
VILNIUS UNIVERSITY

MATHEMATICS AND INFORMATICS FACULTY

SOFTWARE ENGINEERING STUDY PROGRAM

Programinės įrangos kultūrinių elementų

neatitikimų lokalės normoms aptikimo

automatizavimas

Automating detection of software cultural elements‘

inconsistencies with locale norms

Master’s degree thesis

Done by: Neda Zalieskaitė ..
(signature)

Supervisor: doc. Dr. Tatjana Jevsikova ..
(signature)

Reviewer: doc. Dr. Kristina Lapin ..
(signature)

Vilnius – 2023

2

Santrauka

Prasidėjus masiniam programinės įrangos eksportui į užsienio šalis ir didėjant

kompiuterių bei interneto paklausai, lokalizavimas tapo itin svarbiu produktų pritaikymo

konkrečiai vietai ar rinkai procesu. Lokalizavimas susijęs ne tik su kalbiniais klausimais, bet ir

turiniu, kultūros normomis, bei jas pagrindžiančiomis technologijomis. Tačiau esami

lokalizavimo modeliai ir įrankiai turi ribotą veiksmingumą sprendžiant pagrindinius iššūkius,

todėl svarbiausi aspektai lieka neišspręsti ir lemia prastą vartotojo patirtį. Dažniausiai

programinė įranga lokalizuojama rankiniu būdu, o tai užima daug laiko, brangiai kainuoja,

lemia klaidų tikimybę ir priklauso nuo lokalizuotojų ir testuotojų kompetencijos. Be to, esami

modeliai neatsižvelgia į lietuvių kalbos lokalizavimo kokybės užtikrinimo palaikymą.

Darbe analizuojamos mokslo publikacijos, standartai, kokybės užtikrinimo modeliai ir

produktai, susiję su programinės įrangos lokalizavimo problemomis ir jų aptikimo

galimybėmis lietuvių kalbos ištekliuose. Aprašomi ir sisteminami lokalizuotini programinei

įrangai ir kultūrinei kalbai būdingi elementai. Atliekamas išsamus esamų lokalizavimo

kokybės užtikrinimo priemonių ir modelių palyginimas.

Sukurtas naujas lokalizavimo kokybės užtikrinimo modelis su pasirinktais kultūriniais

elementais ir lyginamų modelių aspektų deriniu. Suprojektuota modelį realizuojanti paslauga,

skirta automatizuoti lokalizavimo klaidų paiešką programinės įrangos tekstiniuose

lokalizuojamuose ištekliuose. Atliktas sukurtos paslaugos eksperimentinis vertinimas

pritaikius ją daugiau kaip 100 projektų lokalizuotų tekstinių lokalizuojamųjų išteklių, atlikus

ekspertų apklausą. Rezultatai parodė sukurto modelio reikalingumą ir pranašumus, palyginus

su esamais lokalizavimo modeliais.

Raktažodžiai: lokalizavimas, lokalė, kokybės užtikrinimas, kokybės užtikrinimo

modeliai, automatizavimas.

3

Summary

In response to massive software export to foreign countries and increasing computer

and Internet usage, localization has become a crucial process of adapting products to a specific

location or market. Localization is not just linguistic issues but also content, and cultural norms,

and the underpinning technologies. However, existing localization models and tools have

limited effectiveness in addressing the main challenges, leading to unresolved critical aspects

and a poor user experience. Most software localization is done manually, which is time-

consuming, expensive, error-prone, and depends on the localizer’s and tester’s competence.

Moreover, support for Lithuanian language localization quality assurance is overlooked by the

existing models.

The study analyses scientific publications, standards, QA models, and products related

to software localization problems and their detection possibilities in Lithuanian language

resources. Software and cultural language-specific elements to be localized are described and

systemized. A comprehensive comparison of existing localization QA tools and models is

carried out.

A new localization quality assurance model is created with selected cultural elements

and a combination of aspects of compared models. A service implementing the model has been

designed to automate the search for localization errors in localized software textual resources.

An experimental evaluation of the developed service has been conducted by applying it to more

than 100 projects’ localized textual resources and through an expert survey. The results

demonstrated the need and advantages of the developed model compared to existing

localization models.

Keywords: localization, locale, quality assurance, QA models, automation.

4

TABLE OF CONTENTS

1. INTRODUCTION .. 6

2. SOFTWARE LOCALIZATION.. 10

2.1. LOCALIZATION HISTORY LITERATURE OVERVIEW ...10

2.2. SOFTWARE LOCALIZATION PROCESS ...12

2.3. SOFTWARE LOCALE...16

2.4. SOFTWARE CULTURAL ELEMENTS ..18

2.4.1. Alphabet and names ..18

2.4.2. Personal name formatting ...20

2.4.3. Date and time formats ...20

2.4.4. Measuring system ..20

2.4.5. Decimal fractions and thousands separators ..20

2.4.6. Currency formatting...21

2.4.7. Postal address and telephone number format ..21

2.5. SOFTWARE LOCALIZATION-RELATED STANDARDS ..21

2.5.1. POSIX family standards ..21

2.5.2. ISO/IEC 15897 standard ...22

2.5.3. CLDR standard ...24

2.6. JAVA LOCALIZATION CAPABILITIES ..26

2.7. OVERVIEW OF EXISTING LOCALIZATION (INTERNATIONALIZATION) QUALITY ASSESSMENT PRODUCTS28

3. LOCALIZATION QUALITY ASSURANCE .. 33

3.1. OVERVIEW OF OBJECTIVES FOR A NEW LOCALIZATION QUALITY ASSURANCE SERVICE33

3.2. EXISTING LOCALIZATION QA MODELS ..34

3.3. LOCALIZATION QUALITY ASSURANCE PROCESS ..36

3.4. HIGH-LEVEL OVERVIEW OF A NEW SERVICE DEVELOPED ...39

3.4.1. Direct resource upload inadequacy check use case ...45

3.4.2. Open-source repository resource inadequacy check use case ...45

3.5. LOCALIZATION PROPERTY GRAMMAR CHECKS ..47

3.6. LOCALIZATION ISSUES ANALYSIS REPORT ...50

3.7. DEFECT LOCALIZER TECHNOLOGIES ..52

3.8. SCIENTIFIC AND PRACTICAL NOVELTY..55

4. EXPERIMENTAL EVALUATION OF DEFECT LOCALIZER.. 57

4.1. LOCALIZATION TESTING WITH DEFECT LOCALIZER ...57

4.2. GITHUB OPEN SOURCE PROJECTS LOCALIZATION TESTING WITH DEFECT LOCALIZER58

4.3. MANUAL VERSUS AUTOMATED TESTING WITH DEFECT LOCALIZER ...61

4.4. GITHUB OPEN SOURCE PROJECTS LOCALIZATION TESTING WITH QA DISTILLER61

5

4.5. DEFECT LOCALIZER VERSUS QA DISTILLER LOCALIZATION TESTING ...64

4.6. SHARING FINDINGS WITH LOCALIZATION EXPERTS: INSIGHTS INTO PRACTICES AND DEFECT LOCALIZER SERVICE

DEMAND……… .66

4.7. ADVANTAGES OF DEFECT LOCALIZER AND FURTHER IMPROVEMENTS ..67

RESULTS AND CONCLUSIONS ... 69

REFERENCES ... 71

6

1. Introduction

During the recent decades there have been many examples of software expansion to the

global market. As information technologies shorten geographical distances, businesses seek

global market penetration [MH15]. It is no longer assumed that English is the only available

software system language. The cost of software development can be considerably reduced by

working internationally: the original product is developed once to be adaptable into many

languages, i.e., localized to many languages. Moreover, while the product is being localized

into many languages, the business gains more revenue from different geographical markets,

new potential customer base, competitive advantage, improves the company’s reputation, etc.

The need to localize software appeared when the software was massively exported to

different countries. Today, while computer and Internet usage still grows, this need grows even

more. Localization issues in software emerged 30 to 40 years ago when companies started

creating customized software for clients beyond their initial target market [Hall02]. At first,

specific software was developed in the language of the originators (usually, English). There

were no standards on how to encode characters of non-Latin writing systems, thus software

localization was ad-hoc. The situation changed with the appearance and further development

of the Unicode standard. The Unicode gave the possibility for major writing systems to be

handled adequately in software environments. Although Unicode has solved most of the major

localization problems related to character use, other issues of local conventions still appear.

Thus, software localization process and its quality improvement research are still relevant.

Localization is the process of adapting a product or content to a specific location or

market. Localized software must properly produce and process documents, written in a

particular language, use appropriate encoding, deal with local conventions [DGJ10]. While

internationalization is the process of designing software and its data structures in a way that

can be easily adapted to different languages and cultures [DGJ10]. Localization gave us the

flexibility to adapt international software by translating text, adapting software elements

according to specific language norms, processing dates, times, and other cultural elements to

avoid operational problems. Software localization is one of the important tasks to ensure a

successful software users' experience. It is important to provide a user with a software

environment that does not contradict to his/her natural cultural environment [Sch02].

Every location (country, or part of it) has established its own cultural norms [DGJ10].

We learn how to comply with these norms when we talk, communicate, and write. Information

technologies are an integral part of the modern world, so, there is supposed to be a possibility

7

to prepare and process documents that comply with cultural norms, and an interface between

humans and computers in a particular cultural environment should be compliant with those

cultural norms. That is important for software vendors to reach a global market, moreover, gain

the highest business revenue.

Software adaptation for locale norms serves as a basis of the localization process.

According to the international standard ISO/IEC 15897, the locale is “the definition of the

subset of a user’s information technology environment that depends on language, territory, or

other cultural customs” [ISO99]. Not all cultural norms can be unambiguously and formally

defined, but such norms are significant localizing software. Therefore, the locale definition is

understood more broadly: “a group of aspects of specific location (country, or its part) and

interface with the user” [DGJ10], often emphasizing the human-computer interaction

complying with the cultural norms. For example, locale can be considered as the group of

elements, specific for language, which is being used for the computer operating system, or

software applications.

Localization Industries Standards Association (LISA) sees the objectives of

localization not as just linguistic issues, but also content and cultural norms, and the

underpinning technologies [Hall02]. Also, LISA sees the process of localization as “not a trivial

task”, the cost of localizing software in the early design phase is significantly less compared to

market gain when the product is commercialized. “It is generally agreed that software should

be designed so that subsequent localization is relatively cheap” [Hall02], meaning the early

design phase. Often, localization issues are forgotten, and enterprises are not giving enough

focus to a better user experience. This leads to worse product accessibility, usability, efficiency,

and conflicts with profitability (business value) [OA13].

Monetary, paper, date and time, number, character, character case convention, character

collation, and other cultural conventions are the most common locale issues. We still face

issues when language-specific characters are broken if the software system does not recognize

these characters [Bla21]. Many problems are caused by the semantic elements, e. g. usage of

the correct grammatical forms, plural-singular forms, and composed strings [DJ09].

Furthermore, a widely distributed system needs to ensure 24/7 availability constraints. Since

the system is widely distributed it means that every system component can work in a different

region and time zone. Often this leads to global system time desynchronization because every

component has its clock and it is running in a different granularity level of different locales

[GFG20]. Therefore, simultaneous system operation sometimes is corrupted. Dates and times

8

are formatted incorrectly or not localized at all because systems cannot recognize various types

of dates and times. Besides the issues mentioned before, many more problems occur during the

localization process, which will be studied in this research work.

Software localization is an essential aspect of software development, but current

localization models often fail to address the main challenges effectively. Despite the

availability of various software localization quality assurance models and tools, many critical

issues, such as alphabet and names, date and time formatting, measuring system, decimal

fractions, thousands separation and others, remain unresolved. Consequently, most software

localization is done manually by linguists or other specialists, which is time-consuming,

expensive, error prone and depends on his/her competence. Manual localization testing can be

a cumbersome task, so providing an automated technique for these processes has been the

demand for a long time [Sin17]. Therefore, there is a need for more effective software

localization solution that can help to solve these issues and improve the efficiency and quality

of the localization process.

This study aims to address the main software localization issues encountered in the

industry. The goal is to improve the user experience of Lithuanian-speaking users by

combining several aspects of the existing quality assurance models. To this end, a new

localization quality assurance solution has been developed that effectively deals with the

selected localization issues. The literature review revealed that existing localization quality

assurance (QA) products did not adequately address these issues, which often led to poor user

experience and increased development costs. In contrast, a new a quality assurance model and

it’s implemented service in this study provides a comprehensive solution to the identified

issues, resulting in improved software localization quality and increased efficiency of the

development process. The service, implementing the model has been tested on several software

applications, open-source projects, and compared to existing localization tools. It was found to

improve the user experience by ensuring accurate and consistent localization across the

Lithuanian language and culture. Overall, the research work identifies the gaps in software

localization quality, demonstrates the importance of addressing software localization issues,

the effectiveness of the developed solution in dealing with these challenges and the advantages

over the existing localization models.

9

The study findings present that existing localization quality assurance products did not

adequately address localization issues. Industry experts rely on manual localization testing,

which is labour-intensive and error-prone, and the testing quality depends on the tester’s

competence. Additionally, the existing quality assurance models commonly overlook the

Lithuanian language, resulting in poor user experience. The aim of this research work is to

develop a model and its implementation to automate the detection and correction of software

localization issues in textual localizable resources of the Lithuanian locale.

Objectives:

1. To analyze relevant research literature, standards, models and products on software

localization issues and their detection possibilities.

2. To overview and systematize software cultural and language-specific elements and the

scope of information and services that need to be localized.

3. To develop a model and its implementing service, automating the detection of the

selected localization issues in the textual localizable software resources of the

Lithuanian locale.

4. To experimentally apply and evaluate the developed service on the localized software

resources of the Lithuanian locale and to assess service demand by the industry.

The development of a new service allowed us to achieve several significant objectives.

We accomplished the goal to replace manual Lithuanian localization QA checking for essential

localization aspects with an efficient automatic solution. Additionally, the service contributes

to the reduction of high costs associated with existing models. Most significantly, the

implementation of a new service enhances the overall user experience for Lithuanian-speaking

users.

The rest of the research work is organized as follows. Section 2 describes the main

concepts of this work. Section 3 presents the context, motivation, created model and its

implementation of this master thesis. Section 4 displays the results obtained so far along with

the developed model implementation. Finally, the results and conclusions are presented.

10

2. Software localization

2.1. Localization history literature overview

Localization research started when the need to expand to the global markets appeared

30 to 40 years ago [Hall02]. Its evolution has been marked by a move “from in-house

localization to internationalization, along with marked changes in the nature of the tools used”

[Ess02]. Thus, software development started to be internationalized (“is the process of

generalizing a product so that it can process (maintain) different languages and cultural

attitudes without redesigning it” [DGJ10]), which is related to the desire of software vendors

to make more profit by expanding product market to the other foreign countries. Microsoft was

one of the first companies to start its international operations in Tokyo, Japan in 1978, and one

year later – expansion in Europe [Ess02].

From the 1980s computer hardware and software started to be used in a daily “normal”

user life away from corporate or academic computing [Ess02] (see Figure 1 for further history

timeline). As personalized computer usage was increasing exponentially, new software

applications started to be built for the users to ease their life – turn their work more efficient,

also software needed to reflect local standards, habits, and local language itself. Text editors

needed to support input, process it, and output in some kind of format, user interface needed to

be displayed in users’ local language, etc. The very first drafts of some local language software

versions were poorly designed. They contained encoding errors because initially there were no

standards on encoding procedure, text input parsing, processing, and outputting were

problematic, systems did not have proper tools to do it, or it was very limited. Therefore, the

localization process was very ad-hoc [Hall02].

The demand for in-house translators and language engineers to support software vendor

products started to increase in the 1980s after initial local language software versions were

introduced. Decade later, software developers realized that localization should not be part of

their day-to-day businesses and should be outsourced to external services. Software and

hardware development teams started to outsource translation and localization tasks to focus on

their main development competencies. So, outsourcing became a new trend for software

localization. By the end of the 1990s, translation management systems (TMS) were introduced,

to automate many parts of the human language translation process and maximize translator

efficiency. It challenges many localization technologies because the translation of subsequent

development updates of a software product can be simplified. Therefore, previously produced

translations can be reused in many releases.

11

In the 1990s Ireland established itself as a leader in the localization industry. In the

same decade, Lithuania also started to lithuanianize (case of localization, when the software is

modified to suit the Lithuanian linguistic and cultural environment [DG06]) software by the

Institute of Mathematics and Informatics. In 1995 first Lithuanian applications operating in the

MS-DOS operating system was released. Moreover, different Windows and MS-DOS encodings

used in e-mails were harmonized. Later, other applications, running on Windows and Linux OS

started to be translated into the Lithuanian language as well.

Figure 1. Localization history [Twa18]

12

Even though localization methods and practices were changing quite roughly compared

with the 1990s, some of the old approaches are still being used today. Desktop and web

applications are still using translated resources, which are compiled with the built environment.

Development technologies like Java or .NET built their localization tools and libraries, so, most

of the in-house translation at the end will be replaced. These technologies can process input

during the runtime and output it in many locales. New standards to control the localization

process were developed, such as ISO/IEC 15897, and Common locale data repository (CLDR)

[Ess02]. Content management systems give a possibility to update translation resources

without compiling and building a software application. Many new approaches to localization

architecture were found, but the localization process has not reduced its complexity. We still

can see many issues arising on language encoding, text element formatting for specific locales,

character collations during the parsing, and others. Thus, the localization process still is one of

the main concerns for the market expansion of software companies. And content localization

simplification will be one of the main tasks for the software developers of global companies.

2.2. Software localization process

Adapting software to a particular language and culture environment is called

localization. The localization process scope can be at different levels: starting with the

customization of the program to process the characters of a particular language (partial

localization) and to the completion of preparation of the software for the linguistic and cultural

environment (complete localization) [DGJ10]. So that the person who is interacting with it feels

as if the software was created in his cultural environment [Sch02].

The adaptation of the localized program starts with the preparatory localization tasks –

the aim of which is to select necessary and the best programs for localization and prepare such

a localization plan so that the quality of the localized program would be as high as possible

[DGJ10]. The main steps that are taken before actual localization work are reviewed below (see

Figure 2):

1. Forecast of the number of future users. Before localizing a software

application, it is necessary to explore its number of future users. It is considered

that it is worth localizing software applications in the Lithuanian language if

there will be more than one thousand users.

2. Acquaintance with a software license. Localization is one way of modifying

software. A software license is a legal document that must be strictly adhered

13

to. Proprietary programs can be modified and localized with the author's

permission.

3. Acquaintance with information about the author and his work. From the

author's works, it is possible to learn about his qualification, activity, and

readiness to correct the internationalization errors observed during localization.

4. Acquaintance with the software program. The localizer must be well

acquainted with the functions of the localized program and the terminology used

in it. This can be achieved in the program directly or from the documentation.

5. Analysis of localization possibility. Types of software resources, types of

localized resources and their analysis, the need to recompile the program, etc.

should be analyzed before the actual localization work.

6. Self-capability assessment. Before starting localization, it is necessary to

assess whether the strength, endurance, and resources will be enough to

complete the localization work.

7. Contact establishment with the author. Useful even if the program resources

can be freely modified.

8. Internationalization analysis. The complexity of localization depends on the

level of internationalization of the program. It is easier to localize the program

if the needs of future localization have been considered in its design phase:

international standards are followed, and localized resources are separated.

14

Figure 2. Preparatory work before localization [DGJ10]

Localization of software began gradually. The authors of the articles on the localization

topic distinguish seven degrees of localization (see Figure 3). In this research work we will

focus on three main localization degrees:

1. Local text processing.

2. Adaption to local norms.

3. Comprehensive localization.

Figure 3. Seven degrees of localization [Car98]

15

The first degree is a possibility to process locale text documents, because software

application, which is unable to process the characters of that language is worthless. When we

enter any website on the Internet its content is parsed from resource files like HTML, RTF, or

JSON. These files contain text, which is written in natural language (e.g., Greek, French, and

Lithuanian), containing language-specific characters. When these resource files are being

parsed to the source program and being rendered on the Web content is being checked by the

parser. Parser evaluated the grammar of the text (syntax of text if it matches specific grammar

rules, in our example could be Lithuanian language grammar rules), if no errors occurred then

it is being tokenized into tokens, which are evaluated by the evaluator and then displayed on

the Web. In Western Europe, this process was done as soon as computers were used to process

text information, but in Eastern Europe, it was delayed of low economic development. The use

of foreign characters to write texts in their language has long been tolerated (like ignoring

language-specific characters in the Lithuanian language). Many computer users get used to that

and no longer take the advantage of basic capabilities of modern technologies. So, society

education is needed [DGJ10].

The second degree of localization is software adaptation to the various cultural and

linguistic norms in a given language or territory (state, part of the state) [DGJ10]. Number and

currency formats, date and time formats, the use of religious or other symbols, and symbolic

meanings of specific symbols and colors, are the main cultural elements. Ignoring some of the

cultural regulations can lead to serious mistakes (such as incorrect decimal fractions and

separators of thousands). There are a lot of such requirements, which will be discussed later in

a locale concept section.

And the last degree – is comprehensive software adaptation. Modern computers are

intelligent devices that can perform service functions. A word processor replaces a pre-

computer typewriter, an e-mail system replaces a mailer, etc. [DGJ10]. It is clear that the service

must know and use the language of the client. A computer needs to “know” the language of a

client when he changes a person – interacts with the client in his language. Thus, all texts

displayed on the computer screen must be in client language.

16

Figure 4. Three main localization degrees

Localizing web-based software applications, especially on the server-side, a third

(complete) degree of localization can be pursued [DGJ10]. It is common for the localization of

the website to localize only the content that is visible to the user – the view on the web page.

Often, the website source text is forgotten, moreover, the universal addresses of the resources

are displayed in the browser’s address bar in a non-localized language. For example, Yijun et

al. provide a method for localizing the content of XML documents and guidelines [Yij05].

Using the SGML standard (ISO 8879), which uses Unicode encoding of content and guidelines,

creates guides for guideline translations. All these features allow the creation of appropriate

add-ons for online software, such as a browser, and a web editor, that allow seeing the original

text of a web page in the local language [DGJ10].

The information required to implement first, second, and partially third localization

degrees of localization is the elements used in the software that are different for different

languages and cultures [DGJ10]. These cultural elements will be analyzed further in the

software cultural elements section.

2.3. Software locale

Locale is one of the key concepts in software applications. Locale is an explicit model

and definition of a native-language environment [OC10]. International and Lithuanian cultural

standard ISO/IEC 15897 locale is defined as “a subset of the user environment that depends on

language or cultural norms” [DGJ10]. However, not all cultures can be unambiguously defined,

thus, the locale is understood more broadly: the whole aspects of the dialogue with the user,

depending on the location (whether it is the state or part of it) and the language-dependent

aspects of the dialogue with the user.

It is impossible to formally define all these aspects. For example, it is impossible to

define the cultural aspects of images, only recommendations on how to design images so that

17

they are acceptable in most cultures can be made. Thus, formally defining locales usually a

limited generalized set of cultural aspects is used. The main parts covered by most locals are:

• Language and country, their abbreviations. Which language the user

interacts with, country and abbreviation convention, and currency unit notation.

• Character encoding, classification, and ordering. Which characters are

letters, numbers, what are language-specific characters, and charsets for a

particular language?

• Formatting. How are numbers, currencies, dates, times, and addresses

displayed?

• Calendar, time zone. Which calendar (Gregorian, Chinese, Islamic) is used,

and which day is the start of the week?

• Units for measurement. Which units are used for measuring the length, mass,

sound, and speed?

Locale is usually identified by the language, using a two-letter language code (ISO 639-

1), and by territory, using a two-letter territory code (ISO 3166-1) [DJ09], for example, en_US,

which identifies the English locale of United States. Nevertheless, there are locales, which are

not dependent on territory (for instance, in Switzerland there are four official languages –

German, French, Italian, and Romansh, thus, each of these languages has its language-territory

locale combination) or language (locales of Australia, Great Britain, and the United States are

different, even though the language is the same).

Different software vendors use different approaches to define cultural norms – some of

them defined international standards (ISO/IEC 14882, 15897, IEEE Standard 1003), and some

are considered de-facto standards, for example, Java locale models. Java localization

capabilities will be analyzed later in the Java localization capabilities section.

The main elements identifying a locale are language and state (territory). For example,

the United States, Great Britain, and Australia use the same language, however, they have

different locales due to their different cultural attitudes and norms. The locales in the software

are easiest to implement using the local services of the operating systems or another platform.

However, this approach is not universal for two main reasons [DGJ10]:

1. A locale defines language alphabet, character encodings, alignments, date, and

time formats, etc. Each language and state can have its own locale. One state

may have different spoken languages and multiple locales (for example, Swiss-

German, Swiss-Italian, and Swiss-French). Moreover, the same language can

18

be used in several states, and may also have separate locales (English in Great

Britain and English in Australia).

2. Locale elements, which are mostly encountered in software, are accumulated,

and formal ways to present them are sought. Of course, it is not possible to

describe all the elements of a locale formally, such as software functions

influenced by a culture-specific style of thinking, graphic elements, and use of

colors, so only the main local elements are formalized.

One part of the software localization consists of the translation of dialog texts in a

computer interface (notes and messages visible in the program, windows, and their elements -

buttons, labels, menus, etc.) and electronic help, also other material related to the program into

the local language. Another equally important part of software localization is an adaptation of

other locale-related elements used in the program; the main elements are discussed in the

software cultural elements section.

2.4. Software cultural elements

Cambridge dictionary defines culture “as the way of life, especially the general customs

and beliefs, of a particular group of people at a particular time“. The attitudes, beliefs,

behavior, opinion, etc. of a particular group of people within society establishes a cultural

environment for a location (country, or part of it). Vaske and Grantham (Vaske, Grantam,

1990) emphasize that culture is:

• Adaptable (can adapt to the physical and social environment).

• Integrated (characteristics, which make cultures generally compatible with each

other).

• Constantly changing (due to adaption to certain cultural events or integrations

with other cultures).

Many authors emphasize that there is a connection between culture and software for

suitable use. In other words, software drives culture change. Thus, software engineer needs to

understand cultural characteristics and cultural differences in purpose to create software that

can be adapted to many cultures. The most important cultural elements which are used in the

software will be analyzed further.

2.4.1. Alphabet and names

Names are used not only by humans but also by computers. Names written in the native

language are easier to understand, memorize, manipulate, correct, and communicate (Dürst,

2003). In older software, there was a requirement to keep name length less than 26 letters,

https://dictionary.cambridge.org/dictionary/english/life
https://dictionary.cambridge.org/dictionary/english/especially
https://dictionary.cambridge.org/dictionary/english/general
https://dictionary.cambridge.org/dictionary/english/customs
https://dictionary.cambridge.org/dictionary/english/belief
https://dictionary.cambridge.org/dictionary/english/particular
https://dictionary.cambridge.org/dictionary/english/group
https://dictionary.cambridge.org/dictionary/english/people
https://dictionary.cambridge.org/dictionary/english/particular
https://dictionary.cambridge.org/dictionary/english/time

19

which is very restrictive even for those languages that use the Latin alphabet. Some the

languages have additional letters (ą, č, ę, ė, į, and others in Lithuanian language), and some

letters are rarely used in names (q, w, and x).

Login names. The majority of software programs verify user identity. One part of such

verification is user login name authenticity logging in to the system. Unfortunately, many

systems only allow using Latin letters, numbers, and underscore (_) characters to create login

names. Therefore, it is clear that the user should have an opportunity to choose a name made

up of the letters of his / her native alphabet, not just ASCII characters [DGJ10]. Although there

are no technical barriers to the use of multilingual characters in login names, software designers

tend to skip this feature in their products.

Personal names. Many applications have a user profile area where personal data is

recorded and stored when creating an account in any system. All letters of a person’s real name

and surname should be accepted, the system should not change the spelling of the user name

and surname to register. “Observations show that the number of correctly written names (using

letters with diacritics) of Skype users varies from 15% to 96% depending on the language”

[DJ09] (German, Czech, Danish, Estonian, Icelandic, Latvian, Polish, and Lithuanian

languages were used for the survey). So, this high level of "illiteracy" can be explained by a

habit inherited from other programs that still have restrictions on login name signs [DGJ10].

Passwords. Password is another part of the verification process for a user’s login into

the system. Password is usually composed of letters, numbers, and special characters for a

strong password requirement. Many systems limit the set of letters to only ASCII characters,

which is not natural for those locales whose languages use another alphabet. Moreover, it

reduces password security requirements.

File names. Operating systems allow files to be called by real, natural names. Letters,

numbers, and some other characters in the text, such as a dot (.), and a dash (-), are used. Only

characters that have a special purpose in this context, such as slashes, which are used to indicate

the path to the file, and commas, etc., are not allowed [DGJ10]. A person can choose file names

in their language so that the name could describe the contents of the file. The same goes for

directory names.

Domain names. User, who works with Internet software often operates with domain

names. For a long time, only 26 letters of the English alphabet could be used to compile domain

names [DGJ10]. The latest versions of the most popular browsers have tools for working with

internationalized domain names. However, many companies still avoid using this feature. One

possible reason could be the risk of fraudulent use of homographic signs from different

20

alphabets when the method is implemented internationally. Another - is that not all older

programs work correctly with internationalized domain names used as hyperlinks.

2.4.2. Personal name formatting

A person’s first and last names are represented differently in different cultures (e.g.

"First Last", "Last First", "Last, First") [DJ09]. In a software applications personal names are

used to greet logged-in users or when the session starts. Thus, personal name formatting should

be included in the localized resources as a separate parameter or by using different parameter

names for the first and last name so that they can be easily swapped.

2.4.3. Date and time formats

A date can be represented in a long (for example, 1st of January 2022) or a short

(01/01/2022) form. A longer form is more complex because the year and month representing

numbers should be expressed along with text lines, which form can differ. Shorter date form

also may differ between the cultures. For example, in Lithuania, the short date form consists

of three parts. The first on the left is the 4 digits for the year, the second is the two digits for

the month, and the third is the two digits, meaning day [DGJ10] and separated with dashes (for

instance, 2022-01-01). Time can be represented in 12- or 24-hour format with the different

hour and minute separators (e.g., dot, colon, space, dash). For example, in Great Britain, the

12-hour format is used (e.g., 10:00 AM, 10:00 PM) and many other European locales e.g.,

Lithuania use the 24-hour format (e.g., 10:00, or 22:00).

2.4.4. Measuring system

Indicates, which system (or systems) of measurement is used in the locale [DJ09]. For

example, in Europe metric system units, in Great Britain and the United States – inch, miles,

and pounds are used. In Lithuania metric measuring system is used.

2.4.5. Decimal fractions and thousands separators

International Standard ISO 31-1 defines two types of decimal separators: a comma and

a period [DGJ10]. United States, Great Britain, Australia, and other countries that use the

English language, the decimal fraction is a dot (.). In Lithuania and other European and South

American countries decimal fraction is a comma (,). The wrong decimal fraction in a given

locale can be confused with the thousands separator and cause incorrect number values.

In the U.S., to separate thousands commas are used, in many European countries, a dot

or space is used. An incorrect thousands separator can be confused with the decimal fraction

and cause incorrect numeric values in the system.

21

2.4.6. Currency formatting

Each country usually has a unique currency and its symbol. This includes national rules

and symbols that are used to represent monetary amounts and currency symbols [DJ09]. They

appear in online shops, web forms, etc. In Lithuania, and most European Union countries Euro

(€) is used as a national currency.

2.4.7. Postal address and telephone number format

Usually appears in internet applications, e.g., in user profile data, forms, and form filler

options [DJ09]. A postal address is composed of address line one (where street, house number,

and the flat number are filled), and two, if necessary, state, and postal code (normally it is a

five-digit number, but in some countries, it can be a four or seven-digit number).

The telephone number format differs per country. As a rule, it consists of country code,

area code, and the rest. If the form for dialing a telephone number consists of several cells,

there should be a possibility to change the number and/or order of the cells during localization.

2.5. Software localization-related standards

Locales define cultural elements and tools and how to formally specify them. In this

section, we are going to analyze the most important documents and models used to specify

locale data. Most of these documents are international standards.

2.5.1. POSIX family standards

The Portable Operating System Interface (POSIX) is a family of standards specified

by IEEE for maintaining compatibility among operating systems [BC21a]. Thus, any software

that is compliant with POSIX standards should be compatible with another operating system,

which conforms to the POSIX standards.

Early in software development start programmers used to write software for an

operating system in different environments and specifications. Thus, shifting to another

operating system would require a lot of cost and effort resources. So, to overcome this problem

POSIX was introduced. POSIX is the standardization of the original UNIX, which came back

in 1988 to resolve issues not only between different UNIX variants but also Non-UNIX

operating systems as well [BC21a].

POSIX development started in the 1980s, first standard version was introduced in 1988.

Two parts of the standard were associated with the software locale: POSIX.1, which became

the accepted standard of ISO/IEC 9945-1, and POSIX.2 (ISO/IEC 9945-2), which was

internationally accepted as IEEE Std 1003.2-1992.

22

POSIX locale model defines its standards base on the C programming language. The

model formally specifies how to define each category element (see Table 1). POSIX locale

model is used in Unix operating systems, the latest releases of macOS are completely POSIX

compliant, while Microsoft Windows OS does not conform to the standard at all because its

whole design is completely different from UNIX-like operating systems [BC21a].

Table 1. POSIX locale categories [BC21a]

Category Description

LC_TYPE Used for character classification e.g.,

lowercase, and uppercase letters,

decimal, and hexadecimal digits.

LC_COLLATE Defines the order of characters

LC_MONETARY Used for monetary formatting, e.g.,

currency symbols, and decimal

fractions used for money calculations.

LC_NUMERIC Used for formatting numbers, e.g.,

thousand separators, digit grouping

requirements.

LC_TIME Used for date and time formatting

LC_MESSAGES Used for program messages such as

information messages and logs.

POSIX locale model advantages [DGJ10]:

1. It is an international standard that was the first to formally define the key

elements of a locale.

2. Portability: independence from the operating system or platform.

POSIX locale model disadvantages [DGJ10]:

1. Categories described in Table 1 cannot be expanded.

2. Possible incompatibility with encodings.

3. Too few categories. They do not cover basic cultural norms related to language

and territory.

2.5.2. ISO/IEC 15897 standard

ISO/IEC 15897 (procedures for the registration of cultural elements) is a standard,

which sets out the procedures for registering cultural elements, both as narrative text and more

formally, using the techniques of ISO/IEC 9945-2 POSIX (POSIX.2 version) Shell and

Utilities [ISO99]. In 2001, this standard was adopted in Lithuania as well (LST ISO/IEC

15897). Standard is compatible with POSIX.2 defined categories; however, it allows for

23

registering more locale elements. Registration results are freely available: software developers

are free to use them. Four types of cultural specifications can be registered under this standard

[DGJ10]:

1. Descriptive cultural specification.

2. POSIX locale.

3. Encoding of POSIX characters.

4. A set of POSIX characters.

The descriptive cultural specification defines cultural norms in narrative English and

may include equivalent definitions in other languages. Types 2, 3, and 4 are described using

the POSIX specifications for cultural elements, defined in ISO/IEC 9945-2 standard [DGJ10].

The first six chapters of the descriptive culture specification overlap with POSIX locale

categories, other most important chapters for a more detailed description of the cultural aspects

are listed in Table 2.

Table 2. Elements of the descriptive culture specification [ISO99].

Specification chapter Description

National or cultural Information

Technology terminology

Terminology for a language or culture can be listed,

e.g., translations of ISO terminology for Information

Technologies.

National or cultural profiles of

standards

Profiles of standards can be listed, e.g., profiles of the

POSIX standards.

Character set considerations Describes how characters are used in the culture, for

instance: which characters are necessary to write in a

particular language, for further precision or used in

newspapers and books.

Sorting and searching rules Used for further description of how to split a record into

sorting fields, which fields are ignored when

comparing or sorting.

Transformation of characters Describes transliterations and transformations of

characters, e.g., transliteration requirements between

Latin and Greek languages.

Use of special characters The use of special characters such as quotation,

abbreviation, and punctuation marks are described.

Moreover, what should be avoided is specified in this

chapter, e.g., number signs.

Character inputting The chapter describes keyboard inputting rules and

input alternatives.

Personal names rules What is considered a family name, how different titles

are used, and fathers’ and mothers’ family name

inheritance are described.

24

Hyphenation Hyphenation rules can be described in this chapter.

Spelling Specification of spelling rules and lists.

Numbering, ordinals, and

measuring system

A measuring system can be described.

Monetary amounts Old currencies can be described.

Date and time Extension of POSIX time chapter. Time zone names

and day length saving rules can be described.

Coding of national entities Coding of different entities, such as postal codes, and

police districts can be described.

Telephone numbers Formatting of telephone numbers nationally and

internationally can be described.

Mail addresses Formatting of post addresses is described, how sender

and receiver addresses are written.

Electronic mail addresses Cultural conversions of electronic addresses can be

described.

Identification of persons and

organizations

Culture may have numbering formats for person and

organization identifications, for example, personal

identification numbers, and tax numbers for

companies.

Payment account numbers Conventions for bank account numbers for culture can

be described.

Keyboard layout Conversion of keyboard layout can be described.

Paper formats Conventions of paper size and the use of window

envelopes can be described.

 Even though the standard is compatible with the POSIX locale model, which allows the

operating system or platform independency, ISO/IEC 15897 locale data is not actively

recorded. Thus, software developers cannot take advantage of them.

2.5.3. CLDR standard

Unicode Common Locale Data Repository (CLDR) provides key building blocks for

software to support the world's languages, with the largest and most extensive standard

repository of locale data available [UCLDR22]. CLDR data is widely used across companies

for software internationalization and localization, adapting software of multiple languages

support. CLDR includes:

1. Locale-specific patterns for formatting and parsing: dates, times, timezones,

numbers and currency values, their symbols, and measurement units.

2. Translations of names: languages, scripts, countries, regions, currencies, eras,

months, weekdays, day periods, time zones, cities, etc.

25

3. Language & script information: characters used, plural cases, gender of lists,

capitalization, rules for sorting and searching, writing direction, etc.

4. Country information: language usage, currency information, calendar

preference.

5. Validity: Definitions, aliases, and validity information for Unicode locales, and

languages.

The project was started in 2003 continuing the OpenI18N group project of creating an

XML local data store. The first CLDR 1.0 version was released in 2004, and the latest – CLDR

41.0 and is continued by the Unicode consortium.

The goal for the common locale data is to make it as consistent as possible with existing

locale data, and acceptable to users in that locale [UCLDR22] (see Table 3 for more data types).

Moreover, accumulate as much locale data as possible (currently, CLDR covers more than 400

languages).

Table 3. LDML data types [UO22]

LDML data category Description

Locale display names

1. languages: provides localized names for

all languages in Language-List.

2. scripts: provides localized names for all

scripts in Script-List.

3. territories: provides localized names for

all territories in Territory-List.

4. variants, keys, types: provides localized

names for any in use in Target-

Territories; for example, a translation for

a phonebook in a Lithuanian locale.

dates 1. calendars: localized names

2. month names, day names, era names, and

quarter names.

3. week: minDays, firstDay, weekendStart,

weekendEnd.

4. am, pm, eraNames, eraAbbr.

5. dateFormat, timeFormat: full, long,

medium, short.

6. intervalFormatFallback.

numbers symbols, decimalFormats, scientificFormats,

percentFormats, currencyFormats for each

number system in Number-System-List.

currencies displayNames and symbols for all currencies

in Currency-List, for all plural forms.

26

transforms Transliteration between Latin and each other

script in Target-Scripts.

collation The sorting order of strings of characters,

also language-sensitive searching and

grouping.

 At the moment it is the greatest locale data repository (in 2022 with the 41.0 release

there are 414 basic locale specifications). In the 40.0 CLDR version grammatical features, such

as grammatical gender and case were introduced to form grammatical phrases. For example, it

could sound as bad as "on top of 3 hours" instead of "in 3 hours" [UCLDR21]. The main goal

of CLDR was to introduce grammatical gender and case so that advanced message formatting

could be handled. Moreover, this feature was introduced in the Lithuanian locale within the

second release phase.

CLDR also provides tools to export data to POSIX compatible format and Java resource

sets. Some well-known companies such as Apple (macOS, iOS, tvOS), Google (Web Search,

Chrome, Android, Google Maps), IBM (DB2, Lotus, Websphere), and Microsoft (Windows,

Office, Visual Studio) use CLDR for their products.

2.6. Java localization capabilities

Java is a high-level, class-based, and fully object-oriented programming language used

for many kinds of software development. TIOBE index (software quality indicator company)

results in May 2022 show that Java is 3rd most popular programming language used for server-

side applications and it was the 1st for a long time.

Native Java runtime is rich with its capabilities to internationalize and localize software.

For example, Java 8 Locale class, is used to quickly differentiate between different locales and

format content appropriately, which is vital for the internationalization process – “preparing an

application to support various linguistic, regional, cultural or political-specific data” [BC21b].

The locale class consists of more than 150 available locales and most importantly that all

required locale-specific formatting can be accessed without recompilation

[BC21b]. Applications can handle multiple locales at the same time, and new language support

is straightforward.

Locales usually are indicated by language, country, and variant abbreviation, which is

separated with an underscore (for instance, da – Danish, fr_CH – French, Switzerland, or

en_US_UNIX – English, United States, Unix platform). There are two additional fields, which

can be set up – script and extensions. General rules to set these fields [BC21b]:

27

• Language can be an ISO 639 alpha-2 or alpha-3 code or registered language

subtag.

• Region (Country) is ISO 3166 alpha-2 country code or UN numeric-3 area

code.

• Variant is a case-sensitive value or set of values specifying a variation of

a Locale.

• Script must be a valid ISO 15924 alpha-4 code.

• Extensions is a map that consists of single-character keys and String values.

The locale class model consists of the following local elements: number formats, date

and time formats, currency symbols, calendar items, time zones, sorting and other operations

with text, and the layout of graphical components, local resources separation. The classes of

the listed locale categories are given in Table 4.

Table 4. Java Locale class categories

Category Description

Numbers and currencies Class: NumberFormat. A particular locale is

passed as an argument to initialize this class.

Numbers are formatted into locale-specific

decimal and thousands separators. Currency

formatting involves currency symbol append

and rounding decimal part into two digits.

Date and time Class: DateTimeFormatter. Class

initialization consists of including one date

and time pattern, and locale. Short and long

date and time formatting.

Calendar Classes: GregorianCalendar, Calendar.

Date formatting of particular calendar and

locale.

Text ordering Classes: Collator, RuleBasedCollator,

BreakIterator. Consists of language-specific

rules of how letters and strings are ordered.

BreakIterator class finds the location of

boundaries in text.

The layout of graphic elements Class: ComponentOrientation. Contains all

methods required for creating user interfaces,

painting images, and their language-sensitive

orientation.

Separation of locale resources Class: ResourceBundle. The vital part of

internationalization is to provide localized

messages and descriptions that can be

externalized to separate files.

28

 The Java locale model has more methods compared with the POSIX model. Unicode

from the beginning was introduced in the Java locale model. Although Java has some

localization limitations (rules of personal name writing), those can be achieved through

parameterized statements.

2.7. Overview of existing localization (internationalization) quality

assessment products

Oracle Java documentation identifies that internationalized application has the

following characteristics [OC22]:

• Executable applications with their localized data can run worldwide.

• Graphical user interface elements which have textual content are not hardcoded

in the program. Instead, they are stored outside the source code (e.g., the content

management system) and retrieved dynamically.

• Support for new languages does not require recompilation of the program.

• Culturally dependent data, such as dates, currencies, and numbers, occur in

formats that conform to the end user's cultural environment.

Based on the listed characteristics the quality of software localization

(internationalization) can measured. In the global market, there are several existing products,

for measuring localizability (ability of a computer software program that can be converted to

any specific or general local language according to its local culture with local look and feel

[BS13]) quality measure. In recent years, several localization QA models and tools have been

developed to automate the process of identifying and correcting localization issues. In this

section, we will overview four such products: LocalyzerQA, Localise, ErrorSpy, and QA

Distiller.

Lingoport company created the LocalyzerQA product to provide linguistic quality

reviews of a running application after the translation process. LocalyzerQA is a cloud-based

localization QA tool that utilizes a combination of rule-based and machine-learning techniques

to identify and correct localization errors, from inconsistent translations and missing

translations to mistranslations and incorrect grammar - spelling, grammar, punctuation, and

formatting [Lin23]. Its focus on localization testing enables it to fix identified issues, thereby

cutting down the linguistic QA process. LocalyzerQA helps companies to test their translations

for accuracy and consistency. Product allows users to upload their translations and test them

against a set of rules[Lin22]. The first version of LocalyzerQA was released in March 2021,

thus it is still in its early development stage and provides a small set of localization QA features.

29

While a tool can find translation issues and replace them with the help of native language

linguist from the Lingoport company team, it does not address critical localization errors and

does not support the Lithuanian language.

Lokalise is a cloud-based translation management system developed by Localise

company that provides a machine learning-based localization QA to automate, organize,

control, review localization work, and provide quality assurance checks on the project level.

The tool uses a combination of natural language processing (NLP) and machine learning

techniques to identify and correct localization errors in multilingual content. It also has a built-

in visual editor that allows users to edit translations in context [Loc22]. Localise focuses on

localization process workflow: organization and control of localization work, and it monitors

identified issues throughout the development process. The tool has been trained on a large

dataset of multilingual content and can detect some errors in spelling, grammar, and formatting

[Loc23b]. However, this relates to the linguistic (translation) errors and does not provide for

other cultural elements formatting support analyzed in the software cultural elements section.

ErrorSpy, a localization quality assurance product, is designed for error monitoring and

uses a combination of rule-based and machine-learning techniques to identify and correct some

of translation errors. ErrorSpy scans localized resources and generates a report of potential

translation issues, such as grammatical, consistency, typography, and number formatting errors

[DOG22]. It also uses machine learning to identify more complex errors, such as

mistranslations and incorrect grammar [DOG23]. Identified issues are reviewed manually by

linguists, making tool only partially automated. Despite being developed over twenty years,

ErrorSpy only supports a small set of languages, and Lithuanian is not among them.

Additionally, it focus on terminology consistency and linguistic issues and lacks support for

other basic cultural elements such as date and time formatting, personal name, postal and

telephone number formatting, different measurement systems, and currency support.

QA Distiller is a standalone tool that aims to find translation mistakes in bilingual files

[Yam23]. The tool’s functionality includes the automatic detection of common errors

(omissions, inconsistencies, formatting, terminology), which can provide a direct link to the

errors by highlighting them. The tool’s features are fully customizable, and the Lithuanian

language is supported, allowing testers to create profiles, use regular expressions when

searching for mistakes, or customize the errors they want to detect. After project evaluation,

testers can generate a report that highlights the issues. Nonetheless, this tool supports the

Lithuanian language, but it still lacks support for other cultural elements formatting analyzed

in the software cultural elements section.

30

LocalyzerQA, Lokalise, ErrorSpy and QA Distiller products will be analyzed further to

understand their pros and cons more in-depth (Table 5).

Table 5. Comparison of existing localization quality assurance products

 LocalyzerQA Lokalise ErrorSpy QA Distller

Number of

supported file

formats

15 28 20 5

Source file

preprocessing

N/A Advanced Advanced N/A

Number of

languages

supported

N/A More than 400 N/A More than 90

Lithuanian

language support

Not available Available Not available Available

Translation

memory

Available Available Available Available

API integrations Available, the

exact number is

not known

More than 40 Not available Not available

Mobile

integrations

Not available Available Not available Not available

Mobile platform

support

Available Available Not available Not available

Activity logs and

statistics

Advanced Advanced Not available Advanced

Content

management

system support

Not available Available Not available Not available

Installation Required, cloud-

based (additional

hosting pricing)

Required, cloud-

based

(additional

hosting pricing)

Required only

to the local

workspace

Required only

to the local

workspace

(Windows

31

operating

system)

Pricing Starting from 29$

per month

Starting from

120$ per month

Starting from

249€, a one-

time purchase

Free

 The four localization quality assurance tools have different areas of focus. Localise

manages the entire localization process, ErrorSpy emphasizes error monitoring, and

LocalyzerQA together with QA Ditiller focuses on localization testing. ErrorSpy adheres to the

ISO 17100 standard on requirements for translation services and SAE J2425 translation quality

metric model to capture error types and quantities of translation errors [Woy01] as important

evidence of the QA process [DOG23]. Localise employs ISO 9000 quality management

standards [Loc23b] to establish, implement, maintain, and continuously improve their quality

management system [ISO15]. The quality assurance model of LocalyzerQA and QA Distiller

is not explicitly stated in the documentation, but it is assumed the use a combination of

localization industry standard association (LISA) QA and multidimensional quality metrics

(MQM) models due to its rule-based (metric-based) approach to assure quality. The

comparison of these models will be presented in the later sections.

Four localization QA tools discussed in this section provide capabilities for identifying

and correcting selected localization and translation errors. Each tool can detect some errors in

spelling, grammar, punctuation, formatting, and terminology.

Despite effectiveness, existing localization QA tools and their models mostly rely on

manual checking, which is time-consuming, expensive, and often results in errors due to human

factor. Although some aspects of software localization, such as functional testing, language

spelling and grammar checking, can be automated, practically all aspects of resource

translation and localization testing still require manual processes. This approach depends

heavily on the competence of the localizer/tester, which can lead to inconsistencies in the

translation and a poor user experience. Moreover, the tools discussed have certain limitations,

such as limited language support, high costs, partial automation, and critical localization aspect

checking for Lithuanian language. Furthermore, LocalyzerQA and QA Distiller LISA QA and

MQM models provide locale violation, punctuation, and other, mostly translation-related

metrics, the critical localization aspects remain unresolved. Although these features can be

32

offered natively by Java programming language, they are often overlooked in existing

localization QA tools.

Due to the reasons discussed above, a new localization QA service using Java, Gettext

PO technologies and its model is proposed in this study for small projects with limited budgets

and open source projects. This service aims to fix the limitations of existing QA tools and their

models by providing comprehensive and automated verification of critical aspects of software

localization for Lithuanian locale. By leveraging the built-in features of Java programming

language, this service can provide an efficient and cost-effective solution for ensuring

consistent and accurate localization for Lithuanian language and culture. Its development

represents a vital contribution to the software localization field and Lithuanian language

localization QA with potential to improve the efficiency and accuracy of the localization

process, particularly for smaller / open source projects. Moreover, service also aims to improve

the user experience of Lithuanian-speaking users and provide a competitive advantage to

competitive advantage to companies seeking to expand their reach across different cultures and

languages, including Lithuanian.

33

3. Localization quality assurance

3.1. Overview of objectives for a new localization quality assurance

service

After conducting an analysis in the previous section, we analyzed software cultural

elements, which we will be incorporated into the definition of a new QA model. The newly

developed model will combine certain aspects of ISO 9000, ISO 17100, LISA QA, and MQM

models. The implementation of a new QA model is realized in the development of a new

service. In this section, we will discuss the objectives of a new localization quality assurance

service developed to address some of the challenges of existing localization QA models.

Objective 1: automate localization QA checking.

Manual checking of localization quality is a labour intensive and time-consuming

process to complete [OA13] that involves human testers checking the localized product or

service for issues. However, manual checking of localization QA is not reliable as it is

subjective and depends on the competence of the localizer/tester [BOK20]. Automated

localization testing can significantly reduce time and effort required for localization QA. The

reasoning underpinning this is driven by the reduction in workload that can be brought about

through the automation of such techniques [OA13] and overall improve localized content and

user experience. To address this, the new localization quality assurance model aims to replace

manual checking with automated processes that can detect and report errors quickly and

accurately.

Objective 2: provide support for the Lithuanian language localization QA.

Lithuanian is a Baltic language spoken by more than 3 million people. It is a complex

language with a unique grammar and a complex set of linguistic rules. However, many

localization QA models, including products review before, do not support Lithuanian language

testing. To solve this problem, new localization QA model aims to provide comprehensive

localization testing and ensure the quality of localized content for Lithuanian-speaking users.

Objective 3: reduce high costs of existing localization QA models.

Localization QA is a critical aspect of globalization, but it can also be costly (up to 20%

of the total localization budget [PGD14]). Many businesses struggle to keep up with the high

costs of existing localization QA models. Therefore, another objective of the localization QA

model is to help reduce the high costs by providing affordable, automated solution.

Objective 4: provide QA for critical localization aspects.

34

Localization involves more than just translating the content from one language to

another. It also involves adapting the content to meet the cultural and linguistic requirements

of the target market [DGJ10]. This includes aspects like measurement system, date and time,

and currency formatting, alphabet and names, decimal fraction and thousand separations. To

overcome this, new model aims to provide comprehensive QA for these critical localization

aspects.

Objective 5: improve the user experience of Lithuanian-speaking users.

Quality is a measurement based on end user expectations [OA13]. The final and

ultimate goal of new model is to improve the user experience of Lithuanian-speaking users.

This includes providing comprehensive localization QA to meet the linguistic and cultural

requirements of the target Lithuanian market.

 In conclusion, the new localization quality assurance service has a several objectives

aimed at improving the localization QA process. It aims to address the challenges of existing

QA models by providing automates and cost-effective approach.

3.2. Existing localization QA models

In recent years, several QA models have been developed to assure the quality and

improve the process of identifying and correcting quality issues. This section provides an

overview of five such models mentioned previously in overview of localization

(internationalization) quality assessment products section: ISO 17100 standard, ISO 9000

standard family, SAE J2450 metric, LISA QA and MQM models.

ISO 17100 standard, ISO 9000 standard family, SAE J2450 metric, LISA QA, and

MQM models are all related to localization QA. ISO 17100 standard and SAE J2450 metric

mainly focus on translation quality assurance, which is only a part of localization. ISO 9000

standard family is oriented on the overall quality of various products and services. And the last

two, LISA QA and MQM, models are more directly related to localization.

ISO 17100 standard specifies the requirements for the entire translation process,

including the translator’s qualifications and experience, translation project management,

quality control, and the use of technology. The standard is designed to ensure that translation

services meet a high level of quality, and that the translation process is carried out consistently

and efficiently [ISO15b]. ISO 17100 assures clients that the translation service they receive is

of a high standard and that the translation process has been carried out according to recognized

best practices. Therefore, it is particularly relevant for organizations that require translation

services for important documents (legislation, medical reports).

35

The ISO 9000 family of standards consists of several different standards. ISO 9001 is

the most well-known and widely used standard in the family, and it provides a framework for

organizations to establish and maintain a quality management system that meets customer and

regulatory requirements. ISO 9004, on the other hand, guides how to improve the overall

performance of an organization [ISO15a]. By implementing the ISO 9000 standards,

organizations can improve their quality management processes, increase customer satisfaction,

enhance their overall performance, and demonstrate a commitment to providing quality

products and services.

SAE J2450 metric enables evaluators to capture error types and qualities of translation

errors. To evaluate translation quality, each error identified by the evaluator is marked in two

ways. First, is it categorized into seven predefined categories. Then, the evaluator determines

if it is a serious or a minor error based on their perception of the error’s severity. Finally, each

error is multiplied by its weight and counted. This score is then divided by the total number of

words measured, resulting in a translation quality score (TQS) [Woy01].

LISA developed a quality assurance model to evaluate all components of a localized

product in terms of its functionality, documentation and language issues [BS13]. LISA QA

model is assumed to assess translation quality by identifying errors and checking if the target

meets the requirements. Quality model also suggests rating errors based on their severity levels

(minor, major, and critical) and provides data recording and reporting capabilities.

MQM is a comprehensive framework for evaluating the quality of translated source

texts in the context of translation. MQM is based on an analysis of over 20 existing translation

quality assessment metrics and provides an extensive set of issue types that can be checked in

both human and machine translation processes [LBU13]. The list of Issue types comprises over

100 issue types and covers most translation quality assessment metrics. Issues are arranged in

a hierarchical structure with higher-level categories and their respective subtypes. The five

MQM issue categories are fluency, accuracy, verify, design, and internationalization. Using

this framework, users can evaluate translation quality across a wide range of criteria in a

systematic and customizable manner.

Localization QA standards and models discussed in this section are effective in

identifying and addressing localization and translation issues. They describe standardized

guidelines on how to evaluate quality. Unfortunately, most of these guidelines remain

unimplemented in today’s tools, nevertheless, standards provide procedures on how to realize

efficient quality assurance. ISO standards and SAE J2450 metric model rely on manual quality

assurance. While LISA QA and MQM models provide a comprehensive set of quality metrics

36

that are not adapted to the Lithuanian language, therefore, critical Lithuanian locale aspects

remain unresolved and rely on manual checking. Our ultimate goal is to improve the user

experience of Lithuanian-speaking users by combining several aspects of the ISO 9000 family

standard, SAE J2450 metric, LISA QA, and MQM models to offer a promising solution to

overcome Lithuanian language localization issues.

3.3. Localization quality assurance process

Testing is the most crucial task in the software development life cycle to assure the

quality of globalized software since its common mistakes are easily noticeable on the user

interface for the final users [CM22]. Internationalization and localization testing ensures that

software can be used in different geographic areas this could mean considering language, local

conventions etc. [Pat06]. The localization testing process includes the content of the software

and user interface. To ensure quality and reinforce that the software meets the conventions and

requirements of a specific culture, it is necessary to perform internationalization and

localization testing on the software [CM22]. QA testers try to “break” the localized software

to locate bugs, which can be eliminated so that end-users in a target region can enjoy the error-

free product [Tom20].

However, this type of testing is usually put aside or performed only at late development

stages or not carried at all [CM22]. Typically, software localization quality assurance process

is performed before releasing to an expensive production environment to avoid undetected

errors. It can be evaluated as:

User satisfaction = compliant product + good quality + delivery within budget and schedule

[BS13].

Localization quality assurance takes part in every task [Ber21]:

• Properly defining the project requirements.

• Preparing a complete localization kit.

• Accurately translating and correctly editing the text, which will be appended in

product dialogue boxes.

• Performing accurate dialog box resizing and professional application

publishing.

37

Figure 5. Localization QA process [Ber21]

Typical QA process looks as follows, as illustrated in Figure 5:

1. Familiarize yourself with the product in the source language. Carefully going

through all the screens, buttons, menu items, and error messages. Writing test

script (manual or automated script that contains the instructions for

implementing a test case [IBM16]) to test each screen, button, menu item, etc.

2. Setting up the operating system for testing. Usually requires changing locale,

language, and other settings for the specific target region.

3. Going through every screen and button, following the test script. Document all

bugs that were found, also, providing specifics, like: operating system, software

version, steps how to reproduce the bug.

4. Send the report to the developers. May also include storing the report in a

company repository, or bug reporting system.

5. Waiting for a new build of a software product with eliminated bugs found in

previous steps.

6. Going back to step one and repeating.

Localization QA involves technical and linguistic expertise. Localization engineers

focus on graphical user interface (UI), compatibility (cultural norms) and functionality of

software product, while linguists are evaluating the linguistic and visual parts of the software.

More specifically, different types of localization QA exist [Mie22]:

• Linguistic testing. Translations are verified: grammar, spelling, style. Includes

reviewing every dialog box, menu and as many texts as possible. Considers:

o Spelling, grammar, and punctuation.

38

o Translation being appropriate to the context. Sometimes translations do

not have a full context of a word on a button, menu item, sometimes

hard to guess if it is a noun or verb.

o Consistency in translation. Does terminology is consistent thought the

software product?

o Correct display of strings, variables, and national characters (e g., letters

with diacritics).

o Truncations.

o Cultural aspects. Does the translation respect all local sensitivities and

will the end users understand all cultural references?

• Visual / cosmetic testing. Focuses on all visual aspects of a localized

application (menus, dialog, boxes, messages, reports). Considers:

o Text layout, alignment (left-to-right, right-to-left).

o Line breaks.

o Number, date / time, currency formats, addresses, zip-codes, phone

numbers.

o The number of options, menus, or commands in the localized version

(must be the same as in the original one).

o Application aesthetics (sizing and alignment of buttons, control boxes).

o Dialog boxes (must be able to be resized without truncations).

o Extended characters display.

o Menu items, help balloons, dialog boxes, status bar messages (must fit

on the screen in all resolutions).

o Regional settings in dialog boxes (decimal separators, date, and time

formats, etc. must be correct).

• Localization testing. Performed on each language version of a localized

software product. Focuses on linguistic and cosmetic verification of localized

application. Considers:

o Link, button, menu functionality. Do all of them function as intended in

the localized software product?

o Input/output validation. Do the input fields allow proper entries in the

units/formats for the target region? Do the output fields are formatted

according to the target region cultural norms?

39

o Number, date/time, currency formats, addresses, postal codes, phone

numbers.

o Character display, sorting, filtering, or input. Is all (non-ASCII)

character are properly handled upon input, displayed, saved, sorted?

o Keyboards and shortcuts. Can all keyboard shortcuts and control

functions be accessed with international keyboard layouts?

In this work, we focus on localization testing quality assurance, automated issue

detection, and correction for the Lithuanian locale. Alphabet and names, date and time

formatting, measuring system, decimal fractions and thousands separator cultural elements

discussed in software cultural elements section will be used for issue detection. Based on a

literature review locale and localization issues’ analysis, a new model and its implementated

service is developed to check key-value property parsing of textual resources (localized textual

resources and source code) and detect and fix issues to comply with Lithuanian locales cultural

norms.

3.4. High-level overview of a new service developed

Defect localizer is a quality assurance service for detecting localization inadequacies,

which operates via an application programming interface (API). The developed model

combines certain aspects of models used in Localise, LocalyzerQA, ErrorSpy and QA Distiller

(Figure 6) to address several critical localization challenges previously discussed in overview

of existing localization QA models section. Aspects included from other models are marked in

bold in Figure 6. The service aims to improve Lithuanian language support, reduce high manual

localization defect detection costs, increase automation level, and enhance the critical

localization aspect checking objectives.

40

Figure 6. Existing QA model summary and new model overview

Service application programming interface (API) based approach provides numerous

advantages in detecting localization inadequacies. Utilizing APIs, service can smoothly

integrate with existing software systems and enable automatic defect detection. Combining the

strengths of the models discussed previously, the new service will offer users a comprehensive

and effective solution. API approach allows for rapid data processing and analysis, enabling

users to quickly identify and correct localization inadequacies.

The Defect localizer identification and correction process automates the stage of the

localization QA process discussed previously “following the test script, documenting all bugs”

(Figure 5). Testers are not required to go through every screen and button of the application

and document all bugs manually. The service automatically scans localized resources to detect

and report all bugs.

Service offers two distinct use cases, both of which are visualized in Figure 7. The first

use case involves directly uploading of localized resources to the Defect localizer service

through client request, as demonstrated in Figure 8. The second use case involves filtering

resources by downloading remote repository source files via client request and providing

HTTPS or SSH link of the remote open-source repository in the request query parameter, as

illustrated in Figure 9.

To accomplish its goal of detecting localization inadequacies, the Defect Localizer

service first parses localized textual resources to identify key-value pairs - localized property

and its value. These key-values are then subjected to rigorous analysis to check for any

localization errors that may be present. This analysis involves examining each key-value for

41

potential issues reviewed in the localization property grammar checks section that may affect

the user experience. By carefully analyzing each key value, the Defect Localizer service can

identify and flag any localization inadequacies, providing developers with the necessary

information to make appropriate corrections and ensure the quality of their localized products.

Figure 7. OpenAPI Defect localizer service API documentation

Figure 8. Direct localized resources upload inadequacy use case example

42

Figure 9. Open-source repository resource inadequacy check use case example

Defect localizer is composed of five services, each with a specific responsibility (see

Figure 10):

• Locale detection service. Responsible for identifying the locale of the localized

resource. The service verifies the presence of Lithuanian locales as the Defect

localizer is targeted for Lithuanian locale support. The textual presence of the

resource locale is verified through two steps. First, the service for the existence

of the locale code in file naming (by base locale name, language code, or Java

locale name) convention. Second, it checks for the existence of the locale code

in the file columns in Excel and CSV file formats. If no locale code is found in

both cases, new violations are created, and the resource locale is counted as

unidentified.

• Git service. Responsible for verifying if the remote repository in the client

request query parameter exists and can be cloned into the service file system.

Service can establish a connection to the remote repository using HTTPS or

SSH protocols. Once files are downloaded and filtered, the connection is closed,

and the repository is removed from the service file system.

• File parsing service. File parsing service filters out unsupported file formats

(any, except xls, xlsx, xml, csv, properties, and PO) and parses contents of the

resources into Property Java objects. The Property Java objects contain

property key, value, filename, and property line number. The object values are

43

be used to generate an issue report in an Excel file for better tracking. Later,

Java objects are analyzed by the inadequacy check service.

• Inadequacy check service. The service applies all grammar rules discussed in

the localization property grammar checks section to the Property Java objects.

Service analyses property value for inadequacies and generates a report of found

issues and suggestions on how to fix them.

• Excel report generation service. Service collects found violations from

inadequacy check service and locale counter from locale detection service. Data

is used to generate an analysis report with found issues, suggestions on how to

fix them, and the location where the issue was found. Additionally, service

builds a locale count report and column chart with issue statistics.

Figure 10. Defect localizer service component diagram

Supported Gettext PO (portable object) file formats are mainly used for the translation

of software and have a unique structure compared with others. They are human-readable plain

text files that contain translations of strings for different languages. PO files consist of a header

section and message sections, where each string contains a source text and its corresponding

translation. These files are typically created using a text editor or specialized translation

software. When translating a PO file, translators typically use a message ID (msgid) to identify

the source text and the message string (msgstr) to enter the translations for the target language

[GNU23]. When parsing PO files, the message ID serves as a Property key, while the message

string is the associated value. In contrast to other file formats, line numbers are not included in

PO files as translations are typically carried out in text editors without specific reference to the

location of the text being edited within a file.

44

In addition to Gettext PO files, other file formats (xls, xlsx, xml, properties and csv) are

commonly used for the translation purposes due to their simple structure and integration.

Translators typically use text editors to specify the translatable property, which serves as a

Property key and translation values (Property value). Although these file formats may contain

numerous translatable properties, line numbers are included in Property Java objects to

facilitate issue tracking. This is important as translators may encounter difficulties when

working with these formats due to the large number of translatable properties.

The high-level localization inadequacy QA process flow for two distinct use cases is

visualized in Figure 11. The first use case involves direct uploading of resources via client

request, while the second use case involves filtering resources by downloading remote

repository source files through a client request. Regardless of the use case, the localization

inadequacy QA process flow involves parsing localized textual resources and analyzing key

values for potential errors. Any identified localization issues are then flagged and presented to

the user for appropriate corrective action in the Excel report.

Figure 11. High-level process flow of the Defect localizer service

45

3.4.1. Direct resource upload inadequacy check use case

One of the two distinct use cases involve the direct uploading of supported file formats

into the system and get a detailed spreadsheet report with detected Lithuanian locale

inadequacies and suggestions on how these mistakes could be solved. The green rectangles

identify the unique Defect localizer process over existing localization QA products. The

detailed process for this use case is clearly illustrated in Figure 12.

Figure 12. Localized resources upload inadequacy check flowchart

The process flows as follows:

1. User uploads localized textual resources into the Defect localizer system. File-

by-file resources are iterated and passed in the locale detection service, where

Lithuanian or unidentified locales are counted.

2. Locale detection service checks for file extension. If the extension is present,

then locale presence is checked, otherwise, the service iterates the next file.

Then locale presence in file naming and file column in Excel and CSV file

formats is checked.

3. Locale counter counts Lithuanian and unidentified locales.

4. Files are parsed in the parsing service. The parsing service then additionally

filters out unsupported localized textual resource formats.

5. Resource content is parsed into Property java objects.

6. Property java objects are analyzed in inadequacy service where all checks are

applied to ensure smooth localization QA.

7. Excel report generation service generates the report with a list of found issues

and other reports.

3.4.2. Open-source repository resource inadequacy check use case

 The service also offers a second use case for users to download localized resources

from an open source remote repository by providing an HTTPS or SSH link. Once downloaded,

service checks the resources for Lithuanian locale inadequacies, generating a comprehensive

46

report that included detailed suggestions for resolving any identified issues. The green

rectangles present the processes which are unique in the service compared with existing

localization QA products. The detailed process is illustrated in Figure 13.

Figure 13. Open source repository inadequacy check flowchart

The steps involved in this process flow are as follows:

1. User provides a repository link via client request in the request query parameter.

Service then checks if the repository exists. In case it does not exist – the user

will get an error message that the repository with a provided link does not exist.

2. If the repository exists, service connects to it.

3. Git service clones repository into the file system.

4. Supported format repository files, which were mentioned before, are filtered,

and passed to the locale detection service.

5. Locale detection service checks file extension and the presence of the locale in

file naming and file column in Excel and CSV file formats.

6. Locale counter counts Lithuanian and unidentified locales.

7. Files are parsed in the parsing service. The parsing service then additionally

filters out supported localized textual resource formats.

8. File content is parsed into Property Java objects.

9. Property Java objects are analyzed in inadequacy service where all checks are

applied to ensure smooth localization QA.

10. Repository is then removed from the service file system.

11. Excel report generation service generates a report with all found issues and other

reports.

47

3.5. Localization property grammar checks

The responsibility of inadequacy check service is to detect localization issues. As

mentioned earlier, service analyses Java Property objects by applying all grammar rules to the

property value. Inadequacy check service is comprised of multiple checks, and their detailed

descriptions are presented in Table 2.

The inclusion of grammar checks in the service was based on an analysis of localization

inadequacies that can be verified from the textual localization resources automatically by the

service. These checks contain a set of several QA metrics of the MQM model and several

(localized resource naming convention, spacing, and symbol usage) additionally added rules,

which were illustrated in Figure 6. Grammar rules consist of the check name, severity if the

rule is violated (Table 6), issue category, and explanation. Table 8 presents detailed insights

into the manner and execution of how these rules are performed on localized properties.

Table 6. Localization properties grammar checks

Check Severity Category Explanation

Localized resource

file naming

Minor Localized

resource file

naming

Applications, which are localized

into many languages contain

multiple localized resources. For

better application source code

structure maintainability, it is

agreed to include locale code into

the file name.

Specifying locale in

the file column

Minor Locale existence

in file column

The rule is applied only for Excel

and CSV file formats. Localized

resources with specified file

formats often contain localized

property translations in multiple

languages. It is agreed to specify

locale code in the file column for

better structure maintainability and

localization tracking.

Property duplication Minor Localized

properties

duplication

Localized resources should not

contain duplicated properties to

avoid possible application errors.

Quotation Minor Use of non-

Lithuanian

quotation marks

Lithuanian quotation marks („ “)

are often confused with English

(single or double quotes).

Spacing usage after

number (parameter)

Minor Space after

number

(parameter) use

No space between the number and

the following text. The number in

48

the resource can be written directly

or in the form of a parameter.

Spacing after period Minor Use of space

after period

No space after a period, before the

next word.

Multiplication sign Major Multiplication

sign use

x is used instead of × as a

multiplication sign.

Hyphen usage Minor Hyphen usage in

number ranges

A hyphen (0-1) is used instead of a

long hyphen (0–1) in the number

ranges.

Number sign Major Use of number

plate

The number uses a grid symbol or

something else that is not suitable

for marking the number. Correct

either to “No” e.g., “Student No” or

omit or replace the number and

word e.g., “Requirement 5”.

Thousands separator Minor Use of thousand

separator

In Lithuanian language the

thousand’s grouping tab is a dot “.”.

Numbers are grouped in threes.

Decimal separator Minor Number decimal

fraction part

The decimal separator for the

decimal fractional part of numbers

is a comma “,”.

Symbol code in a text Major HTML symbol

codes in a text

The sign is provided in HTML

code, e.g. & or text contains

HTML tags. The sign may need to

be localized, which means to

replace it with another word.

Non-normative lexis Major Jargon / non-

normative term

use in text

Use of jargon words / non-

normative computing terms usage

in the text. Change the term, which

is used and approved in the

Lithuanian language.

Capital letter use Info Capital letters in

the middle of

text

A capital letter within a segment

(phrase, sentence). Capitalized

words that are written outside of

quotation marks, and outside of

punctuation marks, are not

distinguished by markup language

tools. The exception is real nouns.

Date Critical Lithuanian

locale date

Lithuanian locale has four date

formats [Loc23a]:

• Short. Pattern: “y-MM-dd”.

• Long. Pattern: “y ‘m’.

MMMM d ‘d’.”.

49

• Full. Pattern: “y ‘m’.

MMMM d ‘d’., EEEE”.

Long and full format date months

and weekdays should be translated.

Time Critical Lithuanian

locale time

Lithuanian time formats are:

• Short “HH:mm”.

• Long “HH:mm:ss”.

Table 7. Localization properties grammar check severity explanation

Severity Explanation

Info The analyzed property was internationalized, double

checking to ensure QA is needed.

Minor The analyzed property was internationalized, but the issue

was introduced by the translator.

Major The analyzed property was not internationalized or left

intentionally as it is.

Critical Analyzed property issue was introduced by automated

property creation without configuring to support Lithuanian

locale specifics.

Table 8. Localized properties grammar checks explained

Check Explanation

Localized resource file

naming

To follow the localized resource naming convention, the rule

checks if the file name (without extension) contains locale

language code (lt), international component for Unicode

(ICU) code (lt_LT), or Java locale code (lt-LT).

Specifying locale in the file

column

To follow the localized resource maintainability quality

property, Excel and CSV localized resources should contain

locale language code, ICU code, or Java locale code in the

first row as a header of localized properties.

Property duplication Property Java object key and its corresponding value are

checked for occurrences of duplication.

Quotation A regular expression ((“|’)s*(“|’)), non-Lithuanian quotation

marks, matched with a given text value.

Spacing usage after number

(parameter)

A regular expression (\d+(?!$|\\.|\\s|[0-9]|'|\"|“|,|\\)|!|\\?|-|–

|:|;)), no space between the number and the following text, is

matched with a given text value.

Spacing after period A regular expression (\.(?!$|\\.|\\s|[0-9]|'|\"|“|,|\\)|!|\\?|-|–|:|;)),

no space after period, is matched with a given text value.

Multiplication sign A regular expression ((d+)\s*[xX]\s*(d+)), wrong

multiplication usage, is matched with a given text value.

50

Hyphen usage A regular expression ((d+)\s*[-]\s*(d+)), wrong hyphen

usage in a number range, is matched with a given text value.

Number sign A regular expression (#(d+)), wrong number sign, is matched

with a given text value.

Thousands separator A regular expression (,[0-9]{3}), wrong thousand separation,

is matched with a given text value.

Decimal separator A regular expression ((\.\d+)+), wrong decimal separation, is

matched with a given text value.

Symbol code in a text Property value contains HTML tags and symbols.

Non-normative lexis Property value contains non-normative or jargon Lithuanian

word roots.

Capital letter use Property value text is split into sentences. Each sentence is

checked to contain multiple capital-case words.

Date Localized applications into Lithuanian locale often tend to

have English locale date formats. To locate such mistakes

regular expressions are matched with a given text value:

• Short. Pattern: d{4}/d{2}/d{2} or d{2}/d{2}/d{4}.

• Long. Pattern: \b[A-Za-z]+ d{1.2}, d{4}\b.

• Full. Pattern: \b[A-Za-z]+day [A-Za-z]+ d{1.2},

d{4}\b.

Time Localized applications into Lithuanian locale often tend to

have English locale time formats. To locate such mistakes

regular expressions are matched with a given text value:

• Short. Pattern and long. Pattern:

\bd{1,2}:d{2}(:d{2})?\s*(am|pm)\b.

3.6. Localization issues analysis report

To provide a comprehensive analysis of issues related to the localization process Excel

report generation service forms a comprehensive issue analysis report for both use cases. The

report will be generated for both service use cases. The report consists of two sheets: the first

containing insights obtained from locale detection service (see Figure 14) and a report

highlighting issues in the localized resources (see Figure 15). The second sheet presents a

column chart providing statistics on the issues detected (see Figure 16).

The locale detection report provides valuable information on the number of Lithuanian

and unidentified localized resources locale that were identified during the process. This report

presents the number of discovered Lithuanian and unidentified locales out of all examined files.

Lithuanian or unidentified locales are counted for each resource, incrementing an appropriate

counter by one for each one identified. The report presents a clear overview of the structure of

51

the localized resource naming convention, for user to understand localization process more

effectively.

Figure 14. Locale detection report

A localized resources issue report is a comprehensive report of detected issues. The

report provides a detailed explanation of the exact file and line number where the localization

issue was discovered. Additionally, it categorizes the severity of the problem is and to which

category it belongs. As a hand to overcome localization issues, the report provides

recommendations for correction. For further assistance in the resolution of localization issues,

the report also includes online resources that accommodate a deeper understanding of the

problem at hand.

Figure 15. Localized resources issue report [in Lithuanian]

The issue statistics column chart is an effective means of gaining insight into the

inadequacies found within various issue categories, as well as their frequency of recurrence. It

should be noted, however, that any inadequacy categories that were not discovered during

inadequacy check would not be represented in the column chart.

52

Figure 16. Issue statistics column chart [in Lithuanian]

Generated Excel reports are both comprehensive and user-friendly, even for non-

technical users. Withing the file, there are three distinct report types that provide valuable

insight and guidance to users, helping to better understand and avoid potential Lithuanian

locale issues.

As described in the high-level overview of a new service developed section, the Defect

localizer service is designed to address critical localization challenges by incorporating certain

aspects of existing tools such as Localise, LocalyzerQA and ErrorSpy. More specifically,

Defect localizer combines the localization process management (structuring, organizing,

measuring, monitoring, and optimizing the process of adapting product for different target

markets [Phr23]) features of Localise, error monitoring capabilities of ErrorSpy, and

localization testing functionality of LocalyzerQA. Three distinct generated excel reports, which

aid in the localization process management by structuring, organizing, measuring, monitoring,

and optimizing detected issues. Additionally, the service accomplishes error monitoring goal

through the generation of localized resources issue and issue statistics column chart reports.

Lastly, Defect localizer verifies software behaviour, accuracy, and suitability for targeted

Lithuanian locale (localization testing) through the generation of all reports. By combining the

strongest aspects of the overviewed existing localization QA models and addressing previously

discussed challenges, the Defect localizer service provides QA features, which are not offered

by the existing tools.

3.7. Defect localizer technologies

To develop new Defect localizer service Java programming language technologies were

used. Java long-time support (LTS) version 17 programming language used to implement and

connect different frameworks: Spring Boot, Gettext PO, Spring Open API, Logstash, and

Apache POI library. REpresentational State Transfer (REST) architectural style and model-

view-controller (MVC) architectural pattern were applied to develop a well-organized service

53

source code structure. Service will be deployed to Google cloud computing provider's

infrastructure Kubernetes orchestration service.

Java is one of the most popular programming languages in today’s information

technology industry. Designed to minimise dependencies, Java is a high-level, class-based,

object-oriented programming language. It is a general-purpose programming language

allows programmers to adhere to the “write once, run anywhere” (WORA) principle,

eliminating the need for recompilation. Java code can be executed on various platforms that

support Java. Typically, Java applications are compiled to bytecode that can be executed on

any Java virtual machine (JVM) regardless of the underlying computer architecture. Therefore,

these features help to implement new service using architecture best practises and to run it

anywhere [Ora13].

Spring Boot is an open-source Java-based framework used to create micro service –

standalone and production-ready applications. It became so popular of its known advantages

[Tut22]:

• Easy to understand and develop java applications.

• Increases productivity.

• Reduces the development time.

Thus, Spring Boot framework was a choice to start developing a new Defect localizer

high-performant service.

The Gettext PO toolset is utilized for the production, maintenance, and deployment of

translation files by programmers and translators. The Gettext toolset provides many features,

including support for developer comments, a context for multiple cases, and the ability to

specify the location of a string in the source code [GNU23]. The simple structure and flexibility

of the toolset have made it one of the most widely used translation file formats.

Spring Open API is a library, which help to automate generation of application

programming interface (API – a way for two or more computer systems to communicate with

each other) documentation using Spring Boot projects (see example in Figure 2). Library works

by examining an application at runtime to infer API semantics based on spring configurations,

class structure and various annotations, which helps for documentation and service user to

understand API communication specifics [Lah22].

Logstash is another open source, light-weight data processing pipeline to ingest data

from multiple sources. It transforms data and sends to the desired destination [Ela22]. The

https://en.wikipedia.org/wiki/General-purpose_language
https://en.wikipedia.org/wiki/Programmer
https://en.wikipedia.org/wiki/Java_bytecode
https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/Computer_architecture

54

library is used for better application log writing and tracking in deployed cloud computing

service Kubernetes.

Apache POI Java library used for working with Microsoft Office formats – such as

Excel, Word, and PowerPoint [ASF22]. New service uses this library and its features to read,

write and format the Excel template report with detected issues and other reports.

JGit is pure Java library implementing Git version control system [Ecl22]:

• Repository access routines.

• Network protocols.

• Core version control algorithms.

JGit has very few dependencies, making it suitable for embedding in any Java

application, whether the application is taking advantage of other Eclipse technologies [Ecl22].

The library was used to check if the user-provided open-source repository exists. In case it

exists, the library helps to clone source code into the service file system.

Kubernetes are open-source framework for automating application deployment, scaling

(resources), and management [Kub22]. Kubernetes framework was used to deploy Defect

localizer service using Google cloud computing provider. The system helps to monitor product

states, to change the scale freely – to automate the increase of computer resources during high

user traffic. At the same time, it allowed manual work to be automated and thus save time and

labour resources.

Service adheres to the representational state transfer application programming interface

(REST API) communication pattern, which is an architectural style employed in distributed

hypermedia systems. An API is a collection of definitions and protocols that facilitate the

development and integration of application software. It is often referred to as a contract

between an information provider and an information user – establishing the content required

from the consumer (the call) and the content required by the producer (the response) [RH20].

MVC stands for model-view-controller. MVC design pattern specifies that an

application consist of a data model, presentation information, and control information (see

Figure 17) [Her21]:

• Model. The backend that contains all the data logic.

• View. The frontend or graphical user interface (GUI).

• Controller. The brains of the application that controls how data is displayed.

55

Figure 17. MVC pattern high-level architecture [Her21]

MVC architectural pattern was used to maintain a well-organized service source code

structure and separation of concerns. The pattern has other advantages for e.g.: applications

following this pattern are easily modifiable, and maintainable and the development process of

MVC applications is faster.

3.8. Scientific and practical novelty

Defect localizer service offers novel features that distinguish it from existing

localization (internationalization) quality assessment products analyzed in the literature review

section of this study. The service is designed to be lightweight and automatically detect and

correct critical localization issues while complying with Lithuanian locale cultural norms.

The following scientific novelties were developed during the work:

• New QA model, combining ISO 9000, SAE J2450, LISA QA, MQM model,

and several additionally included aspects, was developed.

• Lithuanian language localization quality evaluation.

• Issue reporting with three different sub-reports and solution guidance.

• Issue statistics.

The development of the new model implementing service attained practical

innovations:

• Automated Lithuanian language localization testing.

• Open source project localization testing.

• Public free-of-charge solution.

• Jargon / non-normative Lithuanian lexis detection.

56

The development of Defect localizer service has enabled to achieve of several

significant goals discussed at the beginning of the localization quality assurance chapter. First,

it replaces the need for manual localization QA checking. By automating the localization QA

process users are provided with a faster and more efficient way to identify and fix localization

issues. Additionally, the service offers localization QA support specifically for the Lithuanian

language, which has been underestimated in existing localization QA models. This ensures that

Lithuanian users have access to a reliable service that can help to address critical localization

issues. Furthermore, using a Defect localizer can help reduce the high costs associated with

existing models. And finally, the service provides QA for critical localization aspects, which

ensures that localized resources are accurate and culturally appropriate for the intended

audience.

57

4. Experimental evaluation of Defect localizer

Overviewed new model and Defect localizer service in the localization quality

assurance section aims to replace manual localization testing and improve the user experience

of Lithuanian-speaking end users. This study will provide an evaluation and comparison of

automated localization testing results with Defect localizer performed on open source software

projects localized into Lithuanian with manual localization. The study will assess existing

localization model translations with the new service. Moreover, the outcomes of the study will

be compared with existing localization QA product to determine the necessity of a new service

to improve the localization process. In addition, the findings of the study will be shared with

the focus group (localization experts) to collect valuable insights into their practices and the

demand for such a service. Finally, this study will identify the advantages of using the Defect

localizer service over existing localization QA models.

4.1. Localization testing with Defect localizer

 Localization testing is the process that ensures that a software application or website

is usable and adapted to the local region to which it was localized [Loc21]. In this study, we

aim to validate and verify the effectiveness of a new localization testing service through a

thorough set of steps. Firstly, we will analyze and test Lithuanian open source projects from a

popular GitHub source control management system (SCMS) with a newly developed service.

Secondly, we will compare automated localization QA with traditional manual localization

testing. Lastly, we will assess translations for open source projects using existing QA Distiller

localization QA tool and compare them with Defect localizer testing results.

To validate and verify the effectiveness of the Defect localizer service, we will start by

selecting and analyzing Lithuanian open source projects from GitHub SCMS. This step will

involve the automatic detection and correction of localization issues and the generation of

comprehensive Excel reports assisting users in overcoming and avoiding Lithuanian language

localization errors. We will compare manual versus automated localization QA to identify the

strengths and limitations of the new service.

Finally, we will evaluate translations from open source projects made by existing QA

Distiller localization tool. This step will involve an in-depth analysis of the translation quality

and accuracy generated by this service and its suitability for Lithuanian localization. Analysis

outcomes will be shared with localization experts and compared with Defect localizer testing

results.

58

Following these steps, we aim to provide a comprehensive evaluation of the

effectiveness of our newly developed service in detecting and correcting localization issues,

ensuring user experience improvement for Lithuanian-speaking users. The results of our study

will present valuable insights into the strengths and weaknesses of automated localization

testing to help to identify areas for improvement in the newly developed localization QA

model.

4.2. GitHub open source projects localization testing with Defect localizer

For this study, Linux KDE and several randomly selected GitHub open source projects

that had been localized in the Lithuanian language were chosen. Over one hundred projects

were tested and analyzed, involving the examination of over half a million localized text

strings. To collect and analyze testing results comprehensive Excel reports were used,

including examples of localization issues and statistics. To determine the total number of errors,

an issue statistics chart from each Excel project report was used, as illustrated in Figure 18.

Figure 18. Defect localizer testing results (in Lithuanian)

Linux KDE projects are developed and maintained by the open source KDE community,

which is responsible for sustaining over 200 various applications. Localization of the majority

1

5356

1900

93 1
528

6776

22
276

7
303

723 542
4 0 2

0

1000

2000

3000

4000

5000

6000

7000

8000

Defect localizer testing results

59

of these applications into the Lithuanian language is carried out by translators, developers, or

community volunteers. In the context of this study, we focused on assessing the applications

that have undergone nearly complete or full localization in Lithuanian using the Defect

localizer service.

To evaluate Linux KDE and several other projects, we used the Defect localizer open

source repository use case request. This involved submitting the HTTPS link of each project in

the request query parameter, after which the service downloaded the localized textual resources

in Lithuanian and parsed them into Property Java objects for further analysis. The majority of

the textual resources were localized using PO file format, with a few using CSV. During the

parsing process, the service removed all comments, HTML code, headers, and empty property

translations. While some applications were relatively small, containing less than a thousand

localized strings, the majority were considerably large, with more than 1000 strings and some

even exceeding 10000. A total of 533715 localized text lines were examined.

Upon analyzing open source projects Property Java objects all rule violations were

collected to generate Excel reports. An issue report was then generated to analyze the collected

errors and their respective locations, with examples of such issues presented in Table 9. In total,

16534 issues were identified through all possible Defect localizer service QA checks.

Table 9. Defect localizer identified issues examples (in Lithuanian)

Check category Issue examples

Localized resource file naming kio_jabberdisco.po, kopete.po, systemdgenie.po

Specifying locale in the file

column

No headers

Property duplication Ne, Lygis, Užmigdyti, Nepavyko, Nėra, Adresas, Ištrinti,

Nežinomas dydis, Taip, Grupė, Tipas.

Quotation Automatiškai įjungti būseną "pasitraukęs", Ar seniau

naudojote "%1" kaip slapyvardį?, Derinti Python modulį

iškviečiant jį su '-m', Serveris pranešė: "%1".

Spacing usage after number

(parameter)

%3v %2m %1s. Ilgą laiką išlaikant akumuliatorių 100%

įkrautą, akumuliatorius gali būti greičiau sugadintas.

Paskirties failų sistema palaiko tik failus iki 4GiB dydžio,

%1mėn, %1sav.

False positives: Mp3tunes, Klaida: %1%2.

Spacing after period Šis tekstas rodomas Vietų skydelyje.Aprašymą turėtų… Ši

piktograma bus rodoma Vietų skydelyje.Spustelėkite ant

mygtuko.

False positives: „.part“, įveskite .kde.org,

andrius@stikonas.eu, liudas@akmc.lt, Garso failai (*.ogg

*.wav).

60

Multiplication sign Įterpti 3x3 lentelę, 2x2, 1x1, 1x1 (mažiausias failas),

Minimali (640x480), Maža (800x600), Įpasta (1024x768),

Didelė (1280x1024), Labai didelė (1600x1200).

Hyphen usage 2010-2018, (c) 1998-2000, 1996 - 2001.

False positives: ISO-8859-5 Kirilica, ISO-8859-14, ISO-

8859-7 Graikų.

Number sign False positives: ±, •, β, PKCS#12.

Thousands separator 9,999+,

False positives: 2005,2009

Decimal separator 0.0000017, 1.6749286, 0.0000010, PI() lygu

3.141592654.

False positives: Amarok 1.4, RSS 1.0 versijos kanalas.

Symbol code in a text Visada uždraudžia vertikalią slinkimo juostą.

<qt>Turite įvesti teisingą kompiuterio vardą.</qt>.

<html><body><I>Naudotojo informacija

nepateikta</I></body></html>.
Sukurta:

Non-normative lexis CD

Capital letter use Antras žingsnis: Paskyros informacija. Eksportuoti į

Adresų knygelę. Pagrindinis Langas. Jingle Video

skambutis. Python: Dabartinis failas.

False positives: David Faure, Stephan Kulow, Bernhard

Rosenkraenzer.

Date Atpažįstamų datų pavyzdys: 05/31/2008 15:24:30.

To analyze the occurrence of issues, a column chart with statistics was utilized after

issue identification analysis. It provided statistics on the frequency of various issue categories

for each project. The results of the study revealed 6776 issues related to capital letter use, 5356

instances of property duplication, 1900 occurrences of symbol code in a text, 723 spacing errors

after a period, 542 spacing errors after a number, and 528 issues related to localized resource

file naming, 303 quotation errors, 276 problems related to decimal separation, 93 hyphen usage

errors, 22 issues related to multiplication sign usage, and only a few errors related to dates,

specifying locale in the file column, number sign, thousands separation, and non-normative

lexis.

Following this assessment step, we analyzed various open source Linux KDE and

several other projects from GitHub SCMS. Over 100 projects were examined, with more than

half a million of localized lines analyzed to collect and analyze results. During the analysis of

these projects, we presented examples of identified issues, along with the frequency of various

issue categories.

61

4.3. Manual versus automated testing with Defect localizer

In the localization quality assurance process section, we analyzed the traditional

manual localization testing process. Manual localization testing is labour-intensive and time-

consuming [OA13], and automation has been the demand for a long time [Sin17]. In this

section, we will compare traditional manual and automated localization testing with the Defect

localizer.

One of the major differences between the automated localization testing approach of

Defect localizer and manual testing is time. To perform automated localization testing, we

noticed that the Defect localizer can provide bug reports within minutes, depending on the size

of the project, while manual testing of each button, window, or modal may take hours or days.

To test more than 100 projects containing over half a million lines, it took one day using Defect

localizer, while manually reading and testing the same amount of text reading could take up to

100 times longer. Automated testing increases efficiency, especially in regression testing

[Kar11], as it can quickly verify existing translations, which may be missed in manual testing

due to the human factor. Consequently, less labor time also leads to faster time to market.

Automation decreases costs by relieving the manual workload: provides the possibility

to execute more tests in less time and fluent reuse of testing scripts [Kar11]. Testing open

source projects with Defect localizer allowed us to re-execute and reuse testing scripts multiple

times, without human intervention, enabling us to save time and effort. In the long run, it can

lead to a reduction in software development costs for organizations.

In general, we see that the literature agrees that test automation is plausible for saving

labour time, enhancing quality, and reducing costs in the long run [Kar11]. The development

of a new QA model helped to achieve multiple of our objectives: automate localization QA

checking, localization QA support for the Lithuanian language, and help to reduce high

localization costs.

4.4. Github open source projects localization testing with QA Distiller

To compare localization testing results with the Defect localizer for the translation

assessment step, we chose QA Distiller. Linux KDE and several other open source projects

were utilized in this step. In total, we analyzed over a hundred projects, along with more than

half a million localized lines, using this QA tool. To analyze the testing results and determine

the total number of each error category, we used QA Distiller HTML reports with identified

issues and issue occurrence rate table, as illustrated in Figure 19.

62

Figure 19. QA Distiller testing results (in Lithuanian)

In the overview of localization (internationalization) quality assessment products

section, four different localization QA tools were reviewed. In order to compare the testing

results gathered during the analysis of open source projects localized in the Lithuanian

language with a Defect localizer, QA Distiller was selected as a choice. This decision was made

based on several reasons. Firstly, it was noted that LocalyzerQA and ErrorSpy do not support

localization testing with the Lithuanian language. Secondly, the Localise tool is mainly focused

on managing the localization process rather than providing QA checks. Therefore, it was not

worth comparing results with these products. Consequently, it was determined that the QA

model of the QA Distiller tool was more similar to the Defect localizer due to its rule-based

QA approach.

In Table 10, we compared the QA checks offered by Defect localizer and QA Distiller.

We observed that the majority of the checks available in the Defect localizer are not supported

by QA Distiller. Furthermore, some checks are more comprehensive and combine multiple

categories, such as spacing (spacing usage after number and period in Defect localizer) or

numerical (thousand and decimal separator in Defect localizer) category checks. Additionally,

QA Distiller allows users to upload a set of non-normative or terminology for matching and

identifying non-normative / jargon issues with a given text.

Table 10. Defect localizer QA check comparison with QA Distiller

Check category QA Distiller

Localized resource file

naming

-

569

3802

3303

207

0

500

1000

1500

2000

2500

3000

3500

4000

Didžiųjų raidžių
naudojimas

Numerio skaitinės
reikšmės naudojimas

Nelietuviškų kabučių
naudojimas

Tarpo naudojimas

QA Distiller testing results

63

Specifying locale in the file

column

-

Property duplication -

Quotation +

Spacing usage after number

(parameter)

+

Spacing after period +

Multiplication sign -

Hyphen usage -

Number sign -

Thousands separator +

Decimal separator +

Symbol code in a text -

Non-normative lexis +

Capital letter use +

Date +

Time -

It is important to note that the QA check process of the QA Distiller differs from that

of the Defect localizer. During the text reading phase, QA Distiller tests not only the actual

localized text but also all comments, HTML code, headers, and empty property translations are

also being tested. Consequently, the results of identified issues vary, and identified issues are

not as accurate as compared to those of the Defect localizer.

To analyze the occurrence of issues, an issue occurrence rate table in the HTML report

(Figure 20) was utilized after the issue identification step, with examples of such issues

presented in Table 11. It provided statistics on the frequency of various issue categories for

each project. The results of the study revealed 3802 numerical, 3303 instances of spacing

errors, 569 occurrences of multiple capital letter use in a text, and 207 spacing issues.

Table 11. QA Distiller identified issues examples

Check category Issue examples

Quotation Persijungti į "Insider" kasdienį kanalą, Neveiklus - '%1',

Albumas "%1" iš %2, Nepavyko inicializuoti iPod'o,

Serveris pranešė: "%1".

False positives: <h1 align='center' style='font-size: large;

text-decoration: underline'>Legend:</h1><ul

type='square'>, <emphasis strong='true'>

Spacing 42°C, 2m, Tipas 1C.

Numerical MIME-Version: 1.0, 2022-11-17 23:34+0200, X-

Generator: Lokalize 1.5, PI() lygu 3.1415926.

Capital letter use %1 OA (RAM), I,II,III, VCD & AHD, GMT+12:00,

N/A, DEV BUILD.

64

Figure 20. QA Distiller HTML issue occurrence rate table example

In the context of this evaluation phase, where we analyzed various open source Linux

KDE and several other projects. While examining over 100 projects, which contained more

than half a million localized lines, we discovered numerous quotation mark, spacing, numerical

and capital letter use issues. These errors were identified not only in the HTML code in a given

text but also in the actual text itself, therefore, results are not as precise as compared with the

Defect localizer. A detailed comparison of results between QA Distiller and Defect localizer

will be presented in the next section.

4.5. Defect localizer versus QA Distiller localization testing

Both Defect localizer and QA Distiller employ LISA QA and MQM QA models. To

validate and verify the results, we used both tools. However, as the QA check set and

localization evaluation process differ between the two tools, we obtained different results for

each. In this section, we will review the testing outcomes.

In Table 11, a comparison was made between the QA checks offered by the QA Distiller

and the Defect localizer, highlighting the differences in their functionalities. While both tools

support quotation checks, QA Distiller performs this check not only in the actual text but also

in HTML code and file headers, leading to more of issues in these areas. Similarly, QA Distiller

performs a spacing check. However, it is important to note that the Defect localizer also

identified some false positive issues, e.g., spacing after period in emails, web page hyperlinks,

file extensions, spacing after number in application names, and multiple parameter bindings.

Defect localizer checks for property duplications and symbol code in text usage. While

performing the validation and verification phase, our analysis revealed a total of 5356

65

occurrences of duplication and 1900 instances of symbol code in a text. Identifying and

resolving instances of duplication and symbol usage in a text could result in savings in space,

as well as improve the organization and maintainability of file structure. Modern content

management systems can format text within a source code, making it unnecessary to store

formatting information in localized resources. Consequently, duplication and symbol in a text

check is an important aspect of localization QA.

In our experiment phase using Defect localizer to perform multiplication sign, hyphen

usage, we observed that when localizing applications into Lithuanian language, translators

often use the English version of hyphen and “x” letter instead of the correct Lithuanian

multiplication sign. We also found that there were false positive mistakes in standard, language

ISO codes when performing hyphen check.

Number sign QA check yielded false positive issues in our experiment. We discovered

that these issues were detected in HTML symbols within the actual text. Additionally, the

thousand and decimal separator check results also indicated that translators tend to use the

English version of thousand and decimal separators. We also identified some false positive

issues in thousand separator mistakes between two dates, which are separated by a comma

without a space and decimal separation in application version numbers. While the majority of

QA Distiller numerical checks identified false positive issues in file headers, header dates, and

application versions.

In the validation and verification phase, while performing a non-normative check with

a Defect localizer, 2 issue occurrences were identified. However, QA Distiller could not find

any. Both tools support date check, but with the Defect localizer, only one instance was found,

while QA Distiller did not find any.

 Additionally, both tools support capital letter use check. The Defect localizer checks if

multiple words are starting with a capital letter within a sentence, while QA Distiller only finds

fully capitalized words. As a result, the Defect localizer identified more occurrences of this

issue, although some false positives were identified with names and surnames.

Based on the examination of over 100 projects containing more than half a million lines

of text, it was observed that QA Distiller is not yet mature enough and suitable for performing

localization quality assessment for the Lithuanian language. The study discovered numerous

false positive issues identified in the HTML code and the actual text itself. Additionally, some

critical aspects, such as thousand and decimal separation, spacing after a period, and number

(parameter), were missed by QA Distiller. As a result, Defect localizer’s quality assurance is

66

essential in ensuring that localized software products meet the needs and expectations of global

audiences.

4.6. Sharing findings with localization experts: insights into practices and

Defect localizer service demand

Based on comprehensive validation and verification set of steps, we determined that

currently, there is no equivalent tool for direct comparison with the Defect localizer. To gain

insights into localization practices, methods, and tools employed by industry experts, we

conducted interviews with several professionals. We introduced our newly created QA model

and presented the experimental evaluation results of the Defect localizer service. To prove the

necessity of the Defect localizer service, we utilized qualitative research method and asked to

provide feedback from the experts.

A focus group consisting of two software engineers and one researcher, all having

expertise in the field of software localization, were interviewed. The participants were asked

to share methods, tools, quality assurance models, and practices they employ in the localization

process of software. Additionally, they were asked to identify any specific features they lack

in mentioned tools and quality assurance models. One of the software engineers and researcher

rely on manual software localization methods and utilize tools that do not offer automatic

localization quality assurance resulting in significant manual effort investment to verify the

accuracy of localized content. Furthermore, all participants expressed their agreement on the

absence of “automated QA check" and guidance for resolving issues in the tools they currently

use.

Following the presentation of the newly created QA model and its implemented service,

participants were asked to provide their perspectives on the potential success of Defect localizer

in the Lithuanian market and the identified advantages. One of the software engineers and

researcher expressed the belief that “small local business is looking for qualified software with

good business language translation. It saves user time and is provided with the report of

detected issues, their locations, guidance on how to overcome them and issue statistics”. The

new service could contribute to the success of small local businesses by saving user time

verifying the localized resources and providing comprehensive reports. Participants believe

that the Defect localizer implementation has the potential to effectively reduce localization

issues.

Subsequently, participants were asked to share their perspectives on why the Lithuanian

language is often overlooked in the existing QA models and why manual localization testing

67

remains dominant. One of the software engineers speculated: “models are prepared of not

native Lithuanian language speakers”. The lack of native Lithuanian speakers in the

development of existing QA models could be a contributing factor. Another software engineer

believes that the relatively small size of the Lithuanian market and the complexity of the

language might contribute. Furthermore, participants expressed the belief that “there are no

good tools for translation assessment”. The absence of robust automatic localization testing

tools is a key factor. They also emphasized that the creation of a new tool would demand

significant effort and might not yield enough value compared with manual testing.

Furthermore, participants were requested to share their perspectives on additional

features they would like to see incorporated into the new QA model. One software engineer

expressed his viewpoint, stating that the: “translation assessment should be done in the business

language aspect“. This suggestion highlights the desire for the new service to validate the

translations in the business language use.

Based on the insights gathered during the interview, we conclude that the majority of

industry professionals rely on manual localization testing and express demand for an automatic

alternative. Participants believe that the new Defect localizer service has the potential for

success in the market due to its ability to address and mitigate Lithuanian localization issues.

Moreover, they think that the service would reduce testers' effort in verifying the accuracy of

localized resources.

4.7. Advantages of Defect localizer and further improvements

Through a comprehensive set of steps in the validation and verification phase, we have

identified several advantages in comparison to existing localization QA models. The

development of the Defect localizer has allowed us to successfully achieve our established set

of goals. However, during the experimentation phase, we identified a couple of areas for

potential improvements, to simplify activities of testers.

One of the most significant advantages is the automation of localization testing, which

allows for a faster and more efficient way to identify and resolve localization issues.

Additionally, the service offers localization QA support specifically for the Lithuanian

language, which has been overlooked in existing localization QA models. This helps to ensure

that Lithuanian users have access to a reliable service that can address critical localization

issues. Moreover, our service proved effective in identifying genuine Lithuanian localization

issues, which can lead to user experience improvement for Lithuanian-speaking users.

Furthermore, our service is provided free of charge, potentially reducing the high costs of

68

existing localization QA models. Finally, the service provides QA for critical localization

aspects, ensuring that localized resources are accurate and culturally appropriate for the

intended Lithuanian audience.

During the validation and verification phase, several false positive edge cases were

identified in spacing usage after the number (parameter) and period, number sign, thousand

and decimal separator, and capital letter use checks. To improve spacing usage after the number

(parameter) and period, also for capital letter use and number sign checks, we propose allowing

users to upload terminologies and exception words. This could prevent identifying spacing

usage after a number issues in application names with numbers, parameter bindings, spacing

after period errors in emails, web page hyperlinks, file extensions, capital letter use issues in

names and surnames, and lastly, number sign in HTML symbols. This could also benefit the

decimal separation check, as users could define their application name with a version in the

exclusion list. Furthermore, to improve checks for spacing after period issues, we suggest

having a predefined set of extensions. To improve the thousand separator checking between

two dates separated by a comma without a space, we propose correcting the regular expression

to match numbers divided by threes only.

In the validation and verification phase, it was found that no non-normative lexis errors

were detected. However, to improve this check, we propose the implementation of a predefined

list of non-normative or jargon words, including English words with Lithuanian endings.

To conclude, based on the comprehensive validation and verification phase, we believe

that Defect localizer has the potential to succeed in the market of Lithuanian localization QA

models with a few key improvements. The Defect localizer was utilized with more than 100

open source projects localized in Lithuanian. The service demonstrated the ability to ensure

that localized software products meet the needs and expectations of global audiences,

contributing to improved user experiences and increased market success.

69

Results and conclusions

In this research work, new localization quality assurance model and its implementation,

automating the detection of the selected localization issues in the textual localizable software

resources of the Lithuanian locale, have been developed.

The following results were achieved during the work:

1. Specific locale elements that can be automatically tested and used in the

development of a new QA model were identified.

2. New QA model, combining several aspects of ISO 9000, SAE J2450, LISA QA,

and MQM models, has been developed.

3. A new QA model implementation has been developed to detect and fix

localization issues. The development of a new service helped us to achieve

several goals:

3.1.automate localization QA checking.

3.2. provide support for the Lithuanian language localization QA.

3.3. reduce the high costs of existing localization QA models.

3.4. provide QA for critical localization aspects.

3.5. improve the user experience of Lithuanian-speaking users.

4. The new model implementing service has been practically applied with over

100 open source projects to identify and fix Lithuanian locale localization

issues.

After obtaining these results, we conclude that:

1. Lithuanian language is overlooked by existing localization QA models and

tools.

2. During the software localization into Lithuanian, many cultural elements use

English-based locale conventions and formatting.

3. Localized resources contain many property duplications and HTML symbols.

4. Localization industry experts rely on manual localization testing and express a

belief in automatic Defect localizer potential to address and mitigate Lithuanian

localization issues.

5. The amount of bugs found in publicly distributed localized software resources

confirms the need for such a service.

The new localization QA model allows us to implement localization QA evaluation

service for the Lithuanian language. The new service can assess localized textual resources

70

using two cases. Using these cases, it is possible to identify and improve the user experience

of Lithuanian-speaking users. Service simplifies the activities of testers, and the localization

QA becomes more efficient and reliable. The developed service contributes to enhancing

quality of software localization to Lithuanian locale.

71

References

[ASF22] Apache software foundation. Apache POI – the Java API for Microsoft

Documents (2022). [visited 2022-11-21]. Access through the Internet:

<https://poi.apache.org/index.html>

[BC21a] Baeldung community. A guide to POSIX (2021). [visited 2022-05-17]. Access

through the Internet: <https://www.baeldung.com/linux/posix>

[BC21b] Baeldung community. Internationalization and localization in Java 8 (2021).

[visited 2022-05-20]. Access through the Internet:

<https://www.baeldung.com/java-8-localization>

[Ber21] Berger, C. F. (2021). Software localization (L10N) quality assurance from the

tester’s perspective. CFB scientific translations.

[BS13] Bhatia, M., Sharma, A. (2013). A generalized quality model for localized

software product. Research Inventory: International Journal of Engineering and

Science. Vol.3, Issue 10 (October 2013), PP 37-46.

[Bla21] Blackwood, M. (2021). 7 most common localization problems in websites and

software. [visited 2021-11-07]. Access through the Internet: <https://www.c-

sharpcorner.com/article/7-most-common-localization-problems-in-websites-and-

software/>

[BOK20] Bayram, B., Ozkan, H., and Kacabas, I. (2020). An investigation of localization

testing processes in the software industry. International journal of advanced

computer science and applications, 434-442. DOI:

10.14569/IJACSA.2020.0111156

[Car98] Carey, J. Creating global software: A conspectus and review. Interacting with

Computers, Special Issue: Shared values and shared interfaces, 9, 4, 1998, p.

449–465.

[CM22] Couto, M., R., L., Miranda, B. (2022). Towards improving automation support

for internationalization and localization testing. Anais Estendidos do Simpósio

Brasileiro de Qualidade de Software conference.

DOI:10.5753/sbqs_estendido.2022.227653.

[DGJ10] Dagiene V., Grigas G., and Jevsikova T. (2010). Programinės įrangos

lokalizavimas. Matematikos informatikos ir institutas.

https://poi.apache.org/index.html
https://www.baeldung.com/linux/posix
https://www.baeldung.com/java-8-localization
https://www.c-sharpcorner.com/article/7-most-common-localization-problems-in-websites-and-software/%3e
https://www.c-sharpcorner.com/article/7-most-common-localization-problems-in-websites-and-software/%3e
https://www.c-sharpcorner.com/article/7-most-common-localization-problems-in-websites-and-software/%3e

72

[DG06] Dagiene, V., Grigas, G., (2006). Software Lithuanianization. State commission for

Lithuanian language. [visited 2022-05-13]. Access through the Internet:

<http://www.vlkk.lt/naujienos/kitos-naujienos/programines-irangos-lietuvinimas>

[DJ09] Dagienė, V., Jevsikova, T. (2009). Cultural Elements in Internet Software

Localization. In: Lenca, P., Brézillon, P., Coppin, G. (guest eds.) Revue

d‘intelligence artificielle. Human-centered processes – Current trends. Volume 23

– no 4/2009. Hermes – Lavoisier, p. 485–501.

[DOG22] Dokumentation ohne Grenzen. ErrorSpy quality assurance. [visited 2022-06-

09]. Access through the Internet: <https://www.dog-gmbh.de/en/products-

shop/errorspy-quality-assurance/>

[DOG23] Dokumentation ohne Grenzen. Quality assurance with ErrorSpy. [visited 2023-

03-10]. Access through the Internet: <https://www.dog-

gmbh.de/technologien/qualitaetssicherung-mit-errorspy/>

[Ela22] Elastic. Logstash: centralize, transform & stash your data (2022). [visited 2022-

11-21]. Access through the Internet: <https://www.elastic.co/logstash/>

[Ecl22] Eclipse. Eclipse JGit (2022). [visited 2022-12-28]. Access through the Internet:

<https://www.eclipse.org/jgit/>

[Ess02] Esselink, B., (2002). The evolution of localization. Lionbridge. [visited 2022-

05-07]. Access through the Internet:

<http://www.intercultural.urv.cat/media/upload/domain_317/arxius/Technolog

y/Esselink_Evolution.pdf>

[GFG20] Geeks for geeks. Limitation of distributed system (2020). [visited 2021-11-07].

Access through the Internet: <https://www.geeksforgeeks.org/limitation-of-

distributed-system/>

[GNU23] GNU org. The format of PO files. (2023). [visited 2023-03-28]. Access through the

Internet: <https://www.gnu.org/software/gettext/manual/html_node/PO-

Files.html>

[Hall02] Hall, P. (2002). Bridging the digital divide, the future of localization. Electronic

Journal of Information Systems in developing countries. [visited 2022-05-03].

Access through the Internet:

<https://www.researchgate.net/publication/277856000_Bridging_the_Digital_Divi

de_the_Future_of_Localisation>

http://www.vlkk.lt/naujienos/kitos-naujienos/programines-irangos-lietuvinimas
https://www.dog-gmbh.de/en/products-shop/errorspy-quality-assurance/
https://www.dog-gmbh.de/en/products-shop/errorspy-quality-assurance/
https://www.dog-gmbh.de/technologien/qualitaetssicherung-mit-errorspy/
https://www.dog-gmbh.de/technologien/qualitaetssicherung-mit-errorspy/
https://www.elastic.co/logstash/
https://www.eclipse.org/jgit/
http://www.intercultural.urv.cat/media/upload/domain_317/arxius/Technology/Esselink_Evolution.pdf
http://www.intercultural.urv.cat/media/upload/domain_317/arxius/Technology/Esselink_Evolution.pdf
https://www.geeksforgeeks.org/limitation-of-distributed-system/
https://www.geeksforgeeks.org/limitation-of-distributed-system/
https://www.gnu.org/software/gettext/manual/html_node/PO-Files.html
https://www.gnu.org/software/gettext/manual/html_node/PO-Files.html
https://www.researchgate.net/publication/277856000_Bridging_the_Digital_Divide_the_Future_of_Localisation
https://www.researchgate.net/publication/277856000_Bridging_the_Digital_Divide_the_Future_of_Localisation

73

[Her21] Hernandez, R. D. (2021). The Model View Controller Pattern – MVC

Architecture and Frameworks Explained. [visited 2023-01-02]. Access through

the Internet: <https://www.freecodecamp.org/news/the-model-view-controller-

pattern-mvc-architecture-and-frameworks-explained/>

[IBM16] IBM corporation. Test cases, test suites, and test execution (2016). [visited

2023-01-05]. Access through the Internet:

<https://www.ibm.com/docs/en/elm/6.0.3?topic=testing-test-case-test-suite-

overview>

[ISO99] ISO/IEC 15897 (1999). Information technology – Procedures for registration of

cultural elements.

[ISO15a] ISO/IEC 9000 (2015). Quality measurement systems – fundamentals and

vocabulary.

[ISO15b] ISO/IEC 17100 (2015). Translation services - requirements for translation

services.

[Kar11] Karusinen et al. (2011). Trade-off between automated and manual software

testing. International journal of system assurance engineering and management.

[Kub22] Kubernetes. Production-grade container orchestration (2022). [visited 2022-

11-23]. Access through the Intenet: <https://kubernetes.io/>

[Lah22] Lahsen, N. (2022). Open API 3 and Spring boot. [visited 2022-11-21]. Access

through the Internet: <https://springdoc.org/>

[LBU13] Lommel, A., R., Burchardt, A., Uszkoreit, H. (2013). Multidimensional Quality

Metrics: A Flexible System for Assessing Translation Quality.

[Lin22] Lingoport, inc. LocalyzerQA: linguistic review made easy [visited 2022-06-

09]. Access through the Internet: <https://wiki.lingoport.com/LocalyzerQA>

[Lin23] Lingoport, inc. LocalyzerQA: a new approach to improving translation quality

and speed [visited 2023-03-10]. Access through the Internet:

<https://lingoport.com/localyzerqa-linguistic-qa/>

[Loc21] Localise, inc. Localization testing: what is it and how to do it. (2021). [visited

2023-03-17]. Access through the Internet:

<https://lokalise.com/blog/localization-testing/>

https://www.freecodecamp.org/news/the-model-view-controller-pattern-mvc-architecture-and-frameworks-explained/
https://www.freecodecamp.org/news/the-model-view-controller-pattern-mvc-architecture-and-frameworks-explained/
https://www.ibm.com/docs/en/elm/6.0.3?topic=testing-test-case-test-suite-overview
https://www.ibm.com/docs/en/elm/6.0.3?topic=testing-test-case-test-suite-overview
https://kubernetes.io/
https://springdoc.org/
https://wiki.lingoport.com/LocalyzerQA
https://lingoport.com/localyzerqa-linguistic-qa/
https://lokalise.com/blog/localization-testing/

74

[Loc22] Localise, inc. Localise: localization workflow management [visited 2022-06-

04]. Access through the Internet: <https://lokalise.com/product/localization-

workflow-management>

[Loc23a] LocalePlanet. ICU Locale “Lithuanian (Lithuania)” (lt_LT) (2023). [visited

2023-01-02]. Access through the Internet:

<https://www.localeplanet.com/icu/lt-LT/index.html>

[Loc23b] Localise, inc. Localise: translation quality assurance [visited 2023-03-10].

Access through the Internet: <https://lokalise.com/product/translation-quality-

assurance>

[MH15] Mukundan, S., Hedge, J. (2015). Software localization: some issues and

challenges.

[Mie22] Mieke, (2022). Software localization quality assurance: what is it and why does it

matter? [visited 2022-10-30]. Access through the Internet:

<https://laoret.com/blog/software-localization-quality-assurance-what-is-it-and-

why-does-it-matter/>

[OA13] Owens, D., Anderson, M. (2013). A generic framework for automated quality

assurance of software models supporting languages of multiple paradigms.

Department of Computing, Edge Hill University, Ormskirk, Lancashire.

Academy publisher.

[OC10] Oracle Corporation. What is a locale? (2010). Oracle documentation. [visited

2022-05-13]. Access through the Internet: <https://docs.oracle.com/cd/E19253-

01/817-2521/overview-39/index.html>

[OC22] Oracle Corporation, and/or its affiliates. Internationalization tutorial. Oracle

documentation. [visited 2022-06-04]. Access through the Internet:

<https://docs.oracle.com/javase/tutorial/i18n/intro/index.html>

[Ora13] Oracle corporation. Introduction to Java technology (2013). [visited 2022-11-21].

Access through the Internet:

<https://www.oracle.com/java/technologies/introduction-to-java.html>

[PGD14] Plasseraud, S., Graber, A., Deguerry, G. (2014). The true cost of localization

QA: an empirical study. Proceedings of the 17th Annual Conference of the

European Association for Machine Translation (EAMT).

https://lokalise.com/product/localization-workflow-management
https://lokalise.com/product/localization-workflow-management
https://www.localeplanet.com/icu/lt-LT/index.html
https://lokalise.com/product/translation-quality-assurance
https://lokalise.com/product/translation-quality-assurance
https://laoret.com/blog/software-localization-quality-assurance-what-is-it-and-why-does-it-matter/
https://laoret.com/blog/software-localization-quality-assurance-what-is-it-and-why-does-it-matter/
https://docs.oracle.com/cd/E19253-01/817-2521/overview-39/index.html
https://docs.oracle.com/cd/E19253-01/817-2521/overview-39/index.html
https://docs.oracle.com/javase/tutorial/i18n/intro/index.html
https://www.oracle.com/java/technologies/introduction-to-java.html

75

[Phr23] Phrase. Localization management: what it is, and why it matters for global worth.

(2023). [visited 2023-03-20]. Access through the Internet:

<https://phrase.com/blog/posts/localization-management/>

[RH20] Red Hat. What is a REST API? (2020). [visited 2022-11-26]. Access through the

Internet: <https://www.redhat.com/en/topics/api/what-is-a-rest-api>

[Sch02] Schäler, R. (2002) The Cultural Dimensions in Software localization.

Localisation Focus, vol. 1, isssue 2.

[Sin17] Singh et al. (2017). Fault localization in software testing using soft computing

approaches. 4th International Conference on Signal Processing, Computing and

Control (ISPCC). Access through the Internet:

<https://www.researchgate.net/publication/322713266_Fault_localization_in_

software_testing_using_soft_computing_approaches>

[Twa18] Twardar, M., O., (2018). A brief history of localization. [visited 2022-05-10].

Access through the Internet: <https://www.translationroyale.com/history-of-it-

localization/>

[Tom20] Tomedes. Translator’s blog. What is localization testing? (2020) [visited 2022-10-

24]. Access through the Internet: <https://www.tomedes.com/translator-

hub/localization-testing>

[Tut22] Tutorials point. Spring boot – introduction (2022). [visited 2022-11-21]. Access

through the Internet:

<https://www.tutorialspoint.com/spring_boot/spring_boot_introduction.htm#>

[UCLDR21] Unicode CLDR: CLDR 40 release note. [visited-2022-06-03]. Access through

the Internet: <https://cldr.unicode.org/index/downloads/cldr-40>

[UCLDR22] Unicode CLDR: Unicode CLDR project. [visited 2022-05-29]. Access through

the Internet: <https://cldr.unicode.org/>

[UO22] Unicode organization. Unicode data markup language: Part 2. [visited 2022-

05-30]. Access through the Internet: <https://unicode-

org.github.io/cldr/ldml/tr35-general.html#Contents>

[Woy01] Woyde, R. (2001). Introduction to SAE J2450 translation quality metric.

[Yam23] Yamagata. QA Distiller: find translation mistakes easy way (2023). [visited

2023-04-23]. Access through the Internet: <https://www.qa-distiller.com/en>

[Yij05] Yijun et al. (2005). Making XML document markup international.

https://phrase.com/blog/posts/localization-management/
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.researchgate.net/publication/322713266_Fault_localization_in_software_testing_using_soft_computing_approaches
https://www.researchgate.net/publication/322713266_Fault_localization_in_software_testing_using_soft_computing_approaches
https://www.translationroyale.com/history-of-it-localization/
https://www.translationroyale.com/history-of-it-localization/
https://www.tomedes.com/translator-hub/localization-testing
https://www.tomedes.com/translator-hub/localization-testing
https://www.tutorialspoint.com/spring_boot/spring_boot_introduction.htm
https://cldr.unicode.org/index/downloads/cldr-40
https://cldr.unicode.org/
https://unicode-org.github.io/cldr/ldml/tr35-general.html#Contents
https://unicode-org.github.io/cldr/ldml/tr35-general.html#Contents
https://www.qa-distiller.com/en

76

Term definitions

Internationalization Process of generalizing a product so that it can process

(maintain) different languages and cultural attitudes

without redesigning it.

Locale Definition of the subset of a user’s information technology

environment that depends on language, territory, or other

cultural customs.

Localization Process of adapting a product or content to a specific

location or market.

Localization issue (bug) The issue in software cultural elements caused by adapting

a product or content to a specific location or market.

Localization quality

assurance

Process of ensuring that software can be used in different

geographic areas this could mean considering language,

local conventions etc.

77

Abbreviations

API Application programming interface

CLDR Common locale data repository

ICU International component for Unicode

JVM Java virtual machine

LISA Localization industries standards association

LTS Long-time support

MQM Multidimensional quality metrics

MVC Model viewer controller

NLP Natural language processing

OS Operating system

POSIX Portable operating system interface

REST Representational state transfer

SCMS Source control management system

QA Quality assurance

TMS Translation management systems

TQS Translation quality score

UI User interface

	1. Introduction
	2. Software localization
	2.1. Localization history literature overview
	2.2. Software localization process
	2.3. Software locale
	2.4. Software cultural elements
	2.4.1. Alphabet and names
	2.4.2. Personal name formatting
	2.4.3. Date and time formats
	2.4.4. Measuring system
	2.4.5. Decimal fractions and thousands separators
	2.4.6. Currency formatting
	2.4.7. Postal address and telephone number format

	2.5. Software localization-related standards
	2.5.1. POSIX family standards
	2.5.2. ISO/IEC 15897 standard
	2.5.3. CLDR standard

	2.6. Java localization capabilities
	2.7. Overview of existing localization (internationalization) quality assessment products

	3. Localization quality assurance
	3.1. Overview of objectives for a new localization quality assurance service
	3.2. Existing localization QA models
	3.3. Localization quality assurance process
	3.4. High-level overview of a new service developed
	3.4.1. Direct resource upload inadequacy check use case
	3.4.2. Open-source repository resource inadequacy check use case

	3.5. Localization property grammar checks
	3.6. Localization issues analysis report
	3.7. Defect localizer technologies
	3.8. Scientific and practical novelty

	4. Experimental evaluation of Defect localizer
	4.1. Localization testing with Defect localizer
	4.2. GitHub open source projects localization testing with Defect localizer
	4.3. Manual versus automated testing with Defect localizer
	4.4. Github open source projects localization testing with QA Distiller
	4.5. Defect localizer versus QA Distiller localization testing
	4.6. Sharing findings with localization experts: insights into practices and Defect localizer service demand
	4.7. Advantages of Defect localizer and further improvements

	Results and conclusions
	References

