05\3NIVE

%
579 D,

VILNIAUS UNIVERSITETAS
MATEMATIKOS IR INFORMATIKOS FAKULTETAS
INFORMATIKOS INSTITUTAS
INFORMATIKOS KATEDRA

Magistro baigiamasis darbas

Mikrovaldikliams skirty kompiuterinés regos
metody Kurimo tyrimai

Atliko:
Volodymyr Kadzhaia (paraas)
Darbo vadovas:

Prof. Dr. Olga Kurasova

(parasas)

Recenzentas:

Prof. Dr. Saulius Grazulis

(parasas)

Vilnius
2023

Contents

Introduction 4

1 Literature Review 5

L1 ToT .« o 5

1.1.1 IoT architecture 6

[.1.1.1. EndDevices 7

1.1.1.2. Software e 7

1.1.1.3. Communication (Protocols) 7

1.1.1.4. Platform 7

L.1.IL5S. Secure e 8

1.1.2 VisionsensorsinlIol 8

1.1.2.1. Optical sensors 8

1.1.2.2. Vision sensorst 9

1.1.2.3. Fiberopticsensors 9

1.1.3 Image Sensors e e e e 10

[.1.3.1. CMOS image sensors oo v v v i ... 10

1.1.3.2. CCDimage Sensorso u v v v v v oo, 12

1.1.4 Vision Sensors vs. Vision Systems 12

1.2 Machine learning methodsand IoT" 13

1.2.1 Definition of classical methods and deep learning methods 13

1.2.2 Machine Learning tasks 13

1.2.3 Machine Learning types. 14

1.2.3.1. Supervised Learning 14

1.2.3.2. Unsupervised Learning 15

1.2.3.3. Semi-supervised Learning 16

1.2.3.4. Reinforcement Learning 16

1.2.4 Classical Machine Learning Algorithms in Computer Vision 16

1.2.4.1. k-Nearest Neighbors (k-NN) 16

1.2.4.2. Support Vector Machines 17

1.2.43. DecisionTree L 18

1.2.4.4. Naive Bayes Algorithms 18

1.2.4.5. Random Forest Algorithms 19

1.2.4.6. Linear Regression 19

1.2.4.7. Other regression algorithms 20

1.2.4.8. SIFT Algorithm 25

1.2.4.9. Complexity of Algorithms 27

1.2.5 Deep learning Computer Vision Algorithms 27

1.2.5.1. Convolutional Neural Network 27

1.252. R-CNN 29

1.253. FastR-CNN. 29

1.254. YOLO 29

1.2.6 Challenges of using Machine LearninginIol' 31

2 Methodology 32

2.1 Settings for conducting experimental studies L. 32
2.2 Technological solutions for implementing computer vision implementation in mi-

crocontrollers L L 33

22.1 TinyML . . . oo 33
2.2.1.1. Tensorflow architecture 34
222 Edgelmpulse 35
2.2.3 Other existent libraries for microcontrollers 36
224 OpenCV . . 36
225 Tensorflow 37
2.2.6 Microcontrollers L 37
2.2.7 Choosing a software development environment 38
3 Results of experimental investigation 39
3.1 Useof TensorFlow library 39
3.1.1 Detecting color using deep learning methods 39
3.1.2 Object detecting using classical method 47
3.1.2.1. Datadescription, 49
3.1.2.2. Object detection result based on different classical methods 50
3,13 Summary ... e e e e e e e e e e 54
3.1.4 Using computer vision library for detecting handwritten digits 55
3.1.4.1. Dataset 55
3.1.4.2. Experimental Part 56

3.1.4.3. Another library for detecting hand-written digits using the Tiny-
Maix e 59
3.1.5 TIrisclassification L 60
32 Useof OpenCV library 62
3.2.1 Detectingcolor 62
3.2.2 Objectdetecting e 63
323 ControlLED 64
3.2.3.1. MediaPipe framework 65
3.23.2. Experiment 66
3.2.4 Detecting trafficsigns L L 67
324.1. Motivation 67
3.2.4.2. Methodology 68
4 Conclusions 71

Introduction

A microcontroller is a computer on a single integrated circuit that includes a CPU, RAM, some
form of ROM, and I/O ports. It has a great impact on our lives, which cannot be ignored. Un-
like a general-purpose computer, microcontrollers are dedicated to performing a specified task and
executing a single application. Automatically controlled products like automatic engine control
systems, remote controls, power tools, toys, and office machines i.e., photo-copier, printers, and
fax machines which are used commonly, are being programmed using microcontrollers [HHH16].

Recently, more and more smart objects [Bor14] have appeared, such as smartphones, smart-
watches, and even smart bulbs. All these things simplify our life, for example, modern cars can
make a sound in the cabin or stop when an object is detected. In order to implement a smart de-
vice, scientists decided to turn on artificial intelligence. Artificial intelligence, using a variety of
algorithms, allows you to simulate human consciousness, so when using algorithms, one can im-
plement object detection. This is how one of the most popular libraries among microcontrollers —
TinyML [Ray20], was implemented. This library was implemented on the basis of the existing and
popular open-source Tensorflow library. The neural network is first trained using a large amount
of pre-collected data on a powerful machine and then transferred to microcontrollers. This leads
to a static model that is difficult to adapt to new data and impossible to adapt to different scenar-
ios, which reduces the agility of the Internet of Things (IoT). This is how TinyML works. There
are several approaches to creating flexibility, one of the methods is using TinyOL (TinyML with
Online-Learning [RAR21]). This approach allows you to add streaming training [RAR21] to the
device. TinyOL [RAR21] is based on the concept of online learning and is suitable for limited
IoT devices [RAR21]. Thus, TinyML can be used in Arduino to develop a thermodynamic model
[CDM19] or for training. In addition, now more and more specific microcontrollers appear that
are designed to work with Al, for example, Arduino 33 BLE Sense, as well as libraries specifically
for these microcontrollers. Thus, large companies have to create their own library or implement
a framework based on an existing library. One important component, even in the development of
such libraries is the software architecture. It is important to understand what processes will be in-
volved, how the components (classes and data structures) will be connected, and how the program
is optimized. Therefore, programmers are trying to develop artificial intelligence (AI), which is
used to develop complex algorithms for protecting networks and systems, including IoT systems.
But such systems have their drawbacks, one of them being the processing of large data since the
microcontroller has a limited amount of memory and also has a single-threaded channel (one clock
per cycle). For example, computer vision requires a huge amount of calculations; for this, a cloud
and special libraries were developed that perform calculations locally on more powerful systems,
after which the results are entered into a special file readable for microcontrollers. There are many
examples in the literature of simple computer vision algorithms proving to be extremely useful in
a variety of applications [BBV0O; Hor93; LBG97; NAT*97; RRN02; SBW*97; UNOO].

The goal of this work is to compare classical methods and deep learning methods in developing

computer vision for microcontrollers.

Achievement of the goal is carried out with the help of the tasks set:

. to analyse IoT technologies as well as classical machine learning and deep learning

techniques and to identify methods suitable for developing computer vision for

microcontrollers;

. to find several datasets that can be used to conduct a comparative analysis of the
methods;

. to develop an application using different third-party libraries, such as Tensorflow

and OpenCYV, to determine the feasibility of training machine learning and deep

learning models on a microcontroller;

. to conduct a comparative analysis of classical and deep learning methods through

experimental investigations.

1 Literature Review

Internet of Things (IoT) devices typically operate on microcontrollers, which are relatively simple
computer chips devoid of an operating system. These microcontrollers have minimal processing
power and considerably less memory than a standard smartphone, a factor that poses challenges in
running local pattern-recognition tasks such as deep learning on IoT devices [Ack20].

Despite these constraints, advancements in machine learning and hardware design have provided
innovative solutions. For instance, researchers have developed systems like MCUNet, a technology
that designs compact neural networks capable of delivering exceptional speed and accuracy for
deep learning on IoT devices. Remarkably, this high level of performance is achieved despite the
limited memory and processing power inherent in these devices [Ack20].

The development and integration of such systems not only facilitates the expansion of the IoT
universe but also leads to significant energy savings and enhancements in data security. The ability
to perform complex computations locally also reduces the need for constant communication with
a cloud server, thereby further increasing efficiency and reducing potential points of vulnerability
[Ack20].

Moreover, the advancements in machine learning have created opportunities to integrate a level
of intelligence in low-end IoT nodes, such as microcontrollers. Various surveys have evaluated
different machine learning methods that can address the unique challenges presented by IoT data
[MRB*18]. This integration of machine learning with IoT devices and microcontrollers points
towards a future where devices not only connect and communicate but also learn and adapt inde-

pendently to the changing environment.

1.1 IoT

The Internet of Things (IoT) comprises physical objects connected to the internet, enabling data

exchange. These objects include wearable technology, smart home devices, and industrial equip-
5

ment in smart factories [PP16]. Kevin Ashton coined the IoT concept in 1999 while developing
Radio Frequency Identification (RFID) technology, which allows objects to connect to the internet
[Lan05].

RFID technology’s advantages include low power consumption, low cost, and a small client
form factor [MRV*17]. Furthermore, advancements in sensor technology have accelerated IoI’s
implementation, fostering digital transformation in numerous industries.

Microelectromechanical systems (MEMS), miniature devices created from mechanical and
electrical components, have emerged due to technological improvements. These sensors, crucial to
the sensor industry, offer high performance, low power consumption, and low manufacturing cost.
They are increasingly used in IoT systems for real-time data collection and analysis, enhancing
decision-making and automation across various sectors.

It’s important to note that while MEMS is widely used, other technologies like Nano-
electromechanical systems (NEMS) and bio-sensors also exist. However, MEMS’s scalability and
cost-effectiveness make it a popular choice, enabling sensor miniaturization for various applications
[DT18].

1.1.1 IoT architecture

IoT architecture consists of different layers of technologies supporting IoT (Fig. 1). It serves to illus-
trate how various technologies relate to each other and to communicate the scalability, modularity,
and configuration of IoT deployments in different scenarios [PP16]. To promote the deployment
of IoT systems, the architecture must be scalable to manage the increasing number of devices and
services without compromising their performance. It must be interoperable, allowing devices from
different vendors to cooperate to achieve common goals. In addition, the architecture must be dis-
tributive to enable the creation of a distributed environment where data is collected from various
sources and processed by different entities in a distributed manner. It should be able to operate with
minimal resources since IoT objects generally have limited computing power. Lastly, the architec-
ture must be secure to prevent unauthorized access to sensitive data. Currently, there is no single
reference architecture, and creating one is proving very complicated despite many standardization
efforts. The main problem lies in the natural fragmentation of possible applications, each of which
depends on many very often different variables and design specifications [LPS21]. This problem

must be added to each supplier’s tendency to propose its platform for similar applications [LPS21].

e [[B e [e

APPLICATION |—|
| e I (IOT APPLICATIONS]
| viRTuALENTITY || VIRTUAL ENTITY & 10T SERVICE MANAGMENT | | VIRTUALENTITYSERVEEI\
[~ 10T BUSINESS PROCESS | ,m‘
L___wanaowent | EXECUTION MODELING
MANGMENT CAPABILITIES | bl DEVICE MANAGER " QOS MANAGER |
| securry || authenTication || ienTiry mancut || aceess controL || encryerion |
SERVICE:UPPORT | oatamancment | | oatacovernence || pataquaury mangut || pataminmG |
APPLICATION | anurmics pLatrorm | [inmoTion anaumics || prepicTive anaLmics || stamisTicaL anaumics |)
SUPPORT LﬂYER &
| wetworkmg capasiry | [tRanspomTcapasiTY |)
GATEWAY | wer [eswerrs | [e || emverner |
NETWORK / NETWORK
COMIICATION
GATEWAY | o RDOHD " os " SIM MODULE | | MICROCONTROLLER |

WI-FI ZigBee

ETHERNET BLUETOOTH uwe WIRED

ZwsE

PHOTO-ELECTRIC

ANALOG
o | ovmoscore JI|_eizcrmocremon:

devices

DIGITAL RFID ELECTRO-MECH

Figure 1. 10T architecture (image is under Creative Commons Attribution License) [PP16]

1.1.1.1. End Devices

Devices are the objects that actually make up the ”Things” in the Internet of Things. They act as
an interface between the real and digital worlds and take on different sizes, shapes, and levels of

technological sophistication depending on the task they perform within a particular IoT deployment.

1.1.1.2. Software

The software is responsible for communicating with the cloud, data collection, device integration,
and real-time data analysis. It also provides opportunities for data visualization and interaction with

the IoT system.

1.1.1.3. Communication (Protocols)

The network layer has the task of transporting the data provided by the perception level to the
application layer. It includes all the technologies and protocols that make this connection possible
and should not be confused with the network layer of the ISO/OSI model, which only routes data
within the network along the best path. There are a large number of protocols that can be used in
IoT [LPS21].

1.1.1.4. Platform

An IoT platform is a place where all data is collected, analyzed, and transmitted to the user in a

convenient form. Platforms can be installed locally or in the cloud. The choice of platform depends

on the requirements of a particular IoT project and many factors: architecture and technology stack,

reliability, settings, protocols used, hardware independence, security, efficiency, and cost.

1.1.1.5. Secure

With the advent of IoT and its use in all areas of activity, the question of security has arisen. IoT
systems carry significant business value, and smart objects also become vulnerable to cybercrime,
resulting in data leakage, including confidential information. Therefore, many developers and sci-
entists have thought about protecting endpoints, and networks and moving data over them, which

means creating a scalable security paradigm [ABJ19].

1.1.2 Vision sensors in IoT

In IoT, automation is provided by passing data to a device. Sensors and actuators in the [oT represent
these two endpoints of the system.

A sensor is generally a device capable of detecting changes in an environment. A sensor is able
to measure a physical phenomenon and transform it into an electric signal [ABJ19].

There are several types of sensors in IoT, such as temperature sensors, humidity, pressure, prox-

imity, optical, chemical, etc.

1.1.2.1. Optical sensors

Optic sensing technology is used to detect electromagnetic energies such as light. It uses the pho-
toelectric effect concept, which says electrons will be ejected when a negatively charged plate of
some suitable light-sensitive material is hit by a photon beam [ABJ19]. Optical sensors are devices
that use light to detect and measure the physical properties of objects or environments. There are
many types of optical sensors, including photoelectric sensors, photodiodes, phototransistors, and
charge-coupled devices (CCDs).

Photoelectric sensors use a light-sensitive element, such as a photodiode or phototransistor,
to detect the presence or absence of an object. They are commonly used in applications such as
automated door openers, object counting, and material handling. Photodiodes are semiconductor
devices that convert light into an electrical current. They are used in a variety of applications,
including solar cell panels, barcode scanners, and medical imaging. Phototransistors are transistors
that use light to control the flow of current. They are commonly used in proximity sensors, light-
activated switches, and light-sensitive alarm systems.

Optical sensors have a number of advantages (for example, in telecommunications, optical sen-
sors play a pivotal role due to their capability to operate over large distances and their immunity
to electromagnetic interference) over other types of sensors. They are sensitive to a wide range of
wavelengths, they can operate over large distances, and they are immune to electromagnetic inter-
ference. However, they can be affected by ambient light, and they may not be as accurate as some

other types of sensors in certain applications.

1.1.2.2. Vision sensors

By applying image processing to images captured by a camera, the vision sensor calculates the
characteristics of an object, such as its area, center of gravity, length, or position, and outputs the
data or judgment results. The machine vision system converts the taken target into an image signal
through the machine vision product. The image signal is then transmitted to a dedicated image
processing system. According to information such as pixel distribution, brightness, and color, the
image signal is converted to a digitized signal. The imaging system performs various operations
to extract the features of the target, and in turn, according to the result of the discrimination, the
image is controlled.

Vision sensors use cameras and image processing algorithms to analyze visual information and
make decisions based on that information. These sensors can be used for a wide range of appli-
cations, including object recognition, tracking, and measurement. The process of using a vision
sensor begins with capturing an image of the target object using a camera. The image is then pro-
cessed by an image processing algorithm, which calculates various characteristics of the object,
such as its area, center of gravity, length, or position. This processed data is then outputted as a
digital signal, which can be used for further analysis or control.

One of the key benefits of using vision sensors is their ability to analyze visual information in
real time, which enables faster and more accurate decision-making. Additionally, vision sensors
can be used in environments where other types of sensors may not be suitable, such as in low-light
conditions or for monitoring large areas. It is worth mentioning that vision sensors can be integrated
with other types of sensors to provide more accurate and robust data. For example, vision sensors
can be used in conjunction with other sensors, such as infrared, ultrasonic, or LIDAR to provide a

more comprehensive understanding of the environment.

1.1.2.3. Fiber optic sensors

Fiber optic sensors (FOS) are devices designed to record changes in system performance and broad-
cast a signal over a fiber optic channel. Such sensors can be used to monitor temperature and me-
chanical stress, they are also used to control pressure, vibration, and other indicators. They are used
in the construction industry, utilities, mining, etc.

This type of sensor is based on optical fiber. It is a core in a polymer shell, through which the
light flux passes. The core is made of glass or plastic, which is supplied with special additives to
improve the refractive index of light waves.

Fiber optic sensors use an optical fiber as a signal transmission line or sensing element. Sensors
with optical converters have gained the greatest demand. Such a system consists of a sensitive
optical element, a receiver, and an emitter. The converter is placed between the end parts of the

receiving and transmitting fibers, and the LED can play the role of the emitter.

1.1.3 Image Sensors

The solid-state image sensor is a critical component of photo-electronic devices such as mobile
phones, digital video cameras, automotive imaging, surveillance, biometrics, etc. [YYH18]. Two
types of solid-state image sensor technologies have been developed: Charged Coupled Devices
(CCD) and CMOS Image Sensors (CIS) [YYH18]. CCD image sensor technology [HM78; Hol96]
has been the dominant electronic imaging technology since the 1970s [YYHI18]. A CCD sen-
sor is composed of a photodetector and a series of metal oxide semiconductor (MOS) capacitors
[YYH18]. The charge generated by the photosensitive detector is transferred out through the capac-
itors [YYH18]. A special manufacturing process is needed to create the ability to transport charge
across the chip without distortion [YYH18]. This special process leads to high-quality sensors in
terms of fidelity and light sensitivity, but the cost is high [YYH18].

The main difference between an image sensor and a vision sensor lies in their respective func-

tionalities and applications:

. Image Sensor: An image sensor is primarily responsible for capturing visual data
in the form of images or video. It detects light intensity and color information,
converting them into electrical signals that can be processed and stored. Image
sensors are commonly used in digital cameras, smartphones, surveillance systems,

and many other devices that require visual information capture.

. Vision Sensor: A vision sensor, on the other hand, encompasses a broader scope.
It refers to a sensor or a combination of sensors that not only capture images but
also perform advanced processing and analysis tasks on the visual data. Vision
sensors often incorporate image processing algorithms and artificial intelligence
techniques to extract useful information from the captured images. They can per-
form tasks like object recognition, tracking, depth estimation, and scene analysis.
Vision sensors find applications in robotics, autonomous vehicles, industrial au-
tomation, and various other fields where visual perception and understanding are

required.

1.1.3.1. CMOS image sensors

The overall architecture of a CMOS image sensor is shown in Fig. 2.

10

Row

Select .

Logic Pixel Array

Timing Analog Signal
........... ; Processors

and o7

Control

Column-Parallel
Analog-to-Digital
Converters

Digital Column Select
Output

Figure 2. The architecture of a CMOS image [Fos97]

The image sensor consists of an array of pixels that are typically selected a row at a time by a row
select logic [Fos97]. CCD (Charge-Coupled Device) and CMOS (Complementary Metal-Oxide-
Semiconductor) image sensors have an array of pixels. The main difference between the two types
of sensors lies in the way they capture and read out the image data. In a CCD sensor, the charge
collected by each pixel is transferred through a limited number of output nodes to be converted to
voltage, buffered, and sent off-chip as an analog signal. In contrast, in a CMOS sensor, each pixel
has its own charge-to-voltage conversion, and the sensor often includes amplifiers, noise-correction,
and digitization circuits, so that the chip outputs digital bits. This fundamental difference leads to
several other differences in terms of power consumption, speed, noise performance, etc. This can
be either a shift register or a decoder [Fos97]. In the context of an image sensor, both a shift register
and a decoder can be used to select a row of pixels for readout. A shift register is a type of sequential
logic circuit that can store and shift data. In this case, it can be used to store and shift a binary value
representing the selected row. A decoder, on the other hand, is a combinational logic circuit that
converts an n-bit binary input into 2" outputs, with only one output being active at a time. In this
case, it can be used to convert the binary representation of the selected row into an active output
that selects the corresponding row of pixels. Both methods achieve the same result of selecting
a row of pixels for readout but use different types of logic circuits to do so. The pixels are read
out to vertical column busses that connect the selected row of pixels to a bank of analog signal
processors (ASPs) [Fos97]. The image sensor has a system for selecting and reading out the data
from its pixels. The data from the pixels is processed by analog signal processors (ASPs) and then
converted to digital form by analog-to-digital converters (ADCs). The digital data is then selected
for output by a column-select logic circuit, which can be either a shift register or a decoder. This

circuit determines which column of data is read out from the sensor.

11

1.1.3.2. CCD image sensors

In a CCD sensor, the light (charge) incident on the sensor pixel is transmitted from the chip through
a single output node, or through just a few output nodes. The charges are converted to a voltage
level, accumulated, and sent out as an analog signal. This signal is then summed and converted to
numbers by an analog-to-digital converter outside the sensor.

The disadvantages of CCD sensors are that they are analog components, require more elec-
tronics “near” the sensor, are more expensive to manufacture, and can consume up to 100 times
more power than CMOS sensors. CMOS sensors, on the other hand, are digital components that
are less expensive to manufacture and consume less power than CCD sensors. They use a differ-
ent technology for capturing digital images and can include additional processes such as ampli-
fication and noise correction[https://www.camerasource.com/industry-news/ccd-vs-cmos-sensor-
image-quality/]. Increased power consumption can also increase the temperature in the camera
itself, which not only affects image quality and increases the cost of the final product, but also
the environmental impact. CCD sensors also require faster data transfer because all data passes
through just one or a few output amplifiers. CCD sensors have a limited number of channels (usu-
ally two) where the pixel data is transferred off the chip [Dat16]. This means that all data must pass
through just one or a few output amplifiers, which can require faster data transfer to process the
image efficiently.

In contrast, CMOS sensors can have an arbitrary number of channels and some sensors have as

many as sixteen [Dat16].

1.1.4 Vision Sensors vs. Vision Systems

In some cases, vision sensors and machine vision systems may both be able to satisfy an operation’s
needs. Different models are designed to meet varying price and performance requirements. Vision
sensors are similar to machine vision systems in their powerful vision algorithms, self-contained
and industrial-grade hardware, and high-speed image acquisition and processing. In the context
of machine vision, “powerful” typically refers to the ability of vision algorithms to accurately and
reliably perform complex image analysis tasks. The power of vision algorithms can be measured
in several ways, including their accuracy, speed, and robustness. Accuracy refers to the ability of
the algorithm to correctly identify and analyze the features of interest in an image. Speed refers to
the time it takes for the algorithm to process an image and produce a result. Robustness refers to
the ability of the algorithm to perform well under varying conditions, such as changes in lighting
or object orientation. They are both designed to perform highly-detailed tasks on high-speed pro-
duction lines. While machine vision systems perform guidance and alignment, optical character
recognition, code reading, gauging, and metrology, vision sensors are purpose-built to determine

the presence/absence of parts and generate simple pass/fail results [Dat20].

12

1.2 Machine learning methods and IoT

Machine learning usually refers to the changes in systems that perform tasks associated with arti-
ficial intelligence (AI). The changes might be either enhancement to already performing systems
[Nil93]. These changes can include increased accuracy, efliciency, and adaptability. Such tasks
involve recognition, diagnosis, planning, robot control, prediction, etc. [Nil93].

With the advent of 10T devices, devices have become smarter than previous generations of de-
vices and can communicate with each other, transfer data, or collect data. In many IoT applications,
devices can be programmable, perform predetermined actions based on some predefined conditions,
or give feedback from collected data. IoT devices need not only to collect data, and communicate
with other devices, but also to be autonomous [ZKK*19]. These conditions can vary depending
on the specific application and the desired behavior of the device. For example, a smart thermostat
might be programmed to turn on the heating system when the temperature in a room falls below a
certain threshold. The specific conditions that are used will depend on the requirements of the ap-
plication and the desired behavior of the device. To do this, devices must make decisions and learn
independently from the data they collect. An autonomous device is one that can operate indepen-
dently without the need for human intervention. In order to do this, the device must be able to make
decisions based on the data it collects. Machine learning algorithms can enable a device to learn
from the data it collects and improve its decision-making over time. By learning from the data, the
device can adapt to changing conditions and make more accurate predictions or decisions. This can
improve the performance of the device and enable it to operate more effectively in an autonomous
manner. Therefore, the development or deployment of machine learning algorithms in IoT can

significantly improve the quality of applications as well as the infrastructure itself [AAB*20].

1.2.1 Definition of classical methods and deep learning methods

Classical methods, also known as traditional machine learning methods, are algorithms that are
based on mathematical models and statistical approaches. These methods involve the use of hand-
crafted features, which are input variables that are chosen by the data scientist to represent the data.
Some examples of classical machine learning methods include linear regression, logistic regression,
decision trees, and support vector machines (SVMs).

Deep learning methods, on the other hand, are a type of artificial neural network composed of
many layers. These layers are able to learn and extract features from the data automatically without
the need for human input. Deep learning models are able to learn patterns and relationships in data
that are too complex or too numerous for humans to identify. Some examples of deep learning
methods include convolutional neural networks (CNNs), recurrent neural networks (RNNs), and
autoencoders [BKG20].

1.2.2 Machine Learning tasks

Machine learning tasks are the types of prediction or inference being made, based on the problem or

question that is being asked, and the available data. Some common machine learning tasks include

13

binary classification, multiclass classification, regression, clustering, anomaly detection, ranking,
recommendation, forecasting, image classification and object detection.

In machine learning exists various tasks such as:

1. Classification: Classification is a supervised learning task where a model is trained on a
dataset with pre-labeled examples, and the task is to assign new, unseen examples to one of
a finite number of discrete categories, or “classes”. Examples of this might be email spam
detection (where the classes are “spam” and “not spam”) or digit recognition (where the

classes are the digits from 0 to 9).

2. Clustering: Clustering is an unsupervised learning task that involves grouping a set of data
points in such a way that data points in the same group (called a cluster) are more similar
to each other than to those in other groups. Clustering is often used when you don’t have

labeled data and want to identify patterns or structure in your dataset.

3. Dimensionality Reduction: Dimensionality reduction is a technique that reduces the number
of input variables in a dataset. It’s often used when dealing with high-dimensional data, to
help visualize the data and to improve computational efficiency. Principal Component Anal-
ysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE) are popular methods

for dimensionality reduction.

4. Anomaly Detection: Anomaly detection is the identification of rare items, events, or ob-
servations which raise suspicions by differing significantly from the majority of the data.
These anomalies could represent things like bank fraud, medical problems, or errors in a
text. Anomaly detection is often used when the number of anomalies in the data is very low,
and it’s hard to obtain a robust set of anomaly examples to use for training in a supervised

learning context.

1.2.3 Machine Learning types
1.2.3.1. Supervised Learning

Supervised learning is a fundamental aspect of machine learning where an algorithm learns from
labeled training data, and then applies what it has learned to new, unseen data [BJT*10; WZZ*21].
In supervised learning, each instance in the training set consists of input features and an expected
output, also known as the label or class. The relationship between these features and the class is
initially unknown. The main objective of supervised learning is to establish a model that can ac-
curately map the input features to the class, thereby uncovering the unknown relationship between
them [WZZ*21]. Supervised learning can be divided into two primary tasks based on the type
of output variable: classification and regression. Classification tasks predict categorical output
variables, while regression tasks predict continuous output variables [WZZ*21]. An example of a
classification task might be the identification of fraudulent transactions, where the possible classes

are “fraudulent” or “not fraudulent.” An example of a regression task might be predicting house

14

prices based on features like the number of bedrooms, location, and age of the house. The effec-
tiveness of a supervised learning model relies heavily on the quality and quantity of the training
data. For high-dimensional data, traditional methods might struggle, particularly when the sample
size is small. These traditional methods typically perform well when there is a large sample size
[PCC16]. Supervised learning has a wide range of applications, including computer vision and
image understanding, data mining and knowledge discovery, and natural language and document
processing [PCC16].

The performance of a supervised learning model is measured using various metrics such as
accuracy, precision, recall, F1 score, and mean squared error, which depend on whether the task is

classification or regression.

1.2.3.2. Unsupervised Learning

Unsupervised learning [TAHO06] is one of the branches of machine learning. It studies a wide class
of data processing problems in which only descriptions of a set of objects (training sample) are
known, and it is required to detect internal relationships, dependencies, and patterns that exist be-
tween objects. The term “wide class” in this context is a somewhat subjective and general term used
to denote the expansive and diverse range of data types and structures that unsupervised learning
can handle. Unsupervised learning is an approach in machine learning where the algorithm learns
from the input data without any explicit output labels or answers provided. This contrasts with
supervised learning, which relies on labeled examples during the learning process.

The diversity or 'width’ of data in unsupervised learning is characterized by a few aspects:

* Data types: Unsupervised learning can handle a wide array of data types, from numeric
(continuous or discrete) and categorical data, to more complex types like text, images, audio,

and even mixed data types.

» Data structures: Unsupervised learning algorithms can process structured data (like database
data), semi-structured data (like XML or JSON data), and unstructured data (like raw text or

images).

* Domains: Unsupervised learning is domain-agnostic and can be applied across a multitude of
fields, such as marketing (for customer segmentation), biology (for gene clustering), finance

(for anomaly detection in credit card transactions), and many more.

* Data dimensionality: From low-dimensional data to high-dimensional data, unsupervised
learning techniques can be used. In some cases, dimensionality reduction techniques
(which are a part of unsupervised learning) are specifically used for dealing with very high-

dimensional data.

* Size of the dataset: Unsupervised learning can handle small to very large datasets. Particu-
larly, when labeled data is scarce, unsupervised learning can be a useful approach as it doesn’t

require output labels.

15

Unlike supervised learning, unsupervised learning methods typically aren’t used for regression
or classification problems, as these methods operate without predefined output labels [BS20]. Com-

mon algorithms used in unsupervised learning include [BS20]:
* clustering,
* anomaly detection,
* neural networks,

* approaches for learning latent variable models.

1.2.3.3. Semi-supervised Learning

Semi-supervised learning is one of the machine learning methods that use both labeled and un-
labeled data during training. Typically, a small amount of labeled and a significant amount of
unlabeled data is used. Semi-supervised learning is a compromise between unsupervised learning
(without any labeled training data) and supervised learning (with a fully labeled training set).

The ultimate goal of a semi-supervised learning model is to provide a better outcome for pre-

diction than that produced using the labeled data alone from the model [Sar21].

1.2.3.4. Reinforcement Learning

Reinforcement learning is a type of machine learning algorithm that enables an agent to learn by
interacting with its environment [Sar21]. The agent takes actions in the environment and receives
feedback in the form of rewards or penalties. The goal of the agent is to learn a policy that maximizes
the cumulative reward over time. The agent does this by exploring the environment and updating
its policy based on the feedback it receives. Over time, the agent learns to take actions that lead to
higher rewards and improve its efficiency in achieving its goal.

Reinforcement learning is different from supervised learning in that it does not rely on pre-
labeled data to learn. Instead, an agent learns by interacting with its environment and receiving
feedback in the form of rewards or penalties. The agent must balance the trade-off between explo-
ration and exploitation. Exploration refers to the agent taking actions to gather new information
about the environment, while exploitation refers to the agent using its existing knowledge to take
actions that maximize its reward. The goal of reinforcement learning is to find an optimal policy

that balances exploration and exploitation to maximize the cumulative reward over time.

1.2.4 Classical Machine Learning Algorithms in Computer Vision
1.2.4.1. Kk-Nearest Neighbors (k-NN)

K-Nearest Neighbors (K-NN) is a non-parametric, instance-based learning algorithm. Non-
parametric refers to its flexibility in model structure determined by the dataset, while instance-based
learning implies that all training data is used during the testing phase, which makes training faster

but slows down the testing process and makes it more costly.
16

The K-NN algorithm stores all available data and classifies new observations based on a sim-
ilarity measure. The process involves calculating the distance to each object in the training set,
selecting the k objects closest in distance, and assigning the class that appears most frequently
among these k neighbors.

In the context of computer vision, such as face recognition, K-NN can identify and classify new
images based on their similarity to stored images. Features of the images, like distances between
facial features or skin texture, are compared to those of the stored images to assign the class of the

most similar existing images.

1.2.4.2. Support Vector Machines

Support vector machine is a machine learning algorithm that learns to classify data points using
labeled training samples [SCO8]. Support Vector Machine (SVM) and Artificial Neural Networks
(ANN) are both supervised learning algorithms used for classification tasks, learning from labeled
training samples. However, their methodologies differ.

SVM functions by identifying the hyperplane that maximizes the margin between two classes in
the training data [SCO8]. This margin is the distance between the hyperplane and the closest data
points from each class, known as support vectors. The algorithm strives to maximize this distance,
resulting in the best hyperplane. SVM employs a technique known as the kernel trick to transform
data into a higher dimensional space, allowing for separation of classes via a linear hyperplane.

Conversely, ANN is a computational model inspired by biological neural networks. Comprising
layers of interconnected nodes or neurons, it adjusts the weights of connections between neurons
during training to minimize the error between predicted and true class labels.

The application of SVM in computer vision is one of the most successful applications of ma-
chine learning [ERF97] in this field. One of the most significant benefits of SVM in computer
vision is its ability to handle high-dimensional data. Both SVM and ANNs are powerful machine
learning algorithms that can effectively handle high-dimensional data. The benefit of using SVM
in computer vision is its ability to handle high-dimensional data while maintaining good general-
ization performance. SVM does this by finding the optimal hyperplane that separates the data into
different classes while maximizing the margin between the classes. This helps to prevent overfitting
and improve the generalization performance of the algorithm. Computer vision applications often
involve images, which can contain a large number of pixels, leading to a high-dimensional feature
space. SVMs can effectively handle this high-dimensional data, making it an ideal algorithm for
computer vision tasks.

An additional benefit of Support Vector Machines (SVM) in computer vision is its capability to
learn complex, non-linear decision boundaries. This is critical in situations where the relationship
between features and the target variable isn’t linearly separable. SVM applies certain transforma-
tions to elevate the data into a higher-dimensional space. Within this space, it’s possible to learn
a linear decision boundary, thus facilitating the learning of non-linear decision boundaries. This
linear boundary, referred to as a hyperplane, makes SVM effective in classifying complex patterns

by maximizing the margin between classes.

17

Despite its benefits, SVM algorithms can be computationally expensive, and their performance
may suffer when faced with a large number of training data. However, advances in computational
resources and optimization techniques have helped address these issues, making SVM a popular

algorithm for computer vision tasks.

1.2.4.3. Decision Tree

A decision tree is machine learning model, which is used for both classification and regression
tasks. This model is visually represented in the form of a tree structure [RMOS5]. The decision tree
begins with a node called the ‘root” which has no incoming edges. From this root node, the tree
expands with additional nodes based on certain conditions or rules.

In a standard decision tree learning algorithm, we start with a set of examples at the root node.

A test or decision rule is applied to these examples, which splits them into two distinct subsets:

1. The first subset consists of examples that satisfy the established rule.

2. The second subset includes the examples that do not satisfy the established rule.

The process continues as each of these subsets is then subjected to a new decision rule. This
results in more branches being formed in the tree, which in turn leads to the creation of more nodes.
This procedure of applying decision rules and splitting subsets continues iteratively until a stopping
condition is met [AKAO2]. Stopping conditions could be reaching a certain tree depth, achieving
a minimum node purity, or a minimum number of samples per leaf, among others.

The final nodes in the tree, which do not undergo any further splitting, are called leaf nodes’ or
simply leaves’. Each leaf node represents a decision outcome or a prediction, which is the output
of the decision tree for a given input example [AKAO02].

This structure of decision trees allows for intuitive graphical representations and easy interpre-
tation of the decision-making process. However, decision trees can also suffer from overfitting,
especially with complex trees, and may need pruning or other regularization methods to achieve

the best performance.

1.2.4.4. Naive Bayes Algorithms

The Naive Bayes classifier is a machine learning algorithm designed for multi-class classification of
data with independent features. In one pass, the conditional probability of each feature is calculated,
then Bayes' theorem is applied to find the probability distribution of the observations.

Bayes' theorem is a simple mathematical formula used to calculate conditional probabilities.
Classifier applies the Bayes theorem, presented in equation (1), for probabilistic classification
[SNdA*22]. By observing the values (input data) of a given set of features or parameters, rep-
resented as B in the equation, the Naive Bayes classifier is able to calculate the probability of the
input data belonging to a certain class, represented as A [SNdA*22].

P(A|B) = P57 (1)

18

In Bayesian methods, P(A) is our initial guess about how likely it is that something will happen.
This guess can be based on past data or what experts think. We use this guess along with new
information to update our belief about how likely it is that something will happen. In the context
of computer vision, Naive Bayes Classifiers are used for image classification, where the task is to
assign a label to an input image, based on its features.

The “naive” in Naive Bayes classifiers refers to the assumption that the features in an image
are conditionally independent of each other, given the class label. This assumption simplifies the
computation of the class probabilities, and enables the use of a simple statistical model, which can
be easily trained and applied to new images. The core idea of the Naive Bayes Classifiers is to
model the probability distribution of the features in an image, given the class label, and to use these
distributions to calculate the class probabilities, given the input image. Naive Bayes Classifiers are
widely used in computer vision, due to their simplicity, computational efficiency [ZW 18], and good
performance [ZW 18] on many tasks. They are particularly suitable for tasks where the number of
features is large and the data is sparse, such as in text classification, or where the dimensionality of

the data is high, such as in image classification.

1.2.4.5. Random Forest Algorithms

Random forests are a combination of tree predictors such that each tree depends on the values of
a random vector sampled independently and with the same distribution for all trees in the forest
[BreO1]. The essence of the algorithm is that at each iteration, a random selection of variables
is made, after which, on this new selection, the construction of a decision tree is started. In this
case, “bagging” is performed - a selection of random two-thirds of the observations for training,
and the remaining third is used to evaluate the result. This operation is done hundreds or thousands
of times. The resulting model will be the result of “voting” the set of trees obtained during the

simulation.

1.2.4.6. Linear Regression

Regression analysis is one of basic technique in computer vision. Tradition and ease of computa-
tion have made the least squares method the most popular form of regression analysis [MMR91].
The least squares method achieves optimum results when the underlying error distribution is Gaus-
sian. However, the method becomes unreliable if the noise has nonzero-mean components and/or
if outliers (samples with values far from the local trend) are present in the data [MMRO91]. The
outliers may be the result of clutter, large measurement errors, or impulse noise corrupting the data
[MMRO1]. At a transition between two homogeneous regions of the image, samples belonging to
one region may become outliers for fits in the other region [MMR91]. The regression model has
three main concepts: efficiency, breakdown point, and time complexity.
Linear regression is a linear model that assumes a linear relationship between input variables
(X;) and a single output variable (V).
When there is one input variable (x), the method is called simple linear regression. When there
are multiple input variables, the statistical literature often refers to the method as multiple linear
19

regression.

Various methods can be used to prepare or train linear regression. The most common of which is
called the Ordinary Least Squares or OLS. The linear equation assigns a scale factor to each input
value X. The scale factor is represented by the Greek letter Beta (). One additional coefficient
is also added, adding an additional degree of freedom (for example, moving up and down a two-
dimensional area) and is often called the intercept or bias coeflicient. The simplest regression

problem is when one variable X is input, and there is one output value Y.

1.2.4.7. Other regression algorithms

Besides the logistic regression that was used in object recognition, other experiments were carried
out using other algorithms.

ARDRegression

Automatic Relevance Determination (ARD) is based on Bayesian inference method. This is
a relatively new method proposed in 1991 by David Mackay [Mac91]. In Automatic Relevance
Determination (ARD), we first estimate how much each coefficient (or feature) varies, and then
discard those that don’t change much by setting them to zero. Think of it like this: we have infor-
mation about 30 stores (our data points), and for each store, we have 30 different characteristics, like
location, size, number of employees, etc. Now, we want to predict something, say, sales volume,
using these characteristics. ARD helps us determine which of these characteristics really matter in
predicting the sales volume. In this case, it might find that only 5 out of the 30 characteristics are
significant, while the other 25 don’t contribute much, effectively simplifying our prediction task.

Creating a standard linear regression model in such situations can be challenging. Imagine the
actual relationship being described by the formula Y = w(x)X + e, where e is random normal
error, and the coefficients w are [1, 2, 3, 4, 5, 0, O,,0]. Here, only the first five coefficients are
non-zero, meaning that the features from the 6th to the 30th have no impact on the actual value of
Y. But, we’re unaware of this. All we have is the data - X and Y - and our task is to determine the
w coeflicients.

One disadvantage of Automatic Relevance Determination (ARD) is that it can lead to overfitting
[GU16]. Additionally, popular update rules used for ARD can be difficult to extend to more general
problems of interest or may have non-ideal convergence properties [WNO7].

Bayesian Ridge

Bayesian Ridge Regression is a type of regression analysis that can be interpreted as Bayes pos-
terior mean when the prior on the regression parameters is multivariate normal with zero mean and
diagonal covariance matrix whose diagonal elements have the same variance/precision [ATT18].
It has been used in various applications such as PV power forecasting [MRA*20].

One of the advantages of Bayesian Ridge Regression is that it introduces additional information
to solve ill-posed problems or perform feature selection. This makes it popular in machine learning
and statistical modeling more generally [BL20]. The ridge regression parameters have independent
and identical Normal priors. The shrinkage parameter, «, is introduced into the model in the form
of a hyperparameter [BL20].

20

DummyRegression

In statistics, dummy regression is a type of regression analysis in which one or more categorical
variables are used to predict a continuous dependent variable. Dummy variables are binary vari-
ables that take on the values O or 1 to represent the presence or absence of a particular category or
group.

For example, suppose we have data on the heights and genders of a group of people. We might
want to use the gender of each person as a predictor variable to predict their height. To do this,
we could create a dummy variable that takes on the value O for males and 1 for females. We could
then use this dummy variable as a predictor in a regression analysis to see if there is a significant
relationship between gender and height.

To perform a dummy regression analysis, we first create a set of dummy variables for each
categorical predictor variable in our data. For example, if we have a categorical variable with three
categories (A, B, and C), we would create two dummy variables: one for category A and one for
category B. The dummy variable for category C would be omitted from the analysis, as it serves as
the reference category.

Next, we fit a linear regression model using the dummy variables as predictor variables and
the continuous dependent variable as the response variable. We can then interpret the coefficients
for the dummy variables as the effect of belonging to a particular category on the dependent vari-
able, holding all other variables constant. For example, if the coeflicient for the dummy variable
representing category A is significantly different from 0, this suggests that there is a significant
relationship between belonging to category A and the dependent variable.

It is important to note that dummy regression should only be used when the categorical variables
are not ordinal (i.e., they do not have a natural ordering). If the categorical variables are ordinal, it
is better to use ordinal regression techniques.

Lasso

Lasso (Least Absolute Shrinkage and Selection Operator) is a popular method for variable se-
lection and regularization in regression analysis. It can be used to recover an unknown sparse signal
from noisy linear measurements by solving an optimization problem that balances the fidelity of
the solution with the sparsity of the solution [AAA*22]. This is achieved by minimizing the resid-
ual sum of squares subject to the sum of the absolute value of the coefficients being less than a
constant. The constant determines the amount of shrinkage applied to the coefficients, with larger
values resulting in more shrinkage and therefore more coeflicients being set to zero.

LASSO has several advantages over traditional variable selection methods such as stepwise
regression. It can handle situations where the number of predictors is larger than the number of
observations, and it can also handle correlated predictors. However, LASSO has some limitations
as well. For example, it may not perform well when there are strong correlations among predictors
or when the true underlying model is not sparse.

There are several variations and extensions of LASSO that have been proposed to address some
of its limitations. For example, Elastic Net combines LASSO with ridge regression to handle cor-

related predictors. Group LASSO and Sparse Group LASSO can be used for structured variable

21

selection where predictors are grouped into predefined sets.

There are several scientific articles that discuss LASSO and its derivatives in more detail. For
example, one article provides a critical review of LASSO and its derivatives for variable selec-
tion under dependence among covariates [FFG21]. Another article proposes to employ the Box-
LASSO, a variation of the popular LASSO method, as a low-complexity decoder in a massive
multiple-input multiple-output (MIMO) wireless communication system[AAA*22]

Lasso-LARS

Lasso-LARS (Least Angle Regression with Lasso penalty) is an algorithm for fitting Lasso mod-
els, which are linear regression models with an L1 penalty term to encourage sparse solutions (i.e.,
solutions with many coefficients set to zero). Lasso-LARS is an efficient algorithm for fitting Lasso
models, particularly when the number of predictors is much larger than the number of observations.

Lasso-LARS works by iteratively fitting the Lasso model and adding one variable at a time to
the model until all variables are included or the maximum number of variables is reached. At each
step, the variable that has the largest absolute correlation with the response variable is added to the
model. The coefficient of the added variable is then adjusted so that the model fits the data while
still satisfying the Lasso penalty constraint.

The Lasso-LARS algorithm has two main parameters: the Lasso penalty hyperparameter, A,
which determines the strength of the penalty, and the maximum number of variables to include in
the model, m. The Lasso-LARS algorithm stops when either all variables have been included in
the model or the maximum number of variables has been reached, whichever comes first.

Lasso-LARS has several advantages over other algorithms for fitting Lasso models. One ad-
vantage is that it is computationally efficient, particularly when the number of predictors is much
larger than the number of observations. Additionally, Lasso-LLARS provides a way to easily select
the optimal value of the Lasso penalty hyperparameter, A, by using cross-validation to evaluate the
performance of the model at different values of .

However, Lasso-LARS has some disadvantages as well. One disadvantage is that it is sensitive
to the scale of the predictor variables, and it is generally recommended to standardize the variables
before fitting a Lasso-LARS model. Additionally, Lasso-LARS may not perform well when there
are many correlated predictors, as it tends to select only one of the correlated variables and set the
others to zero. Finally, Lasso-LARS is less efficient at estimating the coefficients of the non-zero
variables than other algorithms, such as coordinate descent.

Passive aggressive regression

Passive Aggressive Regression (PAR) is a type of online learning algorithm that is suitable for
real-time prediction tasks, including regression. It is a margin-based algorithm that is formulated in
terms of deterministic point-estimation problems governed by a set of user-defined hyperparameters
[SROI15].

PAR works by iteratively updating the model parameters in response to new data. At each step,
the algorithm receives a new data point and makes a prediction based on the current model param-
eters. The prediction is then compared to the true value, and the model parameters are updated

to minimize the prediction error. The update is performed in a passive-aggressive manner: if the

22

prediction is correct, the model parameters are not changed (passive); if the prediction is incorrect,
the model parameters are updated aggressively to correct the error.

One of the advantages of PAR is that it can adapt quickly to changing data distributions. This
makes it well-suited for real-time prediction tasks where the data distribution may change over time.
However, like all online learning algorithms, PAR may suffer from catastrophic forgetting if the data
distribution changes too quickly.

There are several scientific articles that discuss Passive Aggressive Regression in more detail.
For example, one article introduces a novel PA learning framework for regression that overcomes
some of the limitations of traditional PA algorithms. The authors contribute a Bayesian state-space
interpretation of PA regression, along with a novel online variational inference scheme, that not only
produces probabilistic predictions but also offers the benefit of automatic hyperparameter tuning
[SRO15]. Another article proposes a modified Passive Aggressive Regression model to implement
online ensemble forecasting for load forecasting [KWH21].

RANSAC regression

RANSAC (RANdom SAmple Consensus) is an iterative algorithm for fitting a model to data
that may contain outliers. It works by selecting a random subset of data, fitting a model to this
subset, and then assessing how many other data points fit this model. If enough data points fit, the
model is accepted; if not, the process repeats with a new data subset. This approach is particularly
advantageous in scenarios with outliers, as RANSAC can identify and exclude them, enhancing the
model’s accuracy.

The steps to use RANSAC in linear regression are:
1. Select a random subset of data, the inlier set,” with enough points to fit the model.
2. Fit a linear regression model to the inlier set.

3. Determine how many points in the remaining data fit the model, using a maximum allowable

error as a threshold.
4. If the number of inliers is better than the current best model, update the model and inlier set.
5. Repeat steps 1-4 until a set maximum number of iterations is reached.

Despite being robust to outliers, RANSAC has its limitations. It can be computationally inten-
sive due to its iterative nature, may not always converge to the true model, especially with a high
percentage of outliers, and is sensitive to the choice of the maximum allowable error parameter.

SGD regression

Stochastic Gradient Descent (SGD) is an optimization algorithm that can be used for regression
analysis. It works by iteratively updating the model parameters in response to new data. At each
step, the algorithm receives a new data point and makes a prediction based on the current model pa-
rameters. The prediction is then compared to the true value, and the model parameters are updated
to minimize the prediction error.

The update is performed using gradient descent, which means that the model parameters are

updated in the direction of the negative gradient of the loss function with respect to the model
23

parameters. The size of the update is determined by the learning rate, which is a hyperparameter
that controls how quickly the model parameters are updated.

SGD has several advantages over traditional batch gradient descent. It can converge faster be-
cause it processes one data point at a time instead of computing the gradient over the entire dataset.
It can also handle large datasets that do not fit into memory. However, SGD may suffer from slow
convergence or getting stuck in local minima if the learning rate is not chosen carefully.

Theil regression

Theil regression is a type of regression analysis that addresses heteroscedasticity, or non-
constant variance, which can bias estimates of model parameters. This method models the rela-
tionship between a response variable and predictor variables by estimating the local mean of the
response variable at each predictor variable value using a weighted average of the response values.

The process of fitting a Theil regression model involves:

1. Specifying the number of nearest neighbors to use in the weighting scheme.
2. Choosing the type of weighting to use, such as uniform or inverse distance weighting.

3. Iteratively estimating the weights and the local mean at each predictor value.

Theil regression is sensitive to the selection of the nearest neighbors and the type of weighting
used. It may also be computationally intensive and could struggle in high-dimensional spaces due
to the difficulty of accurately estimating the weights.

Tweedie regression

Tweedie regression is a type of generalized linear model that can be used to model data with a
Tweedie distribution. The Tweedie distribution is a family of continuous probability distributions
that includes the normal, Poisson, gamma, and inverse Gaussian distributions as special cases. It is
characterized by its mean, variance, and a power parameter that determines the relationship between
the mean and variance.

Tweedie regression models are useful for modeling data with a non-negative response variable
that may have a point mass at zero. They can be used to model data with different levels of disper-
sion, including underdispersion, equidispersion, and overdispersion. Tweedie regression models
can be fitted using maximum likelihood estimation or quasi-likelihood methods.

In conclusion, Tweedie regression is a powerful tool for modeling the relationship between a re-
sponse variable and one or more predictor variables when the response variable follows a Tweedie
distribution. It is able to handle a wide range of response distributions and is able to model het-
eroscedasticity. However, it can be sensitive to the choice of the Tweedie distribution and the power
parameter, and may be less interpretable than other generalized linear models.

Perceptron

A Perceptron is a type of artificial neural network that can be used for binary classification. It
consists of a single layer of artificial neurons that take a weighted sum of their inputs and apply a
non-linear activation function to produce an output. The weights of the inputs are adjusted during

training to minimize the prediction error.

24

Perceptrons were one of the first machine learning algorithms to be developed and have been
widely used in pattern recognition and other applications. They are simple to implement and can
learn to classify linearly separable data. However, they have some limitations as well. For example,
they cannot learn to classify data that is not linearly separable, and they may suffer from slow
convergence or getting stuck in local minima.

Perceptrons are simple and easy to implement, but they have some limitations. One limitation is
that they can only be used for binary classification. Additionally, perceptrons are not able to model
complex relationships between the predictor variables and the response variable. For these reasons,
more sophisticated artificial neural networks, such as multi-layer perceptrons and convolutional

neural networks, are often used in practice.

1.2.4.8. SIFT Algorithm

SIFT [Low04] was proposed in 2004 by David Lowe, at the University of British Columbia. the
scale-invariant feature transform algorithm (SIFT) is used to detect and also describe the local
features in a digital image. It locates key points and furnishes them with quantitative information,
also known as descriptors used for object detection and recognition.

A descriptor is a key point identifier that distinguishes it from the rest of the mass of singular
points. In turn, the descriptors must ensure the invariance of finding a correspondence between
singular points with respect to image transformations. In the context of the SIFT algorithm, a key
point refers to a point of interest in an image that is invariant to scale and orientation changes.
These key points are detected by the algorithm and are used to describe local features in the image.
Singular points refer to the same concept as key points. They are distinctive points in an image that
can be used for object detection and recognition. The permissible transformations for SIFT include
scale changes, rotation, and affine transformations. The algorithm is designed to be invariant to
these types of transformations, meaning that it can still detect and describe key points even if the
image has been transformed in these ways.

As a result, the following scheme for solving the image matching problem is obtained:

1. Key points and their descriptors are highlighted in the images.

2. According to the coincidence of the descriptors, key points corresponding to each other are
selected.

3. Based on a set of matched key points, an image transformation model is built, with the help
of which you can get another from one image.

SIFT algorithm has several steps:

1. Scale-space extrema detection: The first stage of computation searches over all scales and
image locations. It is implemented efficiently by using a difference-of-Gaussian function to identify
potential interest points that are invariant to scale and orientation [Low04].

2. Keypoint localization: Ateach candidate location, a detailed model is fit to determine location
and scale. Keypoints are selected based on measures of their stability [Low04].

3. Orientation assignment: One or more orientations are assigned to each keypoint location

based on local image gradient directions [Low04]. All future operations are performed on image

25

data that has been transformed relative to the assigned orientation, scale, and location for each
feature, thereby providing invariance to these transformations [Low04].

4. Keypoint descriptor: The local image gradients are measured at the selected scale in the
region around each keypoint [Low04]. These are transformed into a representation that allows for
significant levels of local shape distortion and change in illumination [Low04].

An important aspect of this approach is that it generates large numbers of features that densely
cover the image over the full range of scales and locations [Low04]. A typical image of size 500x500
pixels will give rise to about 2000 stable features (although this number depends on both image
content and choices for various parameters) [Low04].

The first stage of keypoint detection is to identify locations and scales that can be repeatably
assigned under differing views of the same object [Low04]. Detecting locations that are invariant
to scale change of the image can be accomplished by searching for stable features across all possible
scales, using a continuous function of scale known as scale-space [AP83; Low04]. The main point
in the detection of singular points is the construction of the pyramid of Gaussian and the Differences
of Gaussians. A Gaussian (or an image blurred with a Gaussian filter) is an image. Also, an
important component is a scalable space. The scalable image space is a set of all possible versions
of the original image smoothed by some filter. It is proved [Low04] that the Gaussian scalable
space is linear and invariant under shifts, rotations, and the scale does not shift local extrema and
has the property of semigroups. In general, scale invariance is achieved by finding key points for the
original image taken at different scales. To do this, a Gaussian pyramid is built: the entire scalable
space is divided into some sections - octaves, and the part of the scalable space occupied by the
next octave is twice as large as the part occupied by the previous one. In addition, when moving
from one octave to another, the image is resampled, and its size is halved.

In each image from the DoG pyramid, local extremum points are searched. Each point in the
current DoG image is compared to its eight neighbors and to the nine DoG neighbors one level up
and down in the pyramid. If this point is greater (less) than all neighbors, then it is taken as a local
extremum point.

The next step will be a couple of checks for the suitability of the extremum point for the role of
the key one.

First of all, the coordinates of the singular point are determined with subpixel accuracy. This
is achieved by approximating the DoG function with a second-order Taylor polynomial [Low04]
taken at the calculated extremum point.

After finding the key point, the direction of the point is calculated. The direction of the key point
is calculated based on the directions of the gradients of the points adjacent to the key point. All
gradient calculations are performed on the image in the Gaussian pyramid, with the scale closest to
the scale of the key point.

In the SIFT method, the descriptor is a vector. Like the direction of the key point, the descriptor
is calculated on the Gaussian closest in scale to the key point and from the gradients in some key
point window. Before calculating the descriptor, this window is rotated by the angle of the direction

of the key point, which achieves rotation invariance.

26

1.2.4.9. Complexity of Algorithms

One of the most important in the study and analysis of the algorithm is to determine the complexity
of the algorithm. Big(O) notation is an algorithm complexity metric. It defines the relationship
between the number of inputs and the steps taken by the algorithm to process those inputs.

In mathematics, computer science, and related fields, big-O notation is often denoted by a big
cryptographic O, which describes the limiting behavior of the function when the argument tends
towards a particular value or infinity, usually in terms of simpler functions [DSR11]. BigO notation
characterizes functions according to their growth rates: different functions with the same growth
rate may be represented using the same O notation [DSR11]. This notation is now frequently used in
the analysis of algorithms to describe an algorithm’s usage of computational resources: the worst-
case or average-case running time or memory usage of an algorithm is often expressed as a function
of the length of its input using big O notation [DSR11].

Table 1 shows algorithms in machine learning and their complexity, where m, n, k, v - separate

parts of the dataset

Table 1. Complexity of different algorithms

Algorithm Complexity | Worst complexity
kNN O(n) O(nm)
Support Vector Machine O(n?) O(n?)
Decision Tree O(log(n)) O(n)
k-Means O(n) O(n?)
Naive Bayes O(nd) O(m(n —m+1))
Random Forest O(vnlog(n)) O(log(n))
Linear Regression O(k*(n+k)) -
CNN O(n) -
SIFT O(mn + k) -

1.2.5 Deep learning Computer Vision Algorithms

Computer vision is an interdisciplinary field that has been gaining momentum in recent years (after
Convolutional Neural Network), with self-driving cars taking center stage. Another integral part of
computer vision is object detection. Object detection helps in pose estimation, vehicle detection,
observation, etc. The difference between object detection algorithms and classification algorithms
is that in detection algorithms, we try to draw a bounding box around the object of interest to find it
in the image. Also, it is not necessary to draw only one bounding box in case of detecting an object,
there can be many bounding boxes representing different objects of interest in the image, and we

do not know in advance how many.

1.2.5.1. Convolutional Neural Network

A Convolutional Neural Network (CNN) is a type of Artificial Neural Network (ANN) that is pri-
marily used for image-driven pattern recognition tasks. Image-driven pattern recognition tasks

involve the identification of specific patterns or features within images. This can include object
27

recognition, facial recognition, and scene classification, among others. Pre-processing in CNN
requires significantly less compared to other classification algorithms.

CNNs are composed of several different layers (e.g., convolutional layers, downsampling lay-
ers, and activation layers) - each layer performs some predetermined function on its input data
[WTS*20]. Convolutional layers “extract features” to be used for image classification, with early
convolutional layers in the network extracting low-level features (e.g., edges) and later layers ex-
tracting more-complex semantic features (e.g., car headlights) [WTS*20].

C| feature C2 feature
maps maps

52 feature
S| feature maps

fLiaps Qutput

Full

\ Connection
Convolutions

Subsampling Subsampling

Convolutions

Convolutions

Figure 3. CNN layers [LKF10]

A CNN consists of an input layer, an output layer, and many hidden layers (Fig. 3). These layers
perform operations that modify data in order to learn characteristics specific to that data. The three

most common levels are convolution, activation or Rectified Linear Unit (ReLU), and pooling.

. Convolution passes the input images through a set of convolution filters, each of

which activates certain characteristics of the images.

. The Rectified Linear Unit (ReLU) allows faster and more efficient training by
mapping negative values to zero and storing positive values. This is sometimes
referred to as activation because only activated characteristics are carried over to
the next level. Rectified Linear Unit (ReLU) is defined as max(0, x), which outputs
the positive part of its argument. These functions are also often used prior to the
output layer to normalize classification scores, for example, the activation func-
tion called Softmax performs a normalization on unscaled scalar values, known

as logits, to yield output class scores that sum to one [WTS*20].

. Pooling simplifies inference by performing a non-linear reduction in image qual-

ity, reducing the number of parameters that networks need to learn.

Pooling has two operations: max-pooling and average-pooling. In most cases, max-pooling is

used. The Pooling operation is similar to the convolution operation:

1. The sliding window, usually the (2,2) window, moves across the feature map.

2. From the selected template, the maximum (max-pooling) or average (average-

pooling) value is selected.

28

3. A reduced feature map is generated.

These operations are repeated over dozens or hundreds of layers, with each layer learning to
identify different characteristics. Filters are applied to each training image at a different resolution,

and the output of each convolved image is used as input to the next layer.

1.2.5.2. R-CNN

The Region-based Convolutional Neural Networks (R-CNN) is a model that facilitates object de-
tection by employing a Convolutional Neural Network (CNN) [GDD*14]. It proposes Regions
of Interest (Rol) using a method such as selective search [RvdST*13], and extracts CNN features
from these Rols. R-CNN, Fast R-CNN [Girl5], and Faster R-CNN [RHG™"15] use these features to
predict object class and bounding box parameters [KST*21].

The R-CNN algorithm operates by detecting potential objects in the image, dividing them into
regions, extracting features from each region using CNNs, and then classifying the processed fea-
tures. While this architecture yields accurate results, it is energy-intensive and requires significant
computational power, particularly for large and complex datasets.

Despite being designed for still images, the R-CNN algorithm can be adapted for video data by
applying it to individual video frames. However, this process can be computationally intensive and

may not fully utilize the temporal information present in the video data.

1.2.5.3. Fast R-CNN

The shortcomings of R-CNN led the authors in 2015 to improve the model. They called it Fast
R-CNN [3]. It is based on the following architecture:

The image is fed to the input of a convolutional neural network and processed by selective
search. As a result, we have a feature map and regions of potential objects. The coordinates of
the regions of potential objects are converted into coordinates on the feature map. The resulting
feature map with regions is passed to the Rol (Region of Interest) polling layer. Here, a grid of
HxW size is superimposed on each region. Then MaxPolling is applied to reduce the dimension.
Thus, all regions of potential objects have the same fixed dimension. The resulting features are fed
to the input of a fully connected layer, which is passed to two other fully connected layers. The first
with the softmax activation function determines the probability of belonging to a class, the second

determines the boundaries (offset) of the region of a potential object.

1.254. YOLO

YOLO is an advanced object detection network developed by Joseph Redmon [RDG*16]. The main
thing that distinguishes it from other popular architectures is speed. The YOLO family models are
really fast, much faster than R-CNN and others. This means that it is possible to recognize objects
in real-time.

In the YOLO architecture, an image is inputted and feature maps are created using its unique

CNN, Darknet-53[RF18]. These feature maps are then analyzed by a series of fully connected
29

layers and a final output layer. This output layer delivers a fixed-size tensor containing information
about bounding box positions, sizes, and class probabilities. The tensor is split into a grid, each cell
accountable for predicting a fixed number of bounding boxes. For each bounding box, the model
predicts the center coordinates relative to the cell location, the box’s width and height relative to
the image, and an objectness score reflecting confidence in the box containing an object. The
model also estimates class probabilities for each bounding box. These predictions are collectively
used to generate the model’s final output, which is a set of bounding boxes with associated class
probabilities.

YOLOv1 divides the input image into an S x § grid (Fig. 4). If the center of an object falls into a
grid cell, that grid cell is responsible for detecting that object [RDG*16]. Therefore, all other cells
disregard even the appearance of objects revealed in multiple cells.

Each grid cell predicts B bounding boxes and confidence scores for those boxes. These con-
fidence scores reflect how confident the model is that the box contains an object and also how
accurate it thinks the box is that it predicts [RDG*16]. This confidence score reflects the presence
or absence of an object in the bounding box. The confidence score is defined as: con fidence =
p(Object) x IOUtruth pred If no object exists in that cell, the confidence scores should be zero
[RDG*16].

= [ey B]
ot i 0 0 R T

Bounding boxes + confidence

m

By

Final detections

S x S grid on input

Class probability map
Figure 4. YOLO model 7x7. Image is under such License
Each bounding box consists of 5 predictions: x, y, w, h, and confidence [RDG*16]. The (x, y)

coordinates represent the center of the box relative to the bounds of the grid cell [RDG*16]. The

width and height are predicted relative to the whole image.

30

https://info.arxiv.org/help/license/index.html

1.2.6 Challenges of using Machine Learning in IoT

The key factors considered while implementing machine learning or deep learning with embedded
systems are energy consumption, latency, cost, security, privacy, memory space, and processor
speed [MK?20].

The first big problem is data. The increase in the dimensionality of data in high-dimensional
spaces can result in the generation of larger amounts of data, which may pose a challenge for en-
ergy efficiency [Hor14]. In the context of machine learning and data analysis, the increase in the
dimensionality of data can pose several challenges. One of these challenges is the potential increase
in the volume of data that needs to be processed and analyzed. As the number of dimensions (or
features) in the data increases, the amount of data required to adequately represent the underlying
relationships and patterns in the data can also increase. This phenomenon is known as the “curse
of dimensionality” and can result in larger amounts of data being generated and stored.

However, an increase in dimensionality does not always lead to an increase in the volume of data.
The relationship between dimensionality and data volume depends on several factors, including the
nature of the data, the relationships between the different dimensions, and the methods used to
collect and represent the data. In some cases, an increase in dimensionality may actually result in
a reduction in data volume if it allows for more efficient representation or compression of the data.
Additionally, the programmability of systems used for machine learning can lead to the reading and
storing of weights, which can also impact energy consumption. The process of reading and storing
weights in machine learning systems can impact energy consumption in several ways. First, the act
of reading and writing data to memory requires energy. The amount of energy consumed depends
on several factors, including the size of the data being read or written, the speed of the memory,
and the efficiency of the memory controller. As the size of the weight data increases, the energy
consumption associated with reading and writing the data can also increase.

Second, storing large amounts of weight data can require the use of additional memory re-
sources, which can increase the overall energy consumption of the system. Memory devices con-
sume energy even when they are not actively being accessed, so increasing the amount of memory
used by a machine learning system can result in higher energy consumption.

However, it should be noted that the relationship between programmability and energy effi-
ciency is not straightforward, as there are programmable devices that can be designed to optimize
energy consumption. The relationship between programmability and energy efficiency in machine
learning systems is due to the fact that there are trade-offs involved in designing systems that are
both programmable and energy-efficient. Programmability refers to the ability of a system to be
easily configured or programmed to perform different tasks. This can be an important feature for
machine learning systems, as it allows them to be adapted to different applications and datasets.
However, achieving high levels of programmability can sometimes come at the cost of increased
energy consumption.

For example, programmable systems may require more complex hardware and software archi-
tectures, which can increase the energy consumption of the system. Additionally, the process of

reading and storing weights and other data can also consume energy, as discussed in the previous

31

response.

However, it is possible to design programmable systems that are optimized for energy efficiency.
This can involve using specialized hardware and software architectures that minimize energy con-
sumption while still providing a high degree of programmability. The challenge is to find the right
balance between programmability and energy efficiency for a given application. Moreover, there
exist some problems with poor results, especially if there is a lack of data in the model or a lack of
reliable data. A poor result typically refers to a model that has low accuracy or performs poorly on
some other evaluation metric. There can be several reasons for poor results in machine learning,
including a lack of data or a lack of reliable data. If a model is trained on a small or unrepresentative
dataset, it may not be able to accurately capture the underlying relationships and patterns in the data.
This can result in poor performance when the model is applied to new data. Similarly, if the data
used to train the model is unreliable or contains errors, the model may learn incorrect relationships
and produce poor results. If we will consider the first scenario many machine learning algorithms
require large amounts of data [MK20] before they start producing useful results. A good example
of this is the neural network. Neural networks are data-eating machines that require a lot of training
data. The larger the architecture, the more data is required to produce viable results. Reusing data
is a bad idea, it's always preferable to have more data. Many machine learning algorithms, includ-
ing neural networks, require large amounts of data to learn effectively. In some cases, it may be
tempting to reuse the same data multiple times to increase the effective size of the training dataset.
However, this approach can lead to overfitting, where the model learns to recognize specific char-
acteristics of the training data rather than generalizing to new data. In general, it is preferable to
have more data rather than reusing the same data multiple times. This allows the model to learn
from a wider range of examples and can improve its ability to generalize to new data.

Another problem can be with privacy and security. Implementing machine learning in the em-
bedded system requires various types and amounts of calculations to be done to analyze the data
[MK20]. All these computations are done in the cloud which leads to latency, security, and privacy
issues due to sending of data to the cloud as the internet is involved in it [Nad19]. In some situa-
tions, an immediate response is needed. An application may not tolerate the time delay occurring
due to sending of the cloud [Nad19]. Also, the data may be private and cannot be afforded to be
transmitted or shared externally [MK20].

Another challenge is connectivity. IoT-connected devices should have a reliable two-way sig-
naling network as sometimes devices have to collect data from the server or the server has to receive

data from devices or sometimes devices have to talk to each other.

2 Methodology

2.1 Settings for conducting experimental studies

This research aims to explore and compare the use of various machine learning and image pro-

cessing methods for object detection, color detection, MNIST digit recognition, and controlling

32

LED using the Arduino Nano 33 BLE Sense and other microcontroller platforms such as STM32,
Arduino Uno, and Raspberry Pi 4. The experiments are designed to evaluate the performance and
feasibility of deploying deep learning models and traditional computer vision methods in low-power
and memory-constrained devices, a fundamental aspect of the Internet of Things (IoT) applications.

Three machine learning and image processing methods were primarily used in these experi-
ments: Tensorflow, EloquentTinyML, and OpenCV. The rationale behind choosing these frame-
works can be attributed to their ability to run on resource-constrained devices and their wide usage
in machine learning and computer vision tasks.

In the first set of experiments, Tensorflow, a powerful deep learning library, was utilized for color
and object detection. Here, Tensorflow allowed for the development and deployment of efficient
models capable of learning complex patterns from high-dimensional data.

A variation of the first experiment involved recognizing MNIST digits using EloquentTinyML,
an open-source library built specifically for running machine learning models on microcontrollers.
This exercise allowed for a detailed examination of the performance of specific ML models designed
for low-resource environments in recognizing hand-written digits.

The subsequent experiments involved using OpenCV, a widely-used computer vision library,
for detecting color and objects. Contrasting to the Tensorflow and EloquentTinyML methods, these
experiments did not employ deep learning but relied on classical computer vision methods. This
approach offered an opportunity to assess the efficacy and efficiency of traditional image processing
techniques in constrained settings.

Finally, the MediaPipe and Arduino experiment explored the possibility of gesture-based LED
control. This experiment is of significant importance as it brings human-computer interaction closer
to daily life and could have potential applications in smart home systems and interactive installa-
tions.

The overarching goal of this research is to provide insight into the capabilities and limitations of
current machine learning and image processing methods in constrained environments. By compar-
ing deep learning techniques with traditional methods, the research seeks to guide future develop-
ment and application of machine learning algorithms in IoT devices. Furthermore, it aims to pave
the way for the development of intelligent, low-power, and cost-effective IoT applications that can

interact seamlessly with the environment and the users.

2.2 Technological solutions for implementing computer vision implementa-

tion in microcontrollers

2.2.1 TinyML

Tiny Machine Learning (or TinyML) is a machine learning technique that combines reduced and
optimized machine learning applications that require “’full-stack” solutions (hardware, system, soft-
ware, and applications), including machine learning architectures, methods, tools, and approaches
learning able to run analytics on a device at the very edge of the cloud. TinyML can work with

sensors, microcontrollers or low-performance devices. A common IoT approach is to collect data

33

and send it to a centralized registration server, where machine learning can be used. In order to run
a machine learning model on IoT devices, TensorflowLite is used for this. Tensorflow Lite provides

small binaries capable of running on low power embedded systems.

2.2.1.1. Tensorflow architecture

In TensorFlow, machine learning algorithms are represented as computational graphs. A computa-
tional or dataflow graph is a form of a directed graph where vertices or nodes describe operations,

while edges represent data flowing between these operations [Gol16].

ExtractAndEvaluate

Extractors

|]
| |
Read ! |
Inputs | | | | Predict Slice Custom i
= i (default) Keys Extractor ;
g i (default) (optional) }
3] HAR: | = = !
=2 U loasl !
® | N) i
[m{=N _§-] : 1
| | | ;
] 1
i v ‘ .
| [Evaluators | AnalysisEvaluator (default) i Write analysis
! l | CustomEvaluator (optional) 7|7 | Results '-T__j
I S -
! MetricsAndPlotsEvaluator (default) 1 e
| . meics
! Group } ’ﬁ’_ij
i By Slice | - 1 L
] .
| [R
I = } =
i ! ’E_,J
. |
] 4

Figure 5. Tensorflow Architecture licensed under(Creative Commons Attribution 4.0 License)
[Goo21]

As can be seen in fig. 5 there are four main components:

. Read Inputs takes raw input and converts it into extracts;

. Extractors extract data

. Evaluators take an extract and evaluate it;

. Write Results the evaluation output gets written out to disk. Write Results uses

writers to write out the data based on the output keys [Goo16].

A TensorFlow computational graph has different elements such as operations, tensors, variables,
and sessions.

1. Operation is a node in a graph that takes zero or more tensor objects as input and produces
zero or more tensor objects as output.

2. Tensors are the main object that is manipulated in Tensorflow is the tensor. A tensor is a
generalization of vectors and matrices to higher dimensions. Inside TensorFlow, tensors are rep-
resented as n-dimensional arrays of basic data types. Tensor has the following options: data type

(float32, int32, or string, for example) and dimensions. All elements of a tensor have the same

34

data type, and it is always known. The dimensions (the number of dimensions and the size of each
dimension) can only be partially known.

3. Variables are the best way to represent the public, stored state. In the context of TensorFlow,
a tf.Variable is a specific type of tensor whose value can be changed by performing operations on it.
This is different from the more general concept of a variable in computer science, which refers to a
named storage location that can hold a value. A tf.Variable is used to represent shared, persistent
state that can be manipulated by the TensorFlow computational graph. It stores a constant tensor
internally, and certain operations allow the values of this tensor to be read and modified. These
changes are visible across multiple #f.Sessions, meaning that multiple threads or processes can see
the same values for a ¢f.Variable. Variables are used through the #f.Variable class. tf.Variable is
a tensor whose value can be changed by performing operations on it. Internally, #f. Variable stores
a constant tensor. Certain operations allow us to read and change the values of this tensor. These
changes are visible across multiple tf.Sessions, so multiple executing threads can see the same values
for a tf. Variable.

4. Sessions are in TensorFlow, the execution of operations and evaluation of tensors may only be
performed in a special environment referred to as a session. One of the responsibilities of a session

is to encapsulate the allocation and management of resources such as variable buffers [Gol16].

2.2.2 Edgelmpulse

Edgelmpulse is a solution that aims to simplify the deployment of machine learning applications
on embedded devices based on the Cortex-M core by collecting real-world sensor data, training
ML models with that data in the cloud, and then deploying the model to an embedded device.
Edge Impulse uses a variety of algorithms to optimize machine learning models for deployment on
embedded devices. For example, Edge Impulse uses UMAP, a dimensionality reduction algorithm,
to project high dimensionality input data into a 3-dimensional space [Edg22]. Additionally, Edge
Impulse uses TensorFlow’s Model Optimization Toolkit to quantize models, reducing their weights’
precision from float32 to int8 with minimal impact on accuracy [Sit21].

Edgelmpulse is a cloud-based solution that has a SaaS (Software as a Service) type of model.

EdgeImpulse uses several rules to create a model:

1) when collecting data, the data must be sent to the Edgelmpulse cloud service using Data
forwarder. The data forwarder is used to easily relay data from any device to Edge Impulse over
serial. Devices write sensor values over a serial connection, and the data forwarder collects the data,
signs the data, and sends the data to the ingestion service. The data forwarder is useful to quickly
enable data collection from a wide variety of development boards without having to port the full
remote management protocol and serial protocol, but only supports collecting data at relatively low
frequencies. The remote management server implements a two-way protocol between devices and
Edge Impulse, which allows users to control devices (for example, to acquire new data) straight from
the studio. Devices can either connect directly to the remote management service over a websocket
(see the protocol on this page), or can connect through a proxy. The ingestion service is used to send

new device data to Edge Impulse. Data Acquisition format is a small specification that describes

35

the type of data, the sensor data itself, and information about the device that generated the data.

2) After training the model, the model can be sent back to the device. It can be sent in three
different ways.

2.1) the model can be separately exported to the project framework.

2.2) using the company's cloud services can be downloaded to the device itself.

2.3) using webassembly can be uploaded to a server or computer.

2.2.3 Other existent libraries for microcontrollers

MicroML is a project to bring machine learning algorithms to microcontrollers. It was born as an
alternative to TensorFlow for microcontrollers, which is solely dedicated to artificial neural net-
works, MicroML can be run even on 8-bit microcontrollers. The library is written only in Python
and uses different machine learning algorithms such as Support Vector Machine, linear regression,
etc. This library has a built-in parser that converts the entire process into a low-level C language
and creates a model file that can later be connected to the microcontroller. The advantage of the
library is that it can be used together with libraries that are designed for statistics and probability,
such as scikit-learn [PVG*11] or NumPy [HMvdW*20].

The disadvantage of this library may be that tests have not been carried out by the developer
on different models of a microcontroller, for example, Arduino Nano, it is also not clear how many
resources the model consumes after conversion.

There are many different libraries such as MicroML, emlearn, EloquentTinyML. All these li-
braries are united by one principle, models are trained on machines with high computing power,

and the model is converted into a low-level language and used later on the microcontroller.

2.24 OpenCV

OpenCV, which stands for Open-Source Computer Vision Library, is a widely-used and well-
documented open-source library that incorporates numerous computer vision algorithms. It was
developed to provide a common infrastructure for computer vision applications, with the goal of
accelerating the use of machine perception in commercial products. OpenCV is highly efficient
computationally, which assists with real-time applications. The library provides a wide range of al-
gorithms for various computer vision tasks, including many machine learning algorithms like Bayes
Classifier, K-Nearest Neighbors, Support Vector Machines, Decision Trees, and more. These are
housed in a module called 'ml’.

Images processed through OpenCV are primarily composed of picture elements known as pixels
[CAP*12]. These images can easily contain tens of thousands of pixels or even more since modern
images have a high resolution, which makes efficient pixel processing crucial [CAP*12]. OpenCV
handles this by treating images as matrices, where each element of the matrix corresponds to one
pixel [CAP*12]. This efficient data structure allows OpenCV to effectively manage and process the
high-volume data associated with computer vision tasks.

An image is like a grid where each square, or pixel, holds a specific value. For instance, in a
400x300 pixel image, we have 120,000 individual pixels. Pixels can be either grayscale or RGB.

36

https://github.com/agrimagsrl/micromlgen
https://github.com/emlearn/emlearn
https://github.com/eloquentarduino/EloquentTinyML

In grayscale, pixel values range from 0 (black) to 255 (white), with in-between values representing
various shades of gray.

OpenCV allows to create a matrix of various value types (as described earlier) and it is impor-
tant to note that certain operations (pixel processing) can be applied only to certain matrix types
[CAP*12]. Moreover, certain image processing could be more effective if appropriate color space
is chosen [Dub10].

2.2.5 Tensorflow

TensorFlow is an open-source software library for dataflow and differentiable programming across
a range of tasks. It is commonly used for machine learning applications such as neural networks.
One type of neural network that can be built using TensorFlow is a Convolutional Neural Network
(CNN), which is often used for image recognition tasks. CNNs are designed to take in input data in
the form of images and process the data through multiple layers, each of which applies a different
set of filters to the image to extract different features. These features are then used to automatically
recognize and classify the images. TensorFlow also helps you to build a neural network model
[VTP*20], which is capable of automatically recognizing images. These are typically Convolu-
tional Neural Networks (CNN). There are two types to implement TensorFlow image recognition:

Classification: Train the CNN to recognize classifications like cups, books, blades, vehicles,
or whatever else. The framework arranges the picture in general, depending on accessible classes
[KSH12; LWX*15].

Object Detection: This procedure is fit for distinguishing numerous items from an equivalent
picture at the same time. It ought to likewise label the object and finds its area inside the picture
and its exactness individually.

There are three models in TensorFlow, which respectively are the calculation model: calcula-
tion graph, the data model (tensor), and the running model (session). The data in TensorFlow is
represented by a Tensor data structure, Flow represents the flow and calculation of data [YLJ18].
It can use the feed (or fetch) to assign (or get) the data in the tensor [YLJ18].

TensorBoard is a visual tool corresponding to the TensorFlow calculation graph. It can visualize
the output log files during the running process of the TensorFlow program, and effectively display
the calculation graph and the trend of various parameter indicators with time during operation in
TensorFlow, and facilitate the understanding and debugging of the program [YLJ18].

2.2.6 Microcontrollers

A microcontroller is a compact integrated circuit designed to govern a specific operation in an em-
bedded system. It’s essentially a small, low-cost computer on a single chip that includes a processor
core, memory (RAM), and programmable input/output peripherals. Commercial and developer
boards are the two types of microcontroller boards, with commercial boards being designed for
specific tasks, while developer boards are intended for general-purpose use. To maximize flexibil-
ity for testing and developing various applications, we will use a developer board for this project,
thereby eliminating the need for designing a custom PCB.

37

To successfully develop a schematic diagram, it is needed to immediately make a list of materials
that will be used in its construction. In the experimental study of this work, 4 microcontrollers are
used, and table 2 shows the technical characteristics of the microcontrollers used.

As can be seen from table 2, all 4 microcontrollers have different memory sizes, different pro-
cessors, as well as different voltage consumption. According to these characteristics, these devices
were selected.

All these boards possess adequate computational power and memory capacity, enabling their
use in fundamental TinyML applications, and are further backed by the TensorFlow Lite frame-
work. TinyML refers to the deployment of machine learning models on low-power microcon-
trollers. These boards have enough resources to run basic machine learning models and are sup-
ported by the TensorFlow Lite framework, which is designed to run machine learning models on

resource-constrained devices.

Table 2. Characteristics of microcontrollers

Characteristics | Arduino Uno | Arduino Nano 33 BLE Sense | STM32L053R8 Raspberry Pi 4
Processor Xtensa LX6 ARM Cortex-M4 ARM Cortex-M0+ | ARM Cortex-A72
Clock Speed 160MHz 64MHz 32MHz 1.5GHz
Flash Memory 32MB 1IMB 64kB 32GB
SRAM 520kB 256kB 8kB 2GB
Voltage 5V 3.3V 3.6V 5V
Digital I/O 14
Analog Pins ? 8 > 40

2.2.7 Choosing a software development environment

After creating the basic schemes of the device and its construction in the material version, you can
proceed to the development of software for the device.

Visual Studio Code was chosen as the development environment, and Platformio was used as
a framework instead of using Arduino IDE or the development environment for STM32. Com-
paring Visual Studio Code with Arduino IDE or STM32 development environment, VSCode is a
lightweight IDE and has an extension system that provides rich features to the code editor. This
allows developers to customize their development environment with extensions for different pro-
gramming languages and frameworks. Additionally, VSCode has a file manager tool that makes
it easier to work with multi-file projects as well as integrated Git Version Control and integrated
Github Syncing. Another useful feature is Code IntelliSense which can scan the project dependen-
cies, locate where they are and find code references from all those files.

Among the advantages of Platformio:

. Intuitive choice of microcontroller to quickly identify the parts that meet require-

ments

38

. Advanced debugging options such as:
- Local, Global, and Static Variable Explorer;
- Conditional Breakpoints; Expressions and Watchpoints;
- Generic Registers;
- Peripheral Registers;
- Memory Viewer;
- Disassembly;
- Multi-thread support;

- A hot restart of an active debugging session

. Ability to create unit tests to check the correctness of the program
. Remote development
. Library Manager for the hundreds popular libraries

Table 3 provides a comparison of Platformio, Arduino IDE and STM32CubeProgrammer.

Table 3. Comparison between IDEs

Platformio Arduino IDE STM32CubeProgrammer

Has device management system for different platforms | Has device management system only for Arduino devices Has device management system only for
such as Arduino Uno, ESP8266, STM32, etc. such as Arduino Uno, Arduino Mega, Arduino Leonardo, etc. STM32 types of device.

Has own dependency management system Has own dependency management system Does not have

Provides help such as auto-complete Does not provide auto-complete Provides auto-complete

Can be integrated with code Cannot be integrated with code repository such as Github [CT22] Cannot be integrated with code
repository such as Github [CT22] repository such as Github [CT22]

3 Results of experimental investigation

3.1 Use of TensorFlow library

3.1.1 Detecting color using deep learning methods

The inspiration and foundational groundwork for this experiment originated from a blog post on
the Arduino official site, which can be found at blog “Fruit identification using Arduino and Ten-
sorFlow”. This blog discussed the concept of fruit identification using Arduino and TensorFlow,
which introduced the idea of integrating Deep Learning algorithms for robust color detection.

I expanded on this concept by developing a comparative method using OpenCV. This classic
method was developed by me as an alternative and comparison to the Deep Learning approach. The
method focuses on image processing and feature extraction techniques. While the Deep Learning
approach can handle varying conditions and learn from vast datasets, OpenCV-based approach
provides a more lightweight, rapid, and less resource-intensive solution. Deep learning algorithms
can handle the complexities and variations in color appearance and provide accurate color detection
results. The Arduino Nano 33 BLE Sense board has the necessary hardware to run such deep

Learning algorithms, making it a suitable platform for developing color detection applications.

39

https://blog.arduino.cc/2019/11/07/fruit-identification-using-arduino-and-tensorflow/
https://blog.arduino.cc/2019/11/07/fruit-identification-using-arduino-and-tensorflow/

For this project was considered Arduino Nano 33 BLE Sense board to measure the main compo-
nent of the light projected using the on-board APDS9960 sensor [Tec15]. The APDS9960 sensor
is a multipurpose device that features advanced Gesture detection, Proximity detection, Digital
Ambient Light Sense (ALS) and Color Sense (RGBC).

White light is made of all of the colors of the rainbow because it contains all wavelengths, and
it is described as polychromatic light. The color light is separated in four different channels (Red,
Green, Blue, and Clear light intensity). The Clear light intensity channel measures the overall
intensity of light, regardless of its color. This channel is not directly related to color, but it can
provide useful information about the lighting conditions in a scene. For example, if the Clear light
intensity is low, it may indicate that the scene is poorly lit, which can affect the accuracy of color
detection. By combining the information from the Clear light intensity channel with the information
from the Red, Green, and Blue channels, it is possible to more accurately determine the colors in a
scene and compensate for variations in lighting conditions. Each of them has a UV (ultraviolet) and
IR (infrared) blocking filter and a dedicated data converter to read the data simultaneously. UV and
IR blocking filters are used to prevent UV and IR light from reaching the sensor. This is important
because UV and IR light can interfere with the accuracy of color detection. The human eye is not
sensitive to UV or IR light, so these wavelengths are not visible to us and do not contribute to our
perception of color. However, many digital sensors are sensitive to UV and IR light, and if these
wavelengths are not blocked, they can affect the sensor’s readings and cause the colors in an image
to appear distorted. By using UV and IR blocking filters, it is possible to ensure that only the visible

wavelengths of light reach the sensor, improving the accuracy of color detection.

Color sensor

NN

Figure 6. The principle of operation of the color sensor [Tro19]

40

['orange', "red', 'yellow']
orange class will be output @ of the classifier
91 samples captured for training with inputs ['Red’, 'Green', 'Blue’]

10
00
0 20 40 60 80
red class will be output 1 of the classifier
71 samples captured for training with inputs ['Red’, 'Green', 'Blue’]

10
0.0
0 10 20 0 40 50 60 70

yellow class will be output 2 of the classifier
94 samples captured for training with inputs ['Red', 'Green', 'Blue’]

10

05

00

0 20 P &0 &

Figure 7. Color range of colors

CSV files were employed for color recognition, utilizing the APDS9960 sensor to capture color
data. The APDS9960 is an advanced digital RGB, ambient light, and proximity sensor that inte-
grates a wide range of features within a single compact package. It enables precise and reliable
color detection by leveraging its RGB color sensing capability.

The given data table adheres to the CSV (Comma-Separated Values) format, signifying a dataset
comprising three distinct columns: Red, Green, and Blue. Each row within the table corresponds
to a collection of values representing these respective color channels.

As part of the color classification process, a rapid sampling approach was implemented, utilizing
only a single example per class. This method allows for a swift proof of concept, enabling initial
detection and classification of objects based on their color attributes.

Here’s a description of the table:

. Column 1: Red This column represents the intensity or value of the red color

channel for each entry in the dataset.

. Column 2: Green This column represents the intensity or value of the green color

channel for each entry in the dataset.

. Column 3: Blue This column represents the intensity or value of the blue color

channel for each entry in the dataset.

The next is to parse csv file and transforms them to a format that will be used to train the full
connected neural network. The full connected neural network mentioned in the before refers to a
neural network architecture that consists of fully connected layers, also known as dense layers. In
the code, after parsing and preparing the dataset, the inputs and outputs are processed to be used for

41

training the neural network. The inputs are stored in the inputs list, and the corresponding outputs
are stored in the outputs list. The dataset is then randomized using np.random.shuffle to ensure an
even distribution of data for training, testing, and validation. The randomized inputs and outputs
are split into three sets: training, testing, and validation, using the np.split function. The resulting
sets, inputs_train, inputs_test, inputs_validate, outputs_train, outputs_test, and outputs_validate,
are used to train, test, and validate the full connected neural network. For this, the pandas library
was used, which has the read_csv function. After constructing and training the TensorFlow model
using the high-level Keras API [Ker20] on a computer, the model was subsequently uploaded to
the Arduino for further calculations. The Keras API provides a convenient and efficient way to
develop and refine machine learning models. With its built-in functions and simplified syntax for
creating and configuring layers, users can rapidly build and refine models with ease and efficiency.
The tf.keras module offers first-class support for TensorFlow-specific functionality, including fast
execution, tf.data collections, and Estimators. In Keras, layers are collected to build models, usually
in the form of a layer stack called a tf.keras.Sequential model.

Below is an example for building model:

Split the recordings (group of samples) into three sets:
training , testing and validation

TRAIN_SPLIT = int (0.6 % num_inputs)

TEST_SPLIT = int (0.2 % num_inputs + TRAIN_SPLIT)

inputs_train , inputs_test, inputs_validate = np.split(inputs, [
TRAIN_SPLIT, TEST_SPLIT])
outputs_train , outputs_test, outputs_validate = np.split(outputs,

[TRAIN_SPLIT, TEST_SPLIT])

build the model and train it

model = tf.keras.Sequential ()

relu is used for performance

model.add (tf . keras.layers.Dense(8, activation="relu’))

model .add (tf . keras.layers.Dense(5, activation="relu’))

softmax is used, because we only expect one class to occur per
input

model .add (tf . keras.layers.Dense (NUM_CLASSES, activation=’softmax’
)

model . compile (optimizer="rmsprop’, loss="mse’, metrics=[’'mae’])

history = model. fit(inputs_train , outputs_train, epochs=400,
batch_size=4, validation_data=(inputs_validate ,

outputs_validate))

A Sequential model is appropriate for a plain stack of layers where each layer has exactly one

42

input tensor and one output tensor. Data flows sequentially through each layer until it reaches the
final output layer. The first layer to place into a neural network is the input layer. Layers after
the first one do not need to specify the input dimension, since after the input layer it will be the
representation of the input in terms of weights and biases that will pass from one layer to another.

The next step is to convert the model to TFlite format and put it into Arduino and calculate mean

squared error. Fig. 8 shows the result of the detection three colors.

Figure 8. Detection three colors, where yellow line presents yellow color, orange - orange and red
- blue. The range between 0 to 100 - a percentage of detection. The vertical Y axis auto adjusts as
the value of the output increases or decreases, and the X axis is a fixed 500-point axis with each
tick of the axis equal to an executed serial println command

In the referenced illustration (Fig. 9), the project utilized an optimization algorithm known as
RMSprop.

Classification Report

precision recall fl-score support

orange 1l.00 1.00 1.00 11

red 1l.00 1.00 1.00 17

yellow 1.00 1.00 1.00 23
accuracy 1.e8 51
macro avg 1l.00 1.00 1.00 51
weighted avg 1.8 1.00 1.60 51

Figure 9. The results of accuracy, precision, recall and F1 using RMSprop optimizer

The Root Mean Square Propagation (RMSprop) optimizer is a sophisticated algorithm for gra-
dient descent, particularly useful in dealing with non-convex optimization problems. It employs a
moving average of squared gradients to normalize the gradient itself. Essentially, RMSprop modu-

lates the learning rate for each weight in the model based on the recent magnitudes of its gradients.

43

This property makes RMSprop particularly suitable for dealing with both plateaus and noisy up-

dates.

The exploration of the project’s results will now extend to include different types of optimizers,
namely Stochastic Gradient Descent (SGD) Fig. 10, Nadam (Fig. 11), and Adam (Fig. 12).

Stochastic Gradient Descent, or SGD, is an optimization technique that seeks to minimize a

given function by iteratively moving in the direction of steepest descent, defined by the negative

gradient of the function at the current point. Unlike standard gradient descent, SGD randomly picks

one data point from the whole data set at each iteration to reduce the computations enormously.

Classification Report

precision

orange 0.88

red 2.9e

yellow 1.00
accuracy

macro avg .93

weighted avg 8.94

recall fl-score

©8.94 8.91
.82 ©.86
1.00 1.00

.94
8.92 8.92
.94 .94

support

16
11
24

51
51
51

Figure 10. The results of accuracy, precision, recall and F1 using SGD optimizer

Nadam (Nesterov-accelerated Adaptive Moment Estimation) is an optimizer that combines the

Adam and Nesterov momentum techniques. It leverages the benefits of Adam’s adaptive gradient

methods, which perform well in scenarios with large-scale data or parameters, and incorporates the

anticipatory characteristics of Nesterov momentum to increase responsiveness to changes.

Classification Report

precision

orange 1.00

red 1.00

yellow 1.00
accuracy

macro avg 1.00

weighted avg 1.00

recall fl-score

1.e00 1l.00@
1.ee 1l.00
1.e00 1l.00@

1l.00@
1.ee 1l.00
1.e00 1l.00@

support

16
11
24

51
51
51

Figure 11. The results of accuracy, precision, recall and F1 using Nadam optimizer

Adam (Adaptive Moment Estimation) is another popular optimizer that calculates adaptive

learning rates for different parameters. It combines the perks of two extensions of SGD—RMSprop

and AdaGrad—by computing adaptive learning rates for each weight while maintaining an expo-

nentially decaying average of past gradients, similar to momentum.

Classification Report

precision

orange @.93

red 8.77

yellow 1.ee
accuracy

macro avg .90

weighted avg 9.93

recall fl-score

©.88 9.90
e.91 9.83
8.96 9.98

9.92
e.91 9.91
8.92 9.92

support

16
11
24

51
51
51

Figure 12. The results of accuracy, precision, recall and F1 using Adam optimizer

44

The results from different optimization algorithms can vary due to the unique ways each algo-
rithm navigates the optimization landscape to find the minimum of the loss function.

RMSprop and Nadam optimizers resulted in perfect classification, as evidenced by precision,
recall, and fl-score values of 1.00 for each category. This suggests that these optimizers could
efficiently find the optimal set of weights for the model to achieve maximum predictive performance.

In contrast, the SGD and Adam optimizers showed slightly lower performance. The nature
of SGD, which utilizes a single randomly selected sample at each step, can lead to more noise
during optimization and a longer convergence time. This might explain why it could not reach the
same perfect classification as RMSprop or Nadam. Adam optimizer, which also has an adaptive
learning rate like RMSprop, showed good results, but not perfect. This might be due to the specific
configuration of hyperparameters, such as the learning rate, or the characteristics of the dataset
itself.

Nadam optimizer combines the benefits of both Adam and Nesterov momentum, and in this
case, it seems to perform as well as RMSprop, showing perfect classification.

The optimal choice of an optimizer may depend on the specific problem at hand, the dataset
characteristics, and the computational resources available. While RMSprop and Nadam have shown
superior performance in this instance, it might not always be the case with different datasets or
model architectures.

However, based on this data and these results, RMSprop and Nadam appear to be the superior
optimizers for this specific task as they have achieved perfect classification accuracy, precision,

recall, and F1 scores.

loss: ©.2219 - mae: ©.4438 - val_loss: ©.2212 - val_mae: 0.4439

Figure 13. The result of mean absolute error and loss for RMSprop

The mean squared error is 0.0062 with 400 epochs.

The color detection process involves the identification of specific colors in an image. The tradi-
tional approach of decomposing the image into its Red, Green, and Blue (RGB) spectral components
may provide a simple representation of the image's color information, but it fails to account for fac-
tors such as ambient lighting, camera parameters, and object surface reflectance. This is because
the RGB color model is a device-dependent color model, meaning that the colors represented by
the RGB values depend on the device used to capture or display the image. Factors such as ambient
lighting and camera parameters can affect how colors are captured by a camera and represented in
an image. Similarly, the surface reflectance of an object can affect how its colors appear in an image.
These factors can cause variations in the appearance of colors in an image that are not accounted for
by the simple RGB representation. These factors can significantly alter the RGB values of an object
and make it difficult to perform accurate color detection using simple algorithmic decomposition.

Computer Vision (CV) and Machine Learning (ML) approaches, on the other hand, can handle
these complexities and provide more robust color detection results. For example, color constancy
algorithms can be used to estimate the color of the light source and correct the colors in an image
to appear as they would under a standard light source. This can help to reduce the effects of am-

45

bient lighting on the appearance of colors in an image. Additionally, machine learning algorithms
can be trained on large datasets of images taken under different lighting conditions to learn how to
recognize and classify objects based on their colors, even when the lighting conditions vary. These
approaches can provide more robust color detection results by accounting for the effects of ambient
lighting on the appearance of colors in an image. CV and ML algorithms can analyze multiple
features of an image and apply advanced mathematical models to accurately identify the desired
color, even in challenging conditions. These features can include color values, texture, shape, and
spatial relationships between objects in the image. The number of features analyzed by a CV or
ML algorithm can vary depending on the specific algorithm and the complexity of the image being
analyzed. The accuracy of a CV or ML algorithm can be measured using metrics such as precision,
recall, and F1 score. These metrics can be used to compare the performance of different algorithms
or to evaluate the performance of a single algorithm on different datasets. The term “advanced
mathematical models” in the context of Computer Vision (CV) and Machine Learning (ML) algo-
rithms refers to a collection of computational and statistical methods used for tasks such as pattern

recognition, classification, and prediction. Here’s how they apply to image analysis:

1. Feature Extraction: CV and ML algorithms often start by extracting features from an image.
This can involve identifying edges, textures, shapes, and colors within an image. Techniques
such as convolutional layers in Convolutional Neural Networks (CNNs) or transformation

methods like Fourier and Wavelet Transformations can be employed for this.

2. Dimensionality Reduction: High-dimensional data can be difficult to process and visualize.
Algorithms such as Principal Component Analysis (PCA) or t-distributed Stochastic Neigh-
bor Embedding (t-SNE) are used to reduce the dimensionality of the data while preserving its
structure. This simplifies the computational requirements of subsequent steps and can also

improve the performance of the algorithms.

3. Classification and Regression: After feature extraction and potential dimensionality reduc-
tion, the processed data is used for tasks such as classification or regression. For instance,
Support Vector Machines (SVMs), Decision Trees, Random Forests, and Neural Networks
are commonly used for classification tasks, while regression tasks might use Linear Regres-

sion, Logistic Regression, or variants of Neural Networks.

These algorithms can also be trained to improve their color detection accuracy over time, mak-
ing them ideal for applications that require high-precision color detection. Machine Learning (ML)
algorithms can be trained to improve their color detection accuracy over time. This involves adjust-
ing the parameters of the mathematical model used by the algorithm to better fit the data. As the
algorithm is exposed to more data, it can learn to make more accurate predictions about the colors
present in an image.

The training process typically involves dividing a dataset into a training set and a validation
set. The algorithm is trained on the training set and its performance is evaluated on the validation

set. The parameters of the mathematical model are adjusted to minimize the error between the

46

predicted and actual colors in the validation set. This process is repeated until the performance of

the algorithm on the validation set reaches an acceptable level.

3.1.2 Object detecting using classical method

The original inspiration for this experiment and idea was taken from the following blog post: "De-
tecting Pokemon with Arduino and TinyML”. This method employed a logistic regression model
trained in TensorFlow to detect two specific Pokemon - Pikachu and Bulbasaur. While Logistic Re-
gression can be quite effective in many cases, it’s just one of many existent regression models. For
a more comprehensive evaluation and to potentially increase the accuracy of predictions, it can be
beneficial to explore other regression models, such as Linear Regression, Polynomial Regression,
etc.

In practice, a user can present a Pokemon in front of the color sensor, which will subsequently
generate RGB values. These values are then utilized by the model to make a prediction as to whether
the presented object is Pikachu or Bulbasaur. If the prediction concludes Pikachu, the Arduino LED
shines yellow; if it is Bulbasaur, it turns green. The predicted label is also printed for confirmation.

For data collection purposes, the program reads the RGB intensity values from the sensor and
prints them as a seven-element tuple. The first three elements of this tuple represent the RGB values;
the subsequent three elements showcase the RGB ratios, derived by dividing the color values by
the sum of all the values. The final element is the class label, which can either be “Pikachu” or
“Bulbasaur”.

However, it should be noted that the RGB intensity values collected from the sensor are not a
true reflection of the scanned object’s actual RGB colors. To scale the values appropriately to the
RGB scale, the program utilizes the MinMaxScale function from the Scikit-Learn library.

The draw_colors() function is also applied to generate a rectangle (using cv2.Rectangle()),
where each entry represents a color. The loops responsible for the creation of this rectangle iterate
over the sorted and reversed DataFrame to draw the colors from the darkest (255) to the lightest
(0), as depicted in Fig. 14.

Contrastingly, I decided to conduct a comparative study using a classical method that I developed

using OpenCV. In the forthcoming sections, I will discuss this method in detail.

~ D

Figure 14. Color histogram
These visualizations show their range and relationship. Pikachu’s primary color is yellow, a

color obtained from red and green Fig. 14. That’s why the graph shows a linear relationship between

these tones Fig. 15.

47

https://juandes.com/detecting-pokemon-arduino-tinyml/
https://juandes.com/detecting-pokemon-arduino-tinyml/

1.0

Figure 15. 3d cube upscaled color

Classifier is a logistic regression model trained with TensorFlow in Python. The network has a
layer of one unit, an input shape of 3 (because we have three features), and it's trained with an Adam
optimizer [KB15] with a learning rate of 0.01 and a binary cross-entropy loss function. Since the
activation is sigmoid, its output is a number between 0 and 1 where 0 is Pikachu, and 1 is Bulbasaur;
in a logistic regression model, we usually set the threshold at 0.50, meaning that any value under it

is the O class and those equal or greater than, is the 1 class.

pikachu_vals_scaled = pd.DataFrame(pikachu_scaler.fit_transform (
pikachu_vals), columns=pikachu_vals.columns)
bulbasaur_vals_scaled = pd.DataFrame(bulbasaur_scaler.

fit_transform (bulbasaur_vals), columns=bulbasaur_vals.columns)

#4 Train

X = pd.concat ([pikachu[["RedRatio’, >GreenRatio’, ’BlueRatio’, °’
Class’]], bulbasaur|[[’ RedRatio’, ’>GreenRatio’, ’BlueRatio’, ’
Class’111])

y = X.Class
X = X.drop(’Class’, axis=1)

X _train, X_test, y_train, y_test = train_test_split(X, vy,

test_size=0.3, random_state=0)

48

clf = LogisticRegression(random_state=0). fit(X_train, y_train)
y_pred = clf.predict(X_test)
print(classification_report(y_test, y_pred))

preds = [1 if x > 0.50 else O for x in y_pred]

print(classification_report(y_test, preds))

After model is trained we must put it into the Arduino. Model cannot be used on the Arduino

as it is. It must be converted to a TensorFlow Lite model and then encode it as a byte array in C++.

3.1.2.1. Data description

To ensure the foundational requirements of machine learning, data collection was initiated as the
initial step. A Sketch was developed to procure the training data, specifically focusing on RGB
intensity color readings. The obtained values were subsequently printed to the serial interface in
the form of a tuple comprising seven elements. The first three elements represented the RGB values
as recorded by the sensor, while the subsequent three elements were the RGB ratios, determined by
dividing the color value by the sum of all values. The final element encompassed the class label,
denoting either Pikachu or Bulbasaur, and was pre-determined within the script. To capture a com-
prehensive understanding of the data, readings were collected in two formats, encompassing both
raw values and ratios. Subsequently, the Serial Monitor, serving as an equivalent to standard out-
put, provided the means to observe and record the printed values. These recorded values were then

diligently transferred to a CSV file Fig. 16, facilitating subsequent analysis and training procedures.

Red,Green,Blue,RedRatio,GreenRatio,BlueRatio,Class
76,79,58,0.357,0.371,0.272,0
81,82,60,0.363,0.368,0.269,0
85,84,59,08.373,0.368,0.259,0
86,85,59,0,374,0.379,0.257,0
86,85,57,0.377,0.373,0.250,0
84,82,57,0.377,0.368,0.256,0
83,80,55,0.381,0.367,0.252,0
83,78,54,0,386,0.363,0,251,0
83,75,55,0.390,0.352,0.258,0
84,75,55,0.393,0.350,0.257,0
86,75,56,0.396,0.346,0.258,0
87,73,55,0.405,0.349,0,256,0
87,69,53,0.416,0.330,0.254,0
87,67,53,0.420,0.324,0.256,0
89,68,54,0.422,0.322,0.256,0
90,68,54,0,425,0.321,0,255,0
92,68,54,0.430,0.318,0.252,0
94,68,55,0.433,0.313,0.253,0
97,67,54,0.445,0.307,0.248,0
100,67,54,0.452,0,303,0.244,0
104,73,57,0.444,0.312,0.244,0
106,80,60,0.431,0.325,0.244,0
106,88,63,0.412,08.342,0.245,0

Figure 16. Recorded values

To view the result, the describe method was used. The describe method is a function available
in the pandas[JAM™*22] library for the DataFrame[PMX*20] object. It provides a summary of the
49

descriptive statistics for the columns in a DataFrame [PMX*20]. By default, it provides a summary

for the numeric columns, including the count, mean, standard deviation, minimum, 25th percentile,

median (50th percentile), 75th percentile, and maximum values. The statistical characteristics can

be seen in Fig. 17.

If the DataFrame contains numerical data, the description contains this information for each

column:
. count - The number of not-empty values;
. mean - The average (mean) value;
o std - The standard deviation;
o min - the minimum value;
. 25% - The 25% percentile;
. 50% - The 50% percentile;
. 75% - The 75% percentile;
. max - the maximum value.
out|sa):

Out[35]:

Red Green Blue RedRatio GreenRatio BlueRatio Class
count 2000.000000 2000.000000 2000.000000 2000.000000 2000.000000 2000.000000 2000.0
mean 46.623500 48.858500 32.379000 0.370595 0.368914 0.260478 0.0
std 31.925199 31.976424 21.0556332 0.031909 0.017359 0.027647 0.0
min 4.000000 4.000000 3.000000 0.208000 0.267000 0.192000 0.0
25% 22.000000 22.000000 16.000000 0.355000 0.362000 0.243000 0.0
50% 38.000000 38.000000 27.000000 0.371000 0.371000 0.257000 0.0
75% 65.000000 67.000000 47.000000 0.389000 0.379000 0.273000 0.0
max 162.000000 159.000000 106.000000 0.533000 0.417000 0.409000 0.0
In [35]: bulbasaur.describe()
Red Green Blue RedRatio GreenRatio BlueRatio Class
count 2000.000000 2000.000000 2000.000000 2000.000000 2000.000000 2000.000000 2000.0
mean 18.196000 31.676000 30.708500 0.233561 0.396209 0.370193 1.0
std 11.829013 21.067177 22.608762 0.025913 0.033080 0.038896 0.0
min 3.000000 5.000000 3.000000 0.133000 0.295000 0.250000 1.0
25% 9.000000 14.000000 13.000000 0.216000 0.371000 0.333000 1.0
50% 16.000000 27.000000 25.000000 0.228000 0.385000 0.375000 1.0
75% 25.000000 44.000000 43.000000 0.247000 0.424000 0.404000 1.0
max 72.000000 131.000000 141.000000 0.338000 0.478000 0.477000 1.0

Figure 17. Statystical characterstics

3.1.2.2. Object detection result based on different classical methods

The steps involved in deriving the results are as follows:

50

1. Data Loading and Preparation:

Two CSV files, 'pikachu_complete.csv’ and "bulbasaur_complete.csv’, are loaded into two
separate pandas DataFrame objects, pikachu and bulbasaur. Each of these files contains color
data (RGB values and their respective ratios) related to images of the two Pokémon characters.
To control the size of the dataset and ensure consistency in the analysis, a sample of 2000

instances is drawn from each DataFrame using a predefined random state.

2. Data Scaling:

The Red, Green, and Blue (RGB) color values of the data for each character are normalized
to a range of 0 to 255 using the MinMaxScaler from sklearn.preprocessing. The resulting

scaled data are stored in pikachu_vals_scaled and bulbasaur_vals_scaled.

3. Data Visualization:

Two functions, draw_colors_histogram and draw_3d_plot, are defined to visualize the color
distributions in 2D and 3D, respectively. These functions are, however, not invoked in the

provided code snippet.

4. Data Concatenation and Splitting:

The color ratios (RedRatio, GreenRatio, and BlueRatio) and their respective class labels
(Class) for both Pikachu and Bulbasaur are concatenated into a single DataFrame X. The
class labels are separated from the predictors to form the target variable y. Then, the X and y
datasets are split into training and testing subsets, with 70% of the data used for training and

the remaining 30% for testing.

5. Model Training and Evaluation:

A Logistic Regression model is instantiated and evaluated using 5-fold cross-validation on the
training data (X_train and y_train). This gives an initial estimate of the model performance.

The same Logistic Regression model is then fitted to the training data.

6. Model Prediction and Performance Reporting:

The trained model is used to make predictions on the testing data (X_test). The results of these
predictions are compared with the actual labels (y_test) to generate a classification report,
which provides a comprehensive overview of model performance. This includes metrics

such as precision, recall, fl1-score, and support for each class, as well as overall accuracy.

In the final step, a threshold of 0.50 is applied to the predicted probabilities (y_pred) to convert
them into class predictions. Based on y_pred and y_test MSE as well as RMSE were calculated.

51

Table 4. Results of different classical methods

Algorithms Accuracy | Precision | Recall | F1 | Class

0.98 097 | 0.98 0

Linear regression 0.98
0.97 098 | 0.98 1
0.98 097 | 0.98 0

ARDG Regression 0.98
0.97 098 | 0.98 1
0.98 097 | 098 0

Bayesian ridge 0.98
0.97 098 | 0.98 1
, 0.00 0.00 | 0.00 0

Dummy regression 0.50
0.50 1.00 | 0.67 1
Lasso 0.50 0.00 0.00 | 0.00 0
0.50 1.00 | 0.67 1
0.98 097 | 0.98 0

Lasso LARS 0.98 0 ’ ’

0.97 0.98 | 0.98 1
1.00 026 | 041 0

Passive aggressive regression 0.63
0.57 1.00 | 0.73 1
1.00 094 | 0.97 0

Perceptron 0.97
0.94 1.00 | 0.97 1
: 0.00 0.00 | 0.00 0

RANSAC regression 0.50
0.50 1.00 | 0.67 1
0.99 097 | 098 0

SGD regressor 0.98
0.97 0.99 | 0.98 1
0.98 097 | 0.98 0

Theil regression 0.98
0.97 098 | 0.98 1
0.99 0.96 | 0.98 0

Tweedie regression 0.98
0.96 0.99 | 0.98 1

Let’s compare measure square error(MSE) and root measure square error(RMSE)

Table 5. Compare MSE and RMSE

Algorithms MSE RMSE
Linear regression 0.02083 | 0.14433
ARDG Regression 0.03745 | 0.19354
Bayesian ridge 0.03745 | 0.19354
Dummy regression 0.25000 | 0.50000
Lasso 0.25000 | 0.50000

Lasso LARS 0.05620 | 0.23706
Passive aggressive regression | 0.33377 | 0.57773
Perceptron 0.03333 | 0.18257
RANSAC regression 0.50083 | 0.70769
SGD regressor 0.09456 | 0.30751
Theil regression 0.05690 | 0.23854
Tweedie regression 0.24612 | 0.49610

Based on these results, it appears that linear regression has the lowest mean squared error (MSE)

and root mean squared error (RMSE) among the algorithms tested. MSE (Mean Squared Error) and
52

RMSE (Root Mean Squared Error) are both metrics used to measure the performance of regression
models. MSE is the average squared difference between the predicted values and the actual values
in a dataset [Zac21]. RMSE is the square root of MSE [Zac21].

One of the main differences between these two metrics is that RMSE is measured in the same
units as the response variable, while MSE is measured in squared units of the response variable
[Zac21]. This makes RMSE easier to interpret because it provides an estimate of the average devi-
ation between predicted and actual values in terms of the unit being predicted [All122].

Both measures are necessary because they provide different information about model perfor-
mance. MSE is more sensitive to large errors because it squares the error, which can be useful
when working on models where occasional large errors must be minimized [All122]. RMSE, on the
other hand, provides an estimate of the average deviation between predicted and actual values that
is easier to interpret and understand for end users [All22]. This suggests that it is the most accurate
model for the given data. The ARDG Regression, Bayesian ridge, and Theil regression algorithms
also had relatively low MSE and RMSE values, indicating that they may also be effective for this
task. On the other hand, the Dummy regression, Lasso, Passive aggressive regression, RANSAC
regression, and Tweedie regression algorithms had relatively high MSE and RMSE values, indi-
cating that they may not be as effective for this task. The algorithms like Dummy regression,
Lasso, Passive aggressive regression, RANSAC regression, and Tweedie regression are all regres-
sion algorithms, which are designed to predict a continuous output. They are trying to predict a
continuous output (like predicting house prices, temperature, etc.) rather than a discrete class label.
That could be the main reason why they show higher MSE (Mean Squared Error) and RMSE (Root
Mean Squared Error) values compared to the other algorithms.

Let’s examine each of these models:

1. Dummy Regression: This algorithm creates a model that simply predicts the mean (or another
constant value) regardless of the input. It’s a simple baseline model that is not expected to

perform well, as it doesn’t consider the input features.

2. Lasso: Lasso (Least Absolute Shrinkage and Selection Operator) is a regression analysis
method that performs both variable selection and regularization to enhance prediction accu-
racy and interpretability. It may not perform well if there are highly correlated predictors

because it arbitrarily selects any one predictor and does zero coeflicient for all others.

3. Passive Aggressive Regression: This algorithm is more suitable for large-scale learning. It

is not a good choice for a small dataset as it might lead to inaccurate predictions.

4. RANSAC Regression: This algorithm is robust to outliers, but if the dataset doesn’t contain

significant outliers, the algorithm might perform poorly.

5. Tweedie Regression: It is a generalization of several machine learning models but may not

be suitable for this specific problem.

Overall, it seems that linear regression and some of the other algorithms tested could be good

options for this particular dataset.
53

In summary, the results of the experiment suggest that linear regression and some of the other
algorithms tested may be effective for the given data. However, it is important to consider the
characteristics of the data, the specific parameters used, and the complexity of the algorithms when
selecting one for a particular task. Evaluating an algorithm using multiple datasets and a range of

different conditions can help to get a more comprehensive understanding of its capabilities.

3.1.3 Summary

This text describes a machine learning project that uses a logistic regression model to classify Poke-
mon objects as Pikachu or Bulbasaur based on their RGB values. In the project described in the text,
a logistic regression model is used to classify Pokemon objects as Pikachu or Bulbasaur based on
their RGB values. While it may be possible to classify these objects by simply counting the number
of yellow pixels in an image, this approach may not always provide accurate results. For example,
if the lighting conditions are poor or if the colors in the image are similar to one another, counting
yellow pixels may not accurately distinguish between Pikachu and Bulbasaur. Additionally, this
approach may not be able to handle more complex classification tasks, such as distinguishing be-
tween multiple Pokemon species. Using a machine learning algorithm such as logistic regression
allows the model to analyze multiple features of the image and make more accurate predictions
about the class of the object. The model can be trained on a large dataset to improve its accuracy
over time. The model is trained in TensorFlow and then converted to TensorFlow Lite to be used on
an Arduino device. The project involves collecting training data by scanning objects with a color
sensor and printing the resulting RGB values to a CSV file. The RGB values are then upscaled
using scikit-learn's MinMaxScale and visualized using a draw_colors function. The text also men-
tions other machine learning algorithms that have been used or could potentially be used for object
detection, including ARDRegression and Bayesian ridge.

TensorFlow Lite is a lightweight machine learning framework designed to run on edge devices
with limited computational resources, such as smartphones, microcontrollers, and other embedded

systems. However, TensorFlow Lite does not work with the Arduino Uno for several reasons:

1. Memory and storage limitations: The Arduino Uno has only 2KB of SRAM and 32KB of
flash memory, which are insufficient for running even the simplest TensorFlow Lite models.
Neural networks typically require a significant amount of memory for storing model weights

and intermediate computations.

2. Processing power: The Arduino Uno is based on an 8-bit ATmega328P microcontroller run-
ning at 16 MHz, which lacks the processing power required to run TensorFlow Lite models
efficiently. Deep learning models are computationally demanding and require more powerful
processors, such as ARM Cortex-M series or specialized hardware accelerators, for efficient

execution.

3. Unsupported architecture: TensorFlow Lite primarily targets ARM Cortex-M series micro-

controllers and other more powerful processors, like those based on the ARM Cortex-A se-

54

ries. The ATmega328P used in the Arduino Uno has a different instruction set and architec-

ture, which is not directly supported by TensorFlow Lite.

4. Limited library support: The Arduino Uno lacks the necessary libraries and support for run-
ning TensorFlow Lite. The framework is built in C++ and requires a certain level of standard

library support, which is not available on the Arduino Uno platform.

3.1.4 Using computer vision library for detecting handwritten digits

The Modified National Institute of Standards and Technology (MNIST) dataset is a widely uti-
lized resource in the realm of machine learning, particularly for computer vision applications. This
dataset, comprising 60,000 training images and 10,000 test images of handwritten digits from O to
9, each sized at 28x28 pixels, is renowned for its relatively small size, structural coherence, and ease
of use. Its popularity is further accentuated by the breadth of research and numerous baseline results
available for comparative analysis. The versatility of the MNIST dataset has been demonstrated by
its application across an array of model types, including neural networks, support vector machines,
and decision trees. As such, it frequently serves as a benchmark in evaluating the performance of
diverse machine learning algorithms.

Moreover, variants of the MNIST dataset have been curated for specific needs. For instance,
the Extended MNIST (EMNIST) dataset includes additional images of letters and digits in both
uppercase and lowercase formats. The Fashion-MNIST dataset incorporates images of fashion
products, such as clothing and accessories.

The EloquentTinyML library presents a viable pathway for integrating the MNIST dataset with
microcontroller deployments. In a typical use-case scenario, a Convolutional Neural Network
(CNN) is trained on the MNIST dataset using Tensorflow, following which the model is deployed
to an Arduino board via the EloquentTinyML library. This library facilitates the deployment of
Tensorflow Lite for Microcontrollers models to Arduino boards using the Arduino Integrated De-
velopment Environment (IDE). A tool named tinymlgen may be utilized to export the Tensorflow
Lite model into a C array, which is primed for loading by the EloquentTinyML library. This in-
tricate orchestration of tools and datasets exemplifies the potential of harnessing machine learning

capabilities in microcontroller environments.

3.1.4.1. Dataset

In this project, the well-known digits dataset was utilized provided by scikit-learn. The data was
loaded and standardized by dividing each feature by the maximum feature value, effectively scaling
the feature values between 0 and 1.

In the code below can be seen how it was done:

from sklearn.datasets import load_digits

def get_data():

x_values , y_values = load_digits (return_X_y=True)

55

https://github.com/eloquentarduino/EloquentTinyML
https://github.com/eloquentarduino/tinymlgen

x_values /= x_values .max()

return Xx_train, x_test, x_validate, y_train, y_test,

y_validate

As can be seen, the dataset which was used was taken from sklearn.datasets import load_digits.
load_digits is a function that loads and returns the digits dataset (classification). This dataset is a
copy of the test set of the UCI ML hand-written digits datasets. These digits in the dataset have
been size-normalized and centered in a fixed-size image (8x8 pixels) with values (the grey-scale
pixel values) ranging from O to 16.

The function load_digits(n_class=10) will return a dictionary-like object with the following

attributes:

e data: (n_samples, n_features) array where n_samples is the number of samples and
n_features is the number of features. Each feature corresponds to one pixel in the 8x8 image,

and the feature value is the grey-scale pixel intensity.

e target: (n_samples,) array of target values, which are the digits themselves (from 0 to 9).

target_names: array of shape (n_class,) giving the digit for each class.

* images: (n_samples, 8, 8) array of the original images. DESCR: a string giving a detailed

description of the dataset.

This function is often used in machine learning tutorials as the digits dataset is small and doesn’t

require any data preprocessing, making it suitable for learning purposes.

3.1.4.2. Experimental Part

Model Construction and Training

For the experimental process, the TensorFlow library was used to construct and train a Convo-
lutional Neural Network (CNN). The network was kept simple, consisting of a single convolutional
layer followed by the output layer. The Adam optimizer was employed along with the SparseCat-

egoricalCrossentropy loss function. The network was trained for 50 epochs using a batch size of
16.

create a CNN

model = tf.keras.Sequential ()

model .add(layers .Conv2D(8, (3, 3), activation="relu’, input_shape
=(8, 8, 1)))

model.add(layers . Flatten ())

model.add(layers .Dense(len(np.unique(y_train))))

model . compile (optimizer="adam’, loss=tf.keras.losses.
SparseCategoricalCrossentropy (from_logits=True), metrics=["

accuracy ’])
56

model. fit (x_train, y_train, epochs=50, batch_size=16,
validation_data=(x_validate , y_validate))

return model, x_test, y_test

Model Evaluation
The model’s performance was evaluated by predicting the test set and calculating the accuracy

of the predictions. The model achieved an accuracy of approximately 97% (Figs. 18 to 21).

def test_model (model, x_test, y_test):
x_test = (x_test / x_test.max()).reshape((len(x_test), 8, 8§,

1))
y_pred

model . predict(x_test).argmax(axis=1)

print (’TACCURACY’, (y_pred == y_test).sum() / len(y_test))
Model Export

The process typically involves training the model on a more powerful machine, such as a com-
puter, and then deploying the trained model on a microcontroller like the Arduino Nano 33 BLE
Sense. The microcontroller does not perform the training, but it uses the trained model to make
predictions or inferences.

The primary reasons for this approach are the computational and memory limitations of mi-
crocontrollers. Training a machine learning model can be computationally intensive and requires
significant memory resources, particularly for large datasets or complex models. For this reason,
the training process is typically carried out on a computer or a server, which has the necessary
computational power and memory.

Once the model has been trained, it can be converted into a format suitable for use on a micro-
controller. For instance, if we are using TensorFlow for training, you can convert the trained model
into a TensorFlow Lite for Microcontrollers model. This version of TensorFlow is specifically de-
signed for microcontrollers and other hardware with limited resources. It allows the trained model
to run efficiently on such devices despite their constraints.

After the model has been converted, it can be loaded onto the microcontroller. The microcon-
troller can then use the model to make predictions based on the data it receives from its sensors.

This process is often referred to as inference or prediction.

57

38/56
ims/step T e. accuracy: . val_loss: @. val_accuracy:

ims/step T e. accuracy: . val_loss: @. val_accuracy:
ims/step T e. accuracy: . val_loss: @. val_accuracy:
ims/step T e. accuracy: . val_loss: @. val_accuracy:
ims/step T e. accuracy: . val_loss: @. val_accuracy:

ims/step T e. accuracy: . val_loss: @. val_accuracy:

ims/step T e. accuracy: . val_loss: @. val_accuracy:

ims/step T e. accuracy: . val_loss: @. val_accuracy:
ims/step T e. accuracy: . val_loss: @. val_accuracy:
ims/step T e. accuracy: . val_loss: @. val_accuracy:
ims/step T e. accuracy: . val_loss: @. val_accuracy:
ims/step T e. accuracy: . val_loss: @. val_accuracy:

ims/step - T e. accuracy: . val_loss: @. val_accuracy:
554us/step

3!
(0]
o
=
(¢]
[E—
>
—~
=
o
-
a
2]
[
=
=K
=
>
=
ol
o
=.
=
o
c
=
o
~~
o
o
e}
o
=
o5
s}
<
1
e
\O
A
N

42/50
ims/step - accuracy: ©. val_loss: @. val_accuracy:

ims/step - accuracy: ©. val_loss: @. val_accuracy:

ims/step - accuracy: ©. val_loss: @. val_accuracy:
45/50

ims/step - accuracy: ©. val_loss: @. val_accuracy:
46/50

ims/step - accuracy: ©. val_loss: @. val_accuracy:

ims/step - accuracy: ©. val_loss: @. val_accuracy:

ims/step - accuracy: ©. val_loss: @. val_accuracy:
49/50

ims/step - accuracy: ©. val_loss: @. val_accuracy:

ims/step - - accuracy: ©. val_loss: @. val_accuracy:

558us/step
©.9498607242339833

ac

0.0178

ac

0.0161

[
LI DL DL LT Ty

0.4978 -

[- 1c
LIULLUL DT DO UL TR U T LR TR
/68 [

6 — accuracy

0.0136 - ac

racy: 0.8¢
T

s}

Figure 20. The result for Arduino Nano 33 BLE Sense (accuracy - 0.96)
58

1V 5 TCICT CHIS WaTTIng; UCCUTOTe TNe TUNe IO Wit @i T autUgT apim CAPCT IMCITTO [T U0 U T CUMvcT T
938/938 [==============================] - ETA: 0s - loss: 0.2039 - accuracy: 0.9428WARNING:tensorflow:AutoGraph could
not transform <function Model.make_test_function.<locals>.test_function at @xB8fd88618> and will run it as-is

Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, “export AUTOGRAPH_V
ERBOSITY=18") and attach the full output.

Cause: 'arguments' object has no attribute ‘posonLyargs'

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert

938/938 [=============ssss=ssssss==s===s] - 125s 134ms/step - loss: 0.2039 - accuracy: 0.9428 - val_loss:
accuracy: 90,9733

Epoch 2/5

938/938 [] - 119s 126ms/step - loss: 0.0666 - accuracy: ©.9806 - val loss:
accuracy: 0.9818

Epoch 3/5

938/938 [=============sssSsssssssSosssssss] - 113s 120ms/step - loss: ©0.0465 - accuracy: 0.9859 - val_loss:
accuracy: ©.9847

Epoch 4/5

938/938 [========================z=====] - 112s 12@ms/step - loss: ©.0355 - accuracy: ©.9893 - val_loss:
accuracy: 0.9825

Epoch 5/5

BB493R [===========s=========z=========] - 112s 119ms/step - loss: 0.0271 - accuracy: ©.9916 - val_less:
accuracy: ©.9833

313/313 [] - 7s 23ms/step - loss: ©.8555 - accuracy: 0.9833

Test accuracy: 0.983299970626831

@

.0853 - wval_

@

.8524 - val_

@

.0460 - val_

=]

.8512 - val_

(=]

.B8555 - val

2>

Figure 21. The result for Raspberry Pi (accuracy - 0.98)

3.1.4.3. Another library for detecting hand-written digits using the TinyMaix

Sipeed, a tech company, has made a software called TinyMaix. This software is impressive because
it can run a model that recognizes handwritten digits, similar to the MNIST model, on a tiny com-
puter chip called Microchip ATmega328. This chip is quite small and doesn’t have much memory,
so TinyMaix has been designed to use as little memory as possible. In fact, it only needs 400 lines
of the main program code to work.

TinyMaix is like a small library for machine learning on tiny chips, known as microcontrollers.
It doesn’t have a lot of advanced features to keep things simple. For instance, it doesn’t use CMSIS-
NN, a group of functions that help run neural network models on Arm Cortex-M processors. In-
stead, it keeps things small and only needs five files to run.

The software can work in two ways of handling numbers: INT8 and FP32 modes. INTS refers
to integers (whole numbers), while FP32 refers to floating-point numbers (numbers with decimal
points). Both are ways of storing data in memory. It also uses a set of tools (called SIMD, NEON,
and MVEI) provided by Arm, a major chipmaker, to speed up calculations. Furthermore, it’s com-
patible with two architectures (or designs) for RISC processors, which are chips that use a specific
type of computer instruction set.

Sipeed has plans to add more features, like the INT16 mode (which is another way of storing
whole numbers), MobileNetV?2 support (a model used for image recognition), and Winograd con-
volution optimization (a mathematical trick to make calculations quicker).

In conducting this experiment, the Conv2D algorithm was explicitly leveraged as part of the
TinyMaix library. This algorithm is integral to the convolutional neural network (CNN) model
implementation in TinyMaix. As a mathematical operation that applies filters to input data, Conv2D
is key to tasks in machine learning and particularly in image processing tasks.

Conv2D plays a crucial role in feature extraction within images, scanning the input data for spa-
tial hierarchies or patterns, an attribute that makes it an optimal choice when dealing with image
recognition tasks. Within the scope of the TinyMaix library, the integration of Conv2D demon-
strates the library’s capabilities not only to host machine learning models but also to execute more

complex operations inherent in deep learning algorithms.
59

https://github.com/sipeed/TinyMaix

Furthermore, this utilization of Conv2D within the constrained environment of 7TinyMaix fur-
ther underscores the efficiency and applicability of the library. The successful implementation
and execution of Conv2D within this environment, despite its computational demands, attest to the
robustness and adaptability of TinyMaix when faced with advanced algorithmic procedures.

Thus, the integration of the Conv2D algorithm within the 7TinyMaix library forms a significant
part of this experimental exploration, providing valuable insights into the software’s performance,

scalability, and flexibility in handling deep learning operations within a microcontroller context.

-> mnist demo

-> 0000000000000000000000000000
-> 0000000000000000000000000000
-> 0000000000000000000000000000
-> 00000000007TAFFS500000000000
-> 0000000QQAFEFFFFFD10000000000
-> 00000000AFFEDEBFETOO000000000
-> 00000003FFD2000CEFE0000000000
00000004FDLOO0TFF40000000000
00000000110000DFF40000000000
00000000000007FFCO0000000000
0000000000004FFE300000000000
000000000000SFFS000000000000
00000000000BFF20000000000000
0000000000LEFE20000000000000
0000000000CEFS00000000000000
0000000004FFEOQOOOQO000000000

00 0
0000000000000000000000000000

===use 49912us
0

g

|
Qo W - O

)
Woe o e WD o e
CO €O 0G0 CO O ofo 00 o
CO 00 fo o0 CO 0o 00 o
|
Coo-mEooo

g
-> §:
Predict output is: Number 2, prob=89

Figure 22. The result in Arduino Uno probability is 89% (same result was in STM32 Nucleo-L0538
and Arduino Nano 33 BLE Sense)

3.1.5 Iris classification

The Iris dataset serves as a fundamental resource in the study of machine learning principles, de-
tailing three species of the Iris flower with attributes such as petal width, petal height, sepal length,
and sepal height. Typically, the classification of Iris flowers with an Arduino is achieved using the
RandomForestClassifier algorithm from the sklearn library. To achieve this, it is necessary to im-
port all relevant libraries and load the data into a pandas DataFrame. Subsequently, the dataset can
be divided into training and test sets. The RandomForestClassifier can then be fitted to the training
data, and its performance evaluated on the testing data using metrics such as accuracy, precision,
and recall.

Once the model has been selected, C++ code can be generated using micromlgen, a tool that
transforms machine learning models into portable C code. The code can then be loaded onto an
Arduino device, thereby enabling the device to classify Iris species based on input feature data.

While the Iris dataset itself is not directly related to computer vision as it’s composed of nu-

60

https://github.com/eloquentarduino/micromlgen

merical data rather than images, the principles used in its classification can be related to computer
vision tasks. The classification of Iris species based on feature data is similar to the classification of
images based on pixel data in computer vision. Just as the RandomForestClassifier can be trained to
identify the species of an Iris based on measurements, a Convolutional Neural Network (CNN), for
instance, can be trained to recognize objects in an image based on pixel patterns. Furthermore, the
transformation of the trained model into C++ code for deployment on an Arduino can be mirrored in
computer vision tasks, making it possible to run image recognition models on small, low-powered
devices.

The Iris dataset describes 3 species of the Iris flower in terms of

. petal width
. petal height
. sepal length
. sepal height
Experiment

The experiment can be broken down into several steps:

* Image Preprocessing: With OpenCYV, convert the images to grayscale and apply image pro-
cessing techniques such as edge detection or segmentation to isolate the flowers in the images.
Extract features (e.g., size, shape, texture) from the images corresponding to the Iris dataset’s

sepal and petal measurements.

* Feature Extraction: Next, we need to map these extracted features to the measurements pro-
vided in the Iris dataset. For instance, the size and shape features from the images could

correspond to the petal and sepal measurements.

* Model Training: Using the RandomForestClassifier from the sklearn library, train a model
with the mapped features as the predictors and the Iris species as the target. This model can

then classify Iris species based on the features extracted from the images.

* Model Porting: Convert the trained RandomForestClassifier model into C++ code using the
micromlgen library. This code can be incorporated into an Arduino script, allowing the Ar-

duino device to perform the classification task.

* Arduino Integration: With the model ported to the Arduino, set up the device to capture
images of Iris flowers using a camera module, preprocess these images, extract features, and

classify the Iris species in real-time.

The result can be seen below fig. 23

61

Predicted class label: setosa
Predicted class: 1

Predicted class label: wversicolor
Predicted class: 2

Predicted class label: wvirginica

Figure 23. The result on all controllers

3.2 Use of OpenCYV library

3.2.1 Detecting color

While simple methods such as calculating R/G and G/B ratios or mapping colors to a color wheel
can be effective for detecting colors in some situations, they may not always provide accurate results.
For example, these methods may not work well in challenging conditions such as poor lighting or
when the colors in the image are similar to one another.

Machine Learning (ML) algorithms can provide more robust color detection results by analyzing
multiple features of an image and applying advanced mathematical models to accurately identify
the desired color. These algorithms can be trained on large datasets to improve their accuracy over
time.

For example, an ML algorithm could be trained to recognize different shades of a particular
color, even when the lighting conditions vary. This would allow the algorithm to accurately detect
the desired color in a wide range of situations.

The implementation is designed to identify the existence of particular colors (red, yellow, or-
ange, blue, and green) within a video stream acquired via a webcam. This process leverages the
OpenCV library, a renowned computer vision framework extensively employed for image and video
processing tasks.

The algorithm used for color detection is a classical computer vision approach that involves
converting the RGB image captured by the webcam into the HSV color space. Then, upper and
lower bounds are defined for each of the five colors of interest in the HSV color space. These bounds
are used to threshold the HSV image to create a binary mask for each color, which identifies the
pixels that belong to the respective color range.

After the binary mask is generated, it is dilated using a 5x5 kernel, which expands the pixel
regions and makes the detection more robust. Then, a bitwise AND operation is performed between
the dilated mask and the original image to extract the regions of interest (i.e., the color objects) from
the video frame.

The contours of the color objects are then extracted using the findContours() function provided
by OpenCV. These contours are used to determine whether a color is present in the video frame or
not. If the area of the contour is greater than 300 pixels, the color is considered to be present, and
the corresponding flag variable is set to 1. Otherwise, the flag variable is set to 0.

Finally, the flag variables are used to update the dictionary 'data’, which stores the presence of
each color. The putText() function is used to display the presence of each color as a string in the

video frame.

62

In summary, the provided code utilizes classical computer vision techniques, implemented on
the Arduino Uno, to detect specific colors in a video stream captured by a webcam. OpenCV library
functions are employed for thresholding, color object extraction, and contour computation. While
the algorithm is relatively simple, it proves effective in detecting the desired colors within the video

stream.

(a) Orange color (c) Yellow color

(d) Orange color detection (e) Red color detection (f) Yellow color detection

Figure 24. The result of detecting color

3.2.2 Object detecting

An implemented solution captures real-time video from a webcam, conducting color detection on
the acquired frames. By employing computer vision techniques and leveraging the OpenCV library,
the system processes the video stream and analyzes the color information, enabling the identification
of yellow and green color objects within the video stream.

To start, necessary libraries such as numpy, cv2, and a custom ’ledLight’ module are imported.
The webcam is initiated using cv2.VideoCapture(), and variables 'c_yellow’ and ’c_green’ are set
to zero. A ’data’ dictionary is created to store detection results. The program continuously reads
video frames and performs color detection within a while loop. It checks if a frame is the last in
the stream, resetting the frame count to zero if so.

The current frame is read using the webcam.read() function, and its size is adjusted to 640x480
using the cv2.resize() function. The cv2.cvtColor() function is called to convert the color space of
the frame from BGR to HSV. The program defines the lower and upper color boundaries for the
yellow and green color objects using numpy arrays. The cv2.inRange() function is used to create a

binary mask for each color range based on the HSV color space values of the frame.

63

A 5x5 kernel is defined using numpy, and the cv2.dilate() function is called to perform morpho-
logical dilation on the binary masks. The cv2.bitwise_and() function is used to apply the masks to
the original frame to extract the yellow and green color objects. The cv2.findContours() function
is called to identify the contours of the color objects in the binary masks. The contours are filtered
based on their area, and if the area is greater than a threshold value of 300, the color detection
variables 'c_yellow' and 'c_green' are set to 1; otherwise, they are set to 0.

The 'data’ dictionary is updated with the latest detection results, and the detection results are
displayed on the video stream using the cv2.putText() function. The 'ledLight' function is called to
control external LED lights based on the detection results. The program also displays the detection
results in the console for debugging purposes.

Finally, the program displays the video stream in a window using the cv2.imshow() function,
and it waits for the user to press the 'q' key to exit the loop. Once the loop is exited, the program
releases the webcam and closes all windows using the cv2.release() and cv2.destroyAllWindows()

functions, respectively.

i 7]

(c) Bulbasaur detection (d) Pikachu detection

3.2.3 Control LED

Controlling an LED using MediaPipe on Arduino refers to a project that uses MediaPipe, a computer
vision framework, and Arduino, a microcontroller platform, to control the behavior of an LED light.
MediaPipe can be used to track hand movements and gestures, which can then be used to control
the LED light.

Computer vision is a field of study that focuses on enabling computers to interpret and under-
stand visual information from the world. MediaPipe is a framework that provides tools for building
computer vision applications. In this context, MediaPipe is being used to track hand movements

64

and gestures, which are then used as inputs to control the behavior of an LED light connected to an

Arduino board

3.2.3.1. MediaPipe framework

MediaPipe is a framework for building machine learning pipelines for processing time-series data
like video, audio, etc. This cross-platform Framework works on Desktop/Server, Android, iOS,
and embedded devices like Raspberry Pi and Jetson Nano.

With MediaPipe, a perception pipeline can be built as a graph of modular components, includ-
ing model inference, media processing algorithms and data transformations, etc. Sensory data such
as audio and video streams enter the graph, and perceived descriptions such as object-localization
and face landmark streams exit the graph[LTN*19]. MediaPipe is primarily used for quickly creat-
ing perception pipelines with inference models and other components, as well as deploying these
pipelines into demos and applications on various hardware platforms. It is useful for prototyping
and implementing perception technology.

The MediaPipe perception pipeline is called a Graph. A pipeline is defined as a directed graph of
components where each component is a Calculator[LTN*19]. In a data-flow graph, the calculators
are connected by streams. Each stream represents a series of data packets over time. The packets
are organized within the series based on their timestamps as they flow through the graph. The
calculators and streams together form the data-flow graph.

The basic data unit in MediaPipe is a Packet. A packet consists of a numeric timestamp and a
shared pointer to an immutable payload[LTN*19]. Packets are value classes that can be efficiently
copied. Each copy shares ownership of the payload through reference-counting semantics and has
its own timestamp.

Each node in the graph is connected to another node through a Stream. In MediaPipe, a stream
refers to the edges of a MediaPipe graph that carry a sequence of packets with ascending timestamps
[Kuk22]. MediaPipe calculator graphs are often used to process streams of video or audio frames
for interactive applications [Goo23]. The MediaPipe framework requires that successive packets
be assigned monotonically increasing timestamps [Goo23]. A stream carries a sequence of packets
whose timestamps must be monotonically increasing[LTN*19]. An output stream can be connected
to any number of input streams of the same type[LTN*19].

Each node in the graph is implemented as a Calculator[LTN*19]. When initializing a calcu-
lator, it declares the packet payload type that will traverse the port. Every time a graph runs, the
Framework implements Open, Process, and Close methods in the calculators. Open initiates the
calculator; the process repeatedly runs when a packet enters. The process is closed after an entire

graph run. There exists 4 types of Calculator such as:

1. Pre-processing calculators are a family of image and media-processing calcula-
tors. The ImageTransform and ImageToTensors in the graph above fall in this

category.

2. Inference calculators allow native integration with Tensorflow and Tensorflow Lite

65

for ML inference.

3. Post-processing calculators perform ML post-processing tasks such as detection,
segmentation, and classification. TensorToLandmark is a post-processing calcu-

lator.

4. Utility calculators are a family of calculators performing final tasks such as image
annotation.

3.2.3.2. Experiment

In this task, the MediaPipe framework and OpenCV were used, and as a controller Arduino Uno
was used. OpenCV was used for reading video in real time and for that cv2.VideoCapture function
was used. cv2.VideoCapture - Creates a video capture object, which would help stream or display
the video. After opencv was configured, mediapipe was used to recognize the number of fingers.
The project does not actually involve training a machine learning model. Instead, it uses an already
trained model provided by the MediaPipe library to detect hand landmarks in real-time [Goo23].
The specific model used in this project is part of the MediaPipe Hands solution. This solution
employs a palm detection model Figs. 26a to 26f (a type of Convolutional Neural Network or CNN)
to first identify a hand in the image, and then a separate hand landmarks model to identify the 21

individual points of a hand in the image [Go023].

(a) All LEDs turned off (b) 1 LED is turned on

(d) 3 LEDs are turned on (e) 4 LEDs are turned on (f) 5 LEDs are turned on

Figure 26. Recognizing number of fingers

The scheme of connections can be seen below:

66

Figure 28. Results switch on/off LED lights

3.2.4 Detecting traffic signs
3.2.4.1. Motivation

Traffic sign detection is a critical aspect of modern transportation systems, from enhancing road

safety to providing essential data for autonomous vehicle technologies. However, achieving ef-

67

ficient and accurate traffic sign detection remains a challenging task due to factors like varying
light conditions, diverse sign designs, and occlusions. In this study, a CNN-based model was
developed to classify images from a custom dataset using the Keras deep learning framework
[https://keras.io/].

3.2.4.2. Methodology

Dataset

The dataset, sourced from Kaggle, consists of images stored in the “myData” folder, with each
subfolder representing a distinct class. The data is meticulously partitioned into training, valida-
tion, and testing sets, with 80% dedicated for training, while the remaining 20% is equally divided
between validation and testing. As part of preprocessing, the images are converted to grayscale,

equalized for histogram, and normalized for pixel values.

168 Speed il (30km/HE]
B3 Speed Iiffilf (50km/hig
[(3 Speed iffilt (60km/HE]
[l speed Iifl} (70km/HE]
B3 -Speed Iifil (80km/HEY
6l of specfilimit (8ok i)
[Bispeed lirfill (100km/[ill
[E¥speed lirjiilf (120km/[
B oNoEsing
-No pasqip for vecifilfs over 3 [finetric tonsy
11-Riglffiif-way at|iffe next inffifection [
PN 12-Prigily road 7N N
[} 13JId | |
14lbp
15-No @gchiles
16-Vechilés over 3.5[fetric tons@rohibited
B gty B
[l 18-Gendll] caution i
19§Bpngerous firve to thjpft
20-ngerous gifve to thefght
B 21-Doue curve
B 22-Bufigyroad
N 23-Slipp&ry road
2§oad narrols on the F&ht
E| 25-Rglwork [l
W 26-Taffsignals [
W 27-PedEstrians
[#28-Child Bl crossing[f§
l29-Bicyc® crossingj
BB 0-Bewaredf ice/snovil]
[Bl-Wild anili}ls crossif]
32-Enflf all speciind passijg limits
® 33Turn @t ahead @
[34-Turn [t ahead il
@ 35-Ahgadonly W

(a) Dataset

CEREDEREES
@lo] | Jo] | 91S)

SENIPINEEEENRDTEDdona NEN
PHOREE>EDECCREAEZEFEEG De 9l

Convolutional Neural Network Model

The CNN architecture consists of the following layers:

1. Two Conv2D layers with 60 filters each and a kernel size of (5,5), followed by a ReLLU acti-

vation function.
2. A MaxPooling2D layer with a pool size of (2,2).

3. Two Conv2D layers with 30 filters each and a kernel size of (3,3), followed by a ReLU acti-

vation function.
4. A MaxPooling2D layer with a pool size of (2,2).
5. A Dropout layer with a rate of 0.5 to prevent overfitting.
6. A Flatten layer to convert the feature maps into a one-dimensional array.

7. A Dense layer with 500 nodes and a ReL.U activation function.
68

https://www.kaggle.com/datasets/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign

8. A Dropout layer with a rate of 0.5.

9. An output Dense layer with softmax activation function for multi-class classification.

The code below as follows:

def myModel () :

no_Of_Filters=60

this is the kernel that move around the image to get the
features .

size_of_Filter=(5,5)

this would remove 2 pixels from each border when using 32
32 image

size_of_Filter2=(3,3)

scale down all feature map to gernalize more, to reduce
overfitting

size_of_pool=(2,2)

no. of nodes in hidden layers

no_Of_Nodes = 500

model= Sequential ()

adding more convolution layers = less features but can
cause accuracy to increase

model . add ((Conv2D(no_Of_Filters ,size_of_Filter ,input_shape=(
imageDimesions [0] ,imageDimesions[1],1),activation="relu’))
)

model . add ((Conv2D(no_Of_Filters, size_of_Filter , activation=’
relu’)))

does not effect the depth/no of filters

model . add (MaxPooling2D (pool_size=size_of_pool))

model . add ((Conv2D(no_Of_Filters//2, size_of_Filter2 ,
activation="relu’)))

model . add ((Conv2D(no_Of_Filters // 2, size_of_Filter2 ,
activation="relu’)))

model . add (MaxPooling2D (pool_size=size_of_pool))

model . add (Dropout (0.5))

model . add (Flatten ())
model . add (Dense (no_Of_Nodes, activation="relu’))

inputs nodes to drop with each update 1 all 0 none
model . add (Dropout (0.5))
output layer

69

model . add (Dense (noOfClasses , activation="softmax ’))

compile model

model . compile (Adam(1r=0.001) ,1oss="categorical_crossentropy ’,
metrics=["accuracy’])

return model

Data Augmentation

To increase the generalizability of the model, we employ data augmentation techniques using
the ImageDataGenerator class from Keras. Data augmentation is used to artificially expand the
size of a training dataset by creating modified versions of images in the dataset. The idea is to
replicate the kinds of variations we expect in the real-world, thereby increasing the diversity of
data available for training models, without actually collecting new data. The data augmentation is
performed using ImageDataGenerator which generates batches of tensor image data with real-time
data augmentation. The data will be looped over in batches indefinitely. The applied augmentations

include width and height shifts, zooming, shearing, and rotation.

Jllll'llllllll"“ﬂﬂl-ll-lﬂl-hLL

(a) Distribution of the
training dataset (b) Normalized image

OpnshanEREuUERARNE

Results and Discussion

In this research, an array of hardware devices including Arduino Uno, STM32, Arduino Nano
33 BLE Sense, and Raspberry Pi were utilized in the detection process. Upon evaluation, these
different hardware systems demonstrated analogous results in terms of the accuracy of traffic sign
detection.

The model is trained for ten epochs with a batch size of 50 and 2,000 steps per epoch using the
augmented training data. The training and validation loss and accuracy are plotted to analyze the

model’s performance.

70

https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator

o 2 4 6 8

o (b) Grayscaling on the
(a) Validation loss and ac- example of one of the
curacy datasets

) "

(C) Result Of detection Send to arduio value 79.82
(class 14 - stop, (d) Result on Arduino
probability - 79.82%) (probability - 79.82%)

The model achieves a high test accuracy (accuracy - 0.91, test sore - 0.81), demonstrating its
capability to classify images from the custom dataset effectively. The use of data augmentation
contributes to the model’s generalizability, preventing overfitting and increasing its robustness to
variations in input data.

Summary

This study demonstrates the effectiveness of a Convolutional Neural Network-based model com-
bined with data augmentation for image classification tasks. The proposed method achieves high
accuracy (80%) on a custom dataset, validating its utility for real-world applications. Future work
could involve the exploration of more advanced CNN architectures, optimization techniques, and

transfer learning to further improve the model’s performance.

4 Conclusions

In this discussion, the Internet of Things (IoT) architecture was outlined, including the various
components that make up an IoT system such as end devices, software, communication protocols,
and platforms. The use of vision sensors in IoT, including proximity sensors, optical sensors, vi-
sion sensors, and fiber optic sensors, was also described. The difference between vision sensors
and vision systems was explained. The topic of machine learning methods and IoT was then in-
troduced, including the definitions of classical and deep learning methods and the various types
of machine learning tasks and algorithms. The challenges of using machine learning in IoT were
also mentioned. The use of computer vision for IoT in cloud-based solutions, such as TinyML and
Edgelmpulse, as well as the use of third-party libraries, was discussed. The topic of developing
computer vision in microcontrollers was also covered, including the use of sensors like CMOS and
CCD image sensors and libraries like OpenCV and TensorFlow. The process of software design

for computer vision in microcontrollers, including the selection of appropriate microcontrollers and

71

software development environments, was also described. Finally, the use of the TensorFlow library
for tasks such as detecting color and object detection was discussed.

The performance of various regression algorithms was compared using a dataset, and it was
found that linear regression had the lowest mean squared error and root mean squared error values,
indicating that it was the most accurate model.

In conclusion, computer vision and machine learning play a significant role in the field of IoT,
enabling devices to process and analyze data in order to make decisions and take actions. There are
various algorithms and methods available for implementing computer vision and machine learning
in IoT systems, ranging from classical methods to deep learning approaches. These methods can
be applied in both cloud-based and on-device settings, depending on the specific requirements
and constraints of the application. However, using machine learning in IoT systems also presents
certain challenges, such as the need for large amounts of data and computing resources, as well
as the complexity of some algorithms. To overcome these challenges, developers can make use of
specialized tools and libraries, as well as carefully consider their choice of hardware and software
platforms. By understanding the capabilities and limitations of different machine learning methods
and applying them appropriately, it is possible to build powerful and intelligent IoT systems that
can improve our lives and solve real-world problems.

Several experiments were observed, and these various projects and studies demonstrate the ver-
satility and effectiveness of machine learning and computer vision techniques in solving practical
problems, such as color detection, object classification, and image processing. The applications
deployed on platforms like Arduino Uno, STM32, Arduino Nano 33 BLE Sense, and Raspberry Pi
utilize these microcontrollers as the core processing unit for executing the programs. Microcon-
trollers provide a compact, cost-effective, and energy-efficient solution for implementing machine
learning and computer vision tasks on embedded devices. The experiments showcased the po-
tential of various machine learning algorithms, such as linear regression, random forest, and deep
learning models, for deployment on resource-constrained platforms, enabling a wide range of ap-
plications in the field of embedded systems and the Internet of Things (IoT). The term ’various
algorithms’ refers to the diverse machine learning algorithms implemented and tested during the
experiments. These include, but are not limited to, deep learning methods like Convolutional Neu-
ral Networks (CNN) used in the MNIST classification, classic regression methods, including linear
regression for object detection, and others for the multiple IoT tasks. The number of algorithms
can vary based on the specific problem at hand and the available data. Additionally, the classical
computer vision techniques and the OpenCV library demonstrated their effectiveness in solving
color detection and object recognition problems. While both classic computer vision techniques
and deep learning models have their unique strengths and weaknesses, it is important to choose the
most appropriate approach based on the problem at hand, the available data, and the computational
resources. Classic computer vision techniques, such as the color detection algorithm presented in
this project, can provide effective and efficient solutions for certain applications, particularly in
cases where the task can be explicitly defined and solved with simple image processing techniques.

On the other hand, deep learning models, such as those implemented in the microcontroller-based

72

and MediaPipe-based projects, can provide more robust and accurate solutions for complex and
dynamic problems, particularly in cases where the available data is large and diverse. MediaPipe-
based projects deliver more robust and accurate solutions due to their advanced computer vision
capabilities. By leveraging the power of machine learning, they’re able to achieve higher accuracy
in comparison to traditional image processing techniques. The choice between classical and deep
learning methods depends largely on the complexity of the problem, available data, and compu-
tational resources. Classical methods, like linear regression, can be more efficient and easier to
interpret and can perform exceptionally well with smaller datasets or simpler tasks. On the other
hand, deep learning methods, like Convolutional Neural Networks, have the capability to handle
more complex tasks, learn from large datasets, and automatically extract features. However, they
require more computational resources and data, and the model’s decision-making process might
not be as transparent. It’s noteworthy to mention that while deep learning models achieved higher
accuracy in the MNIST and traffic sign classification tasks, classical methods were still competi-
tive in certain scenarios like object detection, showcasing their continued relevance in the field of
machine learning.

Overall, these projects and studies need benchmarks for future research and development in the
field of machine learning and computer vision, demonstrating the potential of these techniques for

solving real-world problems and advancing the capabilities of intelligent systems and devices.

References

[AAA*22] A. M. Alrashdi, A. E. Alrashdi, A. Alghadhban, and M. A. H. Eleiwa. Optimum
gssk transmission in massive mimo systems using the box-lasso decoder. https:
//doi.org/10.1109/ACCESS.2022.3148329, 2022.

[AAB*20] Erwin Adi, Adnan Anwar, Zubair Baig, and Sherali Zeadally. Machine learning
and data analytics for the iot. https://arxiv. org/pdf /2007 . 04093 . pdf,
2020.

[ABJ19] Dr. J. Jegathesh Amalraj, S. Banumathi, and J. Jereena John. Iot sensors and appli-
cations: a survey. INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOL-
OGY RESEARCH, 8:998-1003, 2019.

[Ack20] Daniel Ackerman. System brings deep learning to “internet of things” devices.
https://news.mit.edu/2020/iot-deep-learning-1113, 2020.

[AKAO2] Hussein Almuallim, Shigeo Kaneda, and Yasuhiro Akiba. 3 - development and
applications of decision trees. https://doi.org/10.1016/B978-012443880-
4/50047-8, 2002.

[AlI22] Stephen Allwright. Rmse vs mse, what’s the difference? https : / /
stephenallwright.com/rmse-vs-mse/, 2022.

73

https://doi.org/10.1109/ACCESS.2022.3148329
https://doi.org/10.1109/ACCESS.2022.3148329
https://arxiv.org/pdf/2007.04093.pdf
https://news.mit.edu/2020/iot-deep-learning-1113
https://doi.org/10.1016/B978-012443880-4/50047-8
https://doi.org/10.1016/B978-012443880-4/50047-8
https://stephenallwright.com/rmse-vs-mse/
https://stephenallwright.com/rmse-vs-mse/

[AP83]

[ATT18]

[BBVOO]

[BJT*10]

[BKG20]

[BL20]

[Borl4]

[BreO1]

[BS20]

[CAP*12]

[CDM19]

[CT22]

[Datl6]

[Dat20]

Witkin A.P. Scale-space filtering. in international joint conference on artificial in-
telligence. https://www.ijcai.org/Proceedings/83-2/Papers/091. pdf,
1983. International Joint Conference on Artificial Intelligence, Karlsruhe, Ger-
many, pp. 1019-1022.

A. George Assaf, Mike Tsionas, and Anastasios Tasiopoulos. Diagnosing and cor-
recting the effects of multicollinearity: bayesian implications of ridge regression.
https://doi.org/10.1016/j.tourman.2018.09.008, 2018.

J. Bruce, T. Balch, and M. Veloso. Fast and inexpensive color image segmentation
for interactive robots. https://doi.org/10.1109/IR0S.2000.895274, 2000.
IEEE.

S. Bhattacharyya, S. Jha, K. Tharakunnel, and J. C. Westland. Data mining for
credit card fraud: a comparative study. http : / / euro . ecom . cmu . edu /
resources/elibrary/epay/1-s2.0-S0167923610001326-main . pdf, 2010.
Elsevier.

Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders. https://doi.
org/10.48550/arXiv.2003.05991, 2020.

Adel Bedoui and Nicole A. Lazar. Bayesian empirical likelihood for ridge and lasso
regressions. https://doi.org/10.1016/j.csda.2020.106917, 2020.

Eleonora Borgia. The internet of things vision: key features, applications and open
issues. https://doi.org/10.1016/j.comcom.2014.09.008, 2014. Elsevier.

Leo Breiman. Random forests. https : / / doi . org / 10 . 1023 / A :
1010933404324, 2001. Springer.

Khadija El Bouchefry and Rafael S. De Souza. Supervised learning model for high-
dimensional and large-scale data. https://doi.org/10.1016/B978-0-12-
819154-5.00023-0, 2020. Elsevier.

Ivan Culjak, David Abram, Tomislav Pribanic, Hrvoje Dzapo, and Mario Cifrek.
A brief introduction to opencv. https://mipro-proceedings . com/sites/

mipro-proceedings.com/files/upload/sp/sp_008.pdf, 2012. IEEE.

G. F. Contreras, H. J. Dulce-Moreno, and R. Ardila Melo. Arduino data-logger and
artificial neural network to data analysis. http://dx.doi.org/10.1088/1742-
6596/1386/1/012070, 2019. IOP Publishing.

Timothy Clem and Patrick Thomson. Static analysis at github. https://doi .
org/10.1145/3486594, 2022. ACM.

Dataray. mos vs. ccd sensors and overview. https ://dataray . com/blogs/

dataray-blog/cmos-vs-ccd-sensors-and-overview, 2016.

Dataray. What is the difference between vision sensors and vision systems? https:
/ /www . cognex . com/blogs/machine-vision/whats-the-difference-

between-vision-sensors-and-vision-systems, 2020.

74

https://www.ijcai.org/Proceedings/83-2/Papers/091.pdf
https://doi.org/10.1016/j.tourman.2018.09.008
https://doi.org/10.1109/IROS.2000.895274
http://euro.ecom.cmu.edu/resources/elibrary/epay/1-s2.0-S0167923610001326-main.pdf
http://euro.ecom.cmu.edu/resources/elibrary/epay/1-s2.0-S0167923610001326-main.pdf
https://doi.org/10.48550/arXiv.2003.05991
https://doi.org/10.48550/arXiv.2003.05991
https://doi.org/10.1016/j.csda.2020.106917
https://doi.org/10.1016/j.comcom.2014.09.008
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/B978-0-12-819154-5.00023-0
https://doi.org/10.1016/B978-0-12-819154-5.00023-0
https://mipro-proceedings.com/sites/mipro-proceedings.com/files/upload/sp/sp_008.pdf
https://mipro-proceedings.com/sites/mipro-proceedings.com/files/upload/sp/sp_008.pdf
http://dx.doi.org/10.1088/1742-6596/1386/1/012070
http://dx.doi.org/10.1088/1742-6596/1386/1/012070
https://doi.org/10.1145/3486594
https://doi.org/10.1145/3486594
https://dataray.com/blogs/dataray-blog/cmos-vs-ccd-sensors-and-overview
https://dataray.com/blogs/dataray-blog/cmos-vs-ccd-sensors-and-overview
https://www.cognex.com/blogs/machine-vision/whats-the-difference-between-vision-sensors-and-vision-systems
https://www.cognex.com/blogs/machine-vision/whats-the-difference-between-vision-sensors-and-vision-systems
https://www.cognex.com/blogs/machine-vision/whats-the-difference-between-vision-sensors-and-vision-systems

[DSR11]

[DT18]

[Dub10]

[Edg22]

[ERF97]

[FFG21]

[Fos97]

[GDD*14]

[Girl5]

[Gol16]

[Goo21]

[Go023]

[GU16]

S. Gayathri Devi, K. Selvam, and Dr. S. P. Rajagopalan. An abstract to calculate
big o factors of time and space complexity of machine code. ieee, 2011. http:
//dx.doi.org/10.1049/cp.2011.0483, 2011. IEEE.

Yvan Duroc and Smail Tedjini. Rfid: a key technology for humanity. http://dx.
doi.org/10.1016/j.crhy.2018.01.003, 2018. Elsevier.

E. Dubois. The Structure and Properties of Color Spaces and the Representation
of Color Images. Synthesis Lectures on Image, Video, and Multimedia Processing.
JMorgan & Claypool Publishers, 1537 Fourth Street, San Rafael, CA 94901 USA,
2010.

Edgelmpulse. Edgeimpulse documentation. https://docs.edgeimpulse.com/
docs/faq, 2022.

Osuna E., Freund R., and Girosit F. Training support vector machines: an applica-
tion to face detection. 10.1109/CVPR.1997.609310, 1997. Proceedings of IEEE

Computer Society Conference on Computer Vision and Pattern Recognition.

Laura Freijeiro-Gonzélez, Manuel Febrero-Bande, and Wenceslao Gonzélez-
Manteiga. A critical review of lasso and its derivatives for variable selection under
dependence among covariates. https://doi.org/10.1111/insr. 12469, 2021.

International Statisitical Review.

Eric R. Fossum. Cmos image sensors: electronic camera-on-a-chip. https://
doi.org/10.1109/16.628824, 1997. IEEE.

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for ac-
curate object detection and semantic segmentation. https : //doi . org/ 10 .
1109/CVPR.2014 .81, 2014. IEEE Conference on Computer Vision and Pattern
Recognition, pp. 580-587.

R. Girshick. Fast r-cnn. https://doi.org/10.1109/ICCV.2015. 169, 2015.
IEEE International Conference on Computer Vision (ICCV), pp. 1440-1448.

Peter Goldsborough. A tour of tensorflow. https://arxiv. org/abs/1610.
01178, 2016.

Google. Tensorflow model analysis architecture. https : //www . tensorflow.

org/tfx/model_analysis/architecture, 2021.

Google. Real-time streams. https://developers.google.com/mediapipe/

framework/framework concepts/realtime_streams, 2023.

C. Gayathri and R. Umarani. Forecasting of automatic relevance determina-
tion for feature selection (fard-fs) in financial fraud detection. https : / /
www . researchgate . net / publication /309071482 _Forecasting _of _
automatic_relevance_determination_for_ feature_selection_ FARD-

FS_in financial fraud_detection, 2016.

75

http://dx.doi.org/10.1049/cp.2011.0483
http://dx.doi.org/10.1049/cp.2011.0483
http://dx.doi.org/10.1016/j.crhy.2018.01.003
http://dx.doi.org/10.1016/j.crhy.2018.01.003
https://docs.edgeimpulse.com/docs/faq
https://docs.edgeimpulse.com/docs/faq
10.1109/CVPR.1997.609310
https://doi.org/10.1111/insr.12469
https://doi.org/10.1109/16.628824
https://doi.org/10.1109/16.628824
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/ICCV.2015.169
https://arxiv.org/abs/1610.01178
https://arxiv.org/abs/1610.01178
https://www.tensorflow.org/tfx/model_analysis/architecture
https://www.tensorflow.org/tfx/model_analysis/architecture
https://developers.google.com/mediapipe/framework/framework_concepts/realtime_streams
https://developers.google.com/mediapipe/framework/framework_concepts/realtime_streams
https://www.researchgate.net/publication/309071482_Forecasting_of_automatic_relevance_determination_for_feature_selection_FARD-FS_in_financial_fraud_detection
https://www.researchgate.net/publication/309071482_Forecasting_of_automatic_relevance_determination_for_feature_selection_FARD-FS_in_financial_fraud_detection
https://www.researchgate.net/publication/309071482_Forecasting_of_automatic_relevance_determination_for_feature_selection_FARD-FS_in_financial_fraud_detection
https://www.researchgate.net/publication/309071482_Forecasting_of_automatic_relevance_determination_for_feature_selection_FARD-FS_in_financial_fraud_detection

[HM78]

[HMvdW*20]

[Hol96]

[Hor14]

[Hor93]

[JAM*22]

[KB15]

[Ker20]
[KSH12]

[KST*21]

[Kuk22]

[KWH21]

[Lan05]

[LBGI7]

M.J. Howes and D.V. Morgan. Charge-coupled Devices and Systems. John Wiley
& Sons, New York, 1978.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, et al.
Array programming with numpy. https://doi.org/10.1038/s41586-020-
2649-2, 2020. Nature.

G.C. Holst. Ccd arrays, cameras, and displays. https://www.worldcat . org/
title/38216530, 1996. SPIE Optical Engineering Press.

M. Horowitz. Computing’s energy problem(and what we can do about it). https:
//doi.org/10.1109/ISSCC.2014.6757323, 2014. ISSCC.

I. Horswill. Polly: a vision-based artificial agent. 10.5555/1867270 . 1867393,
1993. ACM, The Proceedings of the Eleventh National Conference on Artificial

Intelligence.

Sajib Kumar Saha Joy, Farzad Ahmed, Al Hasib Mahamud, and Nibir Chandra
Mandal. An empirical studies on how the developers discussed about pandas top-
ics. https://arxiv.org/pdf/2210.03519v1.pdf, 2022.

Diederik P. Kingma and Jimmy Lei Ba. Adam: a method for stochastic optimiza-
tion. https://arxiv.org/abs/1412.6980, 2015. ICLR.

Keras. Keras api. https://keras.io/api/, 2020.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. https://proceedings .neurips. cc/paper _
files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b - Paper .
pdf, 2012. ”In Advances in neural information processing systems, pp. 1097—
1105.

Tomoe Kishimoto, Masahiko Saito, Junichi Tanaka, Yutaro liyama, Ryu Sawada,
and Koji Terashi. An improvement of object detection performance using multi-
step machine learnings. https://doi.org/10.48550/arXiv.2101.07571,
2021. IEEE.

Kukil. Introduction to mediapipe. https://learnopencv. com/introduction-
to-mediapipe/, 2022.

Leandro Von Krannichfeldt, Yi Wang, and Gabriela Hug. Online ensemble learn-
ing for load forecasting. https://arxiv.org/pdf /1509 .02438 . pdf, 2021.
IEEE Transactions on Power Systems.

J. Landt. The history of rfid. https://doi.org/10.1109/MP.2005. 1549751,
2005. IEEE.

L.M. Lorigo, R.A. Brooks, and W.E.L. Grimson. Visually guided obstacle avoid-
ance in unstructured environments. https : / / people . csail . mit . edu /
brooks/papers/final-iros . pdf, 1997. Proceedings of IROS 97, pp. 373-
3709.

76

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://www.worldcat.org/title/38216530
https://www.worldcat.org/title/38216530
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/ISSCC.2014.6757323
10.5555/1867270.1867393
https://arxiv.org/pdf/2210.03519v1.pdf
https://arxiv.org/abs/1412.6980
https://keras.io/api/
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.48550/arXiv.2101.07571
https://learnopencv.com/introduction-to-mediapipe/
https://learnopencv.com/introduction-to-mediapipe/
https://arxiv.org/pdf/1509.02438.pdf
https://doi.org/10.1109/MP.2005.1549751
https://people.csail.mit.edu/brooks/papers/final-iros.pdf
https://people.csail.mit.edu/brooks/papers/final-iros.pdf

[LKF10]

[Low04]

[LPS21]

[LTN*19]

[LWX*15]

[Mac91]

[MK20]

[MMR91]

[MRA*20]

[MRB*18]

[MRV*17]

Yann LeCun, Koray Kavukcuoglu, and Clement Farabet. Convolutional networks
and applications in vision. https://doi.org/10.1109/ISCAS.2010.5537907,
2010. IEEE.

David G. Lowe. Distinctive image features from scale-invariant keypoints. https:
//doi.org/10.1023/B:VISI.0000029664.99615.94, 2004. Springer.

Marco Lombardi, Francesco Pascale, and Domenico Santaniello. Internet of
things: a general overview between architectures, protocols and applications.
https://www.mdpi.com/2078-2489/12/2/87,2021. MDPL.

Camillo Lugaresi, Jiugiang Tang, Hadon Nash, Chris McClanahan, et al. Medi-
apipe: a framework for building perception pipelines. https://doi.org/10.
48550/arXiv.1906.08172, 2019. Google Research.

L.Wang, W.Ouyang, X.Wang, and H. Lu. Visual tracking with fully convolutional
networks. https://openaccess.thecvf.com/content_iccv_2015/papers/
Wang _Visual _Tracking With_ICCV_2015_paper . pdf, 2015. ICCV, pp.
3119-3127.

David J.C. MacKay. Bayesian methods for adaptive models. https://thesis.
library . caltech.edu/25/1/MacKay _djc_1992. pdf, 1991. California
Institute of Technology.

Kritika Malhotra and Yankit Kumar. Challenges to implement machine learning
in embedded systems. https://doi.org/10.1109/ICACCCN51052 . 2020 .
9362893, 2020. IEEE.

Peter Meer, Doron Mintz, and Azriel Rosenfeeld. Robust regression methods for
computer vision: a review. https://doi.org/10.1007/BF00127126, 1991.
Springer.

Mohamed Massaoudi, Shady S. Refaat, Haitham Abu-Rub, Ines Chihi, and
Fakhreddine S. Wesleti. A hybrid bayesian ridge regression-cwt-catboost model
for pv power forecasting. https://doi.org/10.1109/KPEC47870 . 2020 .
9167596, 2020. 2020 IEEE Kansas Power and Energy Conference (KPEC).

Mohammad Saeid Mahdavinejad, Mohammadreza Rezvan, Mohammadamin
Barekatain, Peyman Adibi, Payam Barnaghi, and Amit P. Sheth. Machine learning
for internet of things data analysis: a survey. https://doi.org/10.1016/j.
dcan.2017.10.002, 2018.

William M. Mongan, [lhaan Rasheed, Khyati Ved, Shrenik Vora, Kapil Dandekar,
and Genevieve Dion. On the use of radio frequency identification for continuous
biomedical monitoring. https://ieeexplore.ieee.org/document /7946876,
2017. IEEE.

77

https://doi.org/10.1109/ISCAS.2010.5537907
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://www.mdpi.com/2078-2489/12/2/87
https://doi.org/10.48550/arXiv.1906.08172
https://doi.org/10.48550/arXiv.1906.08172
https://openaccess.thecvf.com/content_iccv_2015/papers/Wang_Visual_Tracking_With_ICCV_2015_paper.pdf
https://openaccess.thecvf.com/content_iccv_2015/papers/Wang_Visual_Tracking_With_ICCV_2015_paper.pdf
https://thesis.library.caltech.edu/25/1/MacKay_djc_1992.pdf
https://thesis.library.caltech.edu/25/1/MacKay_djc_1992.pdf
https://doi.org/10.1109/ICACCCN51052.2020.9362893
https://doi.org/10.1109/ICACCCN51052.2020.9362893
https://doi.org/10.1007/BF00127126
https://doi.org/10.1109/KPEC47870.2020.9167596
https://doi.org/10.1109/KPEC47870.2020.9167596
https://doi.org/10.1016/j.dcan.2017.10.002
https://doi.org/10.1016/j.dcan.2017.10.002
https://ieeexplore.ieee.org/document/7946876

[Nad19]

[NAT+97]

[Nil93]

[PCC16]

[PMX*20]

[PP16]

[PVG*11]

[RAR21]

[Ray20]

[RDG*16]

[RF18]

[RHG"15]

Mark Nadeski. Bringing machine learning to embedded systems. https://www.
ti.com/lit/wp/sway020a/sway020a.pdf?ts=1681134429321&ref url=
https’%253A%252F),252Fwww . google . com’%252F, 2019. Texas Instruments.

I. Nourbakhsh, D. Andre, C. Tomasi, and M. Genesereth. Mobile robot obstacle
avoidance via depth from focus. https://doi.org/10.1016/50921-8890(97)
00051-1, 1997. Robotics and Autonomous Systems, vol. 22, pp. 151-158.

Nils J. Nilsson. INTRODUCTION TO MACHINE LEARNING. Stanford Univer-
sity, Stanford, CA 94305, 1993.

Chong Peng, Jie Cheng, and Qiang Chenga. Supervised learning model for high-
dimensional and large-scale data. https://doi.org/10.1145/2972957, 2016.
ACM.

Devin Petersohn, Stephen Macke, Doris Xin, William Ma, et al. Towards scalable
dataframe systems. https://arxiv.org/pdf/2210.03519v1.pdf, 2020.

Keyur K Patel and Sunil M Patel. Internet of things-iot: definition, charac-
teristics, architecture, enabling technologies, application, and future challenges.
https : / /ijesc . org / upload / 8e9af2eca2e1119b895544£d60c3b857 .
Internet % 200f %, 20Things - I0T % 20Definition , %20Characteristics,
%20Architecture, %20Enabling?20Technologies, %20Application’%20&
%20Future’20Challenges.pdf, 2016.

Fabian Pedregosa, Ga€l Varoquaux, Alexandre Gramfort, Vincent Michel, et al.
Scikit-learn: machine learning in python. https://www. jmlr . org/papers/
volumel2/pedregosalla/pedregosalla.pdf, 2011. ACM.

Haoyu Ren, Darko Anicic, and Thomas A. Runkler. Tinyol: tinyml with online-
learning on microcontrollers. https://doi.org/10.1109/IJCNN52387.2021.
9533927, 2021. IEEE.

Partha Pratim Ray. A review on tinyml: state-of-the-art and prospects. https :
//doi.org/10.1016/7j.jksuci.2021.11.019, 2020. ACM.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: unified, real-time object detection. https://doi.org/10.1109/CVPR.
2016.91, 2016. IEEE.

Joseph Redmon and Ali Farhadi. Yolov3: an incremental improvement. https :
//doi.org/10.48550/arXiv.1804.02767, 2018. University of Washington.

Shaoging Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: towards
real-time object detection with region proposal networks. https://arxiv.org/
pdf/1506.01497 . pdf, 2015. Proceedings of the 28th International Conference
on Neural Information Processing Systems - Volume 1, Cambridge, MA, USA,
NIPS’ 15, pp. 91-99, MIT Press.

78

https://www.ti.com/lit/wp/sway020a/sway020a.pdf?ts=1681134429321&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/wp/sway020a/sway020a.pdf?ts=1681134429321&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/wp/sway020a/sway020a.pdf?ts=1681134429321&ref_url=https%253A%252F%252Fwww.google.com%252F
https://doi.org/10.1016/S0921-8890(97)00051-1
https://doi.org/10.1016/S0921-8890(97)00051-1
https://doi.org/10.1145/2972957
https://arxiv.org/pdf/2210.03519v1.pdf
https://ijesc.org/upload/8e9af2eca2e1119b895544fd60c3b857.Internet%20of%20Things-IOT%20Definition,%20Characteristics,%20Architecture,%20Enabling%20Technologies,%20Application%20&%20Future%20Challenges.pdf
https://ijesc.org/upload/8e9af2eca2e1119b895544fd60c3b857.Internet%20of%20Things-IOT%20Definition,%20Characteristics,%20Architecture,%20Enabling%20Technologies,%20Application%20&%20Future%20Challenges.pdf
https://ijesc.org/upload/8e9af2eca2e1119b895544fd60c3b857.Internet%20of%20Things-IOT%20Definition,%20Characteristics,%20Architecture,%20Enabling%20Technologies,%20Application%20&%20Future%20Challenges.pdf
https://ijesc.org/upload/8e9af2eca2e1119b895544fd60c3b857.Internet%20of%20Things-IOT%20Definition,%20Characteristics,%20Architecture,%20Enabling%20Technologies,%20Application%20&%20Future%20Challenges.pdf
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://doi.org/10.1109/IJCNN52387.2021.9533927
https://doi.org/10.1109/IJCNN52387.2021.9533927
https://doi.org/10.1016/j.jksuci.2021.11.019
https://doi.org/10.1016/j.jksuci.2021.11.019
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.48550/arXiv.1804.02767
https://arxiv.org/pdf/1506.01497.pdf
https://arxiv.org/pdf/1506.01497.pdf

[RMO5]

[RRNO2]

[RvdST*13]

[Sar21]

[SBW*97]

[SCO08]

[Sit21]

[SNdA*22]

[SRO15]

[TAHO6]

[Tec15]

[Tro19]

[UNOO]

Lior Rokach and Oded Maimon. Decision trees. https://doi.org/10.1007/0-
387-25465-X_9, 2005. Springer.

Anthony Rowe, Charles Rosenberg, and Illah Nourbakhsh. A low cost embedded
color vision system. http://dx.doi.org/10.1109/IRDS.2002. 1041390,
2002. IEEE.

Uijlings J. R. R., van de Sande K. E. A., Gevers T., and Smeulders A. W. M. Se-
lective search for object recognition. International Journal of Computer Vision,
104:154-171, 2013.

Igbal H. Sarker. Machine learning: algorithms, real-world applications and re-
search directions. https://doi.org/10.1007/s42979-021-00592-%, 2021.
Springer.

R. Sargent, B. Bailey, C. Witty, and A. Wright. Dynamic object capture using fast
vision tracking. https://doi.org/10.1609/aimag.v18i1.1275, 1997. Al

Magazine, vol. 18, no. 1.

I. Steinwart and A. Christmann. Support vector machines. Springer, 233 Spring
Street, New York, NY 10013, USA, 2008.

Daniel Situnayake. How tensorflow helps edge impulse make ml accessible to
embedded engineers. https : / /blog . tensorflow . org /2021 /06 / how -

tensorflow-helps-edge-impulse-make-ml-accessible.html, 2021.

Gilberto Francisco Marthade Souza, Adherbal Caminada Netto, Arthur Henrique
de Andrade Melani, Miguel Angelo de Carvalho Michalski, and Renan Favardoda
Silva. Engineering systems fault diagnosis methods. http://dx.doi.org/10.
1016/B978-0-12-823521-8.00006-2, 2022. Elsevier.

Arnold Salas, Stephen J. Roberts, and Michael A. Osborne. A variational bayesian
state-space approach to online passive-aggressive regression. https://arxiv.
org/pdf/1509.02438.pdf, 2015. International Statisitical Review.

D. K. Tasoulis, N.M. Adams, and D. J. Hand. Unsupervised clustering in streaming
data. http://dx.doi.org/10.1109/ICDMW.2006. 165, 2006. IEEE.

AVAGO Technologies. Apds-9960, digital proximity, ambient light, rgb and ges-
ture sensor. https://docs.broadcom.com/doc/AV02-4191EN, 2015.

Fabricio Troya. Detecting colors with the nano 33 ble sense board. https: //
docs . arduino. cc/tutorials/nano-33-ble-sense-rev2/rgb-sensor,

2019.

L. Ulrich and I. Nourbakhsh. Appearance-based obstacle detection with monocular
color vision. , 2000. Proceedings of AAAI Conference, pp. 866-871.

79

https://doi.org/10.1007/0-387-25465-X_9
https://doi.org/10.1007/0-387-25465-X_9
http://dx.doi.org/10.1109/IRDS.2002.1041390
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1609/aimag.v18i1.1275
https://blog.tensorflow.org/2021/06/how-tensorflow-helps-edge-impulse-make-ml-accessible.html
https://blog.tensorflow.org/2021/06/how-tensorflow-helps-edge-impulse-make-ml-accessible.html
http://dx.doi.org/10.1016/B978-0-12-823521-8.00006-2
http://dx.doi.org/10.1016/B978-0-12-823521-8.00006-2
https://arxiv.org/pdf/1509.02438.pdf
https://arxiv.org/pdf/1509.02438.pdf
http://dx.doi.org/10.1109/ICDMW.2006.165
https://docs.broadcom.com/doc/AV02-4191EN
https://docs.arduino.cc/tutorials/nano-33-ble-sense-rev2/rgb-sensor
https://docs.arduino.cc/tutorials/nano-33-ble-sense-rev2/rgb-sensor

[VTP*20]

[WNO7]

[WTS*20]

[WZZ+21]

[YLJ18]

[YYHI8]

[Zac21]

[ZKK*19]

[ZW18]

Ms. A.Ramya Visalatchi, Ms. T.Navasri, Ms. P.Ranjanipriya, and Ms.
R.Yogamathi. Intelligent vision with tensorflow using neural network algo-
rithms. http://dx.doi.org/10.1109/ICCMC48092.2020 . ICCMC-000175,
2020. IEEE.

David Wipf and Srikantan Nagarajan. A new view of automatic relevance de-
termination. https : / / proceedings . neurips . cc / paper /2007 / file /
9c01802ddb981e6bcfbec0f0516b8e35-Paper . pdf, 2007.

Zijie J. Wang, Robert Turko, Omar Shaikh, Haekyu Park, Nilaksh Das, Fred
Hohman, Minsuk Kahng, and Duen Horng (Polo) Chau. Cnn explainer: learning
convolutional neural networks with interactive visualization. https://doi.org/
10.48550/arXiv.2004. 15004, 2020. IEEE.

Lizhi Wanga, Zhaohui Zhanga, Xiaobo Zhanga, Xinxin Zhoua, Pengwei Wanga,
and Yongjun Zheng. A deep-forest based approach for detecting fraudulent online
transaction. https://doi.org/10.1016/bs.adcom.2020.10.001, 2021.

Elsevier.

Liang Yu, Binbin Li, and Bin Jiao. Research and implementation of cnn based on
tensorflow. https://www.researchgate.net/journal/I0OP-Conference-
Series-Materials-Science-and-Engineering-1757-899X, 2018. IEEE.

Hao Yu, Mei Yan, and Xiwei Huang. Cmos image sensor. https://doi. org/
10.1002/9781119218333.ch7, 2018. IEEE.

Zach. Mse vs. rmse: which metric should you use? https://www.statology.

org/mse-vs-rmse/, 2021.

Fotios Zantalis, Grigorios Koulouras, Sotiris Karabetsos, and Dionisis Kandris. A
review of machine learning and iot in smart transportation. https://www.mdpi.
com/1999-5903/11/4/94, 2019. MDPI.

Zhenchong Zhao and Xiaodan Wang. Multi-segments naive bayes classifier in like-
lihood space. https : //ietresearch. onlinelibrary . wiley . com/doi/
full/10.1049/iet-cvi.2017.0546, 2018.

80

http://dx.doi.org/10.1109/ICCMC48092.2020.ICCMC-000175
https://proceedings.neurips.cc/paper/2007/file/9c01802ddb981e6bcfbec0f0516b8e35-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/9c01802ddb981e6bcfbec0f0516b8e35-Paper.pdf
https://doi.org/10.48550/arXiv.2004.15004
https://doi.org/10.48550/arXiv.2004.15004
https://doi.org/10.1016/bs.adcom.2020.10.001
https://www.researchgate.net/journal/IOP-Conference-Series-Materials-Science-and-Engineering-1757-899X
https://www.researchgate.net/journal/IOP-Conference-Series-Materials-Science-and-Engineering-1757-899X
https://doi.org/10.1002/9781119218333.ch7
https://doi.org/10.1002/9781119218333.ch7
https://www.statology.org/mse-vs-rmse/
https://www.statology.org/mse-vs-rmse/
https://www.mdpi.com/1999-5903/11/4/94
https://www.mdpi.com/1999-5903/11/4/94
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-cvi.2017.0546
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-cvi.2017.0546

	Introduction
	Literature Review
	IoT
	IoT architecture
	End Devices
	Software
	Communication (Protocols)
	Platform
	Secure

	Vision sensors in IoT
	Optical sensors
	Vision sensors
	Fiber optic sensors

	Image Sensors
	CMOS image sensors
	CCD image sensors

	Vision Sensors vs. Vision Systems

	Machine learning methods and IoT
	Definition of classical methods and deep learning methods
	Machine Learning tasks
	Machine Learning types
	Supervised Learning
	Unsupervised Learning
	Semi-supervised Learning
	Reinforcement Learning

	Classical Machine Learning Algorithms in Computer Vision
	k-Nearest Neighbors (k-NN)
	Support Vector Machines
	Decision Tree
	Naive Bayes Algorithms
	Random Forest Algorithms
	Linear Regression
	Other regression algorithms
	SIFT Algorithm
	Complexity of Algorithms

	Deep learning Computer Vision Algorithms
	Convolutional Neural Network
	R-CNN
	Fast R-CNN
	YOLO

	Challenges of using Machine Learning in IoT

	Methodology
	Settings for conducting experimental studies
	Technological solutions for implementing computer vision implementation in microcontrollers
	TinyML
	Tensorflow architecture

	EdgeImpulse
	Other existent libraries for microcontrollers
	OpenCV
	Tensorflow
	Microcontrollers
	Choosing a software development environment

	Results of experimental investigation
	Use of TensorFlow library
	Detecting color using deep learning methods
	Object detecting using classical method
	Data description
	Object detection result based on different classical methods

	Summary
	Using computer vision library for detecting handwritten digits
	Dataset
	Experimental Part
	Another library for detecting hand-written digits using the TinyMaix

	Iris classification

	Use of OpenCV library
	Detecting color
	Object detecting
	Control LED
	MediaPipe framework
	Experiment

	Detecting traffic signs
	Motivation
	Methodology

	Conclusions

