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1 Abstract
The continuous trend in globalization of people and world economies demands effective and
efficient worldwide information access across language barriers. According to [17], around
5,400 new words are created every year; it is only the 1,000 or so deemed to be in sufficiently
widespread use that make it into print. Though automatic translation of words from one lan-
guage to another has helped bridge that barrier, the adaptation of out-of-vocabulary words such
as proper names in such a way that preserves the grammatical or phonetic structure of the target
language has proven a daunting task.

This work explores the transliteration of Yoruba proper nouns into the Lithuanian language
by the means of two routes: direct and intermediate. The latter is the adaptation of out-of-
vocabulary words from source to target whilst utilizing another language resource, such as the
International Phonetic Alphabet (IPA) or a language, at the hub of the transliteration procedure,
whereas the former is the customary transliteration process. As part of the intermediate route
solution, when using the IPA, we developed a syllabification algorithmwith an accuracy of 99.7%
to facilitate the correct transcription of Yoruba phonemes to their phonetic alphabets before
mapping the source IPA to the target IPA (Lithuanian IPA). On both routes, we experimented
the performance of the classification and regression tree (CART) learning against a rule-based
(context-free and context-sensitive) approach with the aim of establishing (i) which of the two
routes adapt Yoruba names better to Lithuanian (ii) how the rule-based approach compares with
machine learning in respect to both routes (iii) how the language resources employed in the
intermediate route compare with each other and which does what better.

KEYWORDS: Natural Language Processing, machine translation, machine transliteration,
context-sensitive rules, context-free rules, Lithuanian, Yoruba, Georgian, IPA, Decision Trees.
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2 Introduction
Machine translation has been in existence since the 1940s and has flourished in recent times due
to the continued advancements in language technologies. ”machine translation was the first
computer-based application in natural language processing (NLP) and its history is old” - [16].
The field is said to have served as the forcing function for computer science itself when the
search for automatic means of translation between English and Russian assumed importance
in the 60s due to the cold war. War and commerce have been the two drivers of translation
technology. Machine transliteration (MT) emerged as part of the machine translation process a
few decades ago and has since evolved into an independent branch of NLP.

In attestation to the growth of NLP as an interdisciplinary subfield of linguistics, computer
science, and artificial intelligence, works on MT alone can be categorized on several basis. The
direction of a transliteration process i.e., forward or backward is one way of categorizing MT
where forward transliteration, loosely speaking, transliteration, is the systematic conversion of
a given name pair (o, t), from o (original) to t (transliterated version of o in another language);
backward transliteration (or back-transliteration) is retrieving the correct o given t. For example,
the Lithuanization of the capital city of O

˙
yo

˙
state, Nigeria, “Ibadan” → “Ibadonas” is typical

forward transliteration and the corresponding back-transliteration is “Ibadonas” → “Ibadan”.
Another means to classify MT is by the scripts involved in the procedure. For instance, an
adaptation procedure between Russian (Cyrillic writing system) and Lithuanian (Latin writing
system) can be called Latin-Cyrillic transliteration or Latin-Han when the languages involved in
the process are any Latin-writing languages and perhaps, Chinese. Whilst the classification list
can become exhaustive when the many factors that play roles in a transliteration mechanism
are considered, there is one categorization that applies to all others: transliteration unit.

Regardless of the direction or writing script, MT can be categorized in terms of the level of
units adapted from source to target at a time. These units are grapheme and phoneme and are
sometimes referred to as the direct and pivot methods, respectively. Grapheme-based transliter-
ation, conceptually, involves a direct orthographical mapping from source graphemes to target
graphemes ignoring the phoneme-level processes. A grapheme-based transliteration rule may
be represented as Sp→T where S is a grapheme of the source language; T is a grapheme of the
target language; and p, the possibility of transliterating S to T.

Table 1: Grapheme-based transliteration

J A M I U
DŽ A M I U

Let us look at the grapheme-based example demonstrated in the Table 1 above and we will
notice that the transcription of the Yoruba name, ”Jamiu”, involved direct mapping of characters
(grapheme) from source to target with no consideration for the vowel glide in the source word
as in the Table 2.

Table 2: Phoneme-based transliteration

J A M I U
DŽ A M I JU
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While Grapheme-based models work by directly transforming source language graphemes
into target language graphemes without explicitly utilizing phonology in the bilingual mapping
[21], in pivot models, name transliteration occurs on the basis of pronunciation i.e., the written
word of source language is mapped to written word of target language via the spoken form
associated with the word.

Figure 1: Language vitality count sourced from ethnologue

Though machine transliteration is broad by categorization and there are several techniques
in existence to approach it, the devising of an intermediate hub approach is not very common.
According to data provided by [10] there are 7000 languages in the world all of which can be
grouped into 4 as in the Figure 1. [10] continued with this statement regarding the figure above:
”A language is said to be institutional if it is developed to the point that it is used and sustained
by institutions beyond the home and community; stable, if it is not being sustained by formal
institutions, but it is still the norm in the home and community; endangered, if it is no longer
the norm it is learnt and used; extinct, if such language is no longer used and no one retains a
sense of ethnic identity associatedwith the language.” Notwithstanding that both the Yoruba and
Lithuanian languages fall among the 6% of the world’s institutional languages, where Yoruba
is spoken by a population of up to 50 million people compared to Lithuanian’s 3 million, the
former is a low-resourced language and the latter a high-resourced language when compared
together. From an NLP standpoint, the copious availability and access to a language’s data is
the determinant to whether such language is high or low in resources. Lithuanian satisfies
the requirements expected of a language to aid NLP such as written language corpora, spoken
language corpora, corpus exploration and exploitation tools, modules (e.g. taggers, morpho-
logical analysers, parsers, speech recognizers, text-to-speech) etc., as specified in [25]’s Basic
Language Resource Kit (BLARK) - a finding validated by the fact that NLP kits such as spaCy
have active and optimized supports for the Lithuanian language but not for Yoruba. Therefore,
with an intermediate route option, we have the possibility to utilize a language such as English
(the language with most speakers and plethora of NLP data and resources) at the hub of the
transliteration process to select a tool, language data or resource such as established translitera-
tion rules capable of aiding transcription from Yoruba to Lithuanian or any other high-resource
language.

When compared with other research areas in NLP, machine transliteration is relatively im-
mature and has its drawbacks, some of which includes ambiguous standards and lack of compar-
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isons. About ambiguity in standards, transliterations, typically, are handcrafted rules of thumb
that are not easy to expand and are mostly subjective, i.e., they are subjected to the interpreta-
tion of individual producers. De facto standards have been established, but the rules are often
inconsistently used. For example, rules for English spelling of the grapheme ⟨c⟩ to phonetics,
defined by [9] are as follows:

[C]A→ /K/

[C]O→ /K/

[C] → /S/

This set of rules is read as: the grapheme ⟨c⟩ sounds as /k/ if it is followed by ⟨a⟩ or ⟨o⟩ and
it sounds as /s/ if otherwise. Detecting phonemes of the words being processed is an impor-
tant part of these systems, and directly affects the accuracy of these rules [19]. The first rule
is context-sensitive and the second one is context-free and will successfully process words like
CAKE, COOL, CEASE, CIGAR [20]. In contradictory cases such as CELLO, it is suggested that
such words be included in a list of exceptions rather than changing existing rules. For example:

[C]E→ /tS/ as in /ch/ → (ch)air”

As regards lack of comparisons, there is neither a widely recognized benchmark nor consistent
measurement for machine transliteration, making it hard for comparative evaluation. Further-
more, the evaluation process often require human judgement and although the accuracies of
existing transliteration techniques are unsatisfactory, [13] says there is no useful guidelines to
improve them. On a final note on some of the drawbacks of MT, the validity of transliteration
in documentation is questioned as a result of the loss of precise information. [46] examined the
process from the linguist’s, cataloguer’s, and user’s points of view.

So far, we have familiarized with machine transliteration as an area of NLP, some of the
categorization methods of transliteration, the importance of introducing an intermediate route,
what makes a language high-resource - why the Lithuanian language is one and Yoruba is not
and some of MT’s stumbling block. The remainder of this introductory section is dedicated to
familiarizing with our language pair.
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Yoruba Language

Yoruba is a language primarily spoken in southwestern and central Nigeria by the ethnic Yoruba
people with the number of Yoruba speakers (including outside of Nigeria) estimated 50 million.
Historically (dating back to the latter part of the 17th century), the Yoruba language was written
in the Arabic script (Ajami), the standard Yoruba orthography is, however, written in the Latin
script with its origin dating back to the mid 19th century when Samuel A. Crowther, the first
native African Anglican bishop, published a Yoruba grammar and started his translation of the
Bible which included peculiar translation features such as calquing [31].

The current orthography of the Yoruba language employs the Latin alphabet which includes
the use of digraph ⟨gb⟩ and certain diacritics, including the underdots under the letters ⟨e

˙
⟩, ⟨o

˙
⟩,

and ⟨s
˙
⟩ [40].

Consonants:

B D F G GB H J K L M N P R S Ṣ T U W Y
b d f g gb h j k l m n p r s ṣ t u w y

Vowels:

A E Ẹ I O Ọ U
a e ẹ i o ọ u

The pronunciation of the letters without diacritics corresponds more or less to their IPA
equivalents, except for / “kp/ written ⟨p⟩ and /�gb/ written ⟨gb⟩ (see Table 4), in which both con-
sonants are pronounced simultaneously rather than sequentially. In addition to the underdots,
three further diacritics are used on vowels and syllabic nasal consonants (see Table 3 below) to
indicate the language’s tones: an acute accent ⟨´⟩ for the high tone, a grave accent ⟨‘⟩ for the low
tone, where the middle tone is often left unmarked.

Table 3: Yoruba nasal sound samples sourced from [47]

Sound Phonemic Representation Sample
Ìt Źãn (history) /ã/ Bran
h Ÿẽn (yes) /E ̃/ Hen; French vin
r Źin (to walk) /ĩ/ Mean;
Źib Ÿõn (gun) /O ̃/ Pond
rŹakũnmŸi (camel) /ũ/ Soon
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Table 4: The unique letters of the Yoruba language sourced from [1]

Letter(Grapheme) Phonemic Representation General notes and pronunciation
P (as in ”Pe” → ”call”) /�kp/ These do not occur in any Euro-

pean language. Each is a single
sound unit. To pronounce this let-
ter you must close your velum as
if you want to say /k/ and then re-
lease at your lips for /p/ - aim to
try and pronounce /k/ and /p/ at
the same time. Same method ap-
plies to the pronunciation of /�gb/

Gb (as in ”Gba” → ”take”) /�gb/ -

Lithuanian Language

Like the Yoruba language, the Lithuanian language uses the Latin script supplemented with di-
acritics. However, grammatically, the language is highly inflected. In Lithuanian, there are two
grammatical genders for nouns (masculine and feminine) and three genders for adjectives, pro-
nouns, numerals and participles (masculine, feminine and neuter). Every attribute must agree
with the gender and number of the noun. The neuter forms of other parts of speech are used
with a subject of an undefined gender (a pronoun, an infinitive etc.).

Consonants:

B C Č D F G H J K L M N P R S Š T V Z Ž
b c č d f g h j k l m n p r s š t v z ž

Vowels:

A Ą E Ę Ė I Į Y O U Ų Ū
a ą e ę ė i į y o u ų ū

In addition to its standard 32-letter alphabets, the following digraphs are used, but are treated
as sequences of two letters for collation purposes: ⟨Dz⟩→ /Dz/, ⟨Dž⟩→ /Ã/. Writing in Lithua-
nian is largely phonemic, i.e., one letter usually corresponds to a single phoneme. There are
a few exceptions: for example, the letter ⟨i⟩ represents either the vowel /I/, as in the English
word ”sit”, or is silent and merely indicates that the preceding consonant is palatalized. Table 5
contains samples of pronunciation of each Lithuanian letter.
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Table 5: Lithuanian grapheme-IPA mapping

Consonants IPA English Approximation
butas b boot
du d do
dzūkas dz adze
džar Ã jeans
fabrikas f folly
galva g good
halas G ahead
jauna j yellow
kas k Kelvin
labas l Hallo
mama m America
namas n Annex
ranka ŋ Sing
padas p panda
ratas r trill ’R’ like in Spanish
saulė s soup
šaukštas S shop
taras t tap
caras ts cats
čaižus Ù chip
vanduo v visi
zaunyti z zoo
žodis ý asia
Vowel IPA English
ratas a father
tęsti E: pet (but longer)
retas æ bad
kas 5 putt
tėtė e: fairy
mesti E: met
vyras i: need
kitas I sit
rūta u: moon
butas u: pot
ponas o: door

We have interchangeably used the words transcription, adaptation among others in place of
transliteration in this section. Future in this research paper, we make conversant terminologies
and concepts, review of related works is considered, algorithms for transliteration between our
language pair is presented, results are given and analyzed and a conclusion is drawn in reference
to the research aim.
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3 Background

3.1 Terminologies
The word transliteration is an umbrella term for the adaptation of a foreign word to a specific
language, however, there are several other terms that can be substituted for it for specificity. Ro-
manization is the conversion of non-Latin scripts into Roman (Latin) Alphabet. When translit-
erating into a specific language, the transliteration process can be named based on the target
language, e.g., Anglicization or Lithuanization. The latter, according to [20], often include adap-
tation to a more drastic degree than that implied, for example, in Romanization. In respect of
the Lithuanian language, definition of terms used in Lithuanian when discussing the writing
of personal and place names in other languages are stated in [36] and approved by The State
Commission of the Lithuanian Language:

Transliteration – rewriting personal names (place names) written in non-Latin alphabets into
letters (or as accurately as possible by rendering other written signs) in Lithuanian characters.

Transcription – recording a personal name (place name) of another language according to
the approximate pronunciation in Lithuanian characters.

Grammaticalization – adaptation of a personal name (place name) of another language to the
morphological system of the Lithuanian language by adding inflectional endings of the Lithua-
nian language.

Transliteration should not be confused with translation which allows words in one language
to be understood by those who speak another language by representing its meaning in the target
language and neither should it be mixed up with transcription - the systematic representation
of spoken language in written form where the source can either be utterances (speech or sign
language) or preexisting text in another writing system [7]. Transliteration does not tell the
meaning of a word but how to pronounce it by converting the letters from one alphabet or
language into the corresponding, similar-sounding characters of another alphabet.

Speaking of sounds and alphabets, i.e., phonetics and phonology (where phonetics is the
actual production and perception of speech sounds by humans, and phonology, the systems of
sounds in use in a particular language or context), the following linguistic features are notable
in the course of this work:

Phoneme – In linguistics, a phoneme is the smallest unit of speech distinguishing one word (or
word element) from another, such as the grapheme ⟨p⟩ in “tap” which separates that word from
“tab” “tag” and “tan”. A phoneme may have more than one variant, called an allophone, which
functions as a single sound; e.g., the p’s of “pat” “spat” and “tap” differ slightly phonetically, but
that difference, determined by context, has no significance in English. In some languages where
the variant sounds of /p/ can change meaning, they are classified as separate phonemes — e.g.,
in Thai the aspirated /p/ (pronounced with an accompanying puff of air) and unaspirated /p/ are
distinguished one from the other.

Grapheme – A grapheme is the smallest functional unit of a writing system. It is impossi-
ble to speak about graphemes without mentioning phonemes as the two are so inextricably
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linked. Some graphemes can carry the sound of a variety of different phonemes and the same
is true vice versa. Some written scripts are simple in which 1 letter usually represents 1 sound.
These letters and their corresponding sounds are consistent and transparent. For this reason,
languages like Italian or Spanish are easy to read.

Table 6: The influence of pitch in the pronunciation and meanings of Yoruba words

Word Translation
Ogún Inheritance
Ogun War
Ògùn Drug

Diacritics – often loosely called “accents”, are the various little dots and squiggles which, in
many languages, are written above, below or on top of certain letters of the alphabet to indicate
something about their pronunciation [43]. Thus, Lithuanian has words like ”Ačiū” - Thank you;
”Šeštadienis” - Saturday; while Yoruba has ”Adé” - Crown; ” Lékelèké” - Cattle Egret. Accents
in Yoruba words, however, do not only discern the pronunciation of words but also meanings.
This feature is called tone. Tone is the variation in the pitch of the voice while speaking which
serves to help distinguish words and grammatical categories — i.e., to differentiate one word
from another word that is otherwise identical in its sequence of consonants and vowels [26].
For example, the word inheritance, in Yoruba, may have up to 3 different meanings depending
on its pitch. See Table 6 above.

Declension – Declension is the changing of the form of a word, generally to express its syntac-
tic function in the sentence, by way of some inflection and it is an important aspect of adapting
a foreign word to suit the phonological requirements of the Lithuanian language.

3.2 Phonetic typography
Aswemight have observed so far, NLP is greatly influenced by linguistics, hence, the substantial
use of phonetic typography in this work. The following phonetic notations are common across
this paper:

Slashes / ... / – According to the International Phonetic Association, in [35], slashes are used
for abstract phonemic notation, which note only features that are distinctive in the language,
without any extraneous detail. Therefore, we utilized slashes to represent phonemes. For in-
stance, coming across such notation as /p/ means that we are making reference to the actual
sound produced by the phoneme written between the slashes and not a mere letter.

Angle brackets ⟨ ... ⟩ – The angle brackets and the alphabet contained therein are used to
identify individual graphemes. Unlike slashes, they are used to indicate the IPA letters them-
selves rather than the sound values that they carry. Therefore, the notation ⟨a⟩ refers to a letter
and not the possible sound such alphabet may produce. In the case of distinguishing between
original orthography from transliteration, double angle brackets are used i.e., ⟨⟨...⟩⟩. Let’s say
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we had just transcribed the Yoruba proper name ”Pápá” to Lithuanian, ”Kpakpa”, the grapheme
⟨p⟩ maps to the original form of the word while ⟨⟨p⟩⟩ references the transliterated version i.e.,
⟨kp⟩.

Square brackets [ ... ] – In this paper, square brackets are used in scenarios where the context,
loosely speaking, position, of a letter is being examined amongst adjacent letters. In recent ex-
ample of the transcription of the word ”Pápá”, writing such notation as [A] would mean that we
are checking the position of ⟨a⟩ in the word in order to determine the correct sound it produces
in the word.
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4 Techniques and related works
Various automatic machine translation techniques have been adopted with each having its own
advantages and disadvantages. Three paradigms have dominated machine translation. In tem-
poral order, they are rule-based machine translation (RBMT), Example-based machine transla-
tion (EBMT), and statistical machine translation (SMT). They differ in the way they handle the
three fundamental processes in machine translation: analysis, transfer, and generation. In its
pure form, RBMT uses rules, while SMT uses data, i.e., examples of parallel translations. EBMT
tries a combination: data supplies translation parts that rules recombine to produce translation.
In their work, [14] states that the paradigms mentioned above are the major approaches to Ma-
chine Translation where SMT takes a larger number of chapters as it is said to be the leading
paradigm.

4.1 Rule-based Machine Transliteration
A rule-based machine transliteration system consists of collection of rules called grammar rules,
lexicon and software programs to process the rules. Rule based approach is the first strategy
ever developed in the field of machine transliteration - [21]. RBMT relies on countless built-
in linguistic rules for each language pair. The algorithm parses text and creates a transitional
representation fromwhich the text in the target language is generated. This process requires ex-
tensive lexicons withmorphological, syntactic, and semantic information, and substantial sets of
rules. The algorithm uses these complex rule-sets and then transfers the grammatical structure
of the source language into the target language. Also known as handcrafted/knowledge-based
machine transliteration method, RBMT requires considerable human linguistic knowledge to
construct a fairly efficient set of bilingual rules that will generate transliteration from source to
target. As with many other transliteration techniques, there is no one-direction to come about
a RBMT algorithm, making it more unopinionated - especially in this case where it is human-
knowledge-intensive.

[20], in their work, highlighted some of the challenges that face the handcrafted rule method
where it is relatively daunting to generate transliteration for English proper nouns made up of
two or more words e.g., the proper noun LONG ISLAND. To work around this concern, the
words formulating the noun are concatenated and subsequently adapted to their target word -
where Lithuanization occurs at the rear of the noun i.e., LONG ISLAND → LONGAILANDAS.
In their algorithm, two analogous pair of sets of English-Lithuanian words containing several
examples to illustrate possible transliteration for each word pair were excerpted from [29] and
[28], respectively. Making use of these pair of data sets, a new format of data records were
generated with the following parameters:

• The current letter of the English word, the left context of the current letter (6 letters to
the left of the current letter; if the context was narrower than 6 letters, underscores were
added)

• The right context of the current letter (6 letters to the right of the current letter, if the
context was narrower than 6 letters, underscores were added).

• The string of Lithuanian letters corresponding to the current letter.

The algorithm has an accuracy of up to 59 percentage of word accuracy.
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4.1.1 Context-sensitive and Context-free

Context-sensitive and context-free rules are two types of rules used in rule-based machine
transliteration. Context-free rules are rules that apply uniformly to a particular character or
sequence of characters regardless of their position in the word. In relation to the Lithuanian
language, one example of a context-free rule could be to transliterate the Yoruba letter ⟨ẹ⟩ as
⟨⟨e⟩⟩ and the letter ⟨ọ⟩ as ⟨⟨o⟩⟩ in all positions. Another example of a context-free rule could
be to transliterate the Yoruba letter ⟨y⟩ as ⟨⟨j⟩⟩ in all positions, as this letter has a distinct pro-
nunciation in Yoruba. In a study by[18], a context-free grammar-based approach was used for
Persian-to-English transliteration. The approach used a set of phonetic and orthographic rules,
including context-free grammar rules, to generate accurate transliterations.

In order to capture more complex patterns and variations in a transliteration process, the
possible contexts of each character in a given word must be evaluated as there oftentimes are
cases where some letters provide information about the pronunciation of other letters in the
word. [38] uses the term markers for such letters. Letters may mark different kinds of infor-
mation as demonstrated in our context-sensitive Yoruba-Lithuanian transliteration rule for the
Yoruba alphabet ”A”:

[A] → ⟨A⟩ (e.g. IYA→ IJA) | Mother

[A]N→ ⟨O⟩ (e.g. IYAN→ IJON) | Pounded Yam (food)

AN[A] → ⟨O⟩ (e.g. IYANA→ IJANO) | Place

Based on the context of the letter ⟨A⟩ in the examples, the correct sound is established. The
current [A] letter (the marker) in the last example informs that the nasal ⟨ã̀⟩ sound that should
have been applied to the preceding ⟨AN⟩ must be nullified. In the penultimate example, how-
ever, the nasal sound applies given that there were no markers to manipulate it as in the third
example which makes the letter in scope context-sensitive. The first example is context-free.

4.1.2 Syllabification

Syllabification is an important aspect of machine transliteration. In many cases, the target lan-
guage may have a different syllable structure than the source language, which can pose a chal-
lenge for accurate transliteration. Several studies have explored the use of syllabification rules
and techniques in machine transliteration. For example, researchers have developed algorithms
that use knowledge of the syllable structures of both the source and target languages to generate
candidate transliterations. These algorithms often rely on linguistic resources such as pronun-
ciation dictionaries and syllable templates to identify the optimal syllable boundaries for a given
word or name.

The principal purpose of breaking down a word into meaningful units in a transliteration
process is to determine the structure of a word, which in turn affects its pronunciation, stress,
and rhythm. [6], in their work on ”Thai word segmenter”, utilized syllabification to locate word
boundaries and extract useful features which enabled them to capture language patterns in their
devising of the word segmenter. Similar technique is used in [48], where they broke down
English names into a sequence of syllables and generated the most probable Pinyin sequence
with the mapping model of English syllables to Pinyin, and then converted the Pinyin sequence
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into a Chinese character sequence with the mapping model of Pinyin to characters (PC model)
to retrieve final Chinese character sequence.

Other research works have demonstrated how RBMT can be used with statistical machine
translation methods. To examine RBMT from a SMT viewpoint, [14] modeled each stage of their
proposed analysis → transfer → generation (ATG) process where each of these three sub-
processes can be purely rule or purely data driven, or may be a combination. During analysis,
RBMT would use rules of morphology analysis, parsing, semantics generation, and so on. How-
ever, it will have to grapple with ambiguities such as lemma ambiguity, morphological features
ambiguity, named entity etc (which SMT deals with through the use of probability). During
transfer , RBMT would perform bilingual dictionary lookup for word and phrase mappings. If
the analysis stage has been successful in complete disambiguation, this stage is easy, provided
the bilingual dictionary is rich enough to record all words, named entities, and multiword map-
pings. During generation, RBMT would typically arrange for morphology synthesis of lemmas
that came from bilingual dictionary lookup, and perform syntax ordering, i.e., place words and
phrases in positions licensed by the syntactic rules of the target language. Seemingly, gener-
ation (G-stage) is an easier proposition than the A-stage. But this is not completely true. If
RBMT must maintain native speaker acceptability of translation, then generation also can be
complicated.

4.2 Statistical Machine Transliteration
This paradigm relies on example of transliteration, the so-called parallel corpora. Statistical-
based transliteration approaches tend to be computationally easier in language transliteration
than trying to parse and evaluate grammatical rules and it employs various mathematical tech-
niques. Following are the 3 major phases in an SMT system:

Alignment - An important component of any SMT system is the alignment of words. Word
alignment is a mapping between the words of a pair of sentences that are a translation of each
other. The most popular alignment methods are IBM Model 1, Model 3 [5], and the hidden
markov model (HMM) [45][42]. Although word alignment and SMT in general are machine
translation components, machine transliteration systems have equally benefited from this con-
stituent, performing it at the character level as performed by [42] where an n-gram model was
adopted to achieve a phonemic alignment of word pairs. Now, an n-gram is a type of proba-
bilistic language model for predicting the next item in a sequence in the form of a (n - 1)–order
Markov model.

Model Training - Training and evaluation of transliteration systems require a bilingual corpus
of source words and their transliterations. A bilingual corpus B is the set {(S, T )} of translitera-
tion pairs, where S = s1..sl , T = Tk , and Tk = t1..tm;si is a letter, logogram, or symbol in the
source language alphabet, and tj is a letter, logogram, or symbol in the target language alphabet
- [19]. The training phase is usually one to follow the alignment stage and for training a model,
a list of considerable number of proper nouns in the source language and their representation
in their target language counterpart are collected to form a training set.

Model Application: According to [13], GIZA++ (extensive description of this toolkit can be
found in [30]) is utilized to implement SMT alignment models of Model-1 through Model-4,
where training is typically carried out unsupervised to iteratively improve alignments between
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parallel phoneme sequences. Each phoneme from the source language is aligned to only one
symbol of the target. In the event that a source character has no alignment with its pair it has
a fertility of NULL. If it remains unaligned to any source phoneme, it is known as zero-fertility.
The same approach applies when the target language serves as the source - e.g., if a Lithuanian
phoneme is left unaligned, it is called NULL-generated ;

In the remainder of this section, we survey models and techniques used in statistical machine
translation while closing the segment by drawing comparisons among the reviewed models.

4.2.1 Noisy Channel Model

Noisy channel model (NCM) is the basic phrase-based statistical machine translation model.
The noisy-channel model is a machine translation technique which was initially developed for
the translation of French sentences, by [5], tries to capture how source names can be mapped to
target names. In NCM, the source language to target language letters are aligned using GIZA++
[23]. Every letter is treated as a single word for the GIZA++ input. The alignments are then used
to learn the phrase transliteration probabilities which are estimated using the scoring function
given in [24].

4.2.2 Finite State Transducers (FST)

Finite State Transducers are models that are being used in different areas of pattern recognition
and computational linguistics. In the area of machine transliteration the transducer-based ap-
proaches that are based on building models automatically from training examples are becoming
more and more attractive. A transducer has the intrinsic ability of transducing or transliter-
ating. Whenever the machine shifts from one state to another, it will print the output word,
if any. So, as a result, not only will it accept the sentence of one language, but it will print
the transliteration in another language. Alternatively, a transducer can be seen as a bilingual
generator. A FST is an automaton that transforms one string into another. It can be seen as
a network of states with transitions between them which are labeled with input and output
symbols. Starting at some state and walking through the automaton to some end state, the FST
can transform an input string by matching the input labels to an output string by printing cor-
responding output labels [26]. [22] modeled Japanese-to-English transliteration with weighted
finite state transducers (WFSTs) by combining several parameters including romaji-to-phoneme,
phoneme-to-English, English word probabilities, and so on. A similar model was developed for
Arabic-to-English transliteration [41]. [Meng] proposed an English-to-Chinese transliteration
method based on English grapheme-to-phoneme conversion, cross-lingual phonological rules,
mapping rules between English phonemes and Chinese phonemes, and Chinese syllable-based
and character-based language models.

4.2.3 Hidden Markov Model (HMM)

Markov model is a probabilistic function of Markov process which was first developed by An-
drei A Markov in 1913 for modeling the letter sequences in Russian literature - [11]. The HMM
which is commonly used for speech recognition but has gained popularity in machine transla-
tion and transliteration. ”The HMM function is one of the powerful statistical probability tool
for modeling generative sequences that can be characterized by an underlying process generat-
ing an observable sequence” - [8].
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There are several well-known algorithms for hidden Markov models. For example, given a se-
quence of observations, the Viterbi algorithm (a dynamic programming algorithm for obtaining
the estimate of an unknown quantity) will compute the most-likely corresponding sequence of
states [44]. Mathematical model of HMM is described in the paper of [37] for speech recognition
and then extended for translation and transliteration. In their survey, [8] highlighted existing
transliteration works based on the HMM Model.

4.3 RBMT vs SMT
While several machine transliteration techniques exist and continue to both grow in number
and improve, they all share tantamount objective - generate a word in another language with
utter precedence to pronunciation. It is, however, a fact that each of thesemodels do not perform
at equal levels nor generate a result with equal accuracy. For instance, the result of a grapheme-
based transliterated word (GT) may differ from that of a phoneme-based (PT), where one may
offer better accuracy than the other. In their analysis of the contrasting difference in word-
generation between both of these unit-level transliteration methods, [32] highlighted how the
transliteration result of the medical word amylase differed. The standard Korean transliteration
of the test word is ‘a-mil-la-a-je’, which GT tends to produce correctly whereas PT is disposed
towards producing wrong ones like ‘ae-meol-le-i-seu’, which is derived from /AE M AH L EY
S/, the pronunciation of amylase. In contrast, PT can produce ‘de-i-teo’, which is the standard
Korean adaptation of data and a PT transliteration, while GT tends to give a wrong one, like
‘da-ta’. This issue is typical of some of the problems found in other models, hence, the cause for
the utilization of a combination of models.

The rule-based machine transliteration method can be modeled around both direct and pivot
approaches and may be combined with a SMT approach. Using the former requires considerable
human linguistic knowledge, thus, does not offer high accuracy rate considering the reality that
there is no given convention or pattern to pin-down human naming conventions across different
cultures which is one of the causes for machine transliteration in the first place. The common
RBMT comparison is often with its contrasting counterpart, SMT/Machine Learning (ML), and
the popular consensus amongst researchers is that in many of the areas where RBMT falters
(e.g inconsistency, problems with ambiguity), SMT excels. This, however, is not to say that the
statistical approach does not have its own struggles.

While RBMT, on the one hand, requires considerable human efforts such as constructing the
rules, adapting those rules to complement direct or pivot approaches (whatever the casemay be),
it has proven sufficient in consistently transcribing words using the context-free and context-
sensitive approach from 31 languages (German, Greek, Hungarian, Icelandic, Italian etc.) to the
Lithuanian language [3] which is why notwithstanding the advent of machine learning meth-
ods for transliteration, the rule-based approach maintains relevance. SMT, on the other hand,
requires copious amount of data, hence, causing exertion at the alignment stage - which is con-
sidered the most integral of SMT phases as it determines the accuracy of word generation. Its
rigors, however, afford for its supposed high transliteration accuracy rate.
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5 Transliteration Routes and Data

5.1 Routes

5.1.1 Direct

Figure 2: Direct route

The direct route, as its name suggests, is simply the transliteration of a given proper noun in
the Yoruba language to Lithuanian without the employment of an external factor in the adap-
tation procedure. External factors, in this parlance, would mean the use of a language resource
such as the international phonetic alphabet, to interpolate the transliteration process with with
an attempt to improve word adaptation.

5.1.2 Intermediate

Figure 3: Intermediate route

In this route, a language resource is introduced at the hub of the transliteration process,
which acts as an intermediate step. There are two transliteration phases at the intermediate
level: transliteration from the source language to the intermediate language; transliteration from
the intermediate language to the target language. In the former, the source language is translit-
erated into the intermediate language using specific transliteration rules and techniques. These
rules and techniques are designed to handle the phonetic and orthographic differences between
the source and intermediate languages. By converting the source language into the intermediate
language, we create a bridge that helps to facilitate the adaptation process. Transliteration from
the intermediate language to the target language is similar to what has previously been done,
however, this stage leverages the linguistic and phonetic similarities between the intermediate
and target languages in attempt to achieve more accurate transliteration.

In the intermediate route, 2 mechanisms were employed at the hub namely Languages and
IPA. Let’s take a look at them:

IPA

The IPAwas devised as a standardized representation of speech sounds in written form, making
every sound that serves to distinguish one word from another in a language have its distinctive
IPA representation. A simple way to retrieve an exemplified IPA representation for any language
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Figure 4: IPA at the hub

is via the Wikipedia uniform resource locator specific for IPA: https://en.wikipedia.org/
wiki/Help:IPA/Lithuanian where replacing the language path in the domain with a valid
language returns the IPA for that language with pertinent pronunciation examples. The tasks
completed during the pre-processing stage are similar but different in concept when IPA is at
the hub than when a language is: with IPA, tokenization of the input requires syllabification,
and alignment involves the mapping of the resulting tokens from the syllabifier to their respec-
tive phonetic alphabets. The tasks performed at the hub is demonstrated in the Table 7 below.
During post-processing, the graphemes of the target language are mapped to their respective
letters.

Table 7: Demonstration of the character transformation process in the IPA model where SG
= Source Grapheme, SP = Source Phoneme, SIPA = Source IPA, TIPA = Target IPA, and TG =
Target Grapheme.. Let’s name this table a matrix M for reference.

No. Input Process Output
1 SG SG → SP SP
2 SP SP → SIPA SIPA
3 SIPA SIPA → TIPA TIPA
4 TIPA TIPA → TG TG

Getting the right input at M11 is integral to getting the correct output at M33. Though the
task of tokenizing characters as graphemes is as simple as splitting a given word, more is re-
quired than text-splitting when considering the Yoruba nasal sounds which are activated only
when certain letters are used in combination, hence, the importance of retrieving the correct
SP given a letter’s context. To solve this problem, we implemented a syllabification algorithm
based on the Yoruba language syllable structure which helps to trap these letter combinations
to ensure the derivation of the right IPA value.

Languages

Figure 5: Language at the hub

As for languages, the English and Georgian languages were utilized. The latter offers a
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different writing system than all other mechanisms employed at the hub and is therefore in-
teresting to experiment with an inter-script system, whereas the former offers the benefit of
finding a resource that may enhance our adaptation result as we will find out later on in this
section, but first let us take a look at how a language work differently than the IPA in the system.
Every other component work the same as previously described in the IPA segment above except
the language method needs to compile two different language rules at the pivot: for instance,
the system must compile Yoruba-Georgian transliteration rules and then Georgian-Lithuanian
rules.

5.2 Data
We have 4 distinct sets of analogous datasets with 928 entries prepared for both of our translit-
eration routes. Yoruba proper nouns, including their phonetic alphabet representation, were
sourced from Wikipedia, while the transcription equivalence of each of those proper nouns
to their respective target languages depended on human knowledge to make a corpus. These
datasets were then divided such that we have a group containing 500 entries for training (we
called it xTrain) and another group of 428 entries for testing (which we called yTest). In Angli-
cizing our Yoruba data, we sought for letters and digraphs that has the tendency to consistently
spell a phoneme the same way in varying contexts, given the propensity of English letters to
offer different pronunciations in different positions. For instance, the Yoruba name ”Balogun”

Table 8: Sample data for our algorithm learning

Yoruba Lithuanian English Georgian IPA
Aje Adžai Ajei აჯე ā. �Ãé
Ajewọle Adžaivolai Ajeiwaulei აჯევოლე ā. �Ãé.w:O.lé
Ajikę Adžike Ajikeh აჯიკე à. �Ãí.kŸE
Akankę Akonke Akonkeh აკონკე à.kã.kŸE
Balogun Balogunas Balogoon ბალოგუნ ba.ló.gũ
Bibeli Bibilis Bibail ბიბელი bí.bé.lì
Bilisi Bilaisas Bilis ბილისი bì.lí.sì
Bọsẹde Bosedai Bausedai ბოსედე bO.sE.dé
Epo Aikpo Eikpo ეპო è.�kpò
Eṣu Aišu Aishu ეშუ è.Sù
Ẹfunṣetan Efunšaitonas Efoonshaiton ეფუნშეთონ E.fŸũ.Se.tã
Ẹgbado Egbadau Egbadoe ეგბადო ŹE.�gbá.dò
Ẹyọ Ejo Eyau ეიო ŹE.jŹO
Gẹẹsi Gęsis Gessi გეესი gŹEŸE.sŹi
Ibadan Ibadonas Ibadon იბადონ ì.bà.dŹã
Ifọn Ifonas Ifon იფონ ī.fO ̃
Iṣẹṣe Išešai Isheshei იშეშე ì.SŹE.Se
Lagunna Laguno Lagunno ლაგუნო lá.gũ.nŹã
Mọdakẹkẹ Modakeke Maudakeke მოდაკეკე mO.dá.kŸE.kŸE
... ... ... ... ...
Yoruba Jauruba Yoruba იორუბა jo.rù.bá
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is transcribed as ”Balogoon” in English because the chances are quite strong that an English
speaker would pronounce the word as so: /ba.lo.g2n/ given the position of /un/ as in ”fun”,
”gun”, ”bun” etc., and this will lead to a wrong pronunciation of the word in its source language.
Hence, given such context, we proffer the digraph /oo/, and /u/ in contexts with no utterance
ambiguity. Lithuanization of the source data, however, requires a more drastic degree of adap-
tation - we therefore aligned the source data with its Lithuanian equivalence while applying
declension to words that are obvious such as:

Ibadan → Ibadonas
Ẹfunṣetan → Efunšaitonas

Having a corpus alone is not sufficient for transliteration tasks without removing ”noises”
ahead of learning our data to a decision tree classifier or proceeding with other different phases
of the RBMT system. While there is no cause for worrying about eliminating noises like stop
words, transformation of words to their base forms through lemmatization among other ma-
chine translation text-preprocessing techniques, tokenization and normalization of our data is
necessary. Alignment of a word at character-level will be impossible without the conversion of
each member of a textual data into tokens. Tokens are entities present in a textual data, while
tokenization is the process of converting chunks of a textual data into tokens. Tokenizing a
word sample in our algorithm is a fairly straightforward process which involves running an
iteration over the word in question where each round of iteration tokenizes members of the
textual object. This process is true for both routes and intermediate resources utilized except
for the IPA because there is strong probability that the Yoruba nasal sounds are neglected. To
solve this problem we devised a syllabifier to detect the context of each part of a given word to
translate its sound.
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6 Rule-based Transliteration

6.1 Syllabification
Understanding of basic syllabic structure of a language is sufficient for the making of a program
that breaks aword into smaller parts. In linguistics, a syllable template is a type of abstract repre-
sentation that describes the internal structure of a syllable in terms of its constituent phonemes.
A syllable template specifies the positions and types of phonemes that can occur in a syllable, as
well as the patterns of stress and tone that are associated with each syllable. In some languages,
syllable templates can be quite complex and may involve the combination of multiple conso-
nants and vowels in a single syllable like Lithuanian’s (((C)C)C)V(V)(R)(C(C))[27]. According to
[33], Yoruba has 3 syllable types C, V, and the syllabic nasal N with a typical template of (CV)
where C represents a consonant and V represents a vowel. For example, the word ”Ogún” mean-
ing ”inheritance” has two syllables, ”o” and ”gún”, which follow the CVC template. In the first
syllable ”O”, is a vowel sound with no accent, indicating a middle tone. In the second syllable
”gún”, is a consonant cluster of /g/ and the nasal /n/ and ”ú” is the vowel sound with a high tone.
The following syllable directives are true of any language and were taken into consideration in
the devising of our syllabifier:

• Every word has at least one vowel.

• One vowel sound is heard in each syllable and each syllable type is related to the sound
the vowel will make.

• Vowel Lengthening: When a syllable contains a long vowel or a vowel followed by a
certain combination of consonants, it is often considered as a separate syllable.

• Stress and Tone: Syllabification can also be influenced by stress patterns and tone as-
signment in certain languages. Stressed syllables may have different characteristics or
allow different structures compared to unstressed syllables. Tone languages assign pitch
patterns to syllables, which can affect their syllable structure and pronunciation.
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Algorithm 1 Algorithm for the syllabification of Yoruba words

Require: Yoruba proper noun
Ensure: Tokens (Syllables of Yoruba proper noun)
1: syllables← list
2: word← input
3: wordLength← count(word)
4: procedure AssertSyllable(start, end)
5: token← word[start : end]
6: syllables[syllablesLength]← word[start : end]
7: word← word[end :]
8: wordLength← count(word)
9: end procedure
10: for i← 0, j ← 1 do
11: if word starts with a vowel then
12: if nextLetter← "N " then
13: if NasalSounds[nextLetter + "N "] then
14: AssertSyllable(i, j + 1) . e.g ”IN”
15: Reinitialize i, j back to initial.
16: else
17: AssertSyllable(i, j)
18: Reinitialize i, j back to initial.
19: end if
20: else
21: AssertSyllable(i, j)
22: Reinitialize i, j back to initial.
23: end if
24: else . word starts with a consonant
25: ifWord starts with a digraph then
26: if count(wordWithoutConsonant) > 1 then
27: if NasalSounds[digraph+ subsequentLetters] then
28: AssertSyllable(i, j + 1) . e.g ”GBŸỌN”
29: Reinitialize i, j back to initial.
30: else
31: AssertSyllable(i, j) . e.g ”GBA”
32: Reinitialize i, j back to initial.
33: end if
34: else
35: AssertSyllable(i,j)
36: break;
37: end if
38: else . Word starts with a single consonant
39: if count(wordWithoutConsonant) > 1 then
40: if NasalSounds[currentLetter + nextLetters] then
41: AssertSyllable(i, j + 1) . e.g ”KŸAN”
42: Reinitialize i, j back to initial.
43: else
44: AssertSyllable(i, j) . e.g ”KA”
45: Reinitialize i, j back to initial.
46: end if
47: else
48: AssertSyllable(i,j)
49: break;
50: end if
51: end if
52: end if
53: end for
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Table 9: Performance check on the syllabification algorithm by manual evaluation

Category Word Count Correctness %
Proper nouns 600 98
Adjectives 856 90

The table above shows that the algorithm is highly able to break down proper nouns and
while its performance with other figures of speech, such as adjectives, is also high, we noticed
test cases that were wrongly broken or not broken at all which is as a result of the usage of
word contraction in such words e.g., ”ŸOHŸUN KŸAN” (meaning ’something’)→ ”NKAN” leading
to consonant clusters which are not primarily a part of the syllabic template. A work around
this issue is to apply consonant cluster rules into the algorithm. There are 4 identifiable parts
in the syllabifier as demonstrated in the Figure 6 below. Let us take a look at each of them:

Figure 6: Flow diagram for algorithm 1
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-

Input - At the input stage, the algorithm expects a pre-processed proper name.

Type of the first letter - Identifying the type of letter (i.e., consonant or vowel) starting a
Yoruba word is important in fulfilling the objective of detecting the first syllable in such word.
The first vowel starting a proper name is oftentimes an independent syllable e.g., ⟨Ọ⟩ in ”Ọba”
(meaning, ”King”) is the first syllable of two. Whereas a consonant starting a word is an indica-
tor that such consonant letter is only the starting point for finding a syllable.

Syllable finder - Different checks are made in this phase depending on what letter starts the
word, but in any case, the presence of a nasal sound in the potential syllable is checked. In the
case of a vowel, the next letter to the vowel is examined for nasality (previously described in
the Table 3) and if the result of this check returns a truthy, e.g., ⟨IN⟩ i.e., /ĩ/ in ”INGILANDI”
(meaning, ”England”), such vowel is no longer an independent syllable, therefore, the position
of the nasal consonant is identified for syllable extraction. If however, the nasality of the syl-
lable is falsy, a check for the possibility of the vowel being a long sound is checked e.g. ⟨AA⟩
i.e., /aː/ in ”AARẸ” (meaning, ”commander”, as in chief officer) - the truthiness of this check
finally determines whether the vowel starter is independent or not thereby providing the range
of the syllable. The first check made when finding a syllable in a consonant-starter word is to
recognize the possibility of the starter consonant being the digraph ⟨gb⟩. Either case where it is
a digraph or not, the nasality and long vowel sound check is made. If both nasal and long vowel
examination results to be false, index of the vowel before the next consonant is identified for
syllable extraction.

Syllable extractor - This component expects 2 integer arguments as a requirement to func-
tion: start and end. These arguments specify the range of the syllable to be extracted - i.e., the
starting and the end of the syllable. For instance, if the algorithm were to be processing the
word ”GBỌNGAN”, a town in Ọṣun state, Nigeria, the correct argument to be received in order
to extract the first syllable in the sample word would be 0 and 4 where the former argument is
the starting position and the latter the end, excluding the letter in position 4 due to the zero-
based way of indexing a sequence in computer programming. With a syllable’s range within a
word now known, such syllable (in this example, ”GBỌN”) is sliced and appended to a prede-
fined variable which stores syllable tokens whereas the remainder of the sliced word, ”GAN”,
becomes the new word to syllabify. This iterative process continues until the last syllable is
extracted, where generated tokens become the final output:

GBỌN GAN

6.2 Alignment

6.2.1 Alignment for Languages

Our character to sound alignment algorithm, described in [20], generated a further 1176 data
among direct and intermediate routes (majority of which came from English being at the hub).
In what is an iterative process, the algorithm takes the character on the current iteration making
it the focal point of the alignment process and then weighs on the context of that character 6
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letters to the left and 6 letters to the right (where underscores were added in positions where
the character’s context is narrower than 6 letters) to determine the alphabetical equivalence of
the grapheme in question to its target language with priority to sound. Four actions are taken
in the course of character-context assessment:

MATCHING Of a grapheme, i.e., x = x

INSERTION Of a single character. If s = ct then inserting the character x produces cxt

REPLACEMENT Of a single character x for a symbol y 6= x changes cxt to cyt i.e., x → y

SKIPPING Of a single character, i.e., x → E where E= empty string.

The successive writing of a letter in the Yoruba language, is generally used to denote stress
on a word and oftentimes, on a borrowed word’s syllable. Take for example, the Yoruba word
”Gẹẹsi” (meaning, ”English”). The alignment procedure performs all actions in a successful
transcription of the word into Lithuanian language

Table 10: Yoruba → Lithuanian adaptation

Left Context Current Yoruba Letter Right Context Target Action

_ _ _ _ _ [G] ẸẸSI_ G Match

_ _ _ _G [Ẹ] ẸSI_ _ ’ ’ Skip

_ _ _ GẸ [Ẹ] SI_ _ _ Ę Replace

_ _ GẸẸ [S] I_ _ _ _ S Match

_ GẸẸS [I] _ _ _ _ _ I Match

GẸẸSI [_] _ _ _ _ _ S Insert

i.e.,

Gẹẹsi GĘSIS

6.2.2 Alignment for IPA

The purpose of breaking a given word into syllables is to trap nasal sound existence in such
word to afford for the correct mapping of a sound to its correct IPA value. For instance the
syllabification output for the Yoruba word ”Baayanni” (meaning, a Yoruba deity), will be as
follows:

BAA YAN NI

From the output, the position of stress in the syllables (1st) is identified and the presence of
a nasal sound recognized - our alignment job, moving forward, is simplified.

Upon execution of Algorithm 2 above, the sample word is aligned as follows:
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Algorithm 2 IPA Alignment algorithm

Require: Syllables
Ensure: Return IPA equivalent of tokens
YorubaIPAMappings . IPAs mapped to Yoruba letters
for token in Syllables do

if token has nasal then
transcribe preceding grapheme;
map nasal vowels to IPA equivalent;

else
map grapheme to IPA;

end if
end for

B A A Y A N N I
B - A: J - Ã N I

i.e.,

BAAYANNI BA:JÃNI
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7 Machine Learning

7.1 Decision Tree (CART)
CART, or Classification and Regression Trees, is a specific type of decision tree learning algo-
rithm that was introduced by [4]. In this work we utilize the CART algorithm provided by [34].
CART algorithm creates a binary tree in which each node represents a feature, each branch
represents a decision based on that feature, and each leaf node represents a prediction where a
splitting criterion is used to determine how to divide the data at each node of the tree. Two pop-
ular criteria are entropy and gini impurity. Entropy is a measure of the amount of uncertainty
or randomness in a set of data and is used to measure how well a split separates the data into
homogeneous groups. The following formula may be used to compute the entropy of a dataset:

H(S) = −P(+)log2(P+)− P(−)log2P(−)

Where S is a set of data, P(+) the percentage of positive classes and P(−) the percentage of
negative classes.

Gini impurity on the other hand measures the probability that a randomly chosen data point
from a group would be incorrectly classified if it were randomly assigned a label from that
group.

Gini(feature) = 1−
∑

(p(i|feature))2

where p(i|feature) is the proportion of the samples that belong to class i for a given feature.

Figure 7: Classification with gini index
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To exemplify the splitting process in a decision tree (DT), as in the Figures 7 and 8, we
created a CART classifier and trained it on a simple dataset (with a prediction accuracy of 62%)
that predicts whether a given proper name is Lithuanian or Yoruba with features described in
the table below.

Table 11: Features used in training a CART to predict the source of a given word: Yoruba or
Lithuanian

Feature Meaning
accentCursive Defines accent shape
bottomDiacritic Position of accent beneath the word
topDiacritic Position of accent at the top of the word
hasAccent Specifies the presence of an accent on the word

Figure 8: Classification with entropy

We asked the classifier to predict the origin of the words ”Ṣegun” and ”Šedurskas” using
gini as the criterion for the former and entropy for the latter. Though the model made correct
predictions for both words (Yoruba and Lithuanian, respectively) and with similar tree depth of 3
and decision leaves of 6, the difference in computational efficiency is noticeable. Gini computes
twice as fast than entropy to reach a decision, with entropy ranging from 0 to 1 (where 0 means
that all data points in dataset S belong to the same class (i.e., no uncertainty), and 1 means that
the data points in S are evenly split across all classes (i.e., maximum uncertainty)) whereas it
only ranges up to 0.5 for gini index. This is due to the fact that computation of logarithmic
calculations, as is the case with entropy, are naturally expensive, the benefit, however is that it
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tends to create more balanced trees. On the other hand, gini index is mostly preferred due to
its computational advantage which is noticeable when work is being done on datasets that are
more complex and in greater volume. The gini index is the default parameter used in a CART
algorithm which adds up to the reason why it is our chosen algorithm among others such as
C4.5.

7.1.1 Alignment

Once the various alignments of our various transliteration routes and pairs were completed
we had more data for the DT induction. The Yoruba-Lithuanian word alignment exemplified
in the Table 10, for example, gives 6 mappings. So, we have 500 word pairs and 3698 data
mappings for our training data. Machine learning algorithms can only work on numbers, they
cannot understand labels. As such, we converted inputs into numbers using [34]’s label encoder.
The categorical features (i.e., transliteration class) though were not encoded using this method
because our categorical features have considerably more than two values, whereas nominal
categorical features havingmore than two values may get treated as ordinal ones by themachine
learningmodel. Althoughmodel performancewon’t suffermuch, it is recommended to use One-
Hot encoder (dummy encoding), also available in [34], for categorical features having more than
two different types of value.

Figure 9: Jupyter notebook snippet of our xTrain data at its label encoding stage ahead of
learning it to a decision tree classifier

For our character-context technique, the training data consists of 9 context attributes which
are used to predict the transliteration generation (TG) of a current character among a string of
word to transcribe. The root node is split by the context of the letter in question where the
decision tree stops growing if the condition in the left leaf node is true of the context-freeness
of the letter. If it is context-sensitive, a decision node is built to determine the correct TG of
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such letter based on our previously mentioned context-rules and compiles an information gain
to determine the best attribute for the next split.

7.1.2 Pruning

One of the drawbacks of the DT is its propensity to overfit data. This occurs when a model is
too complex and fits the training data too closely - in other words, it continues to split data until
it finds purity in the leaf node. So, even though the DT may almost perfectly perform on the
training data, it will perform very poorly on unseen data. This phenomenon is called overfit-
ting [15]. Our classifier is also not immune to overfitting as slight difference in performance is
noticed when we pre-pruned the tree. But this problem, first of all, poses a pertinent question
as to where and how the problem occurred in our learning and the answer to this is that the
model noticeably creates extra layers for context positions that are empty, therefore, causing
depth in the tree hierarchy. In the figure 10 below, we ran an experiment to get the adaptation
of the Yoruba letter ⟨E⟩ to English i.e., ⟨⟨AY⟩⟩ from the name ”ADELEKE”, and got the correct
transcription. The depth and quantity of the leaves, however, are evidence of overfitting and
this is where the complexity of a model comes to play, for instance, comparing the previously
presented word-source classifier and the transliteration model.

Figure 10: Visualization of the transcription of the Yoruba letter ⟨E⟩ to its English equivalent.
The tree has a depth of 13 levels with 28 decision leaves

Since our approach is context-sensitive, the tree considers all contexts that may apply to a
feature thereby finding the gini index for each of those feature until it attains leaf nodes with
complete purity as validated in the figure 11 below.
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Figure 11: This diagram is cropped from the figure 10 above to show the decision made by the
tree

There are two types of pruning: pre-prune and post-prune. The former is a technique used
to eliminate unnecessary nodes of a tree prior to its construction and is generally done by hy-
perparameter tuning i.e., specifying additional criteria at the initialization stage of a classifier.
While post-pruning is the prune of a DT after it has been constructed. In a study by [39], pre-
pruning is said to be more efficient than post-pruning because it stops the tree from growing
before it reaches its maximum size. Post-pruning, on the other hand, requires growing the tree
to its maximum size before pruning back. There are several techniques used in pruning decision
trees, including: reduced error pruning (removal of nodes that do not contribute to the overall
accuracy of the tree), depth-based pruning ( limiting the depth of the tree to reduce overfitting),
hyper-parameter tuning (optimization of the values of the hyper-parameters that control the
tree’s growth and complexity) among others.
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7.1.3 Hyper-parameter tuning

The process of hyper-parameter tuning typically involves selecting a range of values for each
hyper-parameter that control the tree’s growth and complexity and then training and evaluating
the performance of the model with different combinations of these values [2]. One of the most
common hyper-parameters to tune is themaximum depth of the tree, which controls the number
of levels of the tree and, thus, its complexity. Other hyper-parameters that can be tuned include
the minimum number of samples required to split an internal node, the minimum number of
samples required to be at a leaf node, and the maximum number of features to consider when
looking for the best split. Below are the hyper-parameters that we tweaked for our DT pruning:

• max_depth: This parameter is used to control the depth of the decision tree. It specifies
the maximum number of levels in the decision tree. As with any other parameter, it is
important to find the optimal balance between model complexity and performance. Ac-
cording to [12], if the max_depth is set too high, the decision tree may overfit the training
data, leading to poor performance on the test data. This is because the tree becomes too
complex and captures noise in the data. On the other hand, if the max_depth is set too
low, the decision tree may not capture all the relevant patterns in the data and underfit
the data, leading to poor performance on both the training and test data.

• max_leaf_nodes: This parameter grows the tree with a specified number of leaf nodes
based on reduction in impurity. In other words, it specifies the maximum number of leaf
nodes that a decision tree can have.

• min_samples_split The minimum number of samples that are required to split an inter-
nal node. If the value of min_samples_split is too low, it can result in overfitting the model
to the training data. On the other hand, if the value is too high, it can lead to underfitting,
where the model is not able to capture the complexity of the underlying data.

[34] provides a function that carries out an exhaustive search over specified hyperparam-
eter values for a classifier, called GridSearchCV. As arguments, this function takes a model, a
parameter grid in form of a python dictionary, and cross-validation scheme - a number which
specifies the amount of cross-validation folds to use for evaluation, and returns the best set of
hyperparameters for the model based on the specified scoring metric. The results from our var-
ious experiments including the recorded effects of tuning the DT classifier’s hyperparameters
are presented in the next section.
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8 Experiment Appraisal and Conclusion
Transliteration accuracy is generally measured by the percentage of the number of correctly
transliterated words divided by the total number of words tested. The correct transliteration
here means the standard transliteration as listed in the dictionary. This measure is called word
accuracy (WA)[15]. Another way to evaluate the accuracy of an algorithm is by letter accu-
racy (LA), which is the percentage of correctly transliterated letters of total number of letters
in a given test data. The evaluation process of transliteration though, is not straightforward.
Transliteration is a creative process that allows multiple variants of a source term to be valid,
based on the opinions of different human transliterators. Different dialects in the same language
can also lead to transliteration variants for a given source term.

WA =
numberOfCorrectTransliterations

TotalNumberOfTestWords

LA =
numberOfCorrectlyTransliteratedLetters

TotalNumberOfLettersInTest

Our algorithm experiments are evaluated based on 2 criteria:

• Performance: In terms of WA and LA in both direct and intermediate routes with and
without machine learning. The numbers that calculate the result of the performance in-
cluding the result itself are demonstrated in a tabular form later in this chapter.

• Lithuanization: The second criterion, also demonstrated in a tabular form, evaluates
Lithuanization when the intermediate route is utilized.

The following evaluation criteria can be found in the result tables:

• Number ofRules: Specifies the total amount of grammatical rules defined for a language.

• Number of words in test set: Specifies the total number of words present in a testing
dataset.

• Number ofmisspelledwords: Specifies the total number of words that were incorrectly
spelled by the transliteration system.

• Number of letters in test set: Specifies the total number of characters or alphabets
present in a test dataset.

• Number of incorrect letters: Specifies the total number of characters or alphabets that
were incorrectly spelled by the transliteration system.

• Model Score: In the machine learning parlance, a model score quantifies the quality of a
model’s prediction by comparing the train and test data i.e., the predictability ofXi being
Yi given Y . Loosely speaking, the DT’s accuracy.

• Tree Depth: Specifies the total number of levels required for the DT to reach a decision
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8.1 Evaluation of RBMT approach

8.1.1 Direct transliteration

One advantage that this route holds over the intermediate route is the computational time taken
to transliterate a word from source to the final target. Using JavaScript’s performance API, we
computed the overall time taken for a transliteration process between both routes and the result
from that experiment validates that the direct route computes an adaptation process than the
intermediate route as shown in the table below.

Table 12: Comparing both transliteration routes based on computational speed.

|Direct Intermediate (Georgian) Intermediate (English) Intermediate (IPA)|
|0.41ms 0.72ms 0.60ms 0.83ms |

Table 13: Performance evaluation of the direct route in respect to WA and LA.

Measure Direct
Number of Rules 214
Number of words in test set 428
Number of misspelled words 41
Number of letters in test set 2190
Number of incorrect letters 96
Word Accuracy 90.4%
Letter Accuracy 95%

8.1.2 Transliteration using English and Georgian as intermediate languages

From gathered results, the composition of transliteration rules for each of the Yoruba phonemes
require noticeably lesser rules in Georgian than English as 198 rules were sufficient to compound
a 97% word accuracy into the former on the same amount of words in our test set whereas the
latter, with almost fourfold the number of its counterpart’s rules, compounded 82% of word
accuracy. Now, though the Georgian language appears to have good numbers in performance
as well as in the measurement metrics of our Lithuanization effect test, the English language
fairs better in the purpose of our ”multiple transliteration roots” devising, which is finding the
route that better adapts a foreign word into the Lithuanian language.

The English language thrives in this adaptation domain because there are quite a number of
resources in existence that establishes transliteration conventions from English to Lithuanian,
for example, in [28]. With a clear standard in place, we were able to construct Yoruba rules that
gives possibility for Anglicization. Let us exemplify the application of our stress removal rule
on these two Yorubalized words, ”JIIMU” and ’KARIIMU’ , literally transliterated as ”JIM” and
”KAREEM” , respectively.
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Table 14: Stress rule. This word pattern is mostly common amongst Yorubalized words. Note:
LC in the table is an abbreviation for ”Left Context”.

LC 3 LC 2 LC 1 Current Letter
A A B U
A A D U
... ... ... ...
E E B U
E E D U
... ... ... ..
Ẹ Ẹ B U
Ẹ Ẹ D U
... ... ... ...
... ... ... ...

Table 15: Long sound rule. Note: LC, CL, and RC in the table are abbreviations for ”Left Con-
text”, ”Current Letter”, and ”Right Context”, respectively.

LC2 LC1 CL RC1 RC2 OUTPUT
A A ” ”

A A A

A borrowed word in the Yoruba language is always stressed in such a way that it has con-
secutive vowel letters and then ends with phonemes <u> and <i>. Rules in the Tables 14 & 15
above, simply put, asserts that for every current letter preceded by a consonant whose preced-
ing letters are diphthongs, must result to an empty string; and, the first letter of any diphthong
must result to an empty string while the last is mapped to its transliteration target;, respectively.
And though the transliteration spelling might not be accurate (penalized in both WA & LA), the
result affords for one that can be Lithuanized. Let us look at the rule 58 in [28], we will see that
it agrees with the transliteration of our sample words:

JIIMU→ JIM→ DŽIMAS
KARIIMU→ KARIM→ KARIMAS

Because the Georgian language is not inflected and neither does adaptation of a foreign word
to it seem practical (because the Georgian name either ends with a dze or shvili, connotations
of which are symbolic to the culture, and will also transform the essence of the foreign word)
the above examples will result to the following as in direct transliteration:

JIIMU→ ჯიიმუ→ DŽĮMU
KARIIMU→ კარიიმუ→ KARĮMU

On the one hand of what transliteration is, the result provided by the Georgian route is
acceptable since it preserves the sound of the word in the source language while representing
the word in the target language. The English route, on the other hand adapts the source word
to meet the phonetic regularities of the target language.
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Table 16: Performance of the intermediate route when the English and Georgian languages
are used at the hub of the transliteration process in pertinence to Word and Letter Accuracy.

Measure English Georgian
Number of Rules 764 198
Number of words in test set 428 428
Number of misspelled words 78 29
Number of letters in test set 3390 2980
Number of incorrect letters 682 87
Word Accuracy 82% 97%
Letter Accuracy 80.1% 97.3%

The tables 14 and 15 demonstrate the performance of the transliteration route in terms ofWA
and LA as well as how the route helps in achieving the Lithuanization of a given Yoruba word.
The former table shows that theGeorgian language outperforms the English language inWAand
LA, whereas the latter table demonstrates that the English language affords for Lithuanization
better than its counterpart.

Table 17: Performance of the intermediate route when the English and Georgian lan-
guages are used at the hub of the transliteration process in pertinence to how they facilitate
Lithuanization of a Yoruba word.

Measure English Georgian
Number of words in test set 350 399
Number of misspelled words 108 93
Number of transcribed words 242 306
Number of Lithuanized words 139 79
Lithuanization aid 40% 20%

8.1.3 Transliteration using IPA as an intermediate language

Going by our assessments of the IPA as an intermediate language, we are able to establish the fact
that evaluating this method by its ability to facilitate the adaptation of a foreign word to meet
the phonetic regularities of the target language will be inconsistent. For instance, given 1000
foreign words with obvious Lithuanian-adaptable ending, we would have a 100% Lithuanization
effect. Drawing comparison with its counterpart, it is important to highlight though that the
IPA records better word and letter accuracy. The problem of missing sounds in the mapping of
source-IPA to target-IPA, however, is noticeable and requires manual effort to substitute missing
sounds for the closest phoneme that sounds alike. The IPA result table contains measurement
criteria that were not previously described, let us look at them:

• Words syllabified : Specifies the total number of words that were broken down into syl-
lables in the course of the experiment.

• Letters in words syllabified: States the total number of letters present in those words that
were broken down.

• Failed SP → TIPA mapping: Specifies the number of source language IPA symbols that
were either mapped incorrectly or not mapped at all.
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• TIPA → TG mapping: Specifies the total number of target IPAs that were successfully
mapped to their graphemes.

• Number of words Lithuanized: Specifies the total number of transliteration result with
Lithuanian morphological identity.

Table 18: Performance of the IPA as an intermediate language.

Measure Count
Words in test set 428
Number of syllables 1217
Number of Letters 2567
Words syllabified 400
Letters in words syllabified 2439
Failed SP → TIPA mapping 30 (missing sounds)
TIPA→ TG mapping 370
Number of words Lithuanized 69
Word accuracy 96.4%
Letter accuracy 98.3%
Syllable accuracy 93%

The table above shows that the IPA is a powerful resource to utilize for transliteration as
it records better word and letter accuracy than its language counterparts. A low count of only
7.5% of missing sounds, also suggests that its drawback is minimal and above all, resolvable.

8.2 Evaluation of machine learning approach
Like the evaluation of experiments done in RBMT for both transliteration routes including the
language resources employed at the hub of the intermediate route, we make similar evaluations
on machine learning as means of adaptation on basis of tree pruning i.e., performance before
and after pre-pruning of the decision tree.

8.2.1 Direct transliteration using ML

Table 19: Model performance before and after pruning when making direct adaptation. Note,
TD in the table means Tree Depth.

Mean word size Model Score WA LA Mean Leaves TD

Before pre-pruning 6 72.1 69.1 89.4 714 102
After pre-pruning 7 73.3 69.3 89.8 603 85

Using [34]’s train_test_split function (to split a dataset into a training set and a testing set) we
had dual sets of training and testing data where 30% of the overall data is allocated to testing and
the remainder for training the DT classifier. The model scored a prediction accuracy of 72.1%
before pruning and a slight increase in the score with 1.2% increment as a result of pre-pruning
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the model. Before pre-pruning the tree, we exposed the classifier to unseen names that aver-
aged a word length of 6, for this, the model recorded WA of 69.1% but returned a better score of
89.4% for LA. Using the get_n_leaves function available to a classifier for retrieving the number
of decision leaves amassed by a DT, we found that the model generated up to 714 leaves with
a depth of 102. After pre-pruning the tree, we made another round of testing using the same
methods, and on rare occasions tried names with longer word length: we noticed minute differ-
ences in WA and LA (0.2% and 0.4% increments, respectively), however, there were noticeable
improvements in the number of leaves and tree depth with 15.5% decrement in average number
of leaves and 16.6% decrement in tree depth, respectively.

8.2.2 Intermediate transliteration using ML

Table 20: Model performance before and after pruning when making adaptation using inter-
mediate languages. TD, like in Table 19, means Tree Depth.

Georgian Mean word size Model Score WA LA Mean Leaves TD

Before pre-pruning 6 80.6 69.1 89.4 598 96
After pre-pruning 6 80.4 69.3 89.8 710 80

English

Before pre-pruning 6 58.1 70.3 74.6 697 176
After pre-pruning 7 58.0 73.8 74.9 803 109

IPA

Before pre-pruning 7 89.2 85.2 97.6 441 76
After pre-pruning 7 93.2 85.1 97.5 519 63

Similar performance methods were used on the intermediate route as with direct. In terms of
model score, the classifier recorded the lowest confidence on our English dataset with 58.1%
before pre-pruning and a 0.1% decrement after pre-pruning whereas the highest model confi-
dence was recorded on the IPA with 89.2% and 93.2% before and after pre-pruning, respectively.
Though the estimated accuracy with Georgian is second to the IPA with a noticeable margin
of 9.4% before we tweaked hyper-parameters and 13.4% after doing so, the difference between
the Georgian and English languages is even greater, with the model having more confidence in
the Georgian dataset than English before pre-pruning by 22.5%, and 22.4% after pre-pruning. In
WA and LA, the English language fared better than its counterparts, when observing the effect
of pre-pruning the classifier: 3.8% increase in WA and 0.5% increase in LA for English; 0.2% in-
crease inWA and 0.8% increase in LA for Georgian; 0.1% decrease inWA and LA for IPA. Finally,
there seem to be an inverse relationship between a tree’s depth and the number of leaves it has:
the latter seem to decrement when the former grows, and vice versa.
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8.3 Conclusion
Based on our study, we found that the intermediate route for transliteration between Yoruba
and Lithuanian fares better than the direct route when using tools that facilitate the adaptation
process, such as the English and Georgian languages and IPA.We also found that the IPAwas the
most effective language resource in aiding the adaptation process. The syllabification of words
proved to be integral to the efficiency of IPA as an intermediate language resource, and this
technique can be applied in other areas of NLP, such as text-to-speech synthesis of the Yoruba
language to Lithuanian.

We also observed that, as long as machine transliteration continues to require grammatical
rule of thumbs, the rule-based approach will continue to maintain relevance and produce bet-
ter results than machine learning. Our study revealed that the English language also played a
significant role in Lithuanizing a Yoruba word and, when combined with IPA, resulted in better
transliteration accuracy in both word and letter.

In conclusion, our study has highlighted the effectiveness of the intermediate route, IPA,
and syllabification of words in transliteration between Yoruba and Lithuanian. These findings
could have significant implications for NLP, especially in areas such as text-to-speech synthesis.
Our study also emphasized the continuing relevance of the rule-based approach in machine
transliteration.
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9 Appendix. Transliteration Software

Our transliterationweb software (https://yoruba-lithuanian-adaptation.000webhostapp.
com/vu/) provides a user-friendly solution for transliterating Yoruba words into Lithuanian.
The software is built on a combination of two programming languages, Javascript and Python
(Flask). The Javascript is responsible for the user interface design, as well as the rule-based
transliteration algorithm. This means that users can easily input Yoruba words and receive near-
instant transliterations into Lithuanian. The Python’s Flask framework, on the hand, is used to
expose the decision tree classifier to the client through REST API. This enables the model to
improve its accuracy over time by learning from the user inputs.

Figure 12: A snapshot of our transliteration software’s user interface when using the IPA as an
intermediate language

Figure 13: A snapshot of our transliteration software’s user interface when using the direct
route

The Figures 12 and 13 above are snapshots of our described software. The system comprises
of 3 components:

• Navigation: The navigation provides a set of options used in configuring the translitera-
tion procedure such as the transliteration route, intermediate options (if the desired route
is intermediate), and the adaptation method i.e., rule-based or machine learning.

• Input: The input component provides an input field to the user as well as a button which
on click event triggers the pre-processing phase of the transliteration procedure.
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• Result: Right beneath the Input is the result component. This component is responsi-
ble for presenting the outcome of an adaptation process in a format depending on the
configured options
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