Jv € Value : TRUE

Figure 8. Declarations, definitions, and assumptions of the Bracha RBC TLA™ specification.

3.4 Behaviors

The system is specified by a set of possible behaviors — a sequence of states, where the
state is an assignment of values to variables, representing a correct execution of the system
[Lam02].

presented in section 3.1.

The Bracha RBC specification has behaviors (see Figure 9) based on the steps

As the structure of defined behaviors is similar, we’ll analyze one of them — RecvF-

29

cho(eq). In order for behavior to take place, there should exist a correct node n and value
v, which has received 2¢ + 1 ECHO messages, and has not sent a READY message yet. If this
condition is satisfied, the READY message is sent to all nodes. The last line of behavior lists

the variables that have not been changed during the behavior.

Behaviors

Broadcast =
A becNode € CN We only care on the behaviour of the correct nodes.
A = HaveProposeMsg(bcNode, Value)
A msgs’ = msgs U {[t — "PROPOSE", src — bcNode, v — beValue]}
A UNCHANGED (bcNode, beValue, predicate, output)

UpdatePredicate =
dn € CN, p € BOOLEAN
A predicate[n] = p Only monotonic updates are make the algorithm to terminate.
A predicate’ = [predicate EXCEPT ![n] = p]
A UNCHANGED (bcNode, beValue, output, msgs)

RecvPropose(pm) =
dn € CN:
A predicate[n]
A HaveProposeMsg(bcNode, {pm.v})
A ~HaveEchoMsg(n, Value)
A msgs’ = msgs U {[t — "ECHO", src — n, v — pm.v]}
A UNCHANGED (bcNode, beValue, predicate, output)

RecvEcho(eq) =
dn € CN, v € Value :
Neq € QXF
AY gqn € eq : HaveEchoMsg(qn, {v})
A —~HaveReadyMsg(n, Value)
A msgs’ = msgs U {[t — “READY", src — n, v — v]}
A UNCHANGED (bcNode, beValue, predicate, output)

RecvReadySupport(rq) =
dn € CN, v € Value :
Arg € QLF
AY gqn € rq : HaveReadyMsg(qn, {v})
A = HaveReadyMsg(n, Value)
A msgs’ = msgs U {[t — "READY", src — n, v — v]}
A UNCHANGED (bcNode, beValue, predicate, output)

RecvReadyOutput(rq) =
dn € CN, v € Value :
Arq € Q2F
AY qn € rq : HaveReadyMsg(qn, {v})
A output[n] = NotValue
A output’ = [output EXCEPT ![n] = v]
A UNCHANGED (bcNode, beValue, predicate, msgs)

Figure 9. Behaviors of the Bracha RBC algorithm.

3.5 Behavioral Properties

Behavioral properties are the properties that specify what a system is supposed to do
[Lam02]. They are specified in the same way as the definitions (see section 3.3).

In the Bracha RVC specification, five behavioral properties must be satisfied:

30

o Agreement — all honest nodes should have the same output;

« Validity — if the broadcaster is honest, all honest nodes eventually output the message
M:;

o Totality — if an honest node outputs a message, then every honest node eventually

outputs a message;

o Single value from peer per message type — one single message from the honest node is

enough;

» Propose message exists — verifies that PROPOSE message was sent.

Behavioral properties

HaveOutput(n) = output[n] # NotValue

Agreement. If an honest node outputs a message M’ and another honest node outputs a message
M?”, then M’ = M”.
Agreement =
Vnl, n2 € CN :
HaveOutput(nl) A HaveOutput(n2) = output[nl] = output[n2]

Validity. If the broadcaster is honest, all honest nodes eventually output the message M.
Validity =
bcNode € CN ~ OV n € CN : output[n] = bcValue

Totality. If an honest node outputs a message, then every honest node eventually outputs a
message.

Totality =
Vv € Value :
(3n € CN : output[n] = v) ~ OV n € CN : output[n] = v

Additionally: We can only receive a single message of a particular type from a correct peer. Thus,
we can ignore the following messages and prevent an adversary from sending us a lot of messages
to fill our memory.

Single ValueFromPeerPerMsgType =
VY'ml, m2 € msgs : (
A ml.src € CN
A ml.src = m2.src
Aml.t =m2.t
)= ml.v=m2.u

ProposeMessageFExists =
V<O(Im € msgs : m.t = “PROPOSE” A m.src = beNode A m.v = beValue)
V {bcNode} C FN

Figure 10. Behavioral properties of the Bracha RBC algorithm.

3.6 Specification

Once all of the system’s behaviors are described, the actual specification is described.
The specification of the Bracha RBC algorithm is presented in Figure 11.

It begins with the initial predicate that specifies the possible initial values of earlier
described variables [Lam02]. In the initial state of Bracha RBC specification, the broadcaster

31

node and broadcasted value are selected, the predicate is set to the boolean value, the output
is set to NotValue for all nodes, and messages from faulty nodes are added for modeling
purposes.

The next-state action specifies how these variables can change in any step. It is a
formula expressing the relation between the values of variables in the old state and the new
state (adorned with the primed operator). In the Bracha RBC algorithm, the next-state
action defines that in every step, the executed behavior is a step from Figure 1.

After that, the Liveness predicate is defined. It uses weak wairness operator WF, which
means that if an action can happen, then it will eventually happen. In this case, if Next is
possible, it will eventually happen, guaranteeing the liveness.

The specification is defined by the temporal formula Spec, which is an assertion about
the system’s behaviors. In the Bracha RBC algorithm, with the initial state Init, the next-
state action is always true the (denoted by temporal operator [J) and satisfies the Liveness
predicate.

Lastly, the theorem is defined, which asserts that the predicate can be proved from the
definitions and assumptions of the current module. The PROOF OMITTED command means
that the theorem will be checked by model checking.

32

The specification.
N

Init =
A beNode € AN
A V bcNode € CN A beValue € Value
V becNode € FN A beValue = NotValue
A predicate € [CN — BOOLEAN]
A output = [n € CN — NotValue]
A msgs = [t : {"PROPOSE", “ECHO", “"READY"}, src: FN, v : Value]

Next =
V Broadcast
V UpdatePredicate
V Ipm € msgs : RecvPropose(pm)
Vdeq € QXF : RecvEcho(eq)
V3rg € Q1F : RecvReadySupport(rq)
V3rg € Q2F : RecvReadyOutput(rq)

Liveness =
A WF s (Broadcast)
A WF s (UpdatePredicate)
AWF ors(Ipm € msgs : pm.src € CN A RecvPropose(pm))
AWFyors(Jeqg € QXF :eq C CN A RecvEcho(eq))
AWFyors(3rqg € Q1F :1¢ C CN A RecvReadySupport(rq))
AWFors(31¢ € Q2F :rq C CN A RecvReadyOutput(rq))

Spec = Init A O[Newt]yars A Liveness

THEOREM Spec =
A OTypeOK
A OAgreement
A OSingle Value FromPeerPerMsg Type
A Validity
A Totality
A ProposeMessageExists

PROOF OMITTED Checked by the TLC.

Figure 11. Specification of the Bracha RBC algorithm.

3.7 Formal Specification Refinement

Stepwise refinement is a specification construction technique for developing a speci-
fication through a sequence of refinement steps — starting from the abstract model, each
subsequent model refines the previous one. This is controlled through several proof obliga-
tions, which guarantee the correctness of the development. Such proof obligations are proved
by automatic proof procedures supported by a proof engine. The essence of the refinement
relationship is that it preserves system properties. Moreover, proofs of properties of these
models help to convince that the system is correct since they demonstrate the behavior of
the last, and the most concrete model respects the behavior of the first, most abstract model
[CGMO7].

The refinement may be helpful for model-checking generated specifications as they

might be more abstract than manually written ones.

33

4 Overview of PlusCal Syntax

PlusCal is an algorithm language for writing and debugging algorithms, which is com-
piled to TLA*. Leslie Lamport developed it in 2009 to make TLA™ more accessible to
programmers [Way18].

An algorithm written in PlusCal is debugged using the TLA™ tools — mainly the TLC
model checker. Correctness of the algorithm can also be proved with the TLAPS proof
system, but that requires a lot of hard work and is seldom done [Lam)].

Writing implementations in TLA™T can be a barrier starting out, so PlusCal has addi-
tional constructs that make TLA™ easier to learn and use. For example, the := assignment
syntax and the labels, give us a pseudocode-like structure on top of TLAT. We describe the
"P syntax” of PlusCal, which is closer to the Elixir programming language, but there is also
a ”C syntax” [Lam21].

A PlusCal algorithm appears inside a comment within a TLA™ module. Its’ structure
is presented in Listing 10.

--algorithm name {
(* declaration of global variables *)
(* operator definitions *)
(* macro definitions *)
(* procedures *)

(* algorithm body or process declarations *)
end algorithm; }

Listing 10: Top-level structure of PlusCal algorithm

Variable declarations, operator and macro definitions, and procedures are optional.
There must either be an algorithm body (for a sequential algorithm) or process declarations

(for a concurrent algorithm).

4.1 Declaration of Variables

Variables declaration is presented in Listing 11. There may be at most one variables
clause, but that it may declare any number of variables. This example declares three variables
X, Y, and z. The variable x is not initialized, y is initialized to 0, and may take either 1,
2 or 3 as initial values. During model checking, TLC will assign x a default value that is

different from all ordinary values and explore all three initial values for z [Way18§].

variables x, y = 0, z \in {1,2,3};

Listing 11: Variables declaration in PlusCal algorithm

4.2 Operator Definitions

Asin TLA™, operators represent utility functions for describing the algorithm [Way18].

34

define

Cons(x,s) == <<x>> \0 s

Front(s) == [1i \in 1 .. Len(s) - 1 |-> s[il]]
end define;

Listing 12: Operators declaration in PlusCal algorithm

For example, Listing 12 defines a declaration of Cons operator that prepends an element
x to a sequence s and an operator Front that returns the subsequence of a non-empty sequence
without the last element. As with the variables, there can be a single define clause, but it

may contain any number of operator definitions.

4.3 Macro Definitions

A macro represents several PlusCal statements that can be inserted into an algorithm,
and it may have parameters. In contrast to a defined operator, a macro need not be purely
functional but may have side effects. In contrast to a procedure, it cannot be recursive and
may not contain labels or complex statements such as loops or procedure calls, or return
statements [Way18|.
macro rcv(p, var)

(* body expressions *)
end macro;

Listing 13: Macros declaration in PlusCal algorithm

4.4 Procedures

A procedure declaration is similar to that of a macro, but it may also contain the dec-
laration of local variables. The procedure body may contain arbitrary statements, including
procedure calls and even recursive calls [Way18].
procedure p(x,y)
variables ... * procedure-local variable
begin

(* body expressions *)
return;
end procedure;

Listing 14: Procedure declaration in PlusCal algorithm

Procedure parameters are treated as variables and may be assigned to them. Any
control flow in a procedure should reach a return statement (it does not return any value
to the calling process, it simply ends the procedure). Procedures are invoked with keyword
call and must be followed by the label [Lam21].

Since the PlusCal translator introduces a stack for handling procedures, a module that

has a PlusCal algorithm using procedures must extend the standard module Sequences.
35

4.5 Process Declarations

A PlusCal algorithm may declare one or more process templates, each of which can
have several instances. Processes define the different actions of the algorithm that may be
executed concurrently. The process, like a procedure, can contain its’ local variables and call
other procedures or macros [Way18].

A process template is presented in Listing 15.

process name [= | \in] e
variables ... * process-local variables
begin

(* body expressions *)
end process;

Listing 15: Process declaration in PlusCal algorithm

4.6 Labels

In PlusCal, the labels are used to describe concurrent systems accurately. They deter-
mine the grain of atomicity of the specification. TLC executes everything inside the label
in a single step or an action. Then it checks all invariants and looks for the next label to
execute (action to take) [Way18].

The labels should be placed with the following rules [Way18]:

There should be a label at the beginning of each process and before every while loop;
o Label cannot be placed inside a macro or with statement;
o Label must be placed after every goto;

o If either or if statement is used and any possible branch has a label inside it, the

label must be placed after the end of the control structure;

o It is impossible to assign the same variable twice in a label.

4.7 Translation to TLA™

The PlusCal translator SANY, which comes with tla2tools executable, embeds the
TLA™ specification corresponding to the PlusCal algorithm in the module within which the
algorithm appears, immediately following the algorithm [Lam21].

The delimitation of translation is presented in Listing 16. Users should not touch this
area, as it will be overwritten whenever the PlusCal translator is invoked. However, TLA™
definitions may appear either before the PlusCal algorithm or after the generated TLA™
specification. In particular, operators defined before the PlusCal algorithm may be used in
the algorithm. Correctness properties are defined below the generated specification because

they refer to the variables declared by the translator.
36

* BEGIN TRANSLATION

* END TRANSLATION

Listing 16: Delimitation of TLA™ translation

37

5 TLAT Transmutation

TLA™ Transmutation [Maf19] is a transformation tool that works in the opposite di-
rection of our approach — it generates Elixir code from TLA™T specifications. The tool is
responsible for parsing internal structures from the .tla specification file and then trans-
forming these structures into the Elixir code by using translation rules, which are presented

in Section 5.1.

5.1 Translations

The process of transforming a specification into executable code is a translation, which
can be expressed with translation rules that map TLA™ specifications (with elements from
Figure 12) to Elixir code (combining elements from Figure 13).

The translation rules are layered according to the recursion of the definitions so that
the complete specification is translated into the code by the F rules. This means that the
tool begins with applying Top-Level translation (analyzed in Section 5.1.2) and applies more

specific translations recursively.

Identifiers I,C' Values v Parameters p

Specification Spec = Module M
CONSTANTS C,, ...,C,
VARIABLES V.,V,
Dqy, ..., D,

Definition D = Action(po,....pp) = A

Action A
Condition P,Q

A|P|ANA| AVA
-P| PANP|PVP|v €v
v =wvy | v1 # vo | ENABLED A

Transition T I’ =wv | UNCHANGED (Ip, ..., I,)
Set S = v | S5,US,
Record R = [k~ v] | [[EXCEPT ![k] =]

Figure 12. TLA™ syntax in transformation rules [Maf19].

38

Atoms 1.k Values x,y Parameters p

State t == action(variables, p)
| variables | Map.merge(a, a)
| % i0: %0, --., in:%n }
Condition ¢ = condition(variables, P)
| mnotc|cand c|corc
Definition d = def action(variables, Pp) do
end
| def decide([infol)
Set s = MapSet.new([x])
| MapSet.union(s,, sp)
Record r == %{ k: x } | Map.put(di, k, %

Information info %{ action: ‘‘Name’’, condition: c, state: a }

Enum.map(x, f (i) -> [info] end)

Figure 13. Elixir syntax in transformation rules [Maf19].

5.1.1 Structure

At the beginning of the translation, we can see a signature for - operator

I' Frame TLA Element — Elixir _Element,

where T' is the context of TLAT specification (definitions, parameters, variables, con-
stants, etc.), name is a name of the - operator, TLA Element is an element of manually-
written TLA™ specification, and the FElizir FElement is a generated Elixir code. The arrow
— means s translated as”.

After the translation’s signature is defined, the set of translation rules for implementing
the translation is presented.

Every translation rule is formed according to the rule of inference, where a set of upper
statements are premises, and the lower statement is the conclusion. A translation name is

also present next to the rule.

5.1.2 Translation Rules
The TLA' Transmutation tool provides the following groups of translation rules:

o Top-level translation — the utmost level of the translation process, extracting metadata

like constants, variables, and definitions;
o Constant translation — defines the translation rules for constant values;
 Definition translation — defines the translation rules for TLA™' definitions;

 Action translation — defines the translation rules for TLA™ actions (e.g. function calls,
if statements, etc.);
39

o Predicate translation — defines the translation rules for TLA™ predicates (e.g. equals,

not equals, not, etc.);

o Transition translation — defines the translation rules for variable value change during

the state transition (e.g. primed operation, unchanged operation);

« Value translation — the lowest layer of the translation rules, translating values like sets,

records, variables, etc.;

« Initial state predicate translation — defines the translation rules for the initial state of

the program,;

« Next state action translation — defines the translation for main function, which defines

the system’s state transitions and is the entry point of the program.

For simplicity, we’ll analyze only one group — Action translations (Figure 14). During
the translation, the action is broken down into statements for translation purposes, and each
statement is classified as a condition or a transition. Conditions are predicates over the
current state, while transition statements also consider the succeeding state of the step.

Every definition yields a pair of two elements — conditions and transitions from a given
action. Conditions of action are translated with the operator -, (Figure 14), resulting in
code for a boolean expression, representing whether that action is enabled given a current
state. Transitions are translated with the operator F; (Figure 14), resulting in code that
defines the new state based on the current one.

Aggregating transitions by a conjunction (A) is delegated to the Top-level translations,
where the resulting states are merged as if the aggregated transitions were composed. Ag-
gregating transitions by disjunction (V) is complex, as it can represent non-determinism
— possibly more than one transition can be executed. This is solved by delegating this
non-determinism to a decide() function, described in rule OR.

If the definition contains actions based on condition, IF (Figure 14) transformation
rule is used. It is necessary to evaluate the conditions before applying actions. These actions
are split into two sets — conditions and actions. If conditions are not met, the action block

is not executed, and if they are met, the action is called and mutates the program’s state.

40

T A— (23|

LhpPoe oo ThA—a oo
[P ({e} {1 [t A ({}: {a})

['q Ay — (7o, @) kg Ag— (%, @) T'hiAo— 1o
kg Ap — (Gr, @) Pk Ap = (G @) Thi A — 1,
(AND) (OR)
A Ao v Ao U
Id e UE
[ha 1 = (@U-- UG, TU--UTn) Cha H({decidl(i_uunfbi_)})
Ti

A Ap V-.Aﬂ

r |_1| Up —Xp

'y vy —x,

CALL
I' o Action(vo, ..., vn) — ({ action_condition(variables, o, ...,) },{ action(variables, xo, ..., xn) }) ()
'ty P—ec
't A; — ({cto,....ctn}, {ato,...,atn})
I'tg A; — ({cep,....cen}, {aen....,aen})
(IF)
F P
I'ta THEN A; — ({condition}, {transition})
ELSE A,
where
condition = e do
cty and ... and ct,,
else
cep and ... and ce,
end
transition — if ¢ do
Map.merge(aty, Map.merge(..., aty))
else
Map.merge(aeq, Map.merge(..., as,))
end

Figure 14. Action translation rules [Maf19].

41

6 Principal Solution

This section presents the principal solution of the research work. In the beginning,
the Elixir to TLA™ translation rules are proposed and the translation method is described.
After that, an experiment that uses the translation method is presented. The correctness of
generated TLA™ specifications is validated by model checking and refinement. In order to
verify that the application of the translation rules does not lose any important information,
the Elixir code is generated from the generated TLA™ specification and tested with unit

tests. In the end, the advantages, disadvantages, and limitations of the current solution are
listed.

6.1 Translation Rules

This section provides the translation rules for Elixir to PlusCal conversion.

PlusCal was selected because of the following reasons:

e Is more similar to the Elixir programming language. Thus, the translation rules are

less complex;

o Has additional constructs on top of TLA™, which also makes the translation rules less

complex;

o Is used for modeling concurrent algorithms and builds a state machine during the
PlusCal to TLA™ conversion process. Thus, there’s no need to build the state machine

manually;

 PlusCal is not whitespace sensitive. In TLA™, the complex conditionals are whitespace
sensitive, and it may not be trivial to generate the same level of indentation with a

generator;
o (Can handle the recursive calls and generate TLA™ for it;
o Is widely used in TLAT community [Way18] and is easier to understand.

The provided translation rules are applied recursively, applying more and more specific
rules until any of them cannot be applied anymore. In this work, we have created only the
rules needed for the translation of the analyzed distributed algorithm, which is presented in
section 6.3. The translation rules for non-implemented Elixir expressions should be defined
and implemented in the same way as those provided in this section.

The translation rules should be read in this way:

o Above the line, the input for a translation rule is provided — the abstract syntax tree
node or a variable of standard Elixir type (e.g., atom, boolean, number, string, map,

tuple);

42

e The pattern matching and additional rules are used to match the correct translation

rule (additional conditions for the argument’s input are joined with A operator);

o Elements before - defines the pre-condition for the translation rule, based on the

context properties;
e The variables in the input are written in 7talics font;
e _ in the input of the translation rule means that any value can be provided;
o Below the line, the output of a translation rule is provided — the PlusCal expression;

o Next to the line, the name of a translation rule is provided.

6.1.1 Additional Context Properties

Some of the translation rules use additional context. The following properties are

available as context during the translation:

o is_single line — denotes whether the AST node is the whole line in the source Elixir
program. This is useful when applying type translation rules to see whether the AST
node was used as a return functionality in Elixir (meaning that it is the only thing in

the line) or the type was used in another Elixir expression (e.g., inside if statement);

» counter — defines a number of the particular expression (e.g. f statement) in the
function. This is useful when translation rules are using labels, that need to be unique

in the scope of the whole specification.

6.1.2 Types

This section provides translation rules for the standard types of Elixir. The translation
rules that translate Elixir atom (rule ATOM), string (rule STRING), and number (rule
NUMBER) type variables leverage standard Elixir functions is atom, is binary, and

is number to check the variable type and do the correct value conversion.

Fis_atom(a)

———— (ATOM

'_ 77a/77 ()

is_binary(a)
'_ 77a77

(STRING)

Fis_number(a)

Fa

(NUM)

Translation rules for boolean values (rules BOOL-TRUE and BOOL-FALSE) also use
standard Elixir functions is boolean, with an additional check for the argument value to

do a proper conversion.

43

- is_boolean(a) A a == true
= TRUE

(BOOL-TRUE)

is_boolean(a) A a == false
F FALSE

(BOOL-FALSE)

For the conversion of Elixir tuple type values, two translation rules exist. The first rule
(TUPLE-1) tries to match :{} atom as AST marker element, and the second rule (TUPLE-2)
checks whether provided arguments AST is a list of other values. Both translation rules use
context property is single line to check whether the argument is not the only expression
in the Elixir code’s line (see Section 6.1.1). If this condition is not satisfied, a different
translation rule is applied. The Elixir tuple is converted to PlusCal tuple type, which also
allows access values by index — the only difference is that indexes start from 1 instead of 0.

lis_single_linet {:{}, ,a}
F<<a>>

(TUPLE-1)

lis_single_line - is_ list(a)

TUPLE-2
F<<a>> ()

The Elixir variable is translated using VAR rule. It checks whether the value of the
children element of the AST node is equal to nil.

F{a, ,nil}

= (VAR)

The Elixir nil is translated by rule NIL. It translates to NULL, which is exposed as a
module constant.
F nil

———— (NIL
= NULL (NIL)

6.1.3 Return Value

This section defines translation rules for return values. PlusCal’s processes and pro-
cedures do not have a concept of a value return. Still, the value could be assigned to a
variable and used immediately where needed (e.g., in other procedures). This is represented
in value return translation rules below. A new variable result is defined, and then the value
is generated from the AST. To distinguish the actual return of a value, is single line
context property is used to check whether the value is the only thing in Elixir’s source code
line (see Section 6.1.1).

Here are defined value return translation rules for variables of tuple type, but transla-
tion rules for values of another type should be described in the same way.

is_single_linet {:{}, , a}
Fresult =<< a >>

(RET-TUPLE-1)

is_single_line - is_list(a)
Fresult =<< a >>

(RET-TUPLE-2)
44

6.1.4 Empty Value Assignment

This section provides translation rules for empty value assignments. If the empty
value assignment expression is encountered during the translation, the variable is assigned
to itself. This is done due to the reason that PlusCal does not allow empty value assignments
for some types (e.g., structure). Thus, the default value should be assigned when defining a
local variable in PlusCal.

For the experiment, only the empty value for map type variable was needed (rule
EMPTY-MAP), but empty value translation rules for other types would look and behave

the same way.

+ {::7 — [{av—’ nﬂ}’ {:%{}’*’ H}]} (EMPTY—MAP)
Fa: = a;

6.1.5 Mathematical Operators

This section provides translation rules for standard mathematical operators. Transla-
tion rules for mathematical operators look very similar — the only different thing is a marker
of the Elixir AST node. The more specific translation rules are applied for left and right
variables until the whole PlusCal expression is built. Also, the braces are added around the
translated expression in order to avoid problems with the order of operators if several math
operators are used (e.g., ((a + b) * c)).

Translation rules for the following mathematical operators were defined:
o FEquality check operator (rule MATH-EQ);
o Less than operator (rule MATH-LT);
o Less than or equal operator (rule MATH-LTEQ);
o Greater than operator (rule MATH-GT);
o Greater than or equal operator (rule MATH-GTEQ);
e Plus operator (rule MATH-PLUS);
o Minus operator (rule MATH-MINUS);
o Multiplication operator (rule MATH-MULT);
 Division operator (rule MATH-DIV);
o And operator (rule MATH-AND);
o Or operator (rule MATH-OR);

F{:==,_,[left,right]}
F (left = right)

(MATH-EQ)
45

F{: <, ., [left,right]}
F (left < right)

(MATH-LT)

F{: <=, _,[left,right]}
F (left <= right)

(MATH-LTEQ)

F{: >, _,[left,right]}
F (left > right)

(MATH-GT)

{: >=, _,[left,right]}
- (left >= right)

(MATH-GTEQ)

= {4+, [left,right]}
F (left + right)

(MATH-PLUS)

F{:—,_, [left,right]}

et = right (MATH-MINUS)

F{x, _, [left, right]}
F (left x right)

(MATH-MULT)

FA{:/, _, lleft,right]}
F (left \div right)

(MATH-DIV)

F {:and, ,[left,right]}
F (left /\ right)

(MATH-AND)

F {:or, |, lleft,right]}

F (left \/ right) (MATH-OR)

Not operator is quite different from the mathematical operators described above. It
takes only one argument’s abstract syntax tree, which is translated using more specific rules

and then negated afterward.

F {mmot, ,[a]}
F~a

(NOT)

46

6.1.6 Conditionals

This section presents the translation rules for conditional statements of Elixir. One of
the most widely used conditional statements in Elixir is if statement. PlusCal has if/else
construct, which is similar to Elixir’s, and that simplifies the translation rule. Like in
the Elixir, PlusCal’s statement has do and else blocks, which contain other expressions. In
addition, PlusCal’s if statement should have a label at the beginning of the inner expressions
of the block containing a label. For simplicity, we add a label every time.

The translation rules for if statements with and without else block can be seen in
translation rules IF and IF-ELSE. They are identical, except that IF-ELSE rule has an
additional ELSE block.

{:if, _, [condition, |
do: {:_ block [],do_block}]]}

if condition then

(IF)

if counter:
do block
end if;

counter

{:if, _, [condition, |
= do: {:__ block__,[],do_block},

clse: {:block _[J,else blocklly 1. b1 o)

if condition then
if _counter:
do block
counter - else
else__counter:

else_ block
end if;

Another commonly used conditional statement in Elixir is cond. It executes the first
expression, for which the condition is true. The construct with the same behavior exists in
PlusCal — it allows executing an action based on the fulfilled condition and then assigns the
result to the variable. The translation rule is defined in COND. The transformation rule

would be more complicated if PlusCal did not have such a construct.

- {=,_, [{variable, _,nil},
{:cond, _, [[do: [condition,...,condition,]||}]}

variable .= CASE

condition; — action,

(COND)

[condition,, — action,;
47

Pin operator in Elixir is used when pattern matching to the value of the variable is
needed. If the value is not matched, an exception is thrown, and the execution stops. The
same behavior can be achieved in PlusCal with the labels functionality. If the values of the
left and right operands are not the same, the process execution jumps to the automatically
defined Done label and finishes the process this way. Also, another label must be placed
after every goto call.

The PIN operator that matches a value of a variable with the value of the right operand
can be found in the rule PIN-VAR. For the experiment, only this rule was needed, but values

of other type variables could be matched in the same way.

==, [{:A,_, [variable, nil,right_operand
(= [0 fpariable, nil right_operand]}
if variable # right__operand then
to Done;
countert- B0 0 ONS
end if;

after_pin_ counter:

The Arguments Condition is a condition defined by pattern matching the specific values
of the Elixir function’s input (e.g., def handle message(rbc, :PROPOSE, from, value
= msg)). This means that the clause of a function must be executed only when the first
value of tuple msg is equal to :PROPOSE. The described behavior is the same as for the pin

operator. Thus, the exact translation rule applies.

6.1.7 Enumerable

This section provides translation rules for Elixir’s enumerable. The Enum module pro-
vides a huge range of functions to transform, sort, group, filter, and retrieve items from
enumerables. It is one of the modules developers use frequently in their Elixir code.

Currently, only one translation rule is implemented — ENUM-INTO. It inserts the given
enumerable into the collectable (e.g., msgs = Enum.into(peers, %{}, fn peer id ->
{peer _id, [{:ECHO, me, value}1} end)). What it does is for every available value
of the iterator from the enumerable, the assignment is executed. The PlusCal structure
type can achieve such behavior, where every key has an assigned value. The variable must
have a default value set; otherwise, model checking would fail due to the invalid assignment
operation.

Translation rules for other enumerable operations should be defined similarly.

48

{= I

{variable, _, nil},

{{:., ,[{:_aliases ., [:Enuml]},:into|}, |,
[
+ {enumerable, _, nil},
{94} 0}
{:tn, ,[{:— >, _,[[iterator], assignment]}]}

I}
I}

F variable = [iterator \in enumerable |— > assignment]

(ENUM-INTO)

6.1.8 Map

This section provides translation rules for Elixir’s maps. Maps are the key-value data
structure in Elixir.

The rule MAP-DESTR defines the translation for Map destructuring into separate
variables (e.g., %RBC{me:me, n:n, f:f} = rbc). The assignments are expressed as key-
value pairs in the AST. Thus, we iterate through every available key, create a variable of the

key name and then assign the value of the source variable from the same key.

{=, [{%, ,[{:__aliases__, , },
= {%{}, . [assgn_mapl}H},

{src_wariable, _,nil}]}

(MAP-DESTR)

assgn_mapl0].key = src_variable[assgn_map[0].key].value;
-

assgn_map[nl].key == src_variablelassgn_map[n].key|.value;

The rule MAP-GET defines the translation for the operation that returns the value
from the map based on the provided key (e.g., value = Map.get(map var, key)). As
the structure type has a similar behavior to a map, a simple value retrieval with square

parentheses is used.

{::7 0 [
{variable, nil},
{{:., _,[{:__aliases, [:Map]},:get]}, ,

[{map_variable, _ nil}, key, |}|} (MAP-GET)

F variable .= map_ variable[key];

The translation of value wupdates of a map (e.g., rbc = %RBC{rbc |
echo sent:true, msg recv:msg recv}) is described by the rule MAP-UPD. Such

49

expression in Elixir returns a new variable. The same behavior should be achieved in the
generated specification. This is done by assigning the current map value to a new variable
and then mutating it. After this assignment, the label should be put so that simultaneous
assignment does not happen as it might cause race conditions. These steps could be skipped
if the new value is assigned to the old variable. Then, a value is assigned for every key
from the updates map. If there is more than one update, they should be joined by PlusCal

operator ||, which executes all updates simultaneously.

{::7 — [
{variable, _, nil},
{%, |
= {:_ aliases , , },
{:%{},], [{src_variable, _,nil}, updates_mapl}|}
I}
I}

variable = src_wvariable;

(MAP-UPD)

map__update:

F variable[updates__map|0].key| = updates _map|0].value

|| variablelupdates_mapln|.key] = updates_map[n|.value;

Putting the element to the map (e.g., msg recv = Map.put(msg recv, {from,
:PROPOSE}, true)) is translated by MAP-PUT rule. It works in the same way as MAP-

UPD rule, except that only one key in the variable is updated with a new value.

{::7—7[

{variable, _, nil},

{{:-y_,[{__aliases__, ,[:Map]},:put]},
[{src_variable, nil}, key, value]}]}

(MAP-PUT)
variable = src_wvariable;

counter = map__put__counter:

variable[key| = value;

In order to calculate the size of a map (e.g., size = map_size(value recv)), the
MAP-SIZE translation rule is used. It generates an operator definition map _size in PlusCal
and then uses it to get the count of keys in the structure. As the structure may be initialized

with a default value of NULL, we filter out such keys.

50

F{=, _, [{variable, nil},{:map_size, ,[{argument, nil}|}|}
define

map__size(structure) ==
Cardinality({k¥ \in (DOMAIN structure) : structurelk] # NULL})
end define;

(MAP-SIZE)

variable = map__size(argument);

6.1.9 Function Calls

This section defines translation rules for function calls.

The anonymous function call (e.g., predicate. (value)) is translated with FN-
ANON-NORES rule. In this translation rule, the anonymous function should be imple-
mented in the specification’s operator definitions section and used like any other operator.
This translation rule does not assign the result to any value. Thus, the returned value should
be used immediately.

Translation rules for other function calls were not defined yet. Still, their structure
would be similar, where the function would be implemented as a PlusCal operator definition,

procedure, or macro.

AL, [{ function _name, | nil}]}, | args
He [I args) N ANON-NORES)
define
function_name__fn(args) == ...

Fend define;

function_name__fn(args)

6.2 Translation Method

The Elixir to TLA™ translation method, which can be seen in Figure 15 has 5 main

steps, which will be analyzed in depth in the corresponding sections:
1. Creating a configuration for Elixir module specification generation.
2. Creating a model checking configuration.
3. Translating Elixir code to PlusCal specification.
4. Generating TLAT specification from PlusCal specification.
5. Running model checking for generated specifications.

In the research, we aim to extract the specifications only from the sequential part of

the Elixir source code. Thus, steps 3 to 5 are repeated for every function defined in step 1.

51

®
!

Creating specification
generation configuration

Creating model
checking configuration

: Input:
InIEI:JLr module = Elixir module
» Generation configuration
Output:

Quiput:

* Generation configuration = Model checking configuration

v

Elixir — PlusCal
translation

Input:
= Elixir module
» Generation configuration

Quiput
* PlusCal module

PlusCal — TLA® Model checking
translation
Input:
Input: « TLA* module
* PlusCal module = Model checking configuration
Output: Output:
« TLA* module = Model checking results

Was model
checking
successiul?

A 4 h 4

Some mistakes were
made during the
development of Elixir
module

Elixir module was
developed according to
the specification

@)~

Figure 15. Elixir to TLA™ translation method

6.2.1 Creating a Specification Generation Configuration

Firstly, the configuration for the translated Elixir module should be defined. The
configuration holds various essential data, which is needed for specification, but couldn’t be
extracted from the code in order to have fully functional and correctly working specification.

The model, which can be found in Figure 16 was defined to save and manipulate

configuration in a structured way.

52

Config.Function

i + function_name: string
Config.Module

- + process: siring
+ module_name: string
+ gxtensions: string[]

+ functions: Config.Function]] ———— O+

+ constants: string[] Config.Variable
+ global_variables: Config Variable[] + name: string
—O'é
+ local_variables: Config.Variable[] + assignment_lines: string]]

+ definitions: stringf]

Figure 16. Specification generation configuration model

The module configuration is used for defining for what functions the separate specifi-
cations will be extracted.
The function configuration is used to define the specific data needed for the generated

specification. The following data is defined:

o function name - is used for defining the specific name of the function (e.g., han-
dle__echo_message), as in Elixir, the function may have multiple clauses, which rep-
resent different predicates in TLA™T specification. Also, the value of this parameter is
used to map the configuration with the translated Elixir function or function clause
— the function must be annotated with @tlagen function and function name (e.g.,
@tlagen function :handle echo message);

o process — is used for defining a set of PlusCal processes (e.g., \in AllNodes);

o extensions - is used for defining what standard TLA' modules specification should
extend (e.g. Naturals). These could be generated from the code, but for the proof of

concept, it was chosen to define them in the configuration;

e constants — is used to define the specification’s constants. It was chosen to store the
constants in the configuration, as Elixir does not have a context about which values

should be modeled during the model checking. Thus, they should be defined manually;

« global variables —is used to define and initialize specification scope variables. This
is needed because it is impossible to run model checking of the specification with some
variables not having a value or having a value of incorrect type. Also, the Elixir does
not have a context of what default values the variables should have for the model

checking;

o local variables —is used to define and initialize process scope variables that need

to have a default value (for the same reason which was described in the previous point);

o definitions —is used to define the specification scope definitions, which may be used

for variable initialization or inside the process.

53

Some values, like constants or variables, could be defined as annotations in the Elixir
module and reused for all of the module’s specifications. Still, for the proof of concept, they
are defined inside the configuration file.

The configuration file should be named after the translated Elixir file, adding the
.tlagen. json extension. The configuration file should be saved in the same directory as
the Elixir file.

6.2.2 Creating a Model Checking Configuration

Secondly, the configuration for TLA' model checking is created. It contains essential
data used during the model checking, like constants, properties, invariants, etc. This part is

not extracted from the code as a human being should decide how the generated specification
should be verified.

SPECIFICATION Spec

CONSTANTS
CN ={n 1, n 2, n 3}
FN = {n_4}

Value = {v 1, v 2}
NotValue = NotValue
NULL = NULL
CHECK DEADLOCK FALSE
PROPERTIES
AbsStepSpec
Liveness
INVARIANTS
TypeOK

Listing 17: Model checking configuration.

6.2.3 Translating Elixir Code to PlusCal Specification

After the configuration is defined, the process continues to the actual translation.

Firstly, the Abstract Syntax Tree of the Elixir module is extracted, and the AST
expressions of the function we're interested in are collected based on the @tlagen function
and function name from the configuration.

Then, the translation of the Elixir function to the PlusCal process is executed based
on the rules described in Section 6.1.

Once we have a generated PlusCal process, we create a .tla file based on the con-
figuration and generated process. You can find the structure of the generated file with the
PlusCal algorithm in Listing 18. Extensions, constants, global variables, and a process set
are generated only based on the configuration. The process is generated purely from the
Elixir function AST. The Definitions and local process variables are generated based on the

configuration and generated process.

o4

Variables that do not have a default value specified are assigned a value of NULL, which

is a module’s constant.

EXTENDS (* extensions from the configuration *)
CONSTANTS (* constants from the configuration *)

(*--algorithm function name
variables
(* global variables from the configuration *)

define
(* definitions from the configuration *)
(* generated definitions *)

end define;

fair process function name (* process from the configuration *)
variables
(* local variables from the configuration *)
(* generated local variables *)
begin
(* generated process *)
end process;
end algorithm;

Listing 18: Generated PlusCal module.

6.2.4 Generating TLA™ Specification from PlusCal Specification

Once the PlusCal specification is acquired, it is translated to TLA™ using the SANY
parser (see Section 4.7). After this generation, the PlusCal specification remains commented
out, and generated TLA™ can be used like any other TLA™ specification. The SANY parser
is invoked via the command line — tla2tools with pcal.trans command is used to execute

the conversion between the PlusCal and TLAT.

6.2.5 Model Checking for Generated Specifications

Once the TLA™T specification is acquired, the model checking and refinements can be
executed for the generated specification. Based on the model checking results, it can be
verified whether the code does what it needs to do. The TLC model checker is invoked
via the command line — tla2tools with t1c2.TLC command is used to execute the model
checking.

Figure 17 provides an illustration of the mapping between states in a PlusCal speci-

fication and states in a TLA™ specification. Instead of defining a predicate for the initial

95

states in the generated specification, we use the states for which the refinement mapping
implies the invariant on the abstract specification.

The process of model checking, which involves exhaustively exploring the state space
of a system to verify properties, is also affected by this mapping. The intermediate steps
modeled in the generated TLA™ specification increase the number of states. As these steps
are not present in the abstract specification, the model checking is slower for the generated

specifications.

Init A O[Next]yars = Olnv
RecvEcho

I m}f‘/“\“ O[FSM_Next|yars N FSM_Liveness

Figure 17. Mapping states of abstract TLA™ and PlusCal specifications.

6.2.6 Including Translation Method Into the Build Pipeline

The described process can be included in the build pipeline. The process could look as
presented in Algorithm 2. It uses the Elixir to TLA™ translation library and other standard
tools, provided by Elixir and TLA™ toolbox.

Algorithm 2 Translation method’s inclusion into the build pipeline.

1. // executed once by software engineer

2: add reference to the library, which translates Elixir to TLA™T.
3: define configuration for TLA™ generation.

4: // executed automatically during build process

5: translate Elixir to PlusCal.

6: translate PlusCal to TLA™ using tla2tools.

7: execute model checking using tla2tools.

8 fail the build if model checking was not successful.

6.3 Experiment

To show how translation rules and the translation method work, an experiment was
carried out. In the experiment, the specifications for Bracha reliable broadcast (RBC) pro-
tocol’s (see section 3.1) functions were generated, and refinement mapping to the original
TLA™ specification was defined, which later was model checked. Even though specifications
were generated and the model checked for all algorithm’s functions, for simplicity, we will
analyze only one of them.

The source code of the experiment can be found in the author’s GitHub repository *.

“https://github.com/DeividasBrazenas/tla-generator

56

We have used the TLA™ specification of the protocol, which was analyzed in the section
3. Even though all steps of the algorithm were translated in the experiment, we will analyze

only one of them — Receive Echo. Tts TLA™T specification can be seen in Figure 18.

> 9: upon receiving 2¢t + 1 (ECHO, M) messages
> and not having sent a READY message do
> 10: send (READY, M) to all

RecvEcho(eq) =
dn € CN, v € Value :
Aeq € QXF
AY qn € eq : HaveEchoMsg(qn, {v})
A ~HaveReadyMsg(n, Value)
A msgs’ = msgs U {[t — “READY", src — n, v +— v]}
A UNCHANGED (bcNode, beValue, predicate, output)

Figure 18. Receive Echo step in TLAT.

6.3.1 Protocol’s Implementation in Elixir

The protocol’s implementation in Elixir can be found in the experiment’s repository
5. It was ported to Elixir based on the Go implementation from Wasp repository ¢. The
protocol’s implementation is based on the Wasper library 7

In Figure 19 you can find the implementation of Receive Echo step. It uses common
Elixir language expressions to implement the behavior of steps 9 and 10. The annotation
@tlagen function :handle_echo message denotes that the TLA™ specification will be
generated for the function.

The distinct expressions of the Elixir code can be found marked on the right side of
Figure 19. Later they will be used to show the mapping between the Elixir source code and

the generated PlusCal specification.

Shttps://github.com/DeividasBrazenas/tla-generator/blob/main/test/apps/bracha/lib/

rbc_bracha.ex
Shttps://github.com/iotaledger/wasp/blob/develop/packages/gpa/rbc/bracha/bracha.go
"https://github.com/DeividasBrazenas/tla-generator/blob/main/test/apps/bracha/lib/

wasper_gen pure alg.ex

57

09: upon receiving 2r + 1 (ECHO, M) messages and not having sent a READY message do
10: send (READY, M) to all
@tlagen_function :handle_echo_message
def handle_message(rbc, {:ECHO, from, value} = _msg) do
%RBC{me: me, n: n, f: f, peers: peers, msg_recv: msg_recv,
echo_recv: echo_recv, ready sent: ready_sent, output: output} = rbc

-

N

existing_recv = Map.get(echo_recv, value, %{})
value_recv = Map.put(existing_recv, from, true)
echo_recv = Map.put(echo_recv, value, value_recv)

[I N A

rbc = %RBC{rbc | echo_recv: echo_recv}

»

count = map_size(value_recv)

if not ready_sent and count > (n + f) / 2 do
msg_recv = Map.put(msg_recv, {from, :ECHO}, true)
rbc = %RBC{rbc | ready_sent: true, msg_recv: msg_recv}

w o

-
o

msgs = Enum.into(peers, %{}, fn peer_id -> {peer_id, [{:READY, me, value}]} end)
{:0k, rbc, msgs, output}
else
msgs = %{}
{:0k, rbc, msgs, output}
end

[N
N =

(4]

e B S e

-
£

end

Figure 19. Receive Echo step in Elixir

6.3.2 Generated Specifications

The generated specification can be found next to the Elixir source code, in the directory,
based on the module and generated function name 3.

Figure 20 presents a part of generated PlusCal specification for the Elixir function
shown in Figure 19. For simplicity, only the main part — the process — is provided, but the
whole generated specification can be found in the repository. The corresponding expressions

in Elixir and PlusCal are labeled with the same numbers.

8https://github.com/DeividasBrazenas/tla-generator/blob/main/test/apps/bracha/lib/
rbc_bracha specs

58

handle echo message:
if (_msg[1] /= "ECHO") then
goto Done;
end if;
after_condition:

echo_recv := rbc.echo_recv;

f := rbc.f;

me := rbc.me;

msg_recv := rbc.msg_recv;

n := rbc.n;

output := rbc.output;

peers := rbc.peers;

ready sent := rbc.ready sent;
existing recv := echo recv[value];
value_recv := existing_recv;
map_put_©:

value_recv[from] := TRUE;

echo_recv[value] := value_recv;

rbc.echo recv := echo recv;

count := map size(value recv);

if (~ready_sent /\ (count > ((n + f) \div 2))) then
if_o:

msg_recv[from]["ECHO"] := TRUE;

rbc.msg_recv := msg_recv
|| rbc.ready sent := TRUE;

- 2

msgs := [peer_id \in peers |-> msgs[peer_id] \cup {<<"READY", me, value>>}];:}—11

result := <<"ok", rbc, msgs, output>>;
else
else_0:
MSEs := MSES;

result := <<"ok", rbc, msgs, output>>;

end if;
Figure 20. Receive Echo step in PlusCal
6.4 Correctness and Completeness
This section analyzes the correctness and completeness of the solution.

6.4.1 Correctness

F12

13
P14

The correctness of generated specifications was assessed by translation validation (see

1.4) and specification refinement (see 3.7). As input, the specifications that were generated

59

during the experiment are used for verification.

6.4.1.1 Assessment by Specification Refinement

A refinement for Receive Echo step is presented in Figure 21. As BrachaRBC' specifi-
cation is more abstract than generated handle echo message, the refinement mapping was
defined. As it was not implemented in the code, the predicate value for all correct nodes is
set to TRUE. The output value is set to NotValue for all correct nodes like in the abstract
specification, as this step of a specification does not do anything with this variable. The
msgs variable is populated with READY messages from all correct nodes once they have been
sent to them.

The specification of Receive Echo step functionality from the original specification is
defined with AbsStepSpec property is checked during the model checking.

Another temporal property that is checked during the model checking is Liveness, which
checks whether the specification does what is expected. In this case, one of the following

conditions must be true:
o If there are enough ECHO messages received, the READY message is sent once;
o If there are not enough ECHO messages received, the READY message is not sent.

The check whether the node has sent a READY message is implemented in Is-
ReadySent(res, node) predicate. It uses the result variable from the generated spec (see
expressions 12 and 14 in Figure 20) to check whether the required values have been set. In
this case, the value for the ready sent property should be TRUE. The result should contain
a READY message sent for every peer, or the message was sent earlier, and there are no
messages in the result (see expression 8 in Figure 20).

Also, the TypeOK invariant is checked during the model checking, ensuring that all

variables have the correct type of values.

60

: MODULE handle_echo_message_ REF
EXTENDS handle_echo_message

1. Result should exist for the node.
2. ready-sent should be set to TRUE for the node.
3.1. If ready message was sent earlier, then there should be no messages in result.
3.2. If ready message was not sent earlier, then ready message should exist for every peer in the result.
IsReadySent(res, node) =
A res[node] # NULL
A res[node][2].ready_sent = TRUE
AV A readySent
A res[node][3] = [node—id € AN — {}]
V' A —readySent
A peer € AN : {("READY", node, bcValue)} C res[node][3][peer]

EnoughEchoMsgs(cn) = EchosCount(rbes[cn].echo_recv) > ((N + F) + 2)

org_spec = INSTANCE BrachaRBC WITH

bcNode < beNode,

bcValue < beValue,

predicate < [p € CN — TRUE],

output <— [0 € CN — NotValue],

msgs < IF ¥ cn € CN : IsReadySent(result, cn)
THEN [t : {"READY"}, src: CN, v : {bcValue}]
ELSE {}

QXF = {q € suBsSET AN : Cardinality(q) = (N + F) +2) +1} Intersection is F + 1.

AbsStepNext
AbsStepSpec

Jeq € QXF : org_spec! RecvEcho(eq)
O[AbsStepNext]

A
A

For every correct node:
1.1. If there are enough echo messages received, the ready message should be sent.
1.2. If there are not enough echo messages received, the ready message should not be sent.

Liveness =
O(Ven € CON -
V' A EnoughEchoMsgs(cn)
A IsReadySent(result, cn)
V' A = EnoughEchoMsgs(cn)
A —IsReadySent(result, cn))

TypeOK = org_spec! TypeOK

THEOREM Spec =
A OTypeOK
N AbsStepSpec
A Liveness
PROOF OMITTED Checked by the TLC.

Figure 21. Receive Echo step refinement in TLA™.

6.4.1.2 Assessment by Translation Validation

In order to evaluate the correctness of the defined translation rules (see Section 6.1)

and ensure the preservation of critical information, we have developed an analyzer that takes

61

the PlusCal algorithm as input and generates the Elixir code?. The diagram of our used
translation validation method can be seen in Figure 22.

We have chosen the generated PlusCal algorithm as an input as it allows us to test
whether our defined translation rules (see Section 6.1) accurately capture all the essential
details and properties of the original algorithm. We did not choose TLA™ module as an
input because the compilation of the PlusCal algorithm to TLA™ is done by the standard
tools. Given the extensive usage of these tools and being present for more than a decade,
we consider them reliable and correct.

The analyzer incorporates the utilization of regular expressions to establish a mapping
between PlusCal constructs and Elixir code. It is important to note that this tool was
purpose-built specifically for this experiment, and thus, no generic translation rules were

defined for this particular translation process.

°
!

PlusCal — Elixir
translation

Automated unit tests

Input

» Unit test functions

» Qriginal Elixir module

* Generated Elixir Module

Input:
» PlusCal module

Cutput:

+ Generated Elixir module Output:

» Test results

Were tests
executed
successfully?

¥ ¥

Critical functionality Critical functionality
was preserved during was lost during the
the translation translation

Figure 22. Method of translation validation

To ensure the preservation of code behavior, we have used automated unit tests on the
initial code base. These tests involved passing references of both the original and generated
Elixir functions to the test method, thereby verifying that their respective outputs were
identical. The example for one of the tests is presented in Listing 19. This unit test asserts
the functional requirement of the Bracha algorithm, whether the node sends READY message
once enough ECHO messages are received from other nodes. The test function invokes a
method passed by the reference and then asserts whether all of the required details were set

in the result.

9https://github.com/DeividasBrazenas/tla-generator/tree/main/lib/verifier

62

With the algorithm attaining a comprehensive unit test coverage of 100% and the
successful execution of all tests, we can claim that the translation process preserved the

critical behavior of the algorithm without any loss.

test "ready message is sent (original)",
do: test ready message is sent(&Wasper.HBBFT.RBC.Bracha.handle message/2)

test "ready message is sent (generated)",
do: test ready message is sent(&Generated.HandleEchoMessage.handle message/2)

defp test ready message is sent(handle message) do

Arrange

bc_value = "value"

msg = {:ECHO, :n_2, bc value}
me = :n_1

echo recv = %{bc_value => %{n_3: true, n 4: true}}
peers = [:n 1, :n 2, :n 3, :n 4]

Act
{:0k, rbc, msgs, output} =
handle _message. (
%Wasper.HBBFT.RBC.Bracha{

me: me,
broadcaster: :n_3,
peers: peers,
n: 4,
f: 1,
ready sent: false,
echo _recv: echo recv,

predicate: fn _ -> true end,
max_msg size: 1000,
output: nil

}

msg

Assert whether new message was added to echo recv collection
assert rbc.echo recv == %{bc value => %{n 2: true, n 3: true, n 4: true}}

Assert whether new message was added to msg recv collection
assert Map.get(rbc.msg recv, {:n_2, :ECHO}) == true

Assert whether ready sent flag was set to true
assert rbc.ready sent == true

Assert whether READY message was sent to all peers

Enum.each(peers, fn peer ->
peer_msgs = Map.get(msgs, peer)

63

assert Enum.any?(peer _msgs, fn {type, from, value} ->
type == :READY and from == me and value == bc value
end)
end)

Assert whether the output was not set
assert output == nil
end

Listing 19: Unit test for verifying that READY message was sent.

6.4.2 Completeness

The completeness of translation rules, covered in section 6.1, was calculated in two
ways. In a first way, we have divided the total count of translation rules by the count of
the total count of possible AST constructions in the newest Elixir version (v1.14.3)'. The
covered AST nodes percentage is 47%, which shows that translation rules cover almost half

of all possible AST constructions.

Table 1. Coverage of Elixir’s AST constructions

Count of Elixir’s AST constructions in the standard Elixir library (v1.14.3) | 66
Count of Elixir’s AST constructions covered in translation rules 31
A percentage of covered Elixir’s AST constructions ~4T%

Even though the first way of completeness calculation shows the coverage of AST
constructions, the coverage of the whole Elixir language remains unknown. That’s why
we have decided to calculate the completeness in a second way — by diving total count of

translation rules from the count of all available functions in the latest version Elixir standard
library (v1.14.3).

Table 2. Coverage of Elixir’s language

Count of functions in the standard Elixir library (v1.14.3) | 1174
Count of Elixir functions covered in translation rules 40
A percentage of covered standard Elixir library ~3.4%

The approximate percentage of translated standard Elixir functions is 3.4% (see 2).
The percentage is rather low due to the fact that Elixir is a pretty extensive language and
not only distributed algorithms could be developed. Thus, it has a lot of different functions
for various use cases. Only a very small portion of the language’s features was used when
developing a distributed Bracha reliable broadcast algorithm, which is presented in the

experiment section (see 6.3).

Ohttps://hexdocs.pm/elixir/1.14.3/syntax- reference.html#the-elixir-ast
https://hexdocs.pm/elixir/1.14.3

64

6.5 Discussion

This section provides the current solution’s advantages, disadvantages, and limitations.

Advantages of the implemented translation method:

o We leverage the power of additional constructs of PlusCal. Thus, the user of the
generator library does not need to know the TLA™ in depth in order to extend the
library with new translation rules — PlusCal resembles an imperative programming

language;

o As the solution was implemented as a direct parser from Elixir AST to PlusCal, it is

easy to understand and debug it;

o PlusCal is a mature language with great tools developed and tested for over 13 years.

Thus, the translation to TLA™ is instant and does not cause any performance issues;

o PlusCal is specifically designed for writing and debugging multi-process algorithms.
As we saw in our experiment, a PlusCal process resembled the actual process of a

peer.
Disadvantages of the implemented translation method:

o It is hard to prove the TLA™ specifications generated from PlusCal with TLA Proof
System (TLAPS) [Lam];

o TLC model checker’s performance is a bit poorer for TLA™ specifications generated
from PlusCal [Lam].

Limitations of the current solution:

e Only a limited amount of translation rules is currently supported by the tool. For
simplicity, only the translation rules that were needed for the experiment were defined

and developed;

e The function with one clause can be translated. For simplicity, the translation of only

one function clause was developed;

o Expression inside the expression is currently not supported, as it would need a more

complicated mechanism to keep track of function calls and insertion of results.

Based on the experiment and observations above, we can claim that our experiment was
carried out successfully. With defined Elixir to PlusCal translation rules, that were inspired
by the TLAT Transmutation tool, we have managed to translate the code to algorithmic
language. This was beneficial as it made the translation tool simpler and more scalable.
Using the standard TLA™ tools, the generated PlusCal was compiled to TLAT and model-
checked. The correctness of the generated TLA™ specification was checked with specification

refinement, checking that generated specification implements the abstract one. In order to
65

show that defined translation rules do not lose any important information, we have generated
the Elixir code from the generated TLA™ specification and tested the generated Elixir code
with the unit tests. As the verification of the correctness was successful, we can claim that
the translation tool is working correctly. Currently, the main limitations of the implemented
solution are caused by a lack of features, but it is possible to solve these issues by spending
more time on the tool. However, the successful experiment shows that it is possible to

generate the TLA™ specifications out of the sequential parts of Elixir code.

66

Results and Conclusions

Results:

1. A set of generic transformation rules for extracting the TLA™ specifications via the

PlusCal algorithm from the code of Elixir programming language was described.

2. A program that extracts TLA™ specifications from the sequential part of Elixir code

was developed.

3. A program that extracts Elixir code from the PlusCal algorithm for translation vali-

dation was developed.
Conclusions:

1. It is possible to extract the TLA™T specifications from the sequential parts of Elixir code.
The correctness of generated specifications can be verified through model checking,

specification refinement, and translation validation.

2. The utilization of an intermediate PlusCal language has certain drawbacks, such as
slower model checking and increased complexity in proving specifications using the
TLA™ proof system (TLAPS). However, the similarity to imperative programming
languages simplifies the creation of new translation rules and makes the translation

tool easier to extend.

3. Given that the translation tool is implemented as an Elixir library and standard tools
are accessed via the command line interface, it is feasible to integrate the TLA™ speci-
fication generation and model-checking process into the build process. This integration
allows the identification of discrepancies or unintended modifications in the algorithm
at an earlier stage, thereby reducing the risk of encountering issues in the production

environment.

67

References

[AT20]

[BCD"14]

[Bez05]

[Bez08]

[BL02]

[BP23)

[Bra87]

[CC90]

[CDH*+00]

[CGMO7]

[CHV+18]

[DeL04]

[Dev]

[DXR21]

[Ecla]

AdaCore and Thales. Implementation Guidance for the Adoption of SPARK.
AdaCore and Thales, 2020.

H. Bruneliere, J. Cabot, G. Dupé, and F. Madiot. MoDisco: A model driven
reverse engineering framework. Information and Software Technology, 56:1012—
1032, 2014.

J. Bezivin. On the unification power of models. Softw. Syst. Model, 4:171-188,
2005.

J. Bezivin. ATL: A model transformation tool. Science of Computer Program-
ming, 72:31-39, 2008.

B. Batson and L. Lamport. High-Level Specifications: Lessons from Industry.
In Formal Methods for Components and Objects, pp. 242-262. Springer, 2002.

D. Brazénas and K. Petrauskas. TLA™ specifikacijy iSskyrimas is Elixir pro-
gramos. In Lietuvos magistranty informatikos ir IT tyrimai, pp. 5-14, 2023.
URL: https://www.zurnalai.vu.lt/open-series/article/view/32213.

G. Bracha. Asynchronous Byzantine agreement protocols. Information and
Computation, 75(2):130-143, 1987.

E. J. Chikofsky and J.H. Cross. Reverse engineering and design recovery: a
taxonomy. IEE Software, 7:13-17, 1990.

J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.S. Pasareanu, Robby,
and H. Zheng. Bandera: extracting finite-state models from Java source code.
In Proceedings of the 2000 International Conference on Software Engineering,
pp. 439-448, 2000.

D. Cansell, J. P. Gibson, and D. Mery. Refinement: A Constructive Approach
to Formal Software Design for a Secure e-voting Interface. Electronic Notes in
Theoretical Computer Science, 183:39-55, 2007.

E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem. Handbook of Model
Checking. Springer, 2018.

R. DeLine. Spec# Home Page. https://www.microsoft. com/en-us/
research/project/spec/, 2004. accessed 2021-11-20.

Devboost. EMFText. https://devboost.github.io/EMFText/. accessed
2022-03-10.

S. Das, Z. Xiang, and L. Ren. Asynchronous Data Dissemination and Its Ap-
plications. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, pp. 27052721, 2021.

Eclipse. Acceleo Home Page. https://www.eclipse.org/acceleo/. accessed
2022-04-07.
68

[Eclb]
[Fav04]

[FBT+02]

[FPM*19)

[Groa]

[Grob]

[Groc]

[HTO06]

[IM12]

[Lam]

[Lam02)

[LamO05]
[Lam06]

[Lam21]

[LHOS]

[LMW11]

Eclipse. Xtext. https://www.eclipse.org/Xtext. accessed 2022-03-10.

J. M. Favre. Foundations of Model (Driven) (Reverse) Engineering : Models
- Episode I: Stories of The Fidus Papyrus and of The Solarus. In Language
Engineering for Model-Driven Software Development, 2004.

R. Ferenc, A. Beszedes, M. Tarkiainen, and T. Gyimothi. Columbus - Reverse
engineering tool and schema for C++. In Conference on Software Maintenance,
pp. 172-181, 2002.

F. Ferrarotti, J. Pichler, M. Moser, and G. Buchgeher. Extracting High-Level
System Specifications from Source Code via Abstract State Machines. In Model

and Data Engineering: 9th International Conference, pp. 267-286. Springer,
2019.

Object Management Group. Abstract Syntax Tree Metamodel. https://www.
omg.org/spec/ASTM. accessed 2022-03-10.

Object Management Group. Architecture-Driven Modernization. https : //
www.omg.org/adm/. accessed 2022-03-10.

Object Management Group. Knowledge Discovery Metamodel. https://www.
omg.org/spec/KDM/1.4/About-KDM/. accessed 2022-03-10.

B. Hailpern and P. Tarr. Model-driven development: The good, the bad, and
the ugly. IBM Systems Journal, 45:451-461, 2006.

J.C. Izquierdo and J. Molina. Extracting Models from Source Code in Software
Modernization. Software € Systems Modeling, 13, 2012.

Leslie Lamport. PlusCal Tutorial. https://lamport.azurewebsites.net/
tla/tutorial/intro.html. accessed 2023-01-01.

L. Lamport. Specifying Systems. The TLA+ Language and Tools for Hardware
and Software Engineers. Microsoft Research, 2002.

L. Lamport. Fast Paxos, 2005.

L. Lamport. Checking a Multithreaded Algorithm with +CAL. In In Distributed
Computing: 20th International Conference, pp. 151-163. Springer, 2006.

Leslie Lamport. A PlusCal Users Manual. P Syntax. https: // lamport .
azurewebsites.net/tla/p-manual.pdf, 2021. accessed 2022-12-12.

E. I. Leonard and C. L. Heitmeyer. Automatic Program Generation from Formal
Specifications using APTS. In Automatic Program Development, pp. 93-113.
Springer, 2008.

T. Lu, S. Merz, and C. Weidenbach. Towards Verification of the Pastry Protocol
Using TLA+. In Formal Techniques for Distributed Systems: 15th International
Conference, pp. 244-258. Springer, 2011.

69

[LST+01]

[Maf19]

[McC15]

[Met]

[MLH*06]

[MLH*14]

[New14]

[NRZ+15]

[NSE]
[PA19)]

[PSS98]

[RFZ17]

[Sch0§]

[Sch19]

[Sel03]

L. Lamport, M. Sharma, M. Tuttle, and Y. Yu. The Wildfire Challenge Problem,
2001. URL: https://www.microsoft.com/en-us/research/publication/
wildfire-challenge-problem/.

Gabriela Moreira Mafra. Tradugao automética de especificagao formal modelada

em TLA+ para linguagem de programacao, 2019.

C. McCord. Metaprogramming Elizir. Write Less Code, Get More Done (and
Have Fun!) The Pragmatic Bookshelf, 2015.

Metacase. MetEdit+ Home Page. https://www.metacase.com/mep/. ac-
cessed 2022-04-07.

A. Methni, M. Lemerre, B.B. Hedia, S. Haddad, and K. Barkaoui. TCS: a DSL
for the Specification of Textual Concrete Syntaxes in Model Engineering. In

Generative Programming and Component Engineering, pp. 249-254, 2006.

A. Methni, M. Lemerre, B.B. Hedia, S. Haddad, and K. Barkaoui. Specifying
and Verifying Concurrent C Programs with TLA+. In vol. 476, pp. 206-222,
2014.

C. Newcombe. Why Amazon Chose TLA+. In Abstract State Machines Alloy,
B, TLA, VDM, and Z: 4th International Conference, pp. 25-38. Springer, 2014.

C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and M. Deardeuff.
How Amazon Web Services Uses Formal Methods. Communications of the ACM,
58:66-73, 2015.

NSERC. TXL. http://www.txl.ca/. accessed 2022-03-10.

D. Patterson and A. Ahmed. The Next 700 Compiler Correctness Theorems
(Functional Pearl). In Proceedings of the ACM on Programming Languages,
vol. 3, pp. 85-114, 20109.

A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In Tools and
Algorithms for the Construction and Analysis of Systems, pp. 151-166, 1998.

C. Raibulet, F. Arcelli Fontana, and M. Zanoni. Model-Driven Reverse Engi-
neering Approaches: A Systematic Literature Review. IEEE Access, 5:14516—
14542, 2017.

M. Scheidgen. Textual Modelling Embedded into Graphical Modelling. In Eu-
ropean Conference on Model Driven Architecture Foundations and Applications,
pp. 153-168, 2008.

Arjan Scherpenisse. The Elixir AST explained using the AST Ninja. https:
//www.botsquad.com/2019/04/11/the-ast-explained/, 2019. accessed
2022-04-07.

B. Selic. The Pragmatics of Model-driven Development. IEEFE Software, 20:19—
25, 2003.
70

[Str]
[Teal

[Teall]

[Tec]

[Way18]
[YML99]

Stratego. StrategoXT. http://strategoxt.org/. accessed 2022-03-10.

Elixir Team. Elixir Home Page. https://elixir-1lang.org/. accessed 2021-
11-20.

AWS Team. Summary of the Amazon EC2 and Amazon RDS Service Disruption
in the US East Region. https://aws.amazon.com/message/ 65648/, 2011.
accessed 2021-11-20.

Moose Technology. Moose Home Page. https ://moosetechnology.org/.
accessed 2022-04-07.

H. Wayne. Practical TLA+: Planning Driven Development. Apress Media, 2018.

Y. Yu, P. Manolios, and L. Lamport. Model Checking TLA+ Specifications,
1999.

71

