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1 Introduction

Absorption Spectroscopy: a tool for material analysis

When electromagnetic radiation interacts with a sample, the different frequencies that make
up the input radiation (input spectrum) can be absorbed differently by the sample. Absorption
spectroscopy refers to the measurement of the absorption of electromagnetic radiation as a
function of frequency (the absorption spectrum). The beginning of absorption spectroscopy can
be dated back to the beginning of the XIX century, to the works of William Hyde Wollaston,
William Herschel, and Joseph Von Fraunhofer, to cite a few [1]. One of the first applications
of absorption spectroscopy was to measure the absorption spectrum of light coming from the
Sun. With the help of work developed by Gustav Kirchoff and Robert Bunsen, it was concluded
that each chemical element absorbs electromagnetic radiation at discrete frequencies, being the
distribution of these array of frequencies unique for each element [2]. As a consequence, the
spectrum of light coming from the Sun shows what are the main chemical elements present
at the Sun. At the beginning of the XX century, the invention of Quantum Mechanics gave a
full explanation for this fact. The absorption spectrum is related to the particular distribution of
energy levels of each chemical element, that is a unique fingerprint of each element.

Inspection of the absorption spectrum of a sample is a tool routinely used in many
applications to determine specific aspects of its composition. Sometimes one is interested
only in the degree of absorption of a few frequencies. This is the case of a pulse oximetry,
aimed at measuring the oxygen saturation in the arterial blood that provides information
on the adequacy of respiratory function [3]. The key enabling tool of pulse oximetry is
the measurement of the degree of absorption of the oxygenated/deoxygenated hemoglobin
molecules at two different wavelengths, where the difference in absorption can be most easily
detected. From a technological point of view, a pulse oximeter requires two lasers that emit at
the wavelengths chosen and optical detectors sensitive enough at the corresponding wavelengths.

When one is interested in measuring the absorption spectrum in a certain frequency range,
several experimental schemes can work. For instance, one might use a laser with broadband
emission in the frequency range of interest, and tunable filters that can select small regions of
the spectrum. One robust and low-cost solution are filter spectrometers designed for the NIR
mounted on a rotating wheel. The wheel has either a set of filters with predefined wavelength
regions for a specific application or a set of filters for the region of interest [4]. This approach
was used to characterize the optical properties of graphene prepared on top of Si wafers with a
certain thickness of SiO2 [5]. They used white light with 12 narrowband filters with bandwidth
∼ 10 nm that covered the wavelength range from 410 nm to 740 nm.
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Instead of a broadband laser followed by narrowband filters, one can use a tunable laser that
covers the same frequency range of interest. These frequency swept lasers periodically tune the
optical wavelength of a laser source through a certain range, which can be a relatively large
range of e.g. 100 nm or more. At the detection stage, one can measure the absorption spectrum
by means of a spectrometer, which at its most fundamental, consists of a diffraction grating or a
prism, that separates light into its wavelength components with certain resolution.

Technological limitations of Absorption Spectroscopy

With the development of new light sources, absorption spectroscopy techniques have
expanded into new frequency bands. Absorption spectroscopy can be classified according to the
frequency band considered: ultraviolet-visible (UV-VIS) from ∼ 175 to ∼ 750 nm, near-infrared
(NIR) from 0.8 to 2.5 𝜇m, mid-infrared (MIR) from 2.5 to 25 𝜇m, and far-infrared (FIR) from
25 to 1000 𝜇m [6]. Choosing one frequency band over others to characterize the chemical
composition of a sample depends mainly on its electromagnetic response, what lasers can
efficiently stimulate the molecular transitions of the chemical components that make the sample.

Although doing absorption spectroscopy at the optimum frequency band could be a valuable
source of information about the sample, the technology available at this frequency band might
seriously limit the capabilities of absorption spectroscopy. Important considerations might
be the unavailability of robust, low-cost, or ready-to-use light sources at a specific frequency
range, the need to use high-cost optical equipment, and the lack of appropriate optical elements
(narrowband filters) and highly sensitive detectors. For instance, the mid and far infrared optical
ranges might provide useful information for health diagnostics, environmental sensing, and
material analysis [7]. However, if one requires detector sensitivity at the single-photon level,
the most efficient single-photon counting modules are at around ∼ 800 nm.

An important issue concerning the achievable resolution in absorption spectroscopy is the
bandwidth limitation of narrowband filters at certain frequency bands, especially if one restricts
to use commercially available optical equipment. For example, the narrowest low-cost spectral
filter available commercially at ∼ 810 nm has a bandwidth between 3 and 5 nm. For comparison,
the best filters commercially available are designed for the frequency range corresponding to
optical communications, i.e. ∼ 1550 nm. In this frequency range, the need to separate optical
channels to enhance transmission capacity has enabled the production of narrowband filters
with bandwidths not easily available at other frequency bands. In the C band, from 1527 to
1567 nm, filters with bandwidths of 10 GHz, i.e., 0.08 nm at 1550 nm, are commercially
available.
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Quantum light: how advanced technology in one frequency band can
assist absorption spectroscopy in another frequency band with inferior
technology

In this Master thesis, we show that the use of quantum light allows us to overcome some
of the technological limitations that prevent the application of absorption spectroscopy at
certain frequency bands or degrade its performance because of limitations on the bandwidth
of narrowband filters or the sensitivity of optical detectors. We consider two schemes. The
first scheme makes use of frequency-entangled paired photons at different frequency bands
and needs the measurement of coincidences between paired photons. The second scheme is
based on the idea of quantum interference in a SU(1,1) interferometer and does not require the
measurement of coincidences.

The first scheme that we will consider makes use of highly frequency-entangled signal/idler
photon pairs generated via spontaneous parametric down-conversion (SPDC). The signal
photons have frequency 𝜔𝑠 + Ω and the idler photons have frequency 𝜔𝑖 − Ω, where 𝜔𝑠,𝑖

are the central frequencies of signal/idler photons and Ω is the frequency deviation from the
corresponding central frequency. Signal and idler photons are generated at different frequency
bands. The high degree of entanglement is achieved by using a pump beam with a bandwidth
(∼ 5 MHz) much smaller than the bandwidth of the generated photon pairs. If we have optical
technology that allows us to filter signal photons with a bandwidth Δ𝜆𝑠, we will see that this
translates into filtering the idler photons with bandwidth

Δ𝜆𝑖 =

(
𝜆𝑖

𝜆𝑠

)2
Δ𝜆𝑠 (1)

where 𝜆𝑠,𝑖 = 2𝜋𝑐/𝜔𝑠,𝑖 are the central wavelengths of the signal and idler photons. For instance,
for signal and idler photons with central wavelengths, 𝜆𝑠 = 1550 nm and 𝜆𝑖 = 810 nm, filtering
with a frequency resolution of Δ𝜆𝑠 = 1 nm at the signal photon frequency band translates into
filtering with a frequency resolution of Δ𝜆𝑖 = 0.27 nm at the idler frequency band. This is one
order of magnitude better than the bandwidth of commercially available spectral filters at 810
nm.

The scheme considered above allows us to create effective narrowband filters at one
frequency band, overcoming technological limitations, by programming the filter at another
frequency band. Notwithstanding, since the scheme makes use of coincidence measurements,
we still need good optical detectors (sensitive enough) at both frequency bands. The second
scheme considered avoids this limitation and allows doing absorption spectroscopy at the idler
wavelength range without making any measurement at this wavelength. All measurements are
made at the signal wavelength range where advanced technology exists. The key element of this
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second scheme is a SU(1,1) interferometer, a Mach-Zehnder interferometer with two nonlinear
crystals inside, where the nonlinear process of spontaneous parametric downconversion takes
place at the first crystal, and parametric amplification takes place in the second nonlinear
crystal.

Some previous works relevant to the topics considered in this Project

The first demonstration, to the best of our knowledge, of using the quantum correlations
present in paired photons generated in spontaneous parametric down-conversion (SPDC)
for spectroscopy was done in 2003 [8]. They used a 8 mm type II LBO crystal pumped at
𝜆𝑝 = 457.9 nm, which was slightly tilted for achieving non-collinear non-degenerate SPDC.
They measured three frequency filters centered at 𝜆𝑠 = 850 nm (10 nm bandwidth), 885.6 nm
(11 nm bandwidth), and 916 nm (12 nm bandwidth). For the measurements, in the frequency
range around 916 nm, they used a monochromator with a frequency resolution of 2 nm. Notice
that their measurements were very close to frequency degeneracy, indeed the last filter was
measured at frequency degeneracy.

At the same time, following the same principles, Atsushi et al. [9] measured some of the
peaks of the absorption spectrum of an Nd3+ doped glass (at 810 and 870 nm). They generated
photon pairs by SPDC in a 1 mm thick type II BBO crystal pumped at 𝜆𝑝 = 429.7 nm. As in
the case discussed above, the frequency range of signal and idler photons was very similar, the
SPDC system is again close to frequency degeneracy.

In 2018, Kalachev et al. [10] published a paper titled Biphoton spectroscopy in a strongly
non-degenerate regime of SPDC. The goal was to measure the absorption spectrum of Cr3+ ions
in Al2O3 crystal. However, their experimental scheme is frequency degenerate type I collinear
SPDC, using a 10 mm thick LiIO3 crystal pumped by a He-Cd laser (325 nm). Maybe the
confusion comes from the way that they define the strongly non-degenerate regime of SPDC:
when the difference in frequencies of correlated photons exceeds significantly their spectral
width. This is somehow different from the usual definition of non-degenerate SPDC when the
frequency bands where signal-idler photons live are really different.

Slattery et al. [11] implemented in 2013 a truly non-degenerate SPDC source for
spectroscopy based on quantum correlated photons. They used a collinear non-degenerate
SPDC source that consisted of a 20 mm periodically-poled lithium niobate (PPLN) crystal,
pumped at 532 nm and generating pairs of signal (central wavelength: 895 nm; bandwidth: 1.15
nm) and idler (central wavelength: 1310 nm; bandwidth: 2.5 nm wavelength) photons. As a
filter, they used a volume Bragg grating with high reflection at 895 nm with a bandwidth smaller
than 0.1 nm. Since they did not have an efficient single-photon counting module at the idler
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frequency (1310 nm), for detection they sent the idler photon to a spectrally resolving tunable
up-conversion detector system which is pumped by a strong 1550 nm laser and generates single
photons at 710 nm, which can be efficiently detected with a single-photon counting module.

The work of Barreto et al. [12] in 2014 gave way to a renewed interest in new types
of interferometers based on the concept of induced coherence [13, 14], and the use of new
geometries [15]. Indeed, some authors [16], that include A. Zeilinger, one of the winners of
the Nobel Prize in Physics 2022, talk of the awakening of a sleeping beauty referring to the
present interest in a beautiful idea demonstrated at the beginning of the 1990s in Leonard
Mandel’s laboratory at Rochester University [13, 14]. Most of the new implementations
were oriented towards applications in imaging [12], optical coherence tomography [17],
and spectroscopy [18], to name a few. In this last case, Kalashnikov et al. demonstrated the
feasibility of doing absorption spectroscopy of CO2 gas at the frequency band around one of the
absorption peaks of its spectrum (4.28𝜇m), while measuring light at a frequency band around
(608 nm). They made use of a nonlinear interferometer, that contains insider second-order
nonlinear crystals pumped by a common laser at 532 nm.

This Project aims at going one step further following the scientific path initiated by some
of the papers reviewed above. We want to stress the technological benefits of using quantum
light for spectroscopy. We want to show a real example of how to make use of advanced
filtering technology at one frequency band (Telecomm window around 1550 nm) to perform
high-resolution frequency measurements at another frequency band. At the 810 nm frequency
band, there is no such thing as the high-resolution Programmable optical filter (Waveshaper
1000s, Finisar) that we use here. In spite of this, we can benefit at 810 nm of this technology
developed for the Telecomm window. Quantum correlations make possible the frequency
translation.

We aim at obtaining simple results that can clearly show the possibilities offered by the two
schemes consider for absorption spectroscopy. Even though we use quantum analysis in the
Heisenberg picture, which can be sometimes cumbersome to use, and the meaning of its results
difficult to grasp, we are able to obtain simple expressions in all cases and derive simple recipes
for designing simple experimental implementations and interpreting the experimental results.

Finally, we want to highlight how the use of SU(1,1) interferometers for quantum
spectroscopy is a step forward compared with the spectroscopy based on the use of direct
quantum correlations between pairs of photons generated in SPDC. Although this last method,
that was put forward some 20 years ago [8, 9], helped doing spectroscopy at one frequency
band with less advanced technology available, it still has some drawbacks, as we will discuss in
detail in Section 3.4, that can be overcome by using nonlinear interferometers.
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Summary of the contents of this Project

In Chapter 2 we describe the process of parametric down-conversion (PDC), which is a key
element of the two schemes that we present. We will do the quantum analysis of PDC in the
Heisenberg picture. Although the quantum analysis of PDC is often done in the Schrodinger
picture, where a first-order approximation is used to obtain the quantum state of signal/idler
photons, the Heisenberg approach is more versatile and allows to analyze many different
regimes of interest. The Schrodinger picture is most of the time considered in combination with
a first-order approximation (also called low-parametric gain regime) since the treatment of the
high-parametric gain regime is highly cumbersome in the Schrodinger picture.

In Chapter 3 we analyze the first scheme considered, based on the use of frequency-entangled
photon pairs and coincidence measurements. After a detailed quantum analysis that makes
use of the Heisenberg picture, we will describe the experimental setup used to make proof of
concept experiments with this scheme. The spectral bandwidth of a filter centered at 810 nm
would be measured using a programmable filter working at the Telecomm frequency band,
around 1550 nm. This device can easily generate filters with a bandwidth of 0.01 nm. We will
also show the results of experiments with spectral filters with an arbitrary shape, designed using
the programmable filter at 1550 nm. Its spectral shape will be measured using a monochromator
working at 810 nm.

In chapter 4 we analyze the second scheme considered: a SU(1,1) interferometer. We derive
the main expressions and results with a detailed quantum analysis done in the Heisenberg
picture. We present simulations that demonstrate the feasibility of this second approach.

In Chapter 5 we discuss the main aspects of the results obtained, and summarize the main
conclusions of this Project, with special emphasis on comparing the two schemes considered
here, what are the advantages/disadvantages of each one.

In Chapter 6, we briefly summarize the main results obtained in the framework of this Project.
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2 Quantum analysis of Parametric down-conversion (PDC)

The two schemes presented above make use of the nonlinear process of parametric down-
conversion (PDC) [19, 20]. In this nonlinear process, the presence of electric fields in a crystal
induces a nonlinear polarization that can be written as [21]

P = 𝜖0𝜒
(1)E + 𝜖0𝜒

(2)E2 (2)

The fact that the nonlinear polarization depends in a nonlinear way on the total electric field
E is what allows the crystal to be referred to as a nonlinear crystal. The constant 𝜖0 is the
vacuum permittivity, 𝜒(1) is the linear susceptibility and 𝜒(2) is the second-order nonlinear
susceptibility. Although in most applications, the geometry of the problem makes it possible
to consider the susceptibilities 𝜒(1) and 𝜒(2) as single numbers, we should remember that they
constitute matrices indeed. The linear susceptibility 𝜒(1) is in general a 3 × 3 matrix and the
second-order nonlinear susceptibility is a 3 × 6 matrix [22].

In PDC, there are three waves propagating inside the nonlinear crystal: the pump, signal,
and idler waves. We consider a second-order nonlinear crystal such as LiNbO3 (LN) in a non-
degenerate, collinear, type 0 configuration, under the monochromatic undepleted pump beam
approximation. More specifically, all this means that:

• Non-degenerate: All waves (pump, signal, and idler) have different frequencies. If we
designate by 𝜔𝑝, 𝜔𝑠 and 𝜔𝑖 the central frequencies of each wave, from the conservation of
energy among all waves one could find that 𝜔𝑝 = 𝜔𝑠 + 𝜔𝑖 [19], or alternatively, in terms
of the corresponding central wavelengths, 1/𝜆𝑝 = 1/𝜆𝑠 + 1/𝜆𝑖. We will consider the case
of 𝜆𝑝 = 532 nm, 𝜆𝑠 = 1550 nm and 𝜆𝑖 = 810 nm.

• Collinear: All waves propagate along the same direction inside the nonlinear crystal,
which we designate as the spatial coordinate 𝑧. To separate the beams after leaving the
nonlinear crystal we will make use of dichroic mirrors.

• Type 0: All waves have the same polarization. This has important consequences for the
election and design of the nonlinear crystal. Besides the need of transparency in the
frequency range of interest and a large nonlinear susceptibility to enhance the photon flux
generated at PDC, the suitability of a nonlinear crystal for PDC depends on the capacity
to achieve the phase matching condition, that all waves generated inside the nonlinear
crystal add coherently after leaving the nonlinear crystal. The phase matching condition
depends on many characteristics of the crystal such as wavelength range considered,
refractive index, temperature, and mechanical properties, to cite a few [23]. In the case of
type 0 PDC, we need to use quasi-phase-matching (QPM) [19, 21]. QPM is implemented
by a periodic modulation of the nonlinear susceptibility of the material along 𝑧 with
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period Λ = 𝜋/Δ𝑘 , where Δ𝑘 = 𝑘 𝑝 − 𝑘𝑠 − 𝑘𝑖 and 𝑘 𝑝,𝑠,𝑖 are the wavenumbers of the pump,
signal, and idler waves, respectively. In Lithium Niobate (LN), this is done by periodically
reversing its ferroelectric domain polarity. A material fabricated in this way is referred to
as periodically poled LN (PPLN).

• Undepleted pump beam approximation: The pump beam is a classical intense beam
generated by a laser. In most applications, the pump power can go from a few mW to 1−2
W. On the contrary, the flux rate of down-converted photons generated (signal and idler
waves) is very small compared with the flux rate of pump photons, so we can assume that
the energy of the pump beam is unchanged in the PDC process (pump beam undepleted
approximation).

• Monochromatic pump beam: The bandwidth of the pump beam is much smaller than
the bandwidth of the signal and idler waves. In our case, the pump beam is CW (quasi-
monochromatic wave generated by a Verdi laser with central wavelength 532 nm and
bandwidth ∼ 5 MHz). The bandwidth of signal and idler waves is much bigger (we will
see in Chapter 3 that is several nanometers wide). We can safely assume that the pump
beam is monochromatic with frequency 𝜔𝑝. In this case, the signal and idler photons show
frequency anti-correlation, i.e., if the frequency of the signal photon is 𝜔𝑠 + Ω, and the
frequency of the companion idler photon is 𝜔𝑖 −Ω.

The quantum description of parametric down-conversion (PDC) is done in terms of
continuous field operators [24–26].

The general scheme of PDC in a quantum language is shown in Fig. (1). An intense
monochromatic pump beam 𝐸𝑝 with frequency 𝜔𝑝 illuminates the nonlinear crystal. 𝑏𝑠 and 𝑏𝑖

designate the quantum operators associated to the signal (central frequency 𝜔𝑠) and idler (𝜔𝑖)
waves at the input face of the nonlinear crystal. 𝑎𝑠 and 𝑎𝑖 designate the corresponding quantum
operators at the output face of the nonlinear crystal. In [20] one can find a detailed derivation
of how to quantize the classical evolution equations that describe the nonlinear process of PDC
under the paraxial approximation [19]. When the input quantum state of signal/idler waves is
the vacuum state, we talk about spontaneous parametric down-conversion (SPDC). This is the
case that we will consider in Chapter 3. If the signal or idler quantum states are not the vacuum,
we talk about optical parametric amplification (OPA). In Chapter 4 we will consider a SU(1,1)
interferometer where all waves pass through a second-order nonlinear crystal twice. The first
pass by the nonlinear crystal can be described as SPDC, while the second pass by the nonlinear
crystal constitutes OPA.

In most situations of interest, that include the cases we consider in this project, the spatial
bandwidth in the transverse wavenumber domain q is much bigger than the spatial bandwidth
of the pump beam. This is the case when the diffraction length of the pump beam 𝐿𝑑𝑖 𝑓 = 𝑘 𝑝𝑤

2
𝑝,

8



𝑎𝑠

𝜔𝑖

𝜔𝑠

𝜒(2)
𝜔𝑝

𝑎𝑖𝑏𝑖

𝑏𝑠

𝐸𝑝

Figure. 1 Sketch of the waves involved in parametric down-conversion (PDC) in a quantum
formalism. An intense pump beam 𝐸𝑝 with frequency 𝜔𝑝 illuminates a 𝜒(2) nonlinear medium
(nonlinear crystal) and mediates the generation of paired photons: signal (central frequency 𝜔𝑠)
and idler (central frequency 𝜔𝑖). 𝑏𝑠,𝑖 are the input quantum operators associated to the signal and
idler modes, and 𝑎𝑠,𝑖 are the output quantum operators for the signal and idler modes.

where 𝑤𝑝 is the pump beam waist, and the diffraction lengths associated to the detection modes,
𝐿𝑠,𝑖 = 𝑘𝑠,𝑖𝑤

2
𝑠,𝑖

, is much larger than the nonlinear crystal length 𝐿. 𝑘 𝑝,𝑠,𝑖 are the wavenumbers
of all waves involved. The plane wave approximation would correspond to considering that the
pump beam is effectively a plane wave. For the first scheme considered (see Chapter 3), we do
not consider the plane wave approximation in order to take into account the effects of having a
finite focused pump beam on the flux rates of down-converted photons. In Chapter 4 we will
make use of the plane wave approximation.

Under these conditions and approximations, we can write the relationship between the
input quantum operators 𝑏𝑠 and 𝑏𝑖, and the output quantum operators 𝑎𝑠 and 𝑎𝑖 as Bogoliuvov
relationships [27]

𝑎𝑠 (Ω, q) = 𝑈𝑠 (Ω, q) 𝑏𝑠 (Ω, q) +
𝑉𝑠 (Ω, q)
(2𝜋) 𝐼1/2

𝑝

∫
𝑑q𝑝 𝐸𝑝 (q𝑝) 𝑏†𝑖 (−Ω, q𝑝 − q),

𝑎𝑖 (Ω, q) = 𝑈𝑖 (Ω, q) 𝑏𝑖 (Ω, q) +
𝑉𝑖 (Ω, q)
(2𝜋) 𝐼1/2

𝑝

∫
𝑑q𝑝𝐸𝑝 (q𝑝) 𝑏†𝑠 (−Ω, q𝑝 − q), (3)

where 𝐼𝑝 is the average flux density of pump beam photons, i.e., 𝐼𝑝 = 𝑁𝑝/𝑆𝑝, 𝑁𝑝 is the
total number of pump photons and 𝑆𝑝 = 𝑊2

𝑝 is the area of the pump beam. q𝑝 designates the
transverse wavenumber of the pump beam. 𝐸𝑝 (q𝑝) is normalized so that

∫
𝑑q𝑝 |𝐸𝑝 (q𝑝) |2 = 𝑁𝑝.

One can recover the Bogouliuvov relationships for the plane pump beam approximation by
substituting 𝐸𝑝 (Ω𝑝, q𝑝) = (2𝜋) 𝐼1/2

𝑝 𝛿(q𝑝) into Eq. (3).
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The functions 𝑈𝑠,𝑖 and 𝑉𝑠,𝑖 are [20, 28–30]

𝑈𝑠,𝑖 (Ω) =
{
cosh(Γ𝑠,𝑖𝐿) − 𝑖

Δ𝑠,𝑖

2Γ𝑠,𝑖
sinh(Γ𝑠,𝑖𝐿)

}
exp

{
𝑖
[
𝑘0
𝑝 + 𝑘𝑠,𝑖 (Ω, q) − 𝑘𝑖,𝑠 (−Ω,−q)

] 𝐿

2

}
,

𝑉𝑠,𝑖 (Ω) = −𝑖(𝜎𝐿) sinh(Γ𝑠,𝑖𝐿)
Γ𝑠,𝑖𝐿

exp
{
𝑖
[
𝑘0
𝑝 + 𝑘𝑠,𝑖 (Ω, q) − 𝑘𝑖,𝑠 (−Ω,−q)

] 𝐿

2
+ 𝑖𝜑𝑝

}
. (4)

𝑘 𝑝,𝑠,𝑖 are the wavenumbers of all waves involved, Γ𝑠,𝑖 = [𝜎2 − Δ2
𝑠,𝑖
/4]1/2, and 𝐿 is the crystal

length. The nonlinear coefficient 𝜎 (units of m−1) is

𝜎 =

(
ℏ𝜔𝑝𝜔𝑠𝜔𝑖 [𝜒(2)]2 𝐹𝑝

8𝜖0𝑐3𝑛𝑝𝑛𝑠𝑛𝑖

)1/2

, (5)

𝑛𝑠,𝑖,𝑝 are refractive indexes, 𝜒(2) is the second-order nonlinear coefficient of the crystal and
𝐹𝑝 is the flux rate of pump photons (photons/s/𝑚2). The parameter 𝐺 = 𝜎𝐿 is the gain of
the parametric down-conversion process, that determines the strength of the PDC process, and
therefore in what regime we are: low or high parametric gain. 𝜑𝑝 is the phase of the pump beam.
The phase mismatch function is

Δ = Δ𝑠 = −Δ𝑖 = 𝑘0
𝑝 − 𝑘𝑠,𝑖 (Ω) − 𝑘𝑖,𝑠 (−Ω) = (𝐷𝑖 − 𝐷𝑠)Ω −

(
1

2𝑘𝑠
+ 1

2𝑘𝑖

)
|q|2, (6)

where 𝐷𝑠,𝑖 are inverse group velocities (measured in s/m).

One important case is the low parametric gain regime (𝐺 ≪ 1, our case in Chapter 3), which
is the situation in most experimental implementations of SPDC. We can write [20]

𝑈𝑠,𝑖 (Ω) = exp
[
𝑖𝑘𝑠,𝑖 (Ω, q) 𝐿

]
𝑉𝑠,𝑖 (Ω) = −𝑖(𝜎𝐿)sinc

[
Δ𝐿

2

]
exp

{
𝑖
[
𝑘0
𝑝 + 𝑘𝑠,𝑖 (Ω, q) − 𝑘𝑖,𝑠 (−Ω,−q)

] 𝐿

2
+ 𝑖𝜑𝑝

}
. (7)

Alternatively, we can obtain the Bogoliuvov relationships in Eq. (7) by making an expansion
of the general Bogoliuvov relationships to first order in the nonlinear coefficient 𝜎 [31].
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3 Quantum spectroscopy based on coincidence measurements
of frequency-entangled photon pairs

We want to measure the unknown spectral shape of a frequency filter 𝐻𝑖 (𝜔𝑖 + Ω) at the
frequency band of the idler photon. The idler photons are reflected, or transmitted, by the
frequency filter. Since the frequency of signal and idler photons are anti-correlated, if we
make use, in the signal path, of a narrowband frequency filter with bandwidth ΔΩ𝑠 and central
frequency Δ𝑠, the probability 𝑃𝑠𝑖 to detect an idler photon in coincidence with a signal photon
will be

𝑃𝑠𝑖 ∝ |𝐻𝑖 (𝜔𝑖 − Δ𝑠) |2 ΔΩ𝑠 . (8)

If we use different values of Δ𝑠, we can recover the spectral shape of |𝐻𝑖 (𝜔𝑖 +Ω) |2 by using
tunable filters at the signal frequency band, without the need to use filters at the idler frequency.

The frequency anti-correlation between signal and idler photons imposesΔΩ𝑠 = −ΔΩ𝑖. If we
make use of the relationship Δ𝜆 = (2𝜋𝑐/𝜆2) ΔΩ, that is valid for small values of the bandwidth,
the wavelength resolution at the idler frequency band is

Δ𝜆𝑖 =

(
𝜆𝑖

𝜆𝑠

)2
Δ𝜆𝑠 . (9)

Equation (9) shows that we can take advantage of advanced technology that can build
extremely narrowband frequency filters at the signal frequency band to create equally extreme
narrowband filters at the idler frequency band. In this sense, the use of quantum correlations
between signal/idler photons allows to expand the applicability of a technology (narrowband
filtering at the telecom frequency band) beyond the frequency range for which it was designed.

3.1 Theoretical calculation of the expected flux rates for singles (signal or
idler photons alone) and signal/idler coincidences

Quantum description of the detection system

On the detection stage, signal and idler photons are projected onto spatial modes with a
Gaussian shape with beam waist 𝑤𝑠 [𝐹𝑠 (x) and 𝐹𝑖 (x)], with the help of imaging systems and
single-mode fibers. The quantum operator that describes this projection operation is

A𝑠 (𝑡) =
∫

𝑑x 𝐴𝑠 (x, 𝑡)𝐹∗
𝑠 (x), (10)

where 𝐴(x, 𝑡) is the quantum operator that describes signal photons in coordinate space.
Similarly for the idler photons. If we make use of the Fourier transform relationship between

11



quantum operators and functions

𝐴𝑠 (x, 𝑡) =
1

(2𝜋)3/2

∫
𝑑Ω 𝑑q 𝑎𝑠 (Ω, q) exp (−𝑖Ω𝑡 + 𝑖q · x) ,

𝐹𝑠 (x) =
1

(2𝜋)

∫
𝑑q 𝐹𝑠 (q) exp (𝑖q · x) , (11)

we obtain that the projection operator is

A𝑠 (𝑡) =
1

(2𝜋)1/2

∫
𝑑Ω 𝑑q 𝑎𝑠 (q,Ω)𝐹∗

𝑠 (q) exp(−𝑖Ω𝑡). (12)

To derive Eq. (12) we have made use of the identity∫
𝑑x exp [𝑖 (q1 − q2] · x) = (2𝜋)2𝛿(q1 − q2). (13)

Transformation of quantum operators under the presence of losses

Signal and idler photons, generated in SPDC, are transmitted (or reflected) from frequency
filters located in signal/idler paths, that introduce frequency-dependent losses that the quantum
formalism should take into account [32]. The frequency filter in the idler path has an unknown
spectral shape that we want to measure. For the sake of simplicity, we also include in the
expression of the filters the losses that the photons suffer when they traverse the corresponding
optical systems. We assume that these losses are frequency independent in the bandwidth of
interest, to avoid any external distorsion of the measurement of the spectral shape of filters.
The transformations of the signal and idler quantum operators due to the presence of frequency
filters and losses are [32]

𝑎𝑠 (𝜔𝑠 +Ω) −→ 𝐻𝑠 (𝜔𝑠 +Ω) 𝑎𝑠 + 𝐿𝑠 (𝜔𝑠 +Ω),
𝑎𝑖 (𝜔𝑖 +Ω) −→ 𝐻𝑖 (𝜔𝑖 +Ω) 𝑎𝑖 + 𝐿𝑖 (𝜔𝑖 +Ω), (14)

where the operator 𝐿𝑠 and 𝐿𝑖 fulfill the commutation relationships[
𝐿𝑖 (𝜔𝑖 +Ω), 𝐿†

𝑖
(𝜔𝑖 +Ω′)

]
=

[
1 − |𝐻𝑠 (𝜔𝑖 +Ω) |2

]
𝛿 (Ω −Ω′) ,[

𝐿𝑠 (𝜔𝑠 +Ω), 𝐿†
𝑠 (𝜔𝑠 +Ω′)

]
=

[
1 − |𝐻𝑠 (𝜔𝑠 +Ω) |2

]
𝛿 (Ω −Ω′) . (15)
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Flux rate of signal photons

The signal photons are transmitted (or reflected) through a tunable filter with central
frequency Ω0 and narrow bandwidth 𝐵𝑠. The number of signal photons 𝑅1(Ω0) detected per
second is

𝑅1(Ω0) = ⟨A†
𝑠 (𝑡)A𝑠 (𝑡)⟩ =

1
2𝜋

1
(2𝜋)2

1
𝐼𝑝

∫
𝑑Ω1 𝑑Ω2 𝑑q1 𝑑q2 exp [𝑖(Ω1 −Ω2)𝑡]

×𝑉∗
𝑠 (Ω1, q1)𝑉𝑠 (Ω2, q2)𝐹𝑠 (q1) 𝐹∗

𝑠 (q2)𝐻𝑠 (Ω0 +Ω1)𝐻∗
𝑠 (Ω0 +Ω2)

×
∫

𝑑q𝑝 𝑑q′
𝑝 𝐸

∗
𝑝 (q𝑝)𝐸𝑝 (q′

𝑝) ⟨𝑏𝑖 (−Ω1, q𝑝 − q1) 𝑏†𝑖 (−Ω2, q′
𝑝 − q2)⟩. (16)

For the sake of simplicity, we have written only the terms that will give a non-zero contribution
to the flux rate. The pump beam and projections modes are normalized, so they can be written
as

𝐸𝑝 (q) = 𝑁
1/2
𝑝

𝑤𝑝

𝜋
exp

(
−
|q|2 𝑤2

𝑝

2𝜋

)
, (17)

and
𝐹𝑠 (q) =

𝑤𝑠

𝜋
exp

(
−
|q|2 𝑤2

𝑠

2𝜋

)
. (18)

If we make use of the commutation relationships

[𝑏𝑖 (Ω1, q1), 𝑏†𝑖 (Ω2, q2)] = 𝛿(Ω1 −Ω2, q1 − q2), (19)

and we make the integral over the variable q𝑝,∫
𝑑q𝑝 𝐸

∗
𝑝 (q𝑝)𝐸𝑝 (q𝑝 + q2 − q1) = 𝑁𝑝 exp

(
−
|q1 − q2 |2 𝑤2

𝑝

4𝜋

)
, (20)

we can write

𝑅1(Ω0) =
1

2𝜋
1

(2𝜋)2
𝑁𝑝

𝐼𝑝

∫
𝑑Ω 𝑑q1 𝑑q2𝑉

∗
𝑠 (Ω, q1)𝑉𝑠 (Ω, q2) |𝐻𝑠 (Ω0 +Ω) |2

×𝐹𝑠 (q1) 𝐹∗
𝑠 (q2) exp

(
−
|q1 − q2 |2 𝑤2

𝑝

4𝜋

)
. (21)

If we assume that the𝑉𝑠 function is constant for the range of Ω and q where the projection modes
and frequency filters are non-negligible, we can write
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𝑅1(Ω0) =
sinh2 𝐺

(2𝜋)3 𝐵𝑠 |𝑉𝑠 (−Ω0) |2
𝑤2

𝑝𝑤
2
𝑠

𝜋2

∫
𝑑q1 𝑑q2 exp

(
−
|q1 |2𝑤2

𝑠

2𝜋
−
|q2 |2𝑤2

𝑠

2𝜋
−
|q1 − q2 |2𝑤2

𝑝

4𝜋

)
=

sinh2 𝐺

(2𝜋)3 𝐵𝑠 |𝑉𝑠 (−Ω0) |2
𝑤2

𝑝𝑤
2
𝑠

𝜋2
1
4

4𝜋2

𝑤2
𝑠

4𝜋2

𝑤2
𝑝 + 𝑤2

𝑠

, (22)

where 𝐺 = 𝜎𝐿 is the gain of PDC. After some straightforward simplifications, we can write that
the number of signal photons detected per second 𝑅1(Ω0) is

𝑅1(Ω0) =
sinh2 𝐺

2𝜋
𝐵𝑠 |𝑉𝑠 (−Ω0) |2

𝑤2
𝑝

𝑤2
𝑝 + 𝑤2

𝑠

. (23)

𝐵𝑠 is the bandwidth of the frequency filter in the signal path, 𝑤𝑝 is the beam waist of the pump
beam, and 𝑤𝑠 is the beam width of the projection modes. For 𝑤𝑝 ≫ 𝑤𝑠, we recover the result of
the plane wave approximation. Notice that the central frequency Ω0 of the filter 𝐻𝑠 is scanned,
so the flux rate 𝑅1(Ω0) depends on the value of Ω0.

Similarly, we can derive for the idler

𝑅2 =
sinh2 𝐺

2𝜋
𝐵𝑖

𝑤2
𝑝

𝑤2
𝑝 + 𝑤2

𝑠

. (24)

In the low parametric gain regime, we can approximate sinh2 𝐺 ∼ 𝐺2 = (𝜎𝐿)2.

Flux rate of signal/idler coincidences

We designate the window of coincidences as 𝑇𝑑 . The number of signal-idler coincidences
per second (𝑅12) is [33, 34]

𝑅12 =

∫
𝑇𝑑

𝑑𝜏 ⟨A†
𝑠 (𝑡)A†

𝑖
(𝑡 + 𝜏)A𝑖 (𝑡 + 𝜏)A𝑠 (𝑡)⟩ = 𝑅1𝑅2𝑇𝑑

+ 1
(2𝜋)4

1
𝐼𝑝

∫
𝑇𝑑

𝑑𝜏

∫
𝑑Ω1 𝑑Ω2 exp [−𝑖(Ω1 −Ω2)𝜏] 𝐻∗

𝑠 (Ω1)𝐻∗
𝑖 (−Ω1) 𝐻𝑠 (Ω2)𝐻𝑖 (−Ω2)

×
����∫ 𝑑q1 𝑑q2𝑉

∗
𝑠 (Ω1, q1)𝑈∗

𝑖 (−Ω1, q2)𝐹𝑠 (q1)𝐹𝑖 (q2) 𝐸∗
𝑝 (q1 + q2)

����2 . (25)

Let us make the integral over 𝜏. We have

∫
𝑇𝑑

𝑑𝜏 exp [−𝑖(Ω1 −Ω2)𝜏] = 𝑇𝑑 exp
[
−𝑖 (Ω1 −Ω2)

𝑇𝑑

2

]
sinc

[
(Ω1 −Ω2)𝑇𝑑

2

]
. (26)
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In the low parametric gain regime, we have (we restrict our attention to the frequency degree of
freedom)

𝑉𝑠 (Ω1)𝑈𝑖 (−Ω1) = 𝜎𝐿 sinc
[
𝐷Ω𝐿

2

]
exp

{
𝑖
[
𝑘0
𝑝 + 𝑘𝑠 (Ω1) − 𝑘𝑖 (−Ω1)

] 𝐿

2
+ 𝑖𝑘𝑖 (−Ω1)𝐿

}
= 𝜎𝐿 sinc

[
𝐷Ω𝐿

2

]
exp

{
𝑖𝑘0

𝑝

𝐿

2
+ [𝑘𝑠 (Ω1) + 𝑘𝑖 (−Ω1)]

𝐿

2

}
(27)

= 𝜎𝐿 sinc
[
𝐷Ω𝐿

2

]
exp

{
𝑖
[
𝑘0
𝑝 + 𝑘0

𝑠 + 𝑘0
𝑖

] 𝐿

2
+

[
1
𝑣𝑠

− 1
𝑣𝑖

]
𝐿

2
Ω1

}
,

where 𝑣𝑠,𝑖 are group velocities of signal and idler photons. We need to calculate:∫
𝑑Ω1𝑑Ω2 𝑇𝑑sinc

[
(Ω1 −Ω2)𝑇𝑑

2

]
exp

{
−𝑖Ω1 −Ω2

2

[
𝑇𝑑 +

(
1
𝑣𝑠

− 1
𝑣𝑖

)
𝐿

]}
, (28)

To solve this we will make use of (see page 431, Eq. 3. 741, 2 in [35])

∫ ∞

0
𝑑𝑥

𝑠𝑖𝑛(𝑎𝑥) 𝑐𝑜𝑠(𝑏𝑥)
𝑥

=

𝜋
2 𝑎 > 𝑏

𝜋
4 𝑎 = 𝑏

0 𝑎 < 𝑏

(29)

Here
𝑎 =

𝑇𝑑

2
, 𝑏 =

1
2

[
𝑇𝑑 +

(
1
𝑣𝑠

− 1
𝑣𝑖

)
𝐿

]
. (30)

This implies that there are coincidences if

𝑎 > 𝑏 −→ 1
𝑣𝑠

<
1
𝑣𝑖

−→ 𝑣𝑠 > 𝑣𝑖, (31)

and no coincidences if 𝑣𝑠 < 𝑣𝑖. Indeed this is what we assume when we look for coincidences
between a signal photon at time 𝑡 with an idler photon at time 𝑡 + 𝜏 (𝜏 > 0).

If 1/𝑇𝑑 is much larger than all bandwidths involved (SPDC, filters), we can substitute

sinc
[
(Ω1 −Ω2)𝑇𝑑

2

]
exp

{
−𝑖Ω1 −Ω2

2

[
𝑇𝑑 +

(
1
𝑣𝑠

− 1
𝑣𝑖

)
𝐿

]}
−→ 2𝜋

𝑇𝑑
𝛿(Ω1 −Ω2), (32)

and obtain

𝑅12 = 𝑅1𝑅2𝑇𝑑 +
(𝜎𝐿)2

(2𝜋)3
1
𝐼𝑝

∫
𝑑Ω |𝐻𝑠 (Ω) |2 |𝐻𝑖 (Ω0 +Ω) |2 |𝑉 (Ω) |2����∫ 𝑑q1 𝑑q2𝐹𝑠 (q1)𝐹𝑖 (q2) 𝐸∗

𝑝 (q1 + q2)
����2 . (33)
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We do the integral over the spatial variables q1 and q2 and obtain

∫
𝑑q1 𝑑q2𝐹𝑠 (q1)𝐹𝑖 (q2) 𝐸∗

𝑝 (q1 + q2) =
𝑁

1/2
𝑝

4
𝑤2
𝑠

𝜋2
𝑤𝑝

𝜋

∫
𝑑q− exp

[
−
|q− |2𝑤2

𝑠

4𝜋

]
(34)

×
∫

𝑑q+ exp

[
−
|q+ |2𝑤2

𝑠

4𝜋
−
|q+ |2𝑤2

𝑝

2𝜋

]
=

𝑁
1/2
𝑝

4
𝑤2
𝑠

𝜋2
𝑤𝑝

𝜋

4𝜋2

𝑤2
𝑠

4𝜋2

𝑤2
𝑠 + 2𝑤2

𝑝

=
4𝜋𝑤𝑝𝑁

1/2
𝑝

𝑤2
𝑠 + 2𝑤2

𝑝

.

The flux rate of signal/idler coincidences 𝑅12 is

𝑅12(Ω0) = 𝑅1𝑅2𝑇𝑑 +
(𝜎𝐿)2

(2𝜋)3

16𝜋2𝑤4
𝑝

(𝑤2
𝑠 + 2𝑤2

𝑝)2
|𝐻𝑠 (−Ω0) |2𝐵𝑖sinc2

[
𝐷𝐿Ω0

2

]
(35)

= 𝑅1𝑅2𝑇𝑑 +
(𝜎𝐿)2

2𝜋
4𝑤4

𝑝

(2𝑤2
𝑝 + 𝑤2

𝑠 )2
|𝐻𝑠 (−Ω0) |2𝐵𝑖sinc2

[
𝐷𝐿Ω0

2

]
. (36)

Summary of main results

If we use a tunable filter in the signal path with central frequency Ω0 and narrow bandwidth
𝐵𝑠 to unveil the spectral shape of an unknown frequency filter in the idler path with effective
bandwidth 𝐵𝑖, the flux rate of singles measurements (photons/s) are

𝑅1(Ω0) =
(𝜎𝐿)2

2𝜋
𝐵𝑠 |𝑉𝑠 (−Ω0) |2

𝑤2
𝑝

𝑤2
𝑝 + 𝑤2

𝑠

, (37)

for signal photons and

𝑅2 =
(𝜎𝐿)2

2𝜋
𝐵𝑖

𝑤2
𝑝

𝑤2
𝑝 + 𝑤2

𝑠

, (38)

for the idler photons.

The flux rate of coincidence measurements (coincidences/s) is

𝑅12(Ω0) = 𝑅1(Ω0)𝑅2𝑇𝑑 +
(𝜎𝐿)2

2𝜋
4𝑤4

𝑝

(2𝑤2
𝑝 + 𝑤2

𝑠 )2
|𝐻𝑠 (−Ω0) |2𝐵𝑖sinc2

[
𝐷𝐿Ω0

2

]
. (39)
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Figure. 2 Experimental setup. IF1,2: interference filters, L1,2,3,4: lenses, M1,2,3: mirrors, HWP:
half-wave plate, PPLN: periodically-poled lithium niobate crystal, DM: dichroic mirror, F: filter
studied in the first part of the experiment, SMF: single-mode fibers, POF: Programmable optical
filter, 𝐷1,2 = Photon detectors, FPGA: counting module.

3.2 Experimental setup

The experimental setup for demonstrating quantum spectroscopy based on coincidence
measurements is shown in Fig. 2. The pump beam is a Verdi V-10 diode-pumped laser
(Coherent) with an emission wavelength of 𝜆𝑝 = 532 nm. A single-band bandpass filter (IF1)
with a center wavelength of 532 nm (Brightline) is used to block residual emission from the
Verdi laser. This is needed due to the laser’s operating principle. Namely, the Verdi laser is
composed of two diodes with emission wavelength at 808 nm that pump a Neodymium Vanadate
(Nd:YV𝑂4) crystal, which emits light at 1064 nm. This light is then frequency-doubled by
an LBO crystal in a ring cavity arrangement, yielding the desired 532 nm light. The filter
is able to block residual emissions at 1064 nm and 808 nm and transmit only the signal at 532 nm.

An imaging system (lenses L1 and L2) is used to decrease the laser’s spot size. The nonlinear
crystal is located at the position where the beam waist of the pump beam is 𝑤0 = 100 𝜇m.
The nonlinear crystal for these experiments is a 𝐿 = 1 mm long periodically-poled lithium
niobate (PPLN) crystal (Covesion). It is pumped by the 𝜆𝑝 = 532 nm photons, and by means
of spontaneous parametric down-conversion (SPDC), two lower-frequency photons, signal and
idler, are generated with central wavelengths of 1550 nm and 810 nm, respectively.

17



A half-wave plate (HWP) before the crystal is used to align the polarization of the pump
beam for achieving type 0 phase matching. In this way, we also profit from using the highest
nonlinear coefficient of the nonlinear crystal. The pump, signal, and idler photons all have
different frequencies, but they have the same vertical polarization. This type of configuration,
as described in Chapter 2, is known as non-degenerate, collinear, type-0 parametric down-
conversion.

The spectrum of down-converted photons varies as a function of the temperature, resulting
in various phase-matching conditions for each of the temperatures (see Appendix7 for more
details). To control the temperature, the nonlinear crystal is mounted inside an oven (PV20 from
Covesion). The oven is coupled to a temperature controller (OC2 from Covesion) that allows
for temperature adjustments with a precision of 0.01 𝐶 and a maximum working temperature
of 200 𝐶. We found that the temperature at which the SPDC spectrum is centered at the desired
wavelengths is 126.5 ºC.

A long-pass filter (IF2) is located after the nonlinear crystal to block the pump wavelength.
The signal and idler photons are separated by a short-pass dichroic mirror (DM) and coupled
into single-mode fibers (SMF) using an aspheric lens of focal length of 𝑓 = 11 mm for each of
them.

The Coincidence detection system

Coincidences between signal (1550 nm) and idler (810 nm) photons can be measured
using different techniques. Here we use one of the most frequently used systems, known
as Start-Stop. When an idler photon arrives at the idler photon counting module detector,
a TTL pulse is generated. This pulse is sent to the signal photon counting module detector
where it triggers the start of the clock of this second detector. The arrival time of the TTL
pulse determines the moment at which the second detector starts to count photons. If a signal
photon arrives at the second detector before the end of the detection window (2.5 ns), a
coincidence is counted. When a photon arrives outside the detection window, no coincidence
is counted. When the detection window ends or a coincidence is detected, the clock stops, and
the process starts again. In this Project, the idler single-photon detector (D1, Perkin-Elmer
SPCM-AQRH) is used as a trigger to activate the signal single-photon detector (D2, Id
Quantique 201), with a detection window of 2.5 ns. An FPGA (Abacus, Tausand, AB1004) is
used to monitor the counts of each detector. Single-mode fibers are used to increase the optical
path of signal photons and thus delay them. Typical values of optical delays are around 60
ns. The single photon detector Id Quantique can introduce an additional electronic delay of
the start of the coincidence window, with values between 0 and 25 ns with increments of 0.01 ns.
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Figure. 3 Flux rate of signal/idler coincidences (coincidences/s) as a function of the time delay
set between signal and idler photons. The red points correspond to the experimental results and
the solid line is a Gaussian fit with fidelity 𝑅2 = 0.99. The Gaussian fit has a FWHM width of
1 𝑛𝑠.

This detection system implies that the signal photons must arrive at 𝐷2 after the idler
photons arrive at 𝐷1. Moreover, the delay between them must be smaller than the duration of
the coincidence window. The time delay between the signal and idler photons must be carefully
set and controlled. This can be done in two ways, first, by increasing the optical path of one of
the photons (using mirrors or optical fibers) so that the photons arrive later at the detector, or,
by electronically delaying the start of the coincidence window.

Figure 3 shows the number of coincidences/s as a function of the time delay between signal
and idler photons. A Gaussian fit (solid line) was used to estimate the full-width half maximum
(FWHM) of this curve, which is 1 ns. The experimental data showed that when using a pump
power of ∼ 30 mW, the maximum number of coincidences (14×103 coincidences/s) is obtained
at a delay of 8 𝑛𝑠. The coincidences outside the detection window correspond to the accidental
coincidences, approximately 20 coincidences/s. These numbers are used as a reference for setting
the correct delays in the measurements.

19



Two types of experiments

We will do two kinds of experiments:

• Profiting from advanced technology at the Telecomm window for making extremely
narrowband frequency filters at the idler (810 nm) frequency band. The first
measurement uses the setup shown in Fig. 2 without the monochromator. Here we aim
at demonstrating the use of advanced technology concerning frequency filters at the
Telecomm frequency band to analyze filters at the idler frequency band (810 nm). The
filter (F) to be analyzed (LL01-810-12.5, Semrock) has a central wavelength at 810 nm
(inside the idler frequency band) and a bandwidth between 3.1 and 5.1 nm (as given
by the manufacturer). After passing through the filter the idler photons are coupled into
single-mode fibers (SMF) and directed to the single-photon detector D1. This detector is a
single photon counting module (Perkin Elmer, SPCM-AQRH) with a detection efficiency
of approximately 55 %.

The signal photons are coupled into a SMF and directed to the programmable optical
filter (Waveshaper 1000s, Finisar). With the programmable filter, filters with arbitrary
shapes can be designed from 1535 to 1562 nm with a minimum bandwidth of 0.08 𝑛𝑚

(see Appendix 8 for more tails on the principle of operation of the programmable filter).
In this case, a square filter with a bandwidth of 0.5 nm was used. The central frequency
of the filter was tunned from 1535 to 1562 nm in steps of 0.125 nm. At each point, the
number of coincidences between signal and idler photons were counted. After the filter,
the signal photons are sent to the single-photon detector D2, a single photon counting
module (Id quantique 201) with a maximum detection efficiency of ∼ 25%. An FPGA
(Abacus, Tausand, AB1004) is used to monitor the counts of each detector.

• Analyzing frequency filters with complex spectral shapes at the Telecomm window.
The goal of the second part of the experiment is to demonstrate the feasibility of analyzing
filters with complex spectral shapes at the signal frequency band, i.e. 1550 nm. The second
measurement uses the setup shown in Fig. 2 without the filter (F) analyzed in the previous
experiment. The signal photons are coupled into a SMF, connected to the programmable
filter, and detected by the single photon counting module Id quantique. The spectrum
is measured by means of coincidences using a monochromator (microHr, Horiba) that
works at the idler frequency band. The monochromator has one entrance and one exit
slit and a diffraction grating that is coupled to a motorized rotation stage. By rotating the
grating, a spectral scan can be performed between 200 and 1100 nm with steps of 0.05
nm. In this case, the monochromator is programmed to perform a scan from 802 to 820
nm in steps of 0.1 nm. At each point, the singles and coincidences are recorded. After the
monochromator, the photons are coupled into a multimode fiber (MMF) and detected by
the single photon counting module (Perkin Elmer, SPCM-AQRH).
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Figure. 4 Spectrum of the down-converted photons. Experimental results (dots in blue and red)
and theoretical calculations (solid lines) of the singles spectrum obtained using a PPLN crystal
with different lengths: (a) and (b): 𝐿 = 1 𝑚𝑚; (c) and (d) 𝐿 = 5 𝑚𝑚.

3.3 Experimental Results

Measurement of the SPDC spectrum

The SPDC spectrum was measured without any filters to obtain the bandwidth of down-
conversion. This measurement was repeated for different temperatures until the signal and idler
spectrum were centered at the desired central signal and idler wavelength. Fig. 4 shows the
experimental results for a PPLN nonlinear crystal of length 𝐿 = 1𝑚𝑚 (a,b) and 𝐿 = 5 mm
(c,d). The single photon count rate of the signal photons (a, c) is provided by the Id quantique
single-photon counting module and shows the spectrum as the programmable filter is tuned. As
described previously, a square pulse with a bandwidth of 1 nm and a central frequency varying
from 1530 to 1565 nm is uploaded to the programmable filter. The single photon count rate of
the idler photons (b, d) is provided by the Perkin-Elmer single-photon counting module and
shows the spectrum as the monochromator is tuned from 790 to 830 nm.

The solid lines in Fig. 4 correspond to the singles spectrum described in Eq. 24, evaluated
for each crystal length and using the Sellmeier equations described in Appendix 7. The match
between the experimental data (dots) and the theory (solid lines) can be clearly observed,
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Crystal length Theoretical calculations Experimental results
Δ𝜆1550 (nm) Δ𝜆810 (nm) Δ𝜆1550 (nm) Δ𝜆810 (nm)

1 mm 27.23 7.40 - 7.24
5 mm 5.45 1.44 5.40 1.71

Figure. 1 Bandwidth at FWHM of the SPDC spectrum for PPLN crystals with different lengths.
The bandwidth for the spectrum at 1550 nm for L=1nm is not reported since the scanning range
is smaller than the bandwidth of the spectrum.

especially in Fig. (b) and (c), which show the characteristic lobes of the sinc function. The
bandwidth (at FWHM) of the down-converted photons was measured for both the theoretical
and the experimental results. These are summarized in Table1. The spectral bandwidth of the
signal photons generated with the 1 mm PPLN [shown in Fig.4 (a)] is around 60 nm at 1/𝑒2

width. Since the programmable filter has an operating frequency range from 1528 to 1567 nm,
only the top part of the spectrum is measured. This is why the bandwidth at FWHM of this
spectrum was not measured.

The spectral bandwidth of the down-converted photons determines the spectral range that
can be used to measure the absorption spectrum of a sample. As mentioned before, the filter
to be analyzed at 810nm has a bandwidth between 3.1 and 5 nm. Therefore, the bandwidth of
the 5 𝑚𝑚 PPLN is too narrow to scan the complete shape of the filter. The 1 mm PPLN has a
broader spectrum, and at 1550nm its shape is almost flat [see Fig. 4 (a)]. This explains why the
1 mm PPLN was chosen to do these measurements.

One disadvantage of using the 1 mm crystal, compared to using the 5 mm, is its conversion
efficiency. The efficiency that can be achieved with a PPLN crystal depends mainly on the pump
power and the length of the nonlinear crystal. The longer the crystal, the greater the conversion
efficiency. This can be seen in the number of singles/s shown in Fig. 4. The maximum number of
singles/s for the idler photons is 1.8kHz and 3kHz for the 1mm and 5mm crystals, respectively.

Measurement of the spectral shape of a filter centered at 810nm

The main purpose of this experiment is to show, in a proof of concept experiment, that
by measuring the coincidences between signal and idler photons one can use the technology
available at the signal frequency to measure the absorption spectrum of an object at the idler
frequency. To do this, a spectral filter (LL01-810-12.5, Semrock) with central wavelength
at 810 nm and bandwidth of ≈ 3.1 nm was measured. This is a low-cost, commercially
available spectral filter with one of the shortest bandwidths (at 810 nm) that we have found.
The spectral scan was performed by a square pulse with a bandwidth of 0.5 nm, designed
using the programmable filter. The filter is tuned from 1535 to 1565 nm, and at each point,
the coincidences between signal and idler photons were measured following the scheme and
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Figure. 5 Measurement of a filter with central frequency at 810 nm. The red points are the
measured coincidences per second, that correspond to the spectrum of the filter analyzed. A
width (FWHM) of 2.73 nm was measured using this data. The blue triangles are the idler photons
measured (singles). The solid gray line represents the uncertainty of the spectral shape provided
by the manufacturer.

constraints explained in the previous subsection.

The experimental settings values used for this experiment are:

• Pump beam power: 𝑃 = 40 mW.

• Coincidence detection window: 𝑇𝑑 = 2.5 ns.

• Total detection window (sampling time): 𝑇0 = 1𝑠.

• Idler (trigger) rate: 616 × 103 counts/s.

The experimental results are shown in Fig. 5. The coincidences between signal and idler
photons (red circles) clearly show the shape of the analyzed filter. The solid gray line represents
the uncertainty of the spectral shape provided by the manufacturer. Since the spectral scan is
performed with the programmable filter, the coincidences are measured as a function of the
signal wavelength band, centered at 1550 nm. To recover the shape of the filter at the idler
wavelength band, centered at 810 nm, we use the energy conservation relation: 1/𝜆𝑝 = 1/𝜆𝑠 +
1/𝜆𝑖. By making this change, we calculated the bandwidth (FWHM) of the filter to be 2.37 nm.
The singles for the idler photons correspond to the blue triangles.
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The resolution of this system is determined by the bandwidth of the filter uploaded to the
programmable filter, Δ𝜆𝑠 = 0.5𝑛𝑚. Using Eq. 1, the resolution at the idler wavelength is Δ𝜆𝑖 =
0.1365𝑛𝑚. This is at least one order of magnitude better than the bandwidth of commercially
available spectral filters at 810 . For instance, the filter analyzed in this section has one of the
shortest bandwidths. Filters with a narrower bandwidth, as short as 0.08 nm, can be designed
using the programmable filter. Nevertheless, narrowing the filter decreases the singles flux rate at
the signal frequency, and therefore the number of coincidences/s. This reduction can be overcome
by increasing the data acquisition time.

Measurement of a frequency filter with complex spectral shapes at the Telecomm window

For this second part of the experiments, we want to demonstrate that we are able to unveil
complex spectral shapes as well. We take advantage of the programmable filter to generate filters
with arbitrary shapes around 1550 nm and will recover its shape using a tunable monochromator
at 810 nm. The experimental settings used for this experiment are:

• Pump beam power: 𝑃 = 1.5 W.

• Coincidence window: 𝑇𝑑 = 2.5 ns.

• Total detection window (sampling time): 𝑇0 = 30𝑠,

The left column of Fig. 6 shows the filters uploaded to the programmable filter. The right column
corresponds to the coincidences measured as the monochromator is tuned from 802 to 820 nm.
Here we have used the relationship

1
𝜆𝑝

=
1
𝜆𝑠

+ 1
𝜆𝑖

(40)

to find the equivalent wavelength at the signal frequency.

It can be seen, from the right column of Fig. 6, a clear match between the experimental data
(blue dots) and the theory (solid line), described at the beginning of Chapter 3. The position of
the peaks in the coincidences spectra matches the position of the peaks in the filter under study.
Nevertheless, there is a difference in the width of the peaks [see for instance Fig. 6 (a) and (f)].
This is because the coincidences spectrum is the result not only of the shape of the filter under
study but is its convolution with the spectral shape of the monochromator. The bandwidth of
the monochromator is 1 nm (see measurement in Appendix 9) following the same methodology
described in the previous section, i.e. the monochromator was centered at 810 nm, and the
programmable filter was tuned from 1535 to 1565 nm. This result was used for the theoretical
calculations.
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Figure. 6 Measurement of filters with arbitrary shapes at the signal frequency. The left
column corresponds the filter uploaded to the programmable filter. The right column shows
the coincidences/s as a function of wavelength, measured with a monochromator. The blue dots
correspond to the experimental data, and the orange solid line is the theory.
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Figures 6 (b) and (c) are good examples of how the differential attenuation of a filter can
be successfully detected using this technique. The peaks in the input filters have an attenuation
of 0dB (100% transmission), and -3dB (%50 transmission). The coincidences measured
corresponding to each peak are 20, and 10 coincidences/s for the 100% and 50% transmission,
respectively. This shows that it is possible to detect differential absorption, peaks with different
amplitudes, accurately.

An interesting case that shows the importance of having a flat top SPDC spectrum is shown in
Fig. 6 (i) and (j). Here a sinusoidal filter was uploaded to the programmable filter. The recovered
filter shows correctly the number of oscillations and their position, nevertheless, the number
of coincidences/s is different for each peak. This effect is due to the bandwidth of the SPDC
spectrum shown in Fig. 4 (a). The result shown in Fig. 6 (j) is the SPDC spectrum multiplied by
the filter, which gives this modulation effect to the experimental result.

3.4 Limitations of the method

We have shown and demonstrated that the use of quantum correlations between photons at
different frequencies allows to use better technology that might exist at one frequency band, for
making more accurate measurements at another frequency band where worse technology exists.
For instance, we have seen that the existence of commercially available narrowband filters with
extremely narrow bandwidths at the Telecomm frequency band allows measuring spectra at the
frequency band around 810 nm with a high-frequency resolution, even though low-cost and
commercially available filters with such narrow bandwidth do not exist at this frequency band.

However, the method demonstrated shows three main drawbacks. The first one is that
one still needs to measure at the two frequency bands: signal and idler frequency bands.
Therefore one needs efficient detectors at both frequency bands. We have seen that, even
though we can avoid using filters at the frequency band around 810, we still need to detect
photons at this frequency band. At certain frequency bands, there might not be efficient detectors.

The second drawback is that one needs to measure coincidences between signal and idler
photons. The measurement of coincidences always introduces a certain level of difficulty
to experimental setups. There is no information about a spectral shape in a frequency band
measuring single detections at the other frequency band.

The third drawback is that in the low parametric gain regime, photon fluxes generated
and detected are small, which requires long integration times. One possible escape to this
situation would be to take this method to the high parametric gain regime (𝐺 ≫ 1) where
higher photon fluxes can be generated. However, this is not a feasible option. The method works
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because of the unique quantum correlations existing between a pair of signal and idler photons.
But increasing the gain increases the probability to detect a signal/idler coincidence between
photons not belonging to the same pair. These coincidence counts do not bear any information
about frequency filters in different frequency bands.

Following the theoretical analysis of Section 3.1, we can see that the coincidences between
signal/idler photons not belonging to the same pair scales with the gain 𝐺 as sinh4 𝐺, while
coincidences between signal/idler photons belonging to the same pair go as sinh2 𝐺. In the
low parametric gain regime (𝐺 ≪ 1), we have low photon fluxes, but coincidences of photons
belonging to the same pair dominate, i.e., sinh2 𝐺 ≫ sinh4 𝐺 −→ 𝐺2 ≫ 𝐺4. In the high
parametric gain regime (𝐺 ≫ 1), we have higher photon fluxes, however, coincidences
of photons not belonging to the same pair now dominate, i.e., sinh4 𝐺 ≫ sinh2 𝐺, hiding
information about spectral shapes in different frequency bands.

4 Quantum spectroscopy with a SU(1,1) interferometer

The well-known Mach-Zehnder interferometer contains two beam splitters, one at the
input and another one at the output of the interferometer. We will show in this chapter that the
drawbacks described in Section 3.4 can be overcome using Mach-Zehnder type interferometers
that contain inside second-order nonlinear crystals, that substitute the beam splitters of standard
Mach-Zehnder interferometers. Sometimes these interferometers are referred to as nonlinear
interferometers [36]. One word of caution: although this term is nowadays used often, it
can create some confusion since a Mach-Zehnder interferometer where optical beams see a
refractive index proportional to the intensity (nonlinear optical Kerr effect) is also referred to as
nonlinear interferometers [37].

The original idea of this kind of interferometer comes from the demonstration in 1991 of
the concept of induced coherence without induced emission by the group of Leonard Mandel
at Rochester University [13, 14]. Fig. 7 shows a simplified sketch of the interferometer, which
we can refer to as Mandel-type interferometer. Notice that only the idler beam generated in the
first parametric down-conversion crystal (NLC1) passes through the second nonlinear crystal
(NLC2). Although this is not the type of interferometer that we will consider here, most of the
things that we will derive below would also apply to a Mandel-type nonlinear interferometer.
Mandel-type interferometers have been considered recently for many applications [12, 17, 38].
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Figure. 7 Simplified sketch of an interferometer based on the concept of induced coherence.
𝑁𝐿𝐶1,2 are nonlinear crystals; 𝑠, 𝑖 refer to the signal and idler photons, with sub-indexes
indicating from which crystal they are emitted. Image taken from Valles et al., Phys. Rev. A
97, 023824 (2018).

A SU(1,1) interferometer

We will consider a SU(1,1) interferometer [see Appendix 10 for an explanation of the
origin of the term SU(1,1)] for naming the interferometer). This type of interferometer
was first proposed by Yurke et al. [15] in 1986 with the aim of increasing the sensitivity
of phase estimation. We can refer to this interferometer as Yurke-type interferometer to
differentiate it from the Mandel-type interferometer. The main difference between both types
of interferometers is that in a SU(1,1) interferometer, both signal and idler photons generated
from the first nonlinear crystal are injected into the second crystal, while in a Mandel-type
interferometer, only idler photons are injected in the second nonlinear crystal.

Figure 8 shows a particular configuration of a SU(1,1) interferometer using a single nonlinear
crystal (NLC). This configuration is very convenient for its experimental implementation since
it makes use of a single nonlinear crystal [17]. The pump beam illuminates the NLC where the
signal (𝑠1) and idler (𝑖1) waves are generated. The pump and the signal are transmitted through
a dichroic mirror, while the idler is reflected. The pump and the signal are reflected by a mirror
and enter again the nonlinear crystal. The distance traveled by the signal beam before reaching
the crystal is 𝑧𝑠. We consider a reflectivity rs that accounts for frequency-independent losses in
the signal path due to the optical elements. The idler beam interacts with a lossy object with
reflectivity 𝑟𝑖 (Ω) and is reflected back onto the crystal, traveling a total distance 𝑧𝑖. The pump
beam illuminates the same nonlinear crystal backwards, and the signal (𝑠1) and idler (𝑖1) are
also injected back into the nonlinear crystal. Signal (𝑠2) and idler (𝑖2) waves are generated after
the second pass by the nonlinear crystal. Finally, the spectrum and/or the flux rate of the signal
photons 𝑠2 is the quantity measured by detector D.
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Figure. 8 Scheme of a SU(1,1) interferometer [17].

4.1 Quantum derivation of the shape of the spectrum of signal photons 𝑠2

measured.

The spectrum of signal photons measured at the output of the second nonlinear crystal, under
the plane-wave approximation, is [17]

𝑆(Ω) = |𝑉𝑠2 (Ω) |2
[
1 − |𝐻𝑖 (−Ω) |2

]
(41)

+
��𝑈𝑠2 (Ω)𝑉𝑠1 (Ω)𝐻𝑠 (Ω) exp[𝑖𝜑𝑠 (Ω)] +𝑈∗

𝑖1
(−Ω)𝑉𝑠2 (Ω) 𝐻∗

𝑖 (−Ω) exp[−𝑖𝜑𝑖 (−Ω)]
��2 .

The functions 𝑈𝑠2 , 𝑈𝑖1 , 𝑉𝑠1 and 𝑉𝑠2 are given by Eq. (4). 𝑈𝑖1 and 𝑉𝑠1 refer to the first pass
by the nonlinear crystal, where Spontaneous Parametric Down-Conversion (SPDC) takes place,
while 𝑈𝑠2 and 𝑉𝑠2 refer to the second pass by the nonlinear crystal, where Optical Parametric
Amplification (OPA) takes place. We assume that |𝐻𝑠 (Ω𝑆) | = 𝑟𝑠 is constant and describes only
some frequency-independent losses in the signal path.

Making use of the relationships

𝑈𝑠2 (Ω)𝑈𝑖1 (−Ω) = |𝑈𝑠 (Ω) | |𝑈𝑖 (−Ω) |,
𝑉𝑠1 (Ω)𝑉∗

𝑠2 (Ω) = |𝑉𝑠1 (Ω) | |𝑉𝑠2 (Ω) | exp(𝑖𝜑𝑝), (42)
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where 𝜑𝑝 = 𝜑𝑝1 − 𝑖𝜑𝑝2 is the phase difference between the pump beams that illuminate the
nonlinear crystal in the first and second pass by the nonlinear crystal, we obtain that

𝑆(Ω) = |𝑉𝑠2 (Ω) |2
[
1 − |𝐻𝑖 (−Ω) |2

]
+ 𝑟2

𝑠 |𝑈𝑠2 (Ω) |2 |𝑉𝑠1 (Ω) |2 (43)

+|𝑈𝑠1 (−Ω) |2 |𝑉𝑠2 (Ω) |2 |𝐻𝑖 (−Ω) |2 + 2𝑟𝑠 |𝑈𝑠2 (Ω) | |𝑈𝑖1 (−Ω) | |𝑉𝑠1 (Ω) | |𝑉𝑠2 (Ω) | |𝐻𝑖 (−Ω) | cos 𝜑.

The phase 𝜑 is

𝜑 =
𝜔𝑠𝑧𝑠 + 𝜔𝑖𝑧𝑖

𝑐
+ Ω

𝑐
Δ𝑧 + 𝜑𝑝 + 𝛿(Ω), (44)

where Δ𝑧 = 𝑧𝑠 − 𝑧𝑖 is the path length difference between signal and idler photons before passing
by the nonlinear crystal for the second time. 𝛿(Ω) is the phase introduced by the filter in the
idler path. For the sake of simplicity, we assume that 𝛿(Ω) is constant and focus our attention
on how measuring the spectral shape of the filter.

In the two passes by the nonlinear crystal, the pump beam can have a different energy, so the
gains of parametric down-conversion for each pass can be different, 𝐺1 and 𝐺2. The functions
𝑉𝑠1 and 𝑉𝑠2 can thus be approximated as

|𝑉𝑠1 (Ω) |2 = sinh2 𝐺1 exp
(
− 𝜋

Ω2

𝐵2

)
,

|𝑉𝑠2 (Ω) |2 = sinh2 𝐺2 exp
(
− 𝜋

Ω2

𝐵2

)
, (45)

where 𝐵 is the bandwidth of parametric down-conversion. 𝐵 is much bigger than the bandwidth
of the filter 𝐻𝑖.

We can write

𝑆(Ω) =
{

sinh2 𝐺2 + 𝑟2
𝑠 sinh2 𝐺1

}
exp

(
− 𝜋

Ω2

𝐵2

)
+ sinh2 𝐺1 sinh2 𝐺2

[
𝑟2
𝑠 + |𝐻𝑖 (−Ω) |2

]
exp

(
− 2𝜋

Ω2

𝐵2

)
(46)

+2𝑟𝑠 sinh2 𝐺1 sinh2 𝐺2 |𝐻𝑖 (−Ω) | cos 𝜑 exp
(
− 𝜋

Ω2

𝐵2

)
×
√︂

1 + sinh2 𝐺1 exp
(
− 𝜋

Ω2

𝐵2

) √︂
1 + sinh2 𝐺2 exp

(
− 𝜋

Ω2

𝐵2

)
.
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For obtaining Eq. (46) we have made use of the relationship |𝑈𝑠 (Ω) |2 − |𝑉𝑠 (Ω) |2 = 1. For the
case of interest here, with 𝐺1 = 𝐺2 ≡ 𝐺, we have

𝑆(Ω) = sinh2 𝐺
{
1 + 𝑟2

𝑠 + 2𝑟𝑠 |𝐻𝑖 (−Ω) | cos 𝜑
}

exp
(
− 𝜋

Ω2

𝐵2

)
+ sinh4 𝐺

{
𝑟2
𝑠 + |𝐻𝑖 (−Ω) |2 + 2𝑟𝑠 |𝐻𝑖 (−Ω) | cos 𝜑

}
exp

(
− 2𝜋

Ω2

𝐵2

)
. (47)

Equation (47) is the main result of this section.

4.2 How to retrieve the spectral shape of the frequency filter 𝐻𝑖 (Ω)

First method

The most straightforward way is to use at the detection stage, a narrowband filter with
bandwidth 𝐵𝑑 centered at frequency Ω0 before detecting the signal photons. In the low
parametric gain (𝐺 ≪ 1), the flux rate 𝑅𝑠 (Ω0) = 𝑆(Ω0)𝐵𝑑 (photons/s) of signal photons
detected is

𝑅(Ω0) = 𝐵𝑑 𝐺
2
{
1 + 𝑟2

𝑠 + 2𝑟𝑠 |𝐻𝑖 (−Ω0) | cos 𝜑
}

exp
[
− 𝜋

Ω2
0

𝐵2

]
, (48)

where we use the approximation sinh2 𝐺 ∼ 𝐺2. For the sake of simplicity, we consider 𝜑 = 0.

To get rid of the effect of the spectrum of PDC and isolate the sought-after spectrum of the
filter 𝐻𝑖 (−Ω), we subtract from Eq. (48) the signal spectrum that we would obtain by blocking
the idler beam 𝑖1, i.e., 𝑅0(Ω) = 𝐵𝑑 𝐺

2 {1 + 𝑟2
𝑠 } exp[−𝜋Ω2

0/𝐵
2], so we can write

𝑅(Ω0) − 𝑅0(Ω0) = 2𝑟𝑠𝐵𝑑 𝐺
2 |𝐻𝑖 (−Ω0) | exp

[
− 𝜋

Ω2
0

𝐵2

]
. (49)

Since the spectrum of the filter is much smaller than the spectrum of PDC, the effect of the
term exp[−𝜋Ω2

0/𝐵
2] should be small, as we will see with an example in Section 4.3.

In the high parametric gain regime (𝐺 ≫ 1), we have

𝑅(Ω0) = 𝐵𝑑 sinh4 𝐺
{
𝑟2
𝑠 + |𝐻𝑖 (−Ω0) |2 + 2𝑟𝑠 |𝐻𝑖 (−Ω0) | cos 𝜑

}
exp

[
− 2𝜋

Ω2
0

𝐵2

]
. (50)

Using the same procedure explained above, we obtain

𝑅(Ω0) − 𝑅0(Ω) = 𝐵𝑑 sinh4 𝐺
{
|𝐻𝑖 (−Ω0) |2 + 2𝑟𝑠 |𝐻𝑖 (−Ω0) |

}
exp

[
− 2𝜋

Ω2
0

𝐵2

]
. (51)
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Second method

In Eq. (46) there are terms that depend on the value of the phase, 𝜑, and terms that do not.
If we measure the flux rates 𝑅(Ω) for two different values of the phase, 𝜑1 and 𝜑2, and subtract
the results obtained, 𝑅1(Ω) and 𝑅2(Ω), we obtain that

Δ𝑅(Ω) = 𝑅1(Ω) − 𝑅2(Ω) (52)

= 2𝑟𝑠 𝐵𝑑 |𝐻𝑖 (−Ω) |
[
cos 𝜑1 − cos 𝜑2

] {
sinh2 𝐺 exp

(
− 𝜋

Ω2

𝐵2

)
+ sinh4 𝐺 exp

(
− 2𝜋

Ω2

𝐵2

)}
.

Inspection of Eq. (44) shows that we can change the value of 𝜑 by modifying the path length
difference Δ𝑧 between signal and idler photons, or the pump beam phase difference 𝜑𝑝, with
the help of piezoelectric actuators. If we take into account that the bandwidth of PDC is much
bigger than the bandwidth of the filter, we have that

|𝐻𝑖 (−Ω) |2 =
|Δ𝑅(Ω) |

2 𝑟𝑠 𝐵𝑑 sinh2 𝐺 (1 + sinh2 𝐺)
��� cos 𝜑1 − cos 𝜑2

��� . (53)

Importantly, we notice that we can measure the spectral shape of the filter in the high
parametric regime, where there are higher photon fluxes. This allows to use less sensitive
detectors and reduce the detection time required to obtain high-quality measurements with a
high signal-to-noise ratio.

Third method

The second method requires knowledge of the values of the phases 𝜑1 and 𝜑2. An alternative
method that does not require setting the phase 𝜑 to specific values consist on measuring the flux
rates 𝑅(Ω) for multiple phases and measuring the resulting visibility for each frequency Ω

V =
𝑅𝑚𝑎𝑥 (Ω) − 𝑅𝑚𝑖𝑛 (Ω)
𝑅𝑚𝑎𝑥 (Ω) + 𝑅𝑚𝑖𝑛 (Ω) (54)

Making use of Eq. (47), we obtain that the visibility is

V = |𝐻𝑖 (−Ω) |
2𝑟𝑠 sinh2 𝐺 (1 + sinh2 𝐺)

(1 + 𝑟2
𝑠 ) sinh2 𝐺 + (𝑟2

𝑠 + |𝐻𝑖 (−Ω) |2) sinh4 𝐺
(55)

In the low parametric gain regime (𝐺 ≪ 1) we obtain [39]

V = |𝐻𝑖 (−Ω) |
2𝑟𝑠

1 + 𝑟2
𝑠

(56)
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while in the high parametric gain regime (𝐺 ≫ 1), the visibility is [17]

V =
2𝑟𝑠 |𝐻𝑖 (−Ω) |
𝑟2
𝑠 + |𝐻𝑖 (−Ω) |2

(57)

4.3 First method: An example

As an example, we consider two filters at the Telecomm window (around 1550 nm) with
different shapes, as shown in Fig.9 (a) and (b). In an experimental scenario, these filters would
be uploaded to the programmable filter and used to filter the signal photons at 1550 nm. We
retrieve their spectral shapes by measuring the spectrum of idler photons at 810 nm, using the
first method described above. One word of caution: the roles of the signal/idler photons have
been reversed in this example. The filter is in the signal path, and we detect idler photons only.

For the sake of simplicity, we assume 𝑟𝑠 = 1 and 𝜑 = 0. The filter detection bandwidth is
𝐵𝑑 = 2.87 THz, which corresponds to 1 nm at 810 nm. We consider the low parametric gain
with 𝐺 = 1 × 10−4. The results for the two filters are shown in Fig.9 (c) and (f). To go from the
measured idler frequencies to the signal frequencies, we make use of Eq. (40).

Comparing Figs.9 (a) and (g) we observe a very good agreement between the spectral shape
retrieved and the target spectral shape. Notice that the spectral shape retrieved in Fig.9 (h)
shows a slightly different slope than the target spectrum shown in Fig.9 (b). This is due to the
effect of the spectrum of the pump beam as shown in Eq. (49). Its bandwidth is much bigger
than the bandwidth of the filter, this is why the effect is so small. However, its presence can not
be completely neglected. To mitigate this effect, we would need to use a nonlinear crystal with
a larger bandwidth, for instance using a shorter crystal.

For the case with 𝐺 = 1× 10−4, the maximum flux rate is 1.15× 105 photons/s. If we would
consider the high parametric gain regime with gain 𝐺 = 2, we would measure a maximum flux
rate of 5.3 × 1012 photons/s, which is 7 orders of magnitude bigger than in the low parametric
gain regime case. One can achieve even greater values of the parametric gain 𝐺 [40, 41].

These results show that nonlinear interferometers are a feasible option to do absorption
spectroscopy. The main advantage of this method, as previously stated, is that the measurements
are done in the most convenient wavelength for efficient detection. Moreover, this scheme allows
us to make measurements in the high parametric gain regime, allowing a greater flux rate of
photons, which can enhance the sensitivity of the measurements.
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Figure. 9 Example of retrieving the spectral shape of two filters at the signal band (1550 nm)
using a SU(1,1) interferometer. We use the first method described in Section 4.2. (a) and (b)
(blue): the two filters under study; (c) and (d) (red): Flux rates 𝑅(Ω) of idler photon detected;
(e) and (f) (green): Flux rates 𝑅0(Ω) of idler photons detected without the presence of the filter
in the signal path; (g) and (h) (yellow): Result of the subtraction 𝑅(Ω) − 𝑅0(Ω). Parameters:
𝐺 = 1 × 10−4 (low parametric gain), 𝜑 = 0, 𝑟𝑠 = 1, 𝐵𝑑 = 2.87 THz (1 nm at 810 nm).

34



5 Discussion and conclusions

In the present work, we have considered two types of absorption spectroscopy configurations
based on quantum light. As an example, we have considered how to retrieve the spectral shape
of a frequency filter, which is analogous to measuring the absorption spectrum of a sample.
The fundamental principles involved are the same. The first scheme makes use of the quantum
correlations that exist between signal/idler photons generated in the nonlinear process of
spontaneous parametric down-conversion (SPDC). In the experimental configuration that we
have implemented in the laboratory (collinear type 0 non-degenerate SPDC), the signal/idler
photons generated exhibit naturally a high degree of frequency entanglement [42, 44],
although this condition might not be a requisite to do absorption spectroscopy, since
frequency correlations without entanglement can also be generated with SPDC in alternative
configurations. The second scheme makes use of quantum interference between paired photons
generated in two nonlinear crystals. The nature of the interference is determined by the specific
spectral shape of the filters, that we can use to retrieve its spectral shape.

The two schemes share some characteristics. They both use 𝜒(2) nonlinear crystals that
do parametric down-conversion (PDC), and in both cases we consider non-degenerate PDC
configurations, i.e., signal and idler photons are generated in different frequency bands.
Only one photon of the pair (idler photon in our analysis) interacts with the sample. In our
experiments, the signal photons are generated in the Telecomm frequency band (around 1550
nm) and the idler photons around 810 nm.

The two schemes show important differences. First, they are based on different physical
principles. The first scheme is based on the existence of frequency anti-correlation between
signal and idler photons with frequencies 𝜔𝑠 + Ω and 𝜔𝑖 − Ω, respectively. this is due to the
use of a quasi-monochromatic pump with a very narrow bandwidth (∼ 5 MHz). The second
scheme is based on the principle of quantum interference between two possibilities: signal/idler
photons generated in one or the other of two nonlinear crystals. The second difference is that
the first scheme requires the measurement of coincidence counts between signal/idler photon
pairs, while the second scheme only requires the measurement of signal photons. The third
fundamental difference is that the first scheme only works in the low parametric gain regime,
while the second scheme works in any parametric gain regime.

Concerning the first scheme, we have done detailed theoretical calculations using the
quantum Heisenberg approach, which is a novelty for these kinds of experiments. We have
also done several experiments to demonstrate the possibilities of the method. We have used
advanced technology for shaping with a narrow bandwidth and an arbitrary spectral shape
the spectrum of signal photons, and we have been able to translate the advantages of this
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technology to another frequency band. Probably this is the first demonstration of this technique
of the use of a real advanced technology at one frequency band for enhancing a measurement at
a different frequency band where an equivalent technology is missing, at least if one considers
a commercially available and low-cost option.

In the first set of experiments, we measured the spectral shape of a commercially
available filter (LL01-810-12.5, Semrock) at 810 nm with bandwidth ∼ 2.7 nm, and obtain
experimentally a spectral shape inside the uncertainty given by the manufacturer. This is an
illuminating example of how using quantum light allowed us to do a measurement that could not
do otherwise. We did not have narrowband filters at 810 nm to measure a spectral shape with
a bandwidth of ∼ 2.7 nm. However, we had a Programmable filter (Waveshaper1000s, Finisar)
working at 1550 nm that indirectly could allow effective narrowband filtering at 810 nm through
quantum correlations and the measurement of coincidences. In a second set of experiments, we
demonstrated that we could measure arbitrary spectral shapes, in a way analogous to how we
would measure the absorption spectrum of a sample. The Programmable filter at 1550 nm was
the wonderful device that allowed us to create all types of spectral shapes in a straightforward
way.

Concerning the second scheme, we have made detailed theoretical calculations that show the
potentiality of the method, and highlight the limitations of the first scheme:

• We do not need to measure coincidence counts, that can be a complicated task, especially
when considering photons at different frequencies.

• We only need to detect light at one frequency band, the light that does not interact with
the sample, so we can choose the most optimum wavelength for detection.

• We can work on the high-parametric gain regime, where there are higher photon fluxes,
and therefore measurements can be made faster with lower sensitivity detectors

We plan to continue this research topic by implementing a SU(1,1) interferometer for
absorption spectroscopy and show experimentally the advantages described in this Project. We
can do experiments in the low parametric gain regime at ICFO, where we have all the elements
required, as shown in this Project and can be seen in [39]. For the high parametric gain regime,
one needs to use a pulsed laser (picosecond pulses) that generates high energy pulses so the
average power can be up to hundreds of mW. For this we would collaborate with the groups of
M. Chekhova at the Max Planck Institute for the Science of Light (Erlangen, Germany), and
the group of M. Grafe at Darmstadt University (Darmstadt, Germany). We keep collaborations
with both groups as can be seen in [17].
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6 Summary of main results of this Project

1. We have demonstrated a real example of how to make use of advanced technology at one
frequency band (around 1550 nm) to perform high-resolution frequency measurements
at another frequency band (around 810). There is no similar commercially available
technology at this frequency band. We have considered narrowband filtering with arbitrary
spectral shape around 1550 nm using a commercially available Programmable optical
filter (Waveshaper 1000s Finisar). This is an example of using quantum correlations for
frequency translation of technology.

2. We have implemented experimentally a collinear type 0 non-degenerate temperature-
controlled Spontaneous Parametric Down-Conversion (SPDC) source to generate
frequency-entangled photons. We have also implemented a system to measure coincidence
counts between single photons at different frequency bands (810 and 1550 nm). At 810
nm we use a PerkinElmer single-photon counting module, and at 1550 nm we use an
Id Quantique detector. The connections of the two systems at different frequencies
were a challenge that we were able to solve. The experimental results obtained are very
well explained with the quantum analysis developed. In the first set of experiments, we
measured the spectral shape of a filter (Semrock) centered at 810 nm using narrowband
filtering at 1550 nm. The bandwidth measured by the filter (FWHM) was 2.75 nm. This
value is within the margin of error provided by the manufacturer. This experiment is
an example of verifying experimental information obtained at a certain frequency band
(data provided by the manufacturer) by working with the technology available at another
frequency band. This is one of the great advantages of the methods discussed in this
Project.

3. In the second set of experiments, we have designed and measured filters with arbitrary
shapes, designed using a programmable filter at 1550 nm. The shape of the filters was
measured using a monochromator centered at 810 nm. The shape of the filters and the
different levels of attenuation were successfully retrieved. These experiments show the
versatility of the method considered and the possibilities that arbitrary spectral shaping
offers for spectroscopy at any frequency band, where key optical elements might not exist.

4. We have made a full quantum analysis in the Heisenberg picture of two configurations
(described in Chapters 3 and 4) for absorption spectroscopy. People use more often the
Schrodinger picture in combination with a first-order approximation on the strength of the
interaction (the parametric gain 𝐺). Although this approach can provide a more intuitive
analysis of the problem, it has limitations. For instance, it is not possible to analyze the
high-parametric gain regime of parametric down-conversion, where higher photon flux
can be generated. Moreover, we have obtained simple final expressions that help in the
design of experiments and the interpretation of the results.
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5. We have demonstrated theoretically that the use of SU(1,1) interferometers for quantum
spectroscopy is a step forward compared with the spectroscopy based on the use of
direct quantum correlations of pairs photons generated in SPDC. We have proposed
three methods of how to measure the unknown spectral shape of a filter by making
measurements at another frequency band. We have shown with some examples that
SU(1,1) interferometers might represent a technological advance for doing absorption
spectroscopy based on quantum light. They don’t require the measurement of coincidences
between frequency-entangled photons, rather they only need to measure the flux rate
of photons at one wavelength, avoiding the need of detectors at both signal and idler
frequencies. It was shown that filters with arbitrary shapes can be easily recovered in
both the high and low parametric gains. We have shown with the derivation of simple
expressions, and some examples, that in the high parametric gain regime, photon fluxes
generated are higher, so measurements can be faster (shorter detection times), and the
optical detectors used can show lower sensitivity.
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Absorption spectroscopy with quantum light

Alejandra Padilla Camargo

In the present master’s thesis, we demonstrate how quantum light can be used for
spectroscopy. We propose two schemes that allow one to use advanced filtering technology at
one frequency band (Telecomm window around 1550 nm) to perform high-resolution frequency
measurements at another frequency band (810 nm) where this technology is not commercially
available.

In the first scheme we show, in a proof of concept experiment, that this can be achieved
by measuring the coincidences between highly frequency-entangled signal/idler photon
pairs generated via spontaneous parametric down-conversion (SPDC). We performed two
measurements, in the first one we measured the spectral shape of a filter (Semrock) centered at
810 nm using a narrowband filter at 1550 nm. The bandwidth measured by the filter (FWHM)
was 2.75 nm, which is within the margin of error provided by the manufacturer. In the second
measurement, we designed and measured filters with arbitrary shapes, designed using a
programmable filter at 1550 nm. The shape of the filters was measured using a monochromator
centered at 810 nm. The shape of the filters and the different levels of attenuation were
successfully retrieved. These experiments show the versatility of the method considered and
the possibilities that arbitrary spectral shaping offers for spectroscopy at any frequency band,
where key optical elements might not exist.

Notwithstanding, the heart of the first scheme is the measurement of coincidences between
signal and idler photons for which good optical detectors (sensitive enough) at both frequency
bands are fundamental. The second scheme considered avoids this limitation and allows doing
absorption spectroscopy at the idler wavelength range without making any measurement at
this wavelength. All measurements are made at the signal wavelength range where advanced
technology exists. The key element of this second scheme is a SU(1,1) interferometer. In the
second part of the project, we demonstrate theoretically that the use of SU(1,1) interferometers
for quantum spectroscopy is a step forward compared with spectroscopy based on the use of
direct quantum correlations of pairs photons generated in SPDC. We showed that filters with
arbitrary shapes can be easily recovered in both the high and low parametric gains. We showed,
with the derivation of simple expressions and some examples, that in the high parametric gain
regime, the photon fluxes generated are higher, so measurements can be faster (shorter detection
times), and the optical detectors used can show lower sensitivity.
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7 Material properties of Lithium Niobate

This appendix describes the dependence on wavelength and temperature of the refractive
index of interest of the nonlinear crystal used in this Project (a periodically poled LN crystal
(PPLN) from Covesion, with lengths 𝐿 = 1 mm and 𝐿 = 5 mm)

7.1 Sellmeier equation

The temperature dependent refractive index is described by the Sellmeier equation (Data is
provided by Covesion):

𝑛(𝜆)2 = 𝑎1 + 𝑏1 𝑓 +
𝑎2 + 𝑏2 𝑓

𝜆2 − (𝑎3 + 𝑏3 𝑓 )2 + 𝑎4 + 𝑏4 𝑓

𝜆2 − 𝑎2
5

− 𝑎6𝜆
2 (58)

where 𝑓 = (𝑇−24.5◦𝐶) (𝑇−24.5◦𝐶) and 𝑇 is the temperature of the crystal in ºC. The following
table gives the values of all coefficients:

Parameters
𝑎1 5.756
𝑎2 0.0983
𝑎3 0.2020
𝑎4 189.32
𝑎5 12.52
𝑎6 1.32e-2
𝑏1 2.860e-6
𝑏2 4.700e-8
𝑏3 6.113e-8
𝑏4 1.516e-4

Table A.1: Sellmeier coefficients.

We evaluate the Sellmeier equation for a PPLN crystal at 𝑇 = 125.5𝐶, the temperature used
in experiments. The refractive index for 𝜆𝑝 = 532 nm, 𝜆𝑠 = 1550 nm, and 𝜆𝑖 = 180 nm are:

𝑛𝑝 = 2.2578

𝑛𝑠 = 2.1617 (59)

𝑛𝑖 = 2.1984

The inverse group velocities, 𝐷𝑠 and 𝐷𝑖, of down-converted photons are:

𝐷𝑠 = (𝜕𝑘/𝜕𝜔𝑠) = 7.3583 × 10−9 𝑠/𝑚
𝐷𝑖 = (𝜕𝑘/𝜕𝜔𝑖) = 7.6231 × 10−9 𝑠/𝑚 (60)
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7.2 Temperature dependence of the refractive index

Figure. 10 Tuning curves for a Lithium Niobate crystal pump with a 515 nm pump beam. Figure
obtained from Covesion.

Figure 10 shows how the emission wavelengths for the signal and idler beams change
depending on the temperature of the nonlinear crystal. This data is for a 515 nm pump beam
(Figure obtained from Covesion). We use this plot as a reference for a 532 nm pump beam as
well. The curves corresponds to each of the 9 periodically poled gratings present in the crystal,
each with a specific grating period.

45



8 Finisar operation principle

Figure. 11 Schematic of the optical design of the LCoS-based Programmable Optical Processor.
Figure taken from the WaveShaper User Manual.

This appendix describes the principle of operation of the programmable filter (Waveshaper1000s,
Finisar) used in this project (for more details see the WaveShaper User Manual).

The Waveshaper is based on Liquid Crystal on Silicon (LCoS) technology. As shown
schematically in Fig. 11, light enters the device from a fiber array, then it passes through
polarisation diversity optics to align orthogonal polarisation states to maximize efficiency at the
diffraction grating. The grating disperses the light to the LCoS array, where the reflected light
is traced back through the system to the chosen output fiber, based on the beam-steering image
programmed on the LCoS array. As the wavelengths are separated on the LCoS, the control of
each wavelength is independent of all others and can be switched or filtered without interfering
with other wavelengths.
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9 Monochromator setup and characterization.

Fold mirror

Laser
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Figure. 12 Optical Design of the monochromator (MicroHR, Horiba). Figure taken from
MicroHR automated imaging spectrometer manual.

Figure 12 shows a schematic diagram of the monochromator used in this project (for further
details see the MicroHR automated imaging spectrometer manual). Light is focused into the
monochromator by a lens (L1) with focal distance of 𝑓 = 5 𝑐𝑚. After passing through the
entrance slit, the light is collimated and directed to a diffraction grating that is coupled to a
motorized rotation stage. By rotating the grating, a spectral scan can be performed between 200
and 1100 nm with steps of 0.05 nm. The light that is reflected by the diffraction grating is sent to
a mirror that focuses the light into the exit slit. Light that comes out from the exit slit is focused
by a second lens (L2) with focal distance 𝑓 = 5 𝑐𝑚 and coupled into a multi mode fiber. The
monochromator was calibrated prior to each measurement using a HgAr lamo (StellarNet Inc).

The bandwidth of the output spectrum from the monochromator was measured using the
protocol described in Chapter 3. The idler photons, at 810 nm, were transmitted through the
monochromator, which was centered at 810 nm. The output light from the monochromator was
coupled to a single photon counting module (Perkin Elmer, SPCM-AQRH). The programmable
filter was tuned from 1535 to 1565 and at each point the coincidences between signal and idler
photons were measured. The measured coincidences spectrum is shown in Fig. 13. A Gaussian fit
(solid line) was used to estimate the full-width half maximum (FWHM) of he monochromator’s
spectrum, which is 1.06 nm.
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Figure. 13 Monochromator’s bandwidth. Red dots correspond to the experimental data and the
solid line is a Gaussian fit used to calculate the FWHM of the spectrum.
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10 Origin of the term SU(1,1) interferometer

ො𝑎1

ො𝑎2

ො𝑎3

ො𝑎4

𝜒(2)

Figure. 14 Schematic illustration of a parametric down-conversion source. Input quantum
operators (blue): 𝑎̂1 and 𝑎̂2; Output quantum operators (red): 𝑎̂3 and 𝑎̂4

We make the analysis in the single-mode approximation. The Bogoliuvov relationship
between the input quantum operators 𝑎̂1 and 𝑎̂2, and output quantum operators. 𝑎̂3 and 𝑎̂4, as
illustrated in Fig. 14, is

𝑎̂3 = 𝑈𝑎̂1 +𝑉𝑎̂†2
𝑎̂4 = 𝑈𝑎̂2 +𝑉𝑎̂†1 (61)

where 𝑈 and 𝑉 are complex functions. These equations can be written in matrix form as(
𝑎̂3

𝑎̂
†
4

)
= T

(
𝑎̂1

𝑎̂
†
2

)
=

(
𝑈 𝑉

𝑉∗ 𝑈∗

) (
𝑎̂1

𝑎̂
†
2

)
(62)

A matrix T is said to belong to the special unitary group SU(𝑚, 𝑛) if it fulfills the condition

U𝐴U† = 𝐴 (63)

where

𝐴𝑖, 𝑗 = 𝑎𝑖𝛿𝑖, 𝑗

{
𝑎𝑖 = 1 1 ≤ 𝑖 ≤ 𝑚

𝑎𝑖 = −1 𝑚 + 1 ≤ 𝑖 ≤ 𝑚 + 𝑛
(64)

The SU(1,1) group consists of 2 × 2 complex matrices U that satisfy the relation U𝐴U† = 𝐴,
with

𝐴 =

(
1 0
0 −1

)
(65)
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It can be easily checked that this is only satisfied by matrices U of the form

U =

(
𝛼 𝛽

𝛽∗ 𝛼∗

)
(66)

with |𝛼 |2 − |𝛽 |2 = 1. The matrix T in Eq.(62) is equivalent to the matrix U with 𝛼 = 𝑈 and
𝛽 = 𝑉 . T fulfills the relationship

T 𝐴T † =

(
𝑈 𝑉

𝑉∗ 𝑈∗

) (
1 0
0 −1

) (
𝑈∗ 𝑉

𝑉∗ 𝑈

)
=

(
1 0
0 −1

)
= 𝐴 (67)

The matrix T that characterizes the input-output relationship between operators of a PDC source
belongs to the SU(1,1) group, giving name to this Yurke-type nonlinear interferometer.
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