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Introduction

We write s = σ + it for a complex number. We denote a zero of a function F (s) by

ρ = β + iγ and by p a prime number.

In 1734 Euler solved the Basel problem, that is he showed that
∞∑

n=1

1
n2 = π2

6 .

Specifically, he evaluated the series
∞∑

n=1

1
ns

(1)

at positive even integers. Additionally, in 1737, he showed that
∞∑

n=1

1
ns

=
∏
p

1
1 − p−s

,

thus giving an alternative proof for the infinitude of the prime numbers. The prod-

ucts of the type as the one on the right hand side of the above equation are called

Euler products.

The series (1) and its Euler product converges when σ > 1. In 1859 Riemann

found a meromorphic continuation of this series to the entire complex plane. It is

now called the Riemann zeta function and is denoted by ζ(s). He also proved the

following functional equation for ζ(s):

ζ(s) = 2sπs−1 sin
(
πs

2

)
Γ(1 − s)ζ(1 − s),

where Γ(s) is the gamma function (for definition and properties see [14, Chapter

1.86]).

From this functional equation it is easy to see that ζ(s) has zeros for negative

even integers. These zeros are called trivial and all other zeros of ζ(s) are called

non-trivial. The functional equation also implies that the non-trivial zeros of ζ(s)

are symmetric across the line σ = 1/2. Remembering the Euler product, one can

then easily deduce that all non-trivial zeros of ζ(s) must be in the strip 0 ≤ σ ≤ 1.
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The yet unresolved Riemann Hypothesis (RH) states that all non-trivial zeros

of ζ(s) are on the line σ = 1/2. RH is one of the most sought after statements

in all of contemporary mathematics due to the fact that it has implications on the

distribution of prime numbers. For example, von Koch in 1901 [8] proved that the

following asymptotic formula is equivalent to RH:

π(x) =
∫ x

0

du

log u +O(
√
x log(x)), x ≥ 2,

where π(x) is the prime counting function.

There are many other equivalent statements to the Riemann Hypothesis. A

famous example would be Speiser’s criterion [12] (also see [9] for quantitative result)

which states that RH is equivalent to the non-vanishing of ζ ′(s) in the strip 0 < σ <

1/2. A comprehensive list of other equivalents can be found in [3, Chapter 5].

Recently, Gonek, Graham and Lee [10] formulated a new equivalent for RH.

They proved that RH is equivalent to the following relation

∑
p≤x

p−it =
∫ x

2

u−it

log udu+O(x1/2|t|ε),

for all ε, B > 0 and 2 ≤ x ≤ |t|B. For further development see Banks [2]. In [5,

Corollary 6] a similar equivalent was considered in the case of the Lindelöf hypothesis

for the Lerch zeta-function.

The goal of this thesis is to extend the above result to a wider class of L-functions

which we now present. A function F (s) belongs to the Selberg class S if it has the

following properties:

1. For σ > 1, F (s) is an absolutely convergent Dirichlet series

F (s) =
∞∑

n=1

an

ns
.

2. For some integer m ≥ 0, (s− 1)mF (s) is an entire function of finite order.

3. F (s) satisfies a functional equation of the form

Φ(s) = ωΦ(1 − s)

where

Φ(s) = Qs
r∏

j=1
Γ(λjs+ µj)F (s),

with Q > 0, λj > 0, ℜµj ≥ 0 and |ω| = 1.

4



4. (Ramanujan hypothesis) For every ε > 0, a(n) ≪ nε.

5. (Euler product) For σ sufficiently large,

logF (s) =
∞∑

n=1

bn

ns

where bn = 0 unless n = pk for k ∈ N and bn ≪ nθ for some θ < 1/2.

The dataQ, λj, µj and ω do not determine F (s) uniquely, however dF = 2∑r
j=1 λj

is an invariant called the degree of F (s). Let mF be the order of the pole of F (s)

at s = 1. We say that a function from the Selberg class satisfies RH if it does not

vanish when σ > 1/2.

Selberg introduced this class of functions in [11] to study L-functions axiomat-

ically. The defining properties were picked such that there would be no known

examples of functions which belong to S but are known to not satisfy RH. It is still

not known whether or not all functions in S satisfy RH. Good resources for learning

about functions from S are [6], [7] and [13].

The main result of this thesis is the following theorem.

Theorem 1. Let F (s) ∈ S. Then F (s) satisfies RH if and only if

∑
n≤x

bnn
−it = mF

∫ x

2

u−it

log udu+O(x1/2|t|ε), (2)

for all ε, B > 0 and 2 ≤ x ≤ |t|B.

The proof of this theorem is given in Section 3. Section 2 is devoted to several

lemmas which will be needed in the proof of the main result.
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Lemmata

Let F (s) ∈ S and denote ΛF (n) = bn log n, then

−F ′

F
(s) =

∑
n=1

ΛF (n)
ns

.

Lemma 2. The following equalities are equivalent

∑
n≤x

ΛF (n)n−it = mF
x1−it

1 − it
+O(x1/2|t|ε)

and ∑
n≤x

bnn
−it = mF

∫ x

2

u−it

log udu+O(x1/2|t|ε),

for all ε, B > 0 and 2 ≤ x ≤ |t|B.

Proof. Suppose the second equality holds, then, using Abel’s summation formula

(see [1, Theorem 4.2]) we obtain

∑
n≤x

ΛF (n)n−it = log x
∑
n≤x

bnn
−it −

∫ x

2

∑
n≤u bnn

−it

u
du =

log x
∫ x

2

mFu
−it

log u du−
∫ x

2

1
u

∫ u

2

mFw
−it

logw dwdu+O(x1/2|t|ε) =∫ x

2
mFu

−itdu+O(x1/2|t|ε) = mF
x1−it

1 − it
+O(x1/2|t|ε).

Conversely,

∑
n≤x

bnn
−it =

∑
n≤x

ΛF (n)n−it

log n = 1
log x

∑
n≤x

ΛF (n)n−it −
∫ x

2
−
∑

n≤u ΛF (n)n−it

√
u log2 u

du =

mF

log x
x1−it

1 − it
−
∫ x

2
− mFu

1−it

(1 − it)(
√
u log2 u)

du+O(x1/2|t|ε) =

mF

∫ x

2

u−it

log udu+O(x1/2|t|ε).

The next lemma is an adaptation of Lemma 3.12 of Titchmarsh [15].
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Lemma 3. Let T > 0 and suppose that x > 0 is half an odd integer. Then,

∑
n≤x

ΛF (n)n−it = 1
2πi

∫ 2+iT

2−iT
−F ′

F
(w + it)x

w

w
dw +O

(
x2

T
+ 1

)
.

Proof. Suppose n < x, then

1
2πi

(∫ 2−iT

−∞−iT
+
∫ 2+iT

2−iT
+
∫ −∞+iT

2+iT

)
(x/n)w

w
dw = 1.

Integrating by parts we obtain∫ 2−iT

−∞−iT

(x/n)w

w
dw = (x/n)2−iT

(2 − iT ) log(x/n) + 1
log(x/n)

∫ 2−iT

−∞−iT

(x/n)w

w2 dw ≪

(x/n)2

T log(x/n) + (x/n)2

log(x/n)

∫ ∞

−∞

dw

w2 + T 2 ≪ (x/n)2

T log(x/n) ,

and we also get the same estimate for the integral from 2 + iT to −∞ + iT . Hence,

1
2πi

∫ 2+iT

2−iT

(x/n)w

w
dw = 1 +O

(
(x/n)2

T log(x/n)

)
.

If n > x we get the same expression without the term 1 by arguing similarly with

−∞ replaced by ∞.

Multiplying by ΛF (n)n−it and summing we obtain

1
2πi

∫ 2+iT

2−iT
−F ′

F
(w + it)x

w

w
dw =

∑
n≤x

ΛF (n)n−it +O

(
x2

T

∞∑
n=1

|ΛF (n)|
n2| log(x/n)|

)
.

If n < 1/2x or n > 2x then | log(x/n)| > log 2, thus these parts of the sum in the

error term are

≪
∞∑

n=1

log n
n3/2 .

If ⌈x⌉ < n ≤ 2x, let n = ⌈x⌉ + r, then

log(n/x) ≥ log ⌈x⌉ + r

⌈x⌉
≫ r/ ⌈x⌉ ≫ r/x.

Hence this part of the sum in the error term is

≪ x3/2 log x
x2

∑
1≤r≤x

1
r

≪ log2 x

x1/2 ,

same for the terms with 1/2x ≤ n < ⌈x⌉ . Finally,

ΛF (⌈x⌉)
⌈x⌉2 | log(x/ ⌈x⌉)|

≪ log x
x3/2| log(1 + (2x)−1)| ≪ log(x)

x1/2 ,

thus the lemma follows.

The next two lemmas are classical results in Riemann zeta function theory gen-

eralised to the Selberg class. The proofs were adapted from those found in [4].
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Lemma 4. Let 0 ≤ δ < 1/4 be such that F (s) ∈ S has no trivial zeros with

σ = −1 + δ. Then
∫ −1+δ+iT

−1+δ−iT
−F ′

F
(w)x

w

w
dw = O

(
log2 T

x1−δ

)

for any T > 0

Proof. Recall,
Γ′

Γ (s) = log(s) +O(|s|−1),

when s is away from poles of Γ(s), and

cot s = 1 +O(e−|ℑ(s)|).

Using logarithmic differentiation on the functional equation of F (s) we can derive

F ′

F
(s) = −2 logQ+G(s) − F ′

F
(1 − s),

where

G(s) =
r∑

j=1
λj(π cot(π(λjs+ µj)) − Γ′

Γ (1 − λjs− µj) − Γ′

Γ (λj(1 − s) + µj)) ≪ log t,

when σ = −1 + δ.

Thus,
F ′

F
(s) = O(log t),

when σ = −1 + δ. Then,
∫ −1+δ+iT

−1+δ−iT
−F ′

F
(w)x

w

w
dw ≪ x−1+δ

∫ −1+δ+iT

−1+δ−iT

logw
w

dw ≪ log2(T )
x1−δ

.

Lemma 5. Let 0 ≤ δ < 1/4 be such that F (s) ∈ S has no trivial zeros with

σ = −1 + δ. Then
∫ 2+iT

−1+δ+iT
−F ′

F
(w)x

w

w
dw = O

(
x2 log2 T

T

)

for any T > 0 such that it is not an ordinate of a non-trivial zero of F (s).

Proof. In this proof ρ = β + iγ denotes a non-trivial zero of F (s).

By Hadamard theory, we can write

smF (1 − s)mF Φ(s) = ea+bs
∏
ρ

(
1 − s

ρ

)
es/ρ.
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Taking logarithmic derivatives of both sides we obtain

F ′

F
(s) = −mF

s
− mF

s− 1 − logQ−
∑

j

λj
Γ′

Γ (λjs+ µj) + b+
∑

ρ

(
1

s− ρ
+ 1
ρ

)
.

Remembering the estimate Γ′/Γ(s) = log s+O(1/|s|) we obtain

F ′

F
(s) =

∑
ρ

(
1

s− ρ
+ 1
ρ

)
+O(log T ),

for −1 + δ ≤ σ ≤ 2.

Now applying this formula at s and 2 + it and subtracting we see that

F ′

F
(s) =

∑
ρ

(
1

s− ρ
− 1

2 + it− ρ

)
+O(log T ).

Now for those ρ for which |γ − T | ≥ 1, we have∣∣∣∣∣ 1
s− ρ

− 1
2 + it− ρ

∣∣∣∣∣ = 2 − σ

|2 + it− ρ||s− ρ|
≤ 3

|γ − t|2
.

Then, for T > 2,

∑
|γ−T |>1

1
|γ − T |2

=
∞∑

k=1

∑
k<|γ−T |≤k+1

1
|γ − T |2

≪
∞∑

k=1

log(T + k)
k2 ≪ log T.

Thus,
F ′

F
(s) =

∑
|γ−T |<1

1
s− ρ

+O(log T ),

due to |2 + iT − ρ| > 1, when |γ − T | < 1.

There are O(log T ) zeros of F (s) with |γ−T | < 1, thus by moving by a bounded

amount we can pick T such that |s − ρ| ≫ 1/ log T. Then with such a choice of T

we obtain ∫ 2+iT

−1+δ+iT
−F ′

F
(w)x

w

w
dw = O

(
x2 log2 T

T

)
.

Moving the line of integration by a bounded amount we may cross at most O(log T )

zeros F (s) (counting with multiplicities) and they will contribute residues of total

size at most O
(
x2 log2 T/T

)
. Then, noting Lemma 4, we obtain

∫ 2+iT

−1+δ+iT
−F ′

F
(w)x

w

w
dw = O

(
x2 log2 T

T

)

for any T > 0 such that it is not an ordinate of a non-trivial zero of F (s).

Lemma 6. Let F (s) ∈ S, ε > 0 and let µF : R → R be such that

F (σ + it) ≪ |t|µF (σ)+ε.
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Then

µF (σ) =



0, if σ > 1,

(1/2)dF (1 − σ), if 0 ≤ σ ≤ 1,

(1/2 − σ)dF , if 0 < σ.

Proof. See [13, Theorem 6.8]
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Proof of main result

By Lemma 2, it is enough to prove that RH for F (s) is equivalent to

∑
n≤x

ΛF (n)n−it = mF
x1−it

1 − it
+O(x1/2|t|ε) (3)

for all ε, B > 0 and 2 ≤ x ≤ |t|B.

Suppose F (s) satisfies RH. Let x ≥ 5/2 be half an odd integer and T = |t|C ,

where C > 1 will be chosen later. By Lemma 3 we have

∑
n≤x

ΛF (n)n−it = 1
2πi

∫ 2+iT

2−iT
−F ′

F
(w + it)x

w

w
dw +O

(
x2

T
+ 1

)
. (4)

Choose 0 ≤ δ < 1/4 such that F (s) would have no trivial zeros with σ = −1 + δ.

Replacing the line of integration in (4) by one consisting of the three leftmost sides

of the rectangle with vertices 2 − iT, −1 + δ− iT, −1 + δ+ iT and 2 + iT and using

Lemmas 4 and 5 we see that
∑
n≤x

ΛF (n)n−it = mF
x1−it

1 − it
−

∑
|γ−t|<T

xρ−it

ρ− it

+O

(
x2

T
+ x2 log2(|t| + T )

T
+ log2(|t| + T )

x1−δ
+ 1

)
.

Note that the sum is over the non-trivial zeros of F (s). It might happen that we pass

over trivial zeros of F (s), however there are only finitely many of them in σ > −1+δ

and for each of them we have β ≤ 0, thus they contribute a term of size O(1).

By RH, using Abel’s summation formula, we obtain

∑
|γ−t|<T

xρ−it

ρ− it
≪ x1/2 ∑

|γ−t|<T
β=1/2

1
1 + |t− γ|

≪ x1/2 log2(|t| + T ).

Now, suppose that 5/2 ≤ x ≤ |t|B and choose C > max(1, 3B/2). Then T = |t|C ≥

max(|t|, x3/2) and we obtain

∑
n≤x

ΛF (n)n−it = mF
x1−it

1 − it
+O(x1/2|t|ε). (5)
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We have assumed until now that x ≥ 5/2 is half an odd integer. If we relax this

condition and just assume that x ≥ 2, then such x is always within O(1) of half

an odd integer. Changing x by this amount in (5) changes the left-hand side by no

more thanO(x1/2 log x) and the right-hand side by at mostO(|t|ε). Since x1/2 log x ≪

x1/2|t|ε, (5) holds for 2 ≤ x ≤ |t|B.

Next we prove that (3) implies RH for F (s).

Write

ψ(x, t) =
∑
n≤x

ΛF (n)n−it

and

R(x, t) = ψ(x, t) −mF
x1−it

1 − it
.

Then by our assumption

R(x, t) ≪ x1/2|t|ε (6)

for 2 ≤ x ≤ |t|B, where ε > 0 and B is arbitrarily large but fixed.

First we show that for all s ̸= 1
∫ ∞

1

R(x, t)
xs

dx = −
(

1
s− 1

F ′

F
(s+ it− 1) + mF

(1 − it)(s+ it− 2)

)
. (7)

Suppose that σ > 2. Then we see that
∫ ∞

1

ψ(x, t)
xs

dx =
∞∑

n=2

ΛF (n)
nit

∫ ∞

n
x−sdx = − 1

s− 1
F ′

F
(s+ it− 1).

Integrating the other term and combining we get (7) for σ > 2, the right hand side

of which defines a meromorphic continuation of the left hand side which has a simple

pole at s = 1.

Define

H(s) =
∫ ∞

1

R(x, t)
xs

dx =

−
(

(1 − it)(s+ it− 2)F ′(s+ it− 1) +mF (s− 1)F (s+ it− 1)
(s− 1)(1 − it)(s+ it− 2)F (s+ it− 1)

)
.

Assume, by way of contradiction, that ρ0 = β0 + iγ0 is a zero of F (s) with

β0 > 1/2. Let m be the multiplicity of ρ0, and define

h(s) = (s+ it− 2)F (s+ it− 1)
(s+ it− ρ0 − 1)m(s+ it+ 1)4dF

.

For real u, define

w(u) = 1
2πi

∫ 3+i∞

3−i∞
h(s)eusds
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and consider the integral

1
2πi

∫ 3+i∞

3−i∞
h(s)H(s)es log xds =

∫ ∞

1
R(y, t)w(log x− log y)dy. (8)

We move the line of integration in the integral of the left hand side to left to σ = 5/4

and pass two poles at s = 2 − it and s = ρ0 + 1 − it. The residue at s = 2 − it is

equal to 0 and the other residue is

−xρ0+1−it (ρ0 − 1)F (m)(ρ0)
(m− 1)!(ρ0 − it)(ρ0 + 2)4dF

.

Using the bounds F (1/4 + iv) ≪ (1 + |v|1/2dF ) and F ′(1/4 + iv) ≪ (1 +

|v|1/2dF ) log(2 + |v|), the left hand side is

= xρ0+1−it (ρ0 − 1)F (m)(ρ0)
(m− 1)!(ρ0 − it)(ρ0 + 2)4dF

+O

(
x5/4

∫ ∞

−∞

(1 + |t+ v|1/2dF ) log(2 + |v|)
(1 + |v + t− γ0|)m(1 + |v + t|)4dF )dv

)

= xρ0+1−it (ρ0 − 1)F (m)(ρ0)
(m− 1)!(ρ0 − it)(ρ0 + 2)4dF

+O
(
x5/4

)
.

Next we estimate w(u). If u ≤ 0 we pull the contour right to ∞. Since

h(s)eus ≪ euσ

|s+ it− ρ0|m|s+ it|4dF −1

for σ ≥ 3, we see that w(u) = 0. If u > 0, we pull the contour left to −5/4. We

pass a pole of h(s) at s = −1 − it of order 4dF which contributes a residue of size

O(1). The integral on the new line is∫ −5/4+i∞

−5/4−i∞
h(s)eusds ≪

∫ ∞

−∞
e−5/4u (1 + |v + t|)||F (−9/4 + i(v + t))|

|1 + (v + t− γ0)|m|1 + (v + t)|4dF
dv

≪
∫ ∞

−∞
e−5/4u (1 + |v + t|)|(1 + |v + t|23/8dF )

|1 + (v + t− γ0)|m|1 + (v + t)|4dF
dv ≪ 1

Thus,

w(u) =


0 if u ≤ 0,

O(1) if u > 0.

Collecting the estimates in the previous discussion and applying them to (8) we

see that for ρ0 fixed

xβ0+1 ≪ρ0

∫ x

1
|R(y, t)|dy + x5/4.

Then, by assumption, setting B = 2/(β0 − 1/2) we get

xβ0+1 ≪ρ0 x
3/2|t|ε,

13



for 2 ≤ x ≤ |t|2/(β0−1/2). In other words,

x ≪ρ0 |t|(1+ε)/(β0−1/2).

This contradiction implies that β0 = 1/2. This completes the proof of the theorem.

14



Bibliography

[1] T. M. Apostol. Introduction to analytic number theory. English. Undergradu-

ate Texts Math. Springer, Cham, 1976.

[2] W. D. Banks. “The Riemann and Lindelöf hypotheses are determined by thin

sets of primes”. In: Proc. Amer. Math. Soc. 150.10 (2022), pp. 4213–4222.

[3] Peter Borwein et al., eds. The Riemann hypothesis. A resource for the affi-

cionado and virtuoso alike. English. CMS Books Math./Ouvrages Math. SMC.

New York, NY: Springer, 2007.

[4] H. Davenport. Multiplicative number theory. Revised and with a preface by

Hugh L. Montgomery. English. 3rd ed. Vol. 74. Grad. Texts Math. New York,

NY: Springer, 2000.

[5] R. Garunkštis and J. Steuding. “Do Lerch zeta-functions satisfy the Lindelöf

hypothesis?” In: Analytic and probabilistic methods in number theory (Palanga,

2001). TEV, Vilnius, 2002, pp. 61–74.

[6] J. Kaczorowski. “Axiomatic theory of L-functions: the Selberg class”. In: Ana-

lytic number theory. Vol. 1891. Lecture Notes in Math. Springer, Berlin, 2006,

pp. 133–209.

[7] J. Kaczorowski and A. Perelli. “The Selberg class: a survey”. In: Number theory

in progress, Vol. 2 (Zakopane-Kościelisko, 1997). de Gruyter, Berlin, 1999,

pp. 953–992.

[8] H. v. Koch. “On Riemann’s prime number function”. German. In: Math. Ann.

55.3 (1901), pp. 441–464.

[9] N. Levinson and H. L. Montgomery. “Zeros of the derivatives of the Riemann

zeta-function”. English. In: Acta Math. 133 (1974), pp. 49–65.

15



[10] Y. Lee S. M. Gonek S. W. Graham. “The Lindelöf hypothesis for primes

is equivalent to the Riemann hypothesis”. In: Proc. Amer. Math. Soc. 148.7

(2020), pp. 2863–2875.

[11] A. Selberg. “Old and new conjectures and results about a class of Dirichlet

series”. English. In: Proceedings of the Amalfi conference on analytic number

theory, held at Maiori, Amalfi, Italy, from 25 to 29 September, 1989. Salerno:

Universitá di Salerno, 1992, pp. 367–385.

[12] A. Speiser. “Geometrisches zur Riemannschen Zetafunktion.” German. In:

Math. Ann. 110 (1934), pp. 514–521.

[13] J. Steuding. Value-distribution of L-functions. Vol. 1877. Lecture Notes in

Mathematics. Springer, Berlin, 2007.

[14] E. C. Titchmarsh. The theory of functions. 2nd ed. English. 1975.

[15] E. C. Titchmarsh. The theory of the Riemann zeta-function. Second. Edited

and with a preface by D. R. Heath-Brown. The Clarendon Press, Oxford Uni-

versity Press, New York, 1986, pp. x+412.

16


	Introduction
	Lemmata
	Proof of main result

