
VILNIUS UNIVERSITY
FACULTY OF MATHEMATICS AND INFORMATICS
SOFTWARE ENGINEERING STUDY PROGRAMME

Adapting Niklas Luhmann’s Card Indexing
System for Software Documentation

Niklaso Liūmano kortelių indeksavimo sistemos
pritaikymas programinės įrangos dokumentacijai

Bachelor’s thesis

Author: 4th year, 3rd group student Greta Žemgulytė (signature)

Supervisor: Gediminas Rimša (signature)

Reviewer: Vaidas Jusevičius (signature)

Vilnius – 2023

CONTENTS

ABSTRACT . 4

SANTRAUKA .. 5

INTRODUCTION .. 6

1. EXPLORING THE ZETTELKASTEN METHOD .. 9
1.1. Note‑taking process. 9
1.2. Indexing system. 10

2. ADAPTING THE ZETTELKASTEN METHOD .. 12
2.1. Moving to a digital format . 12
2.2. Ever‑changing structure . 13
2.3. The problem of collaboration . 14
2.4. Best uses for the method . 16
2.5. Setting common standards . 17

2.5.1. Setting naming conventions . 17
2.5.2. Standardizing Zettels . 19
2.5.3. Standardizing tags . 21

2.6. Requirements for tools . 22
2.6.1. Integration . 23
2.6.2. Accessibility . 24
2.6.3. Tagging . 24
2.6.4. Graph view . 24

3. USING THE ZETTELKASTEN METHOD .. 25
3.1. Choosing tools . 25
3.2. Organizing existing documentation . 26

3.2.1. Analyzing the existing documentation . 27
3.2.2. Breaking the documentation down into Zettels . 27
3.2.3. Assigning unique identifiers . 28
3.2.4. Linking related Zettels together . 28
3.2.5. Creating and assigning tags . 30

3.3. Resulting Zettelkasten . 32
3.4. Recommendations for using the method. 33

4. EVALUATING THE ZETTELKASTEN METHOD .. 34
4.1. Theoretical evaluation . 34

4.1.1. Comparison with wiki. 34
4.1.2. Zettelkasten and continuous documentation . 36

4.2. Survey . 37
4.2.1. Evaluation criteria . 37
4.2.2. Methodology . 37
4.2.3. Survey questions . 38
4.2.4. Survey results . 38
4.2.5. Survey bias and limitations . 40

RESULTS . 42

CONCLUSIONS . 43

GLOSSARY . 44

2

REFERENCES . 45

APPENDICES . 47
Appendix 1. Comparing Software Documentation Methods ‑ Survey . 47
Appendix 2. Comparing Software Documentation Methods ‑ Survey Results. 50

3

Abstract

The objective of this thesis is to explore the application of Niklas Luhmann’s card indexing
system and the closely‑related Zettelkasten note‑taking method for software documentation and
to assess its effectiveness compared to existing methods. The work is divided into four main
sections, which in turn focus on the exploration, adaptation, utilization, and evaluation of the
Zettelkasten method.

The thesis explores how the Zettelkasten method was originally used by its creator, and
explains the principles and processes of how to create the collection of notes called a Zettelkasten.
It is examined and recommendations are made on how the Zettelkasten method can be modi‑
fied and used to organize and manage software‑related knowledge. The thesis demonstrates the
practical application of the Zettelkasten approach by organizing the existing documentation of a
software system. The method’s effectiveness is evaluated based on the author’s personal experi‑
ence and the experience of other software developers. The Zettelkasten method is compared with
other documentation approaches theoretically and through the use of a survey.

The results indicate that the adapted Zettelkasten method is comparable to using a wiki in
terms of effectiveness for software documentation. The method is deemed beneficial for teams
that follow Agile principles or use a code‑first approach for software development. However, using
the method requires more initial time investment and training. Based on the research findings,
it can be concluded that the Zettelkasten method holds promise as an alternative approach to
software documentation.

Overall, this thesis contributes to the field of software documentation by exploring the
adaptation and application of the Zettelkasten method. It highlights the advantages and challenges
of using this method, provides practical guidelines for its implementation, and offers insights
into its effectiveness compared to existing methods. The findings of this research can serve
as a valuable resource for software development teams seeking to improve their documentation
practices and enhance knowledge management within their organizations.

Keywords: Zettelkasten method, software documentation, Niklas Luhmann

4

Santrauka

Šio darbo tikslas ‑ ištirti Niklaso Liūmano kortelių indeksavimo sistemos ir su ja glaudžiai
susijusio Zettelkasten metodo taikymą programinės įrangos dokumentacijai bei įvertinti metodo
veiksmingumą lyginant su esamais metodais. Darbas suskirstytas į keturis pagrindinius skyrius,
kurie atitinkamai skirti Zettelkasten metodo tyrinėjimui, pritaikymui, naudojimui ir vertinimui.

Darbe nagrinėjama, kaip Zettelkasten metodą naudojo jo kūrėjas, ir paaiškinami užrašų
rinkinio, vadinamo Zettelkasten, kūrimo principai ir procesai. Analizuojama bei pateikiamos
rekomendacijos, kaip modifikuoti ir naudoti Zettelkasten metodą su programine įranga susiju‑
sioms žinioms organizuoti ir valdyti. Darbe demonstruojamas praktinis Zettelkasten metodo
taikymas organizuojant esamą programinės įrangos sistemos dokumentaciją. Zettelkasten metodo
efektyvumas vertinamas remiantis asmenine autoriaus ir kitų programinės įrangos kūrėjų patirtimi.
Metodas lyginamas su kitais dokumentavimo metodais teoriškai ir apklausos pagalba.

Rezultatai rodo, kad nėra reikšmingo skirtumo tarp Zettelkasten ar wiki metodų efektyvumo
programinės įrangos dokumentavimui. Zettelkasten metodas laikomas naudingu komandoms, ku‑
rios laikosi Agile principų arba naudoja ”kodo pirmumo” metodiką programinės įrangos kūrimui.
Vis dėlto Zettelkasten naudojimas reikalauja pradinių laiko investicijų ir apmokymų. Remiantis
tyrimo rezultatais, galima daryti išvadą, kad Zettelkasten metodas yra perspektyvi alternatyva
programinės įrangos dokumentavimui.

Bendrai šis darbas prisideda prie programinės įrangos dokumentacijos srities, nes jame na‑
grinėjamas Zettelkasten metodo pritaikymas ir naudojimas. Jame išryškinami šio metodo taikymo
privalumai ir iššūkiai, pateikiamos praktinės jo taikymo gairės ir įžvalgos apie jo veiksmingumą,
palyginus su esamais metodais. Šio tyrimo rezultatai gali būti vertingas šaltinis programinės įran‑
gos kūrimo komandoms, siekiančioms tobulinti savo dokumentacijos rengimo praktikas ir gerinti
organizacijos žinių valdymą.

Raktiniai žodžiai: Zettelkasten metodas, programinės įrangos dokumentacija, Niklasas
Liūmanas

5

Introduction

Niklas Luhmann was a German philosopher and sociologist who published more than 70
books and nearly 400 scholarly articles [Rot13]. To help with his writing, N. Luhmann used a
note‑taking method of his own creation. Niklas Luhmann’s method, known as the Zettelkasten
method, is a system of organizing notes and ideas using index cards. It has been widely used
in various fields such as research, writing, and knowledge management. Adapting this system
for software documentation could be a useful approach for organizing and documenting software‑
related knowledge.

The Zettelkasten method is based on the idea of building a personal knowledge management
system that is flexible, scalable, and adaptable. In this system, each index card represents a discrete
idea, topic, or concept, and is linked to other cards through a system of cross‑referencing. This
creates a collection of cards called a Zettelkasten ‑ a network of ideas and concepts that can be
easily navigated and organized [Sch18]. The links between index cards are created by using N.
Luhmann’s card indexing system that allows for inserting new indexes in between existing ones
without breaking the existing order or changing any of the old indexes [Ahr17]. For the purpose
of this paper, it should be noted that N. Luhmann’s card indexing system and the Zettelkasten
method are closely intertwined, so adapting the indexing system means adapting the note‑taking
method as well.

The Zettelkasten method can be particularly relevant for software documentation since it
has several similarities with real‑life software systems:

• Modularity: Software systems are often modular, consisting of different components or
modules that work together to achieve a particular goal [Pre10]. Similarly, a Zettelkas‑
ten consists of multiple Zettels that can be organized to represent different parts of the
software system.

• Links between components: In a software system, components often interact with each
other, and changes to one component can have ripple effects on other components [Pre10].
Similarly, in a Zettelkasten, notes can be linked together to represent relationships be‑
tween different components or concepts.

• Flexible structure: In software development, the complexity of a system can often make it
difficult to create a clear and concise representation of its structure. While some systems
may have a clear hierarchical structure, many others do not. For example, a system that is
divided into multiple layers or components may have multiple possible ways to visualize
the relationships between them [CBB10]. In such cases, the Zettelkasten method can
be used to create a non‑hierarchical structure of interconnected notes that reflects the
complexity of the system.

• Iterative development: Software systems are often developed iteratively, with new features
or functions added over time [Mar14]. Similarly, a Zettelkasten can be updated and
refined over time to reflect new insights or changes to the software system.

Adapting Niklas Luhmann’s card indexing system for software documentation could be a

6

useful approach for organizing and documenting software‑related knowledge, particularly for tasks
such as domain modeling. Domain modeling is the process of creating a conceptual model of a
particular problem domain, which can help developers understand the domain better and design
better software solutions [MT15]. By using the Zettelkasten method, developers could create a
network of linked ideas and concepts related to the domain, which would be easy to navigate.
This approach could help developers build a more robust understanding of the problem domain
and design better software solutions.

In addition to domain modeling, the Zettelkasten method could also be used for other
software documentation tasks such as documenting design decisions, capturing requirements,
and maintaining a knowledge base. By using a system of cross‑referencing, developers could
quickly locate related information, understand the context of a particular idea or concept, and
ensure that their documentation is accurate and up‑to‑date.

Overall, the Zettelkasten method could be used to represent a software system in a modular,
hierarchical, and iterative way, reflecting the structure and development process of the system.
By breaking down complex concepts into smaller, more digestible notes and linking related notes
together, a Zettelkasten could help developers and stakeholders better understand and manage a
software system.

Object of research

The object of research for this thesis is the application of the Zettelkasten method for soft‑
ware documentation. The author will explore how the Zettelkasten method can be adapted to
improve software documentation practices, specifically in tasks such as domain modeling, docu‑
menting design decisions, capturing requirements, and maintaining a knowledge base. The ob‑
ject of research would encompass the methodology, tools, and techniques used to implement the
Zettelkasten method for software documentation and how it can be applied to improve software
development practices.

Goal and objectives

The goal of this paper is to adapt and use Niklas Luhmann’s card indexing system for
software documentation.

The objectives leading to this goal are:

1. Completely adapt the Zettelkasten method for software documentation.
2. Use the Zettelkasten method to organize the documentation of an existing system.
3. Conduct a survey to compare the Zettelkasten method with existing methods of software

documentation.

The chosen objectives are aligned with the overall goal of adapting and using Niklas Luh‑
mann’s card indexing system for software documentation. The first objective is to completely
adapt the Zettelkasten method for software documentation, which means taking the original sys‑
tem and making necessary changes to make it work effectively for software documentation while

7

fully embracing and applying the principles and practices of the original method. This is an
essential step to ensure that the method can be successfully used in a software development envi‑
ronment.

The second objective is to use the adapted Zettelkasten method to organize the documen‑
tation of an existing system. This objective is important as it allows the practical application of
the adapted Zettelkasten method to a real‑world scenario. It provides an opportunity to test and
refine the method and identify any potential issues or areas for improvement.

The final objective is to conduct a survey to compare the Zettelkasten method with existing
methods of software documentation. This objective is crucial in evaluating the effectiveness of
using the Zettelkasten method for software documentation. Comparing it to other methods allows
for an objective assessment of its strengths and weaknesses, and helps identify any areas where it
may outperform other methods. The survey provides a means to gather feedback from developers
who have used different documentation methods and compare their experiences with using the
Zettelkasten method.

Overall, the chosen objectives are important in achieving the goal of adapting and using
Niklas Luhmann’s card indexing system for software documentation and evaluating its effective‑
ness in comparison to existing methods.

8

1. Exploring the Zettelkasten method

To adapt Niklas Luhmann’s card indexing system for software documentation it is necessary
to fully understand the system itself. Niklas Luhmann used this system throughout his career as
a sociologist. Originally, Luhmann used index cards, which he called ”slips” or ”Zettels”, as the
primary medium for recording his notes. Each Zettel contained a single idea or concept, and he
wrote on one side of the card only. Every Zettel was assigned a unique number, which he used to
keep track of its place in the system. N. Luhmann kept the Zettels in physical slip‑boxes, which
allowed him to easily sort and categorize them as he added new ideas. He would periodically
review and rearrange the Zettels to ensure that they were organized in a way that made sense to
him. N. Luhmann also used cross‑referencing to link related ideas across different Zettels. When
he encountered a new idea that related to an existing Zettel, he would note the number of the
old Zettel on the new one, and vice versa. When he needed to retrieve information from this
system, N. Luhmann would use the indexes to quickly locate the relevant Zettels. He could also
use the cross‑referencing system to find related ideas and concepts. Overall, the Zettelkasten
method works by building an interconnected system of literature references and thoughts. The
Zettelkasten works as a ”second brain”, where ideas are stored and linked, which can lead to the
development of new ideas [Ahr17].

1.1. Note‑taking process

Filling up a Zettelkasten involves a specific note‑taking process. The classic Zettelkasten
method consists of three primary kinds of notes [Kad21]:

• Fleeting note ‑ quick note that you take on the go.
• Literature note ‑ a Zettel containing a brief summary of an entire book, article, or other
written material.

• Permanent note ‑ a Zettel containing a single succinct idea. It also includes references to
other Zettels.

The process to fill up the Zettelkasten involves persistently capturing, refining, assigning a
unique identifier, creating links, and storing Zettels in a slip‑box [Ahr17]:

1. Capturing notes: The process starts with capturing any ideas or information on individ‑
ual fleeting notes. This could be anything from a literature quote to an observation.

2. Refining notes: Once the notes are captured, they are reviewed and refined into either
literature notes or permanent notes. This could involve clarifying thoughts, summarizing
ideas, or organizing them by topic. Both types of Zettels would originally be stored in
separate boxes.

3. Assigning a unique identifier: Each Zettel in the slip‑box should have a unique identifier,
such as a number or a keyword. This identifier helps locate specific Zettels later on and
makes it easier to link related ones together.

4. Creating links: Connections between Zettels are found and links are created. This could

9

involve linking them based on common themes or ideas or linking together Zettels that
provide evidence for a particular argument or idea.

5. Storing Zettels in a slip‑box: Zettels are stored in the slip‑box in a way that makes sense
to their writer. This could involve organizing Zettels by topic or by date, or grouping
related ones together.

6. Review and revise: Zettels have to be regularly reviewed and revised to keep them up‑
to‑date and relevant. This could involve adding new Zettels, revising existing ones, or
reorganizing the Zettelkasten to reflect changes in thinking.

1.2. Indexing system

Niklas Luhmann had a unique way of indexing Zettels that differed from the traditional
topical organization. Rather than categorizing them by subject matter, he assigned them fixed
numbers that served only as a means of identification.

This indexing system, also called the Folgezettel (German for “follow‑up slip”) method, was
particularly effective in organizing Zettels in a paper‑based Zettelkasten, making them easier to
locate. When N. Luhmann created a new Zettel that was relevant to an existing one, such as a
comment or correction, he added it directly after the referenced Zettel. If a Zettel was related
to multiple Zettels, it would be placed after any one of them, and then linked to the remaining
Zettels by referencing their indexes. This way N. Luhmann could navigate through the Zettels
either by examining adjacent ones or by following links to other Zettels, which enabled him to
find related ideas quickly [Kad21].

In N. Luhmann’s indexing system, each card is assigned a number that corresponds to
its unchanging position in the slip‑box. For instance, the first note in the first section of the
collection is designated as card ”1/1”. Subsequently, card ”1/2” follows, and so on. When a new
card is created to explore a related aspect that extends beyond the content covered by card ”1/1”
and card ”1/2”, it is assigned the number ”1/1a”, inserting it between card ”1/1” and ”1/2”.
If further breakdown or exploration is required, additional cards like ”1/1b” or ”1/1a1” can be
inserted accordingly. An example of indexed cards can be seen in Figure 1. This sequential
numbering system facilitated the systematic organization and retrieval of information within the
system [Sch18].

10

Figure 1. Zettelkasten with card indexes

Overall, the Zettelkasten method is a flexible and adaptable system for note‑taking and
organization that emphasizes the importance of linking related ideas and concepts across differ‑
ent Zettels. It allows for a personalized and evolving approach to knowledge management and
has been widely used by academics, writers, and researchers as a tool for creative thinking and
intellectual exploration.

11

2. Adapting the Zettelkasten method

The Zettelkasten method is originally not meant for software documentation. There are
some hurdles that must be overcome to adapt and use it for this purpose:

1. Difficulty in version control: With the Zettelkasten method, individual Zettels do not
usually have different versions. In software documentation, version control is critical to
ensure that readers are working with the correct documentation for their version of the
software [SB95].

2. Inability to handle multimedia content: The Zettelkasten method is primarily focused
on text‑based Zettels, and it may not be suitable for managing multimedia content like
images, videos, or audio recordings. Software documentation often includes screenshots,
diagrams, and other visual aids that help understand the software’s features [CBB10].

3. Lack of structure: The Zettelkasten method does not provide a predefined structure
for organizing information, which can make it difficult to navigate and find information
quickly. In contrast, software documentation requires a clear and consistent structure to
help understand the software’s features and functionality [CBB10].

4. Limited collaboration: The Zettelkasten method is primarily designed for individual use,
and it may not support collaborative editing or commenting. In software documentation,
it is often essential to have a team of writers and developers working together to create
and maintain documentation [Mar14].

These hurdles arise due to the inherent differences between the Zettelkasten approach and
the unique requirements of software documentation. As such, in order to make the Zettelkasten
method work effectively for organizing software documentation, it is crucial to address these
concerns or find ways in which they can be mitigated.

2.1. Moving to a digital format

While originally the Zettelkasten was created using paper Zettels and physical boxes, cur‑
rent software enables us to move away from such primitive tools. Using Niklas Luhmann’s card
indexing system in a digital format can help to address some of the challenges of applying this
note‑taking method to software documentation.

There are many digital tools that enable the creation and use of digital Zettels ‑ basically
any Wikipedia‑like tool could work, that is, any tool that allows creating pages and placing links to
other pages in them, without imposing a strict structure. Some such apps are Foam, Zettlr, Zettel
Notes, Evernote, Roam Research, Obsidian, or TiddlyWiki. These tools enable the creation and
linking of markdown files. They also provide features such as tagging and search functions, which
would be helpful for organizing and retrieving Zettels.

One of the strengths of the Zettelkasten method is its emphasis on linking related Zettels.
In an electronic format, it becomes possible to create backlinks between Zettels to connect related
ideas and concepts. This is important for software documentation, as it could help a first‑time
reader find needed information. By jumping from one link to another the reader can use the

12

knowledge they just acquired to guide them to what they are looking for and at the same time
familiarize themselves with how the system is structured [Ahr17].

By using a digital platform for Zettelkasten note‑taking, it becomes easier to manage versions
of Zettels and track changes over time. This could involve using version control software or simply
tracking changes within the note‑taking software itself. Having versions of software linked to their
corresponding version of the Zettelkasten would solve the problem of version control.

Digital note‑taking platforms can support multimedia content, such as images, videos, and
audio files. This can be particularly useful in software documentation, where multimedia content
can help to illustrate complex concepts and procedures [May14].

Digital platforms can also facilitate collaboration by allowing multiple individuals to access
and edit Zettels in real time. This can be especially useful in software documentation, where
multiple individuals may need to contribute to the same document [Mar14]. Markdown applica‑
tions can also offer a high degree of customization, allowing users to create custom templates and
categorize Zettels using tags or keywords. These features could allow multiple users to establish
common standards for the Zettelkasten, which could further improve collaboration.

2.2. Ever‑changing structure

One of the defining features of the Zettelkasten note‑taking method is its lack of pre‑defined
structure. Unlike many other note‑taking systems, the Zettelkasten method does not provide a
specific framework or hierarchy for organizing information. Instead, the system is designed to
be highly flexible and adaptable to an individual’s unique thought processes and learning style
[Ahr17].

While there are ways that Zettels can be grouped and linked together, there is no strict
system on how they are connected. The links between Zettels are typically bidirectional, meaning
that the links work both ways. This creates a network of interconnected Zettels, allowing for a non‑
linear way of organizing and exploring information [Ahr17]. While this lack of structure can be
liberating, it can also be a challenge when it comes to navigating it. Without a clear organizational
framework, it can be difficult to find specific Zettels or to understand the relationships between
different pieces of information. This can lead to a sense of disorganization, particularly as the
number of Zettels in the system grows [Mae06].

To solve the problem of disorganization it would be possible to modify the Zettelkasten
method to make its structure more strict. There is an option to make the links between Zettels
one‑directional and not allow forming loops ‑ so following the links from one Zettel to another
can never lead back to the starting Zettel. In this way, it would be possible to transform the
system into a tree‑like structure with a strict hierarchy, similar to, for example, a file tree. Such
an approach would be great, for example, for the documentation of code ‑ which forms strict
hierarchies ‑ having classes, sub‑classes, dependencies, etc. And yet, there are already other ways
to represent strict hierarchies in documentation ‑ even the aforementioned file tree would already
represent such relationships [RMA15].

When adapting the Zettelkasten method for software documentation the author thinks that

13

it is important to lean into its loose structure and lack of strict hierarchies, which can become a
strength. Many real‑world systems are non‑linear and do not follow a strict top‑down hierarchy.
This emergent structure can also be observed in complex software systems that are composed of
many independent parts or modules, where the behavior of the system as a whole is determined
by the interactions between these parts. As the system evolves and new components are added,
the structure can become more complex and difficult to predict [Mai09; Mit09]. When it comes
to adapting to systems with an emergent structure, the Zettelkasten method could overtake other
documentation methods due to the adaptability of its structure. So, when using this method for
documentation it is important not to hinder the natural development of connections between dif‑
ferent documented concepts. Imposing directionality or restrictions to the links between Zettels
would be a waste of the Zettelkasten method’s original flexibility. The unexpected connections
that form between different elements could lead to inspiration for how to improve or further
develop software.

2.3. The problem of collaboration

The Zettelkasten method is highly personalized because it is designed to reflect an individ‑
ual’s unique thought processes and knowledge organization. This system is built around the idea
of creating a second brain, which means that the notes and connections made in the Zettelkasten
are specific to the individual’s thinking and learning [Ahr17].

While the Zettelkasten method is primarily designed for individual note‑taking and knowl‑
edge management, there are ways the system could be adapted for collaborative use:

1. Standardize identifiers: To make it easier for multiple individuals to navigate the
Zettelkasten, it could be helpful to standardize the unique identifiers used in the sys‑
tem. This could involve setting naming conventions or agreeing on a set of common
tags that will be used [TH20].

2. Use shared software tools: Collaborative Zettelkasten note‑taking could be facilitated
by using software tools that allow for easy access and editing by multiple individuals
[Mor12].

3. Agree on a common framework: While the Zettelkasten method is designed to be highly
flexible, collaborative work often requires a shared understanding and agreement on how
information is organized and linked [Mor12]. As such, it could be helpful to agree on
a common organizational framework for the collaborative project. This could involve
agreeing on a set of topics or themes that will be used to organize Zettels, or developing
a shared hierarchy of information [Eva03].

4. Review and discuss notes regularly: Collaborative Zettelkasten note‑taking should in‑
volve regular review and discussion to ensure that everyone is on the same page and to
identify connections and themes that may have been missed [Mar14].

5. Establish clear roles and responsibilities: To ensure that the collaborative Zettelkasten
note‑taking process is productive and efficient, it could be helpful to establish clear roles
and responsibilities for each member of the team. This could involve designating specific

14

individuals to oversee note‑taking, organization, and review [Mar14].

To combine the personalization aspect of the Zettelkasten method with collaboration in
software documentation, the author thinks a mixed approach could be taken. The Zettelkasten
could have both an ”official” version ‑ one that is common to the whole development team and
is shared with relevant outside parties ‑ and an individual version that each developer would keep
for themselves.

The Zettelkasten could be kept in a collaborative environment, for example, a GitHub
repository, where the main branch of the repository would be the ”official” version of the docu‑
mentation. The main branch would have Zettels that are relevant to the whole team. They would
have to be written in a less personal way ‑ having in mind, that they should be understandable
and relevant to multiple readers [CBB10].

Not all notes that would be helpful to a developer personally are meaningful for general use
[TH20]. With this in mind, an application’s developers could create their own long‑lived personal
branches of the repository based on the main branch of the Zettelkasten. Each developer would
be free to add their own Zettels and make changes to their own branch, which would include
personal observations or ideas related to the project. These Zettels would not be merged with
the main branch of the documentation repository but would be available for individual use. The
personal branch could also be used exclusively locally if some notes should not be seen by other
members of the team. Developers could also periodically merge changes from the main branch
of the Zettelkasten to their individual branch to ensure that it is up‑to‑date.

In software development, long‑lived branches are generally avoided since they can lead to
conflicts and make the process of merging code difficult [HF11]. However, with the Zettelkasten
method, it would be possible to create long‑lived personal branches for software documentation
without the same risks. Existing Zettels should rarely be modified ‑ because of the small scope of
a single Zettel, new additions to the program should usually be documented solely through the
addition of new Zettels, while linking them to existing ones. So, unless there are major changes
to a program’s functionality or how its components are linked, merging new Zettels into or from
the main branch should not cause conflicts.

In addition, in the event that certain personal notes become relevant and useful to a wider
audience, there is a possibility to incorporate them into the main branch of the documentation
repository. In this case, the Zettels can be evaluated and considered for integration into the main
branch of the documentation repository. This integration would involve reviewing a Zettel’s
content, ensuring its applicability to the project as a whole, and making any necessary adjustments
or adaptations. By incorporating valuable personal notes into the main branch, the documentation
can become more enriched.

By using this approach, each team member could have a space for personal notes and ideas
that may not be relevant to the general documentation, while still collaborating with the rest of the
team. This approach could allow for flexibility and customization while ensuring that everyone
has access to general information and can work together effectively.

15

2.4. Best uses for the method

The Zettelkasten method can be applied to various types of software documentation, but
its utility may vary depending on the context and purpose of the documentation. In the case of
internal documentation, the Zettelkasten method can be particularly valuable.

Internal documentation is primarily intended for developers, engineers, or other team mem‑
bers involved in the software development process. It serves as a knowledge repository that helps
team members understand the system architecture, codebase, design decisions, and other tech‑
nical aspects [Pre10]. In this context, the Zettelkasten method can enhance the effectiveness of
internal documentation.

The Zettelkasten method aligns well with Agile software development practices, as it fa‑
cilitates the incremental and iterative capture of knowledge [Ahr17; Mar14]. Developers can
continuously add new Zettels as they encounter new challenges, solve problems, or gain insights.
The ability to capture knowledge in small, discrete units makes it easier to document and share
information in an agile and flexible manner, adapting to the evolving needs of the development
team.

Additionally, the Zettelkasten method encourages developers to add personal notes and
insights to the documentation. These notes can include explanations, code snippets, observa‑
tions, best practices, or lessons learned. By capturing personal experiences and knowledge, the
Zettelkasten method allows developers to share their expertise and provide valuable insights to
their colleagues. These notes can contribute to a collective understanding of the software system
and facilitate knowledge transfer within the development team [TH20].

While the Zettelkasten method can still be applied to end‑user documentation, its benefits
may be less pronounced in this context. End‑user documentation focuses on providing clear,
concise, and user‑friendly instructions or explanations to non‑technical users [CBB10]. Personal
notes and individual insights may not be directly relevant or useful for the general audience, as
they are typically specific to the developer’s perspective or coding practices.

Overall, the Zettelkasten method provides several benefits that could make it particularly
useful for internal software documentation within development teams. With that in mind, the
author had several ideas for more precise areas of documentation where the method could be
used:

1. Domain modeling: The Zettelkasten method could be used for domain modeling in soft‑
ware documentation by creating structured and interconnected Zettels that reflect the
domain’s structure. Developers could capture their ideas, observations, and insights as
they occur, and then link the Zettels together to create a more comprehensive under‑
standing of the domain.

2. Documenting design decisions: By creating Zettels for each design decision, developers
could easily link them to other related Zettels to provide context and detail. This ap‑
proach could make it easier for new team members to understand the rationale behind
design decisions and can help ensure that the design remains consistent over time.

3. Capturing requirements: By creating Zettels for each requirement, developers could eas‑

16

ily link them to existing Zettels, e.g., ones containing user stories or acceptance criteria.
This approach could ensure that all requirements are captured with their relevant context,
which can help prevent misunderstandings.

4. Maintaining a knowledge base: As developers work on a project, they encounter a variety
of information such as common issues and their resolutions, troubleshooting guides,
lessons learned from past projects, and insights into industry best practices. By using
the Zettelkasten method, they could create a system for capturing and organizing this
information.

One of the main benefits of using the Zettelkasten method for software documentation is
that can allow for a mixed approach, which can unify all these areas of documentation. The key to
this is the bidirectional nature of the links between Zettels. Unlike other documentation systems
that may specify a specific type of relationship between elements, such as hierarchical or sequential
relationships [CBB10], the Zettelkasten method simply links related concepts ‑ without specifying
the exact way they are related. That means connections between Zettels could represent different
types of relationships. As a result, the Zettelkasten method could enable developers to capture
and organize a wide range of information, such as domain models, design decisions, requirements,
and technical details, into a unified knowledge base.

2.5. Setting common standards

The importance of setting common standards for software documentation cannot be over‑
stated. Standards provide quality assurance support, reduce costs, support interoperability, and
promote international consensus on best practices. However, there are also considerations such
as possible reduced flexibility, confusion from competing standards, and the need for ongoing
maintenance and updates. Despite these downsides, the benefits of standards far outweigh the
negatives [Sma13]. When using the Zettelkasten method for software documentation, setting
some common standards can enhance the usability and organization of the documentation.

2.5.1. Setting naming conventions

While Niklas Luhmann’s card indexing system is effective for organizing physical index
cards, it may not be as useful for digital note‑taking and documentation. The main benefit of N.
Luhmann’s indexing system is that it allows for new Zettels to be linked to existing ones while at
the same time keeping their previous order unchanged [Ahr17]. It also provides a unique identifier
with meaningful connections, encouraging careful consideration of each Zettel in its context and
making related Zettels easier to locate. While useful for arranging physical Zettels in a sequence,
it also imposes a hierarchical structure on a system that is meant to be non‑hierarchical [Kad21].

The main disadvantage of N. Luhmann’s indexing system is that it is unnecessary in a
digital Zettelkasten. The digital counterpart to the previous physical indexes of the Zettels, which
served as their primary identifier, would be the names of the corresponding digital files. When
using digital Zettels, it is much easier to insert new ones and link them without changing their

17

order simply by using backlinks (which are not affected by the addition of new Zettels). Also,
the benefits of N. Luhmann’s indexing system can be easily replicated in a digital Zettelkasten
through the use of descriptive phrases as filenames. Digital Zettels can be viewed together by
keyword, and it is even shown which Zettels link to the current one being viewed. Unlike a
paper‑based system, a digital Zettelkasten allows for a search of every word in a Zettel, not just
the main topics or links. Therefore, the hierarchical arrangement enforced by N. Luhmann’s
indexing system is unnecessary in a digital Zettelkasten, and descriptive filenames can provide
the same benefits without limiting the flexibility of the system [Kad21].

One option for naming Zettels could be to use a unique ID that is separate from the content
of the Zettel, e.g., corresponding to the date the Zettel was created. This would provide the
advantage of avoiding broken links due to filename changes. However, such numbering would
not provide the readers with much context [Kad21]. The use of numbers for card identifiers
can be limiting and may not provide enough flexibility for categorizing Zettels in a way that is
meaningful for software documentation. As such, it is more reasonable to assign other, more
useful, types of identifiers.

Titling Zettels with full names can be more beneficial in a digital Zettelkasten system.
Names can provide more flexibility for organizing and categorizing Zettels, allowing for more
specific and descriptive categorization. Names can also be easily searched and filtered, making
it easy to find Zettels related to a specific topic or keyword [Kad21]. This can help to speed up
the process of organizing and searching for Zettels, which can be particularly useful in software
documentation since the Zettelkasten will be viewed by multiple people.

One difficulty when naming Zettels might be file naming conventions. Restricted symbols,
such as the forward‑slash (”/”), can pose a problem due to conflicts with file systems. To address
this, alternative naming approaches can be used, such as replacing restricted symbols with suitable
alternatives like hyphens (”‑”) or underscores (”_”) to ensure meaningful names without causing
file system errors.

An additional downside of using phrases to name Zettels is that at a later point, a Zettel
may be deemed more appropriate for a different topic, or it may require a different name for
some other reason. Such a change would result in broken links to that Zettel throughout the
entire Zettelkasten. However, some software may automatically update links. Alternatively, it is
possible to use the find/replace function to search the Zettelkasten and change all links to the
Zettel accordingly [Kad21].

Another issue that may arise when naming Zettels is that in some cases it is possible for two
or more Zettels to have the same name. This can lead to confusion and difficulty in organizing
and linking Zettels, or simply not be allowed by the used software. This can happen if Zettels are
named after their content or if they cover similar topics. For example, two Zettels with the title
”Using the Application” could cover different aspects of using an application, or two Zettels with
the title ”User Issue” could have different subtopics.

A solution to this problem is to use a naming convention where the name of the Zettel in‑
cludes the topic, subtopic, or concept it relates to, in addition to its contents. For example, instead

18

of naming a Zettel ”UserIssue”, it could be named ”UserIssue‑RenamingFiles‑ChangesNotSaved”.
This naming convention allows for more descriptive and specific names, making it easier to dis‑
tinguish between Zettels that cover similar topics. Additionally, using a consistent format for
naming Zettels, such as starting with the main topic and then adding subtopics or details, can also
help avoid duplicates.

If it is still impossible to avoid duplicate names, there exists the option of adding an index
(e.g., Zettels titled ”Using the Application 1” and ”Using the Application 2”). This, however,
leads back to the problem of lack of context and imposes hierarchy where it may not be desired.
In this case, the author recommends simply merging the two Zettels together, as, if they cannot
be separated into subtopics, they should not be. Such merging, however, should only be done
with careful consideration, as it is best to keep the Zettels as concise as possible.

Having this in mind, here are some Zettel naming conventions that could be used, depend‑
ing on the needs of the development team (examples are based on possible Zettels a file‑sharing
web service might have):

1. Verb‑based: Uses verbs to describe the action the Zettel is explaining. Examples: ”Up‑
loading a File”, ”Sharing a Folder”, ”Downloading a Document”, etc.

2. Feature‑based: Uses the name of the feature or functionality being explained in the
Zettel. Examples: ”File Versioning”, ”Collaborative Editing”, ”Permission Settings”,
etc.

3. Problem‑based: Uses the problem or error being addressed in the Zettel. Examples:
”Fixing a Broken Link”, ”Resolving Upload Errors”, ”Troubleshooting Access Issues”,
etc.

4. Task‑based: Uses the name of the task or process being explained in the Zettel. Ex‑
amples: ”Creating a New User Account”, ”Resetting Passwords”, ”Setting Up 2‑Factor
Authentication”, etc.

If the documentation involves multiple software products, e.g., a file‑sharing service and a
user management service, it is important to ensure that the Zettel names are unique and do not
overlap even if the services have Zettels on similar topics. One way to achieve this is to include
the name of the service as part of the Zettel’s name.

For example, if the Zettel is about resetting passwords in the file‑sharing service, the
name could be ”FileSharingService‑ResettingPasswords”. Similarly, if the Zettel is about
resetting passwords in the user role/permission management service, the name could be
”UserManagementService‑ResettingPasswords”. This naming convention would ensure that the
Zettels are unique and easy to search for based on the specific service they are related to.

2.5.2. Standardizing Zettels

To make documentation effective, it is important to have a clear and standardized structure
that is communicated to the reader. This structure not only benefits the reader by making it
easy to navigate the document and locate information, but it also helps the writer by providing
a framework for organizing the content and identifying areas that need further attention. A stan‑

19

dardized structure also ensures that the document is comprehensive and includes all the necessary
information, as each section represents an important piece of the overall picture [CBB10].

While the overall structure of the Zettelkasten is meant to be flexible, the Zettels themselves
can be standardized. There is no one‑size‑fits‑all answer to what a Zettel template should contain,
as it could vary depending on the specific needs and preferences of the user or organization or
even on the software that is being documented. What a Zettel template looks like and how its
elements are organized and positioned will also heavily depend on the tool being used for the
creation of the Zettelkasten. Some tools can automatically format the Zettel’s title according to
the file name or add relevant metadata. Nevertheless, there are some common elements that
could be included in a Zettel to help ensure that it is clear, organized, and easily searchable:

• Title: A descriptive and concise title that summarizes the content of the Zettel, which
can be used to link or refer to it from other Zettels or documents.

• Content: The main body of the Zettel, which can include text, links, code snippets,
diagrams, or any other relevant information related to the topic.

• Links: Links to other Zettels that are related to the current one, creating a network of
interconnected information.

• References: Citations or links to external resources or documentation that are relevant to
the Zettel.

• Tags: Keywords or labels that can help with categorizing and searching for Zettels.
• Metadata: Optional information such as the creation date, author, source, or status of the
Zettel.

An example Zettel template can be seen in Figure 2.

Figure 2. Zettel template example created with Obsidian

In addition to the content of the Zettels, their length should also be standardized ‑ or at
20

least controlled. Keeping the content of Zettels short has several benefits:

1. It allows for easier navigation and quicker scanning. When a Zettel is short and focused,
developers can quickly understand its main point and decide whether or not it is relevant
to their current task.

2. Short Zettels encourage brevity and clarity of thought. Developers are forced to distill
their ideas down to their essence, which can help improve communication and reduce
misunderstandings.

3. Short Zettels are easier to link together. When Zettels are focused on a single topic, it
is easier to create meaningful links between them. This can help developers see connec‑
tions between different parts of the system and gain a more comprehensive understanding
of the domain.

Overall, by using a standardized template, it may become easier to quickly create and orga‑
nize new Zettels. Also, keeping the content of Zettels short could help encourage clarity, brevity,
and meaningful linking ‑ this could help readers gain a more comprehensive understanding of
the information. As such, these practices could lead to more effective documentation overall.

2.5.3. Standardizing tags

In the context of software documentation, the Zettelkasten method can be enhanced by
incorporating tags, despite their absence in the original framework. Tags play a pivotal role in
facilitating navigation and classification. While the arrangement of notes itself aids in navigation,
tags offer a means of classification through metadata. They provide descriptive attributes that
define a note’s characteristics, such as topic, function, feature, or user role, enabling the organiza‑
tion of notes into distinct categories. By assigning multiple tags to each note, users can retrieve
information in various ways and quickly locate related notes that share common tags. This signif‑
icantly enhances the usability and efficiency of the documentation, making it easier to navigate
and comprehend [Sma13]. Therefore, in the Zettelkasten method for software documentation,
the consistent use of tags is vital for effective information management.

When creating a Zettel, it is named in a way that reflects both its topic and content. The
main goal of this is to make sure that the Zettel’s name is unique and easily recognizable so that
it can be easily found and identified later on. When dealing with large and complex systems,
there can be many different topics and subtopics to keep track of. Adding all related topics to the
Zettel names is usually not necessary and can make the names long and difficult to read. Instead,
a better approach would be to avoid overloading the names with too much information ‑ only
using the most important keywords for naming, while using tags to expand on the other relevant
topics and subtopics.

For example, instead of naming a Zettel ”User requested a change to authorization require‑
ments for security purposes”, it could be named simply ”Change to authorization requirements”,
and tags would be added to expand on the various topics that the Zettel is relevant to, such as
”user requests”, ”security” and so on. This would make the name concise and easy to read, while
still providing enough information to identify the Zettel’s contents.

21

Tags in the Zettelkasten method can serve more purposes than just describing the topics of
the Zettels. They can also be used to create different views of the Zettels based on various criteria,
such as their relevance to a particular project, their status, their type, and so on. This is similar
to how views are used in domain modeling.

In domain modeling, views are different ways of looking at the same system. The elements
of the system remain the same, but the relationships between them are represented differently
in each view [CBB10]. Similarly, in Zettelkasten, while the Zettels are unchanged, they can be
filtered and organized according to tags to represent a specific view of the system.

Just as domain modeling views allow us to focus on specific aspects of the system and
analyze them in detail [CBB10], Zettelkasten tags allow us to quickly retrieve and analyze specific
information within our documentation. By filtering Zettels according to tags, we can create
different ”views” of our system documentation, focusing on specific features or aspects of the
software. Tags can allow us to better understand the system we are working with, by providing us
with different perspectives on the same information.

Since tags are so important when using the Zettelkasten method digitally, it is desired to set
some standards for them, especially while working in a collaborative environment. Unlike Zettel
names, which have to be unique and descriptive, tags can be shorter and more general in nature.
This is because a tag is used to group together multiple Zettels that share a common theme or
topic.

When creating tags for Zettels, it is generally better to use short and concise terms rather
than long and complex ones. Short tags are easier to remember and apply consistently, reducing
the risk of confusion and making it easier to quickly search for Zettels. Additionally, using shorter
tags allows for more flexibility in how Zettels are categorized, as it is easier to add new tags or
modify existing ones without creating redundancy or inconsistency [TH20].

Furthermore, it is better to use several short tags to describe a Zettel rather than a single
long one. This is because a single tag that is too specific may only encompass a small number
of Zettels, making it less useful as a search or filtering term. In contrast, several short tags can
be used to describe a Zettel from different angles or perspectives, making it more versatile and
applicable to a wider range of contexts [TH20].

The specific tags used in the Zettelkasten method for software documentation will highly
depend on the system being documented and the needs of the team or individual using it. Over‑
all, using short and concise tags in the Zettelkasten method for software documentation will
help to keep Zettels organized and easily accessible, without adding unnecessary complexity or
redundancy to the system.

2.6. Requirements for tools

Choosing the right tools to use when implementing the Zettelkasten method for software
documentation would be crucial to its success. Even so, there are several things that would be
generally desired and are looked at when deciding what tool to use for documenting software with
the Zettelkasten method [Ahr17; Kad21; TH20]:

22

• Collaboration: Does the tool offer collaboration features for working in a team environ‑
ment?

• Linking: How easy is it to create links between Zettels?
• Searching: How effective is the search functionality?
• Ease of use: How easy is the tool to use and navigate?
• Customization: Can the tool be customized to fit specific needs?
• Integration: Can the tool be easily used together with other tools?
• Accessibility: Can the documentation be easily accessed by interested parties?
• Tagging: Can Zettels be easily tagged and filtered for easier retrieval?
• Graph‑view: Does the tool offer a graph view feature for visualizing the relationships
between Zettels?

Options for collaboration are a must‑have when working in a team. While any text‑based
tool could be used in tandem with a version control tool such as Git to enable sharing the Zettel
files, any additional features that would facilitate collaboration are desired. Meanwhile, linking
and searching are necessary features, and they will be used often when creating or reading the
Zettelkasten. While it is not mandatory to have an easy‑to‑use application with options for cus‑
tomization, these factors may determine how readily and quickly it is adapted by development
teams. The author thinks it is worth it, however, to elaborate more on the importance of the other
points.

2.6.1. Integration

When using the Zettelkasten method for software documentation, it is important to have
a tool that can be integrated with other tools used by the development team. This is because it
can be inconvenient and time‑consuming to manually create links between different work items
and documentation. Automating this process would minimize the possibility of human‑caused
errors and increase efficiency. For example, if a team uses another tool for issue tracking, such as
Jira or Azure DevOps, it would be ideal if the Zettelkasten tool could automatically create back‑
links between work items and documentation. This would ensure that all relevant information is
properly connected, without the need for manual linking.

It is technically possible to use some existing wiki platforms for implementing the Zettelka‑
sten method, which would solve integration concerns. It should be noted, however, that these
platforms are not inherently designed with the specific needs and principles of the Zettelkasten
approach in mind. Most wiki platforms are designed for creating and organizing larger docu‑
ments or pages rather than discrete, atomic units of information like Zettels and may lack specific
features that are tailored to the unique needs of the Zettelkasten method. Such platforms often
employ a hierarchical structure, where pages are organized in a tree‑like directory system [Klo06].
This hierarchical organization may not align well with the associative nature of the Zettelkasten
method, where connections between notes can span across different topics and categories. While
it is possible to adapt existing wiki platforms for Zettelkasten‑like workflows, it may still require
customization, configuration, and the use of additional tools or plugins.

23

2.6.2. Accessibility

Additionally, the documentation should be easily accessible and shareable among interested
parties. An online tool, such as Notion or Roam Research, could be a good option as it can be
easily linked to and accessed from a browser. This would enable readers to quickly access the
documentation they need, even if they do not have some specific software installed. However,
it is important to note that some offline tools like Obsidian or Foam can also be made more
accessible through plugins, allowing for similar functionality.

2.6.3. Tagging

When using the Zettelkasten method for software documentation, it is important to be able
to add tags to Zettels and filter by them for several reasons. First, tags provide a way to organize
and categorize Zettel, making it easier to find and retrieve specific information when needed. For
example, a Zettel related to a specific feature or function of the software can be tagged with the
relevant keyword, making it easy to find all related Zettels by filtering with that tag.

Second, filtering by tags can help to identify gaps or areas for improvement in the docu‑
mentation. By looking at the distribution of tags, it may become apparent that certain topics or
areas are not well‑covered, or that there is redundant information in other areas. This information
can then be used to guide the creation or revision of Zettel to improve the overall quality of the
documentation.

2.6.4. Graph view

Graph‑view functionality would be helpful when choosing a tool because it would allow
users to visualize the relationships between different Zettels and concepts. With graph view,
Zettels can be organized spatially and linked together to form a map or a diagram that represents
the structure of the knowledge base. This can be particularly useful for domain modeling, where
different concepts and entities need to be organized and linked together in a meaningful way
[CBB10].

With graph view functionality, users could easily navigate and explore the knowledge base,
zoom in on specific areas of interest, and get a high‑level overview of the entire system. It
could also help to identify gaps and inconsistencies in the documentation and highlight areas
that require further research or clarification. Overall, graph view functionality is important for
visualizing complex information, which would be especially useful in software documentation
where there are often many interrelated concepts and components to consider [CBB10].

24

3. Using the Zettelkasten method

3.1. Choosing tools

With the increasing popularity of Zettelkasten, there are now many tools available that
can be used to create and manage Zettels. Each of these tools has its own strengths and weak‑
nesses, making the selection of the best tool largely dependent on a development team’s needs
and preferences. When choosing the right tool to implement the Zettelkasten method for software
documentation, the author considered several applications that could meet their needs. While
there are many more applications available that could help manage Zettels and markdown files,
the author focused on comparing the following seven:

• Foam: https://foambubble.github.io/foam/
• Zettlr: https://docs.zettlr.com/en/
• Zettel Notes: https://docs.zettelnotes.org/
• Evernote: https://help.evernote.com/hc/en-us
• Roam Research: https://roamresearch.com/#/help
• Obsidian: https://help.obsidian.md/
• TiddlyWiki: https://tiddlywiki.com/

After considering the desired features and criteria previously outlined in the requirements,
the author chose to use Obsidian for software documentation using the Zettelkasten method
because of these reasons:

• Ease of Use: Obsidian is relatively easy to use and navigate, with a clean and simple user
interface. It has a markdown‑based note‑taking system that allows for easy editing and
formatting of Zettels. The application also has a built‑in help feature that can assist users
in learning how to use the software more effectively.

• Customization: Obsidian is highly customizable, allowing users to personalize the inter‑
face to fit their specific needs. Users can customize the themes, plugins, and hotkeys to
streamline their workflow and improve their productivity.

• Collaboration: Obsidian can be used in a team environment with its integration with Git,
which allows for version control and collaboration with others. The Obsidian Git plugin
has helpful features such as automatic file backup, or the option to stage and commit
individual files.

• Linking: Obsidian has a powerful linking system that makes it easy to create and navigate
links between Zettels. Users can create links using double brackets around a Zettel’s title,
and Obsidian will automatically create a backlink to that Zettel in the referenced one.

• Searching: Obsidian has an effective search function. Users can search for Zettels using
keywords or tags, making it easy to quickly locate relevant information.

• Tagging: Obsidian allows for the easy creation of tags, which makes it easy to organize
and categorize Zettels by topic, project, or any other criteria. Users can filter Zettels by
tag, making it easier to find related Zettels and retrieve specific information.

25

https://foambubble.github.io/foam/
https://docs.zettlr.com/en/
https://docs.zettelnotes.org/
https://help.evernote.com/hc/en-us
https://roamresearch.com/#/help
 https://help.obsidian.md/
https://tiddlywiki.com/

• Graph‑View: Obsidian has a powerful graph view feature that allows users to visualize
the relationships of different Zettels. The graph view shows the links between Zettels
in a graphical format, allowing users to see the connections between different ideas and
concepts. The tool also allows to filter which Zettels are shown in the graph by including
or excluding certain tags.

• Community Resources: Obsidian has a large and active community of users who create
plugins, themes, and other resources that can enhance the functionality of the application.
This community is also a great resource for learning about the best practices for using
Obsidian.

While other options, like Zettlr or Zettel Notes, have some of the desired features, they
do not have the same level of customization or community resources as Obsidian. TiddlyWiki,
Evernote, and Roam Research are good options, but they do not have the graph view feature
(though it could be achieved through the use of other tools), which is an important consideration
for organizing and visualizing complex information. While Foam does have a graph view feature,
in the documentation it says the tool is quite unstable. By comparison, Obsidian is more stable
and has a more robust set of features.

Regarding the accessibility of the documentation, while Obsidian itself does not have an
online version, there are plugins that make it possible to publish the Zettelkasten to be viewed in
a browser. One such plugin is Obsidian Publish, which is developed and sold by Obsidian. There
is also a free and ope‑ source publishing tool called Digital Garden. Both tools allow configuring
specific Zettels to be published online. By using these plugins it becomes possible to make the
documentation accessible to its readers through a browser link, without the need to have any
additional software installed.

Integration with other software tools that are used for software development is hard to
achieve with any of the compared documentation tools. It is not difficult to manually create
links from the Zettelkasten to, for example, tasks in the backlog (and the other way around).
However, automating the creation of backlinks would require a significant investment of time
and resources. It would entail the creation of plugins or extensions for both the documentation
tool and the tool used for tracking development tasks, which would be quite laborious and time‑
consuming. Although integrating the Zettelkasten documentation method with other software
tools used for software development could increase its effectiveness, it is not a necessary step for
demonstrating its value. This is why the author chose to forego this integration, choosing to,
instead, create two‑way links between the tools manually.

3.2. Organizing existing documentation

The author used the adapted Zettelkasten method to reorganize the documentation of an
existing system. The author chose two interconnected web services. One of these services was
a file‑sharing web service, while the other was a metadata recording and retrieval service. These
are the steps that the author took to organize the documentation into Zettels:

26

1. Analyzing the existing documentation
2. Breaking the documentation down into Zettels
3. Assigning unique identifiers
4. Linking related Zettels together
5. Creating and assigning tags

3.2.1. Analyzing the existing documentation

The author took a look at the existing documentation to get a sense of what information is
already available and how it is organized. The majority of the documentation was in the form of a
wiki, consisting of several multi‑page documents. Additional documentation was stored separately
in SharePoint, and some was kept in a different, rarely‑used older wiki. The documentation
included various forms of media, such as tables, diagrams, and even video recordings.

The documentation was found to be extensive, containing various types of information
such as design documents, technical debt, known issues, frequently encountered problems, and
usage instructions. Some documents also contained links to the documentation of other services
provided by the same company. These other services were being used by or were using the
file‑sharing and metadata services.

While the Zettelkasten could include the documentation of multiple services, the author
decided that it is not necessary to include more than two, since they should be enough to be able
to evaluate the Zettelkasten method. Since it would be beneficial to at least know what the other
connected services are, the author decided to only include small parts of their documentation.

The analysis of the existing documentation revealed some potential challenges that would
need to be addressed in order to effectively implement the Zettelkasten method. For example, the
author found that some information was duplicated across multiple documents, making it difficult
to locate specific information. The documentation was also intended for different audiences, with
some information intended for use within the development team and some meant to be shared
with other teams attempting to use the services.

3.2.2. Breaking the documentation down into Zettels

The author broke the existing documentation down into Zettels. This involved breaking
longer documents into shorter sections and identifying key concepts or procedures that can be
documented separately.

During this process, it became clear that breaking down some types of documentation was
easier than others. For instance, various tables and diagrams could each have their own Zettel,
without needing to be broken down further. It was the same case with various definitions of
used words, concepts, API endpoints, etc. This made it easy to transfer and adapt these types of
documentation to the Zettelkasten.

On the other hand, if something was written as a continuous text, additional work was
needed to separate it into multiple Zettels. Splitting up some paragraphs, especially ones that
covered multiple topics, proved to be quite challenging in some cases. It required the author to

27

read through and understand the text and in some cases completely rewrite the information to be
able to break it into discrete pieces.

In such cases, it was difficult to determine the appropriate granularity of each Zettel. If the
Zettels are overly specific, it may result in an excessive number of Zettels that become difficult to
manage and navigate. On the other hand, if the Zettels are too broad, they may lack the necessary
level of detail and fail to capture the intricacies of the information being documented.

Another challenge was ensuring that no essential information is lost while breaking down
the documentation. Some covered topics were scattered across multiple documents, making it
difficult to capture and organize them accurately. To ensure no information was missed, the
author created Zettels for every piece of documentation, even if some information was repeated.
Only after everything was separated into pieces, did the author consolidate Zettels that were too
similar.

3.2.3. Assigning unique identifiers

Once the documentation was broken down, each Zettel was assigned a unique name. Some
parts of the documentation already had their corresponding identifiers, e.g., table and diagram
names. Most of these names were already unique, and any overlapping titles could be made
distinct simply by making them more specific.

Some difficulties arose, however, because some elements of the file‑sharing web service, and
even the service itself, were named differently in several parts of the documentation. The reason
for this was probably because the documents were created at different times, and the service and
element names had changed over time. This meant that the author had to consolidate the names
or choose to only keep one of them. The author chose to refer to elements by the names they
were given in the most recent documentation ‑ this involved replacing the older names and also
listing them in the documentation, so renamed elements could still be found by their previous
names.

The author also encountered some anticipated hurdles when thinking of names. One of
them was that, since two web services were being documented, some of their documentation
covered similar topics. For example, each service had a Zettel that was about authorization.
Naming them both ”Authorization” would create overlap ‑ as such, the author used the naming
standards set previously and made the names distinct by extending them with the name of the
service that the documentation belonged to.

3.2.4. Linking related Zettels together

While creating Zettels, the author looked for connections and relationships between dif‑
ferent pieces of information. Using the Zettelkasten method’s linking system, the author added
backlinks to connect related Zettels together.

During this process, the author encountered several challenges. Initially, the author strug‑
gled with the inclination to impose hierarchical structures on the Zettels, as they were accustomed
to organizing information in a top‑down manner. The Zettelkasten method encourages a non‑

28

hierarchical approach ‑ once the author embraced this mindset shift and let go of the hierarchical
thinking, many new connections began to emerge.

One particular issue arose with Zettels that were initially organized as lists in the wiki,
such as the comprehensive list of API endpoints. It made sense to link these individual API
endpoints to the main Zettel that defined their corresponding services. This, however, created
an overwhelming number of connections to the main service definition (Zettel titled ”FileShare
Service”), which navigation between Zettels more difficult.

To address this problem, the author devised a solution that involved the creation of in‑
termediary Zettels. By introducing intermediary Zettels, such as a dedicated Zettel containing
the entire list of API endpoints, the author was able to establish meaningful links between the
intermediary Zettel and the specific services they pertained to.

In this approach, the intermediary Zettel (titled ”FileShare API endpoints”) served as a
centralized hub or reference point for the related API endpoints. Each API endpoint could then
be linked to the intermediary Zettel, establishing a clear connection to the corresponding service.
This method ensured a more cohesive and logical structure within the Zettelkasten, allowing for
efficient navigation and retrieval of information. A graph of the resulting Zettelkasten can be
seen in Figure 3.

29

Figure 3. Graph view of the Zettelkasten

3.2.5. Creating and assigning tags

When creating and assigning tags, the author followed a systematic approach. They first
identified the key themes, topics, and attributes that were relevant to the existing documentation.

While specific tags related to individual elements of the service can be valuable in certain
contexts, for the existing documentation they may have introduced redundancy or confusion.
The existing identifiers and links were already effective in conveying the topic and subject matter
of the Zettels ‑ they provided sufficient context and served as implicit tags themselves. As such,
the need for specific tags related to elements of the documented service was minimized.

Because of this, the author only used generic tags, which were useful for the documentation
because they provided a high‑level categorization framework that cut across various elements of

30

the software system. The author established a set of predefined tags (and their scopes) that aligned
with the documentation’s scope and objectives:

• Glossary: Zettels defining and explaining key terms, concepts, or jargon used in the
Zettelkasten.

• Design: Zettels related to design documents, architectural decisions, system design, and
high‑level design considerations.

• Technical Debt: Zettels that discuss technical debt, code refactoring needs, areas for im‑
provement, and potential issues arising from existing code structures.

• Known Issues: Zettels that document known issues, bugs, software defects, or limitations
of the system.

• Usage Instructions: Zettels containing step‑by‑step instructions, user guides, tutorials,
and best practices for utilizing the software effectively.

• Development Instructions: Zettels that provide guidance, instructions, best practices, or
guidelines specifically related to the development process of the software.

• Security: Zettels related to security considerations, vulnerabilities, security guidelines,
and recommended practices for ensuring data protection.

• Integration: Zettels that cover integration points, API documentation, third‑party system
integrations, and interoperability aspects.

These tags were chosen to reflect the most common and meaningful aspects of the software
being documented. By using a predefined set of tags, the author aimed to maintain a standardized
and organized tagging system across the documentation. A graph of the Zettelkasten with tags
included can be seen in Figure 3.

31

Figure 4. Graph view of the Zettelkasten with tags included

3.3. Resulting Zettelkasten

By taking the previously mentioned steps, the author created two Zettelkasten. The first
Zettelkasten was created using the actual documentation of the service. This is the Zettelkasten
which would be later shown to the services’ developers to evaluate the effectiveness of the method
for organizing documentation. The second Zettelkasten was created as a reflection of the first
one but with certain elements excluded or replaced by generic keywords. Despite the changes,
the author used the same naming convention and tagging system as in the first Zettelkasten.
This second Zettelkasten was created to demonstrate the method in this thesis without disclosing

32

confidential information and is the version that is shown in this thesis1.

3.4. Recommendations for using the method

After analyzing the Zettelkasten method and exploring its adaptation for software docu‑
mentation, the author proceeded to apply the method to organize existing documentation. This
hands‑on experience provided valuable insights and practical knowledge, leading to the formula‑
tion of the following recommendations for using the method to document software:

1. Documentation tools: When choosing tools, consider factors such as collaboration fea‑
tures, ease of use, search functionality, customization options, integration capabilities
with other tools, accessibility, tagging capabilities, and graph view features. Evaluate
different tools based on these criteria to find the best fit for your team’s needs.

2. Collaboration: Develop a common organizational framework, such as a set of topics or
themes. Regularly review the documentation as a team.

3. Personalization: Allow developers to keep their personal observations, ideas, and notes
in an individual version of the documentation. Evaluate the content of personal notes
periodically to identify any that may be relevant and useful to a wider audience. Consider
incorporating these valuable personal notes into the main documentation.

4. Documentation standards: While the overall structure of the Zettelkasten should remain
flexible, standardize its elements:
• Names: Opt for full names and ensure that they remain unique. Establish a consis‑
tent format for naming Zettels, such as starting with the main topic and then adding
subtopics or details. If duplicate names are unavoidable, consider merging the related
Zettels together.

• Tags: Opt for concise tags that are easy to remember and apply consistently. Use tags
that would encompass multiple Zettels. Also, when tagging Zettels, use multiple short
tags instead of fewer long ones.

• Zettels: Adopt a standardized template for Zettels that includes essential elements
such as a descriptive title, main content, links to related Zettels, references, tags, and
optional metadata. Additionally, control the length of Zettels, keeping them short and
focused.

5. Linking: Let go of the inclination to impose hierarchical structures on the Zettels ‑ just
connect related concepts. In situations where linking multiple Zettels to a single main
Zettel creates an overwhelming number of connections, consider introducing intermedi‑
ary Zettels.

1The Zettel files that were created can be found here: https://github.com/GGretute/Zettelkasten

33

https://github.com/GGretute/Zettelkasten

4. Evaluating the Zettelkasten method

Evaluating the effectiveness of using the Zettelkasten method for software documentation
in comparison to other methods could be done in several ways. The author considered several
different approaches:

• Measuring the ease of use: One way to evaluate the effectiveness of the Zettelkasten
method would be to measure the ease of use of the system compared to other methods.
This could be done through user surveys, usability testing, or other methods that allow
developers to provide feedback on the system’s usability.

• Measuring the organization of information: Another way to evaluate the effectiveness
of the Zettelkasten method would be to compare the organization of information in the
Zettelkasten to that of other methods. This could be done by evaluating the consistency,
completeness, and accuracy of the documentation produced by the Zettelkasten compared
to other methods.

• Measuring the time and effort required: The Zettelkasten method may require more
upfront effort to set up and maintain than some other methods. Therefore, another way
to evaluate the effectiveness of the Zettelkasten method would be to compare the time
and effort required to use the Zettelkasten to that of other methods.

• Comparing outcomes: Finally, the most useful way to evaluate the effectiveness of the
Zettelkasten method would be to compare the outcomes of using the Zettelkasten to that
of other methods. This could include metrics such as the quality of the software produced,
the time required to complete projects, and the overall satisfaction of team members.

Overall, evaluating the effectiveness of the Zettelkasten method for software documentation
would require a comprehensive approach that considers a range of factors, including ease of use,
organization of information, time and effort required, and outcomes. Having this in mind, it
would take a long time to truly measure how effective the Zettelkasten method is for software
documentation ‑ this would require for it to be used in a real‑life software development scenario.
This is why the author chose to only evaluate the Zettelkasten method in these two ways:

• based on the author’s personal knowledge ‑ they would theoretically evaluate the method
based on the experience gained while using it and other documentation methods;

• based on the experience of other software developers ‑ the method would be evaluated
through the help of a survey.

4.1. Theoretical evaluation

4.1.1. Comparison with wiki

Given that the original documentation was in the form of a wiki, the author saw an opportu‑
nity to compare the Zettelkasten method with the wiki method. The comparison was particularly
relevant to the author, as they were already accustomed to using a wiki for their documentation
needs. While there may be other documentation methods available, the wiki method is widely

34

used and well‑established, making it a good benchmark for evaluating the effectiveness of the
Zettelkasten method for software documentation. The author hoped this targeted comparison
would enable a more in‑depth understanding of the unique aspects and potential benefits of the
Zettelkasten method.

Using the Zettelkasten method for software documentation is quite similar to using a wiki.
Both methods utilize backlinking as a way of connecting related information, which can make
it easier to navigate and organize a large amount of information. Also, both the Zettelkasten
method and the wiki method are designed to be flexible and adaptable, allowing users to create
and organize information in a way that works best for them [Ahr17; Klo06].

There are some differences between using a wiki and using the Zettelkasten method for
software documentation:

• The Zettelkasten method uses small, bite‑sized notes called Zettels, while wikis typically
contain longer, more detailed documents [Klo06].

• The structure of a Zettelkasten is flexible and can be adjusted as needed, whereas wikis
typically follow a hierarchical tree‑like structure of pages and folders [Klo06].

• The Zettelkasten method is designed to encourage the creation of connections between
notes, while wikis typically prioritize the organization of information in a linear manner
[Klo06].

• In a Zettelkasten, tags are used to categorize notes, while wikis often rely on a table of
contents and category pages [Klo06].

In comparison to the Zettelkasten method, using a wiki often leads to longer documents
with more detailed content. While this can be useful in some cases, it can also make it harder
to navigate and find relevant information quickly. Additionally, longer documents may be more
difficult to link together effectively, as it can be harder to identify the main point of each section
and find meaningful connections between them.

Based on the author’s personal experience in using both the wiki and Zettelkasten docu‑
mentation, there were noticeable differences in the time required for creating and reading the
respective formats. When creating Zettels, the author found that it took more time compared to
the wiki format. This was primarily due to the additional work involved in creating identifiers and
establishing links between Zettels. Each Zettel required thoughtful consideration of its unique
identifier and determining how it would be interconnected with other relevant Zettels. This
process heavily contributed to the time investment in creating the Zettelkasten documentation.

On the other hand, the author observed that reading and understanding the Zettels was
generally easier compared to wiki documents. The concise and focused nature of the individual
Zettels made it easier to grasp and absorb information. This allowed for more efficient reading
and comprehension, without the need to navigate through lengthy pages or sections.

However, it is important to note that the author’s perception of ease in reading and under‑
standing the Zettels might have been influenced by their personal organization of the Zettelkasten
according to their own thought process. The author’s familiarity with the structure and connec‑
tions within the system could have positively impacted their reading experience. It is possible

35

that another reader, with a different organizational approach or perspective, might have a varied
experience while navigating and comprehending the Zettelkasten documentation.

In conclusion, both the Zettelkasten and wiki share similarities in utilizing backlinking and
offering flexibility but differ in terms of note size, structure, emphasis on connections, and cat‑
egorization methods. While creating the Zettelkasten requires a greater time investment, the
method’s focus on concise and interconnected notes may facilitate easier reading and compre‑
hension compared to longer wiki documents. Overall, both methods have their strengths and
weaknesses, and the choice between them should depend on the specific requirements and pref‑
erences of the software development team.

4.1.2. Zettelkasten and continuous documentation

The author believes that while creating many pages of documentation at once may take
longer when using a Zettelkasten, the method might be better suited for building up documen‑
tation in small pieces bit by bit. Based on their own experience working in a software team that
follows Agile principles, this incremental approach to adding small bits of documentation over
time could encourage more developers to be proactive in creating documentation.

Software developers often encounter various useful information while working on their
projects. This could involve finding solutions to repetitive user problems or gaining insights into
how older or legacy code functions. These small pieces of information can be valuable to other
developers, but they often do not make it into the final documentation [TH20]. The author
believes that one reason for this is the daunting task of adding such information to an already
existing, well‑developed document, as it may not fit seamlessly with the existing flow. Alterna‑
tively, creating new documents for each piece of information poses the challenge of determining
where they fit within the existing file hierarchy.

This is where the Zettelkasten method can shine in terms of incorporating diverse bits of
information. By creating a new Zettel, connecting it to related concepts, and adding relevant tags,
developers can add valuable information without worrying about disrupting the existing flow or
hierarchy. The flexibility of the Zettelkasten method allows for the seamless integration of new
information, enabling developers to capture and share valuable insights more effectively.

In the author’s opinion, this approach would be particularly useful for software teams that
follow a code‑first approach. Based on their experience with this development approach, they
have observed that the documentation often lags behind the existing codebase. The updates to
documentation tend to be more large‑scale and infrequent, resulting in a struggle to align the
documented information with the current functionality [Mar08]. Moreover, large‑scale updates
may inadvertently overlook important details or specific insights.

By adopting the Zettelkasten method and encouraging the continuous addition of small
bits of documentation, these challenges can be mitigated. Rather than relying solely on periodic
updates, the incremental nature of the Zettelkasten method allows developers to capture and
document relevant information as it arises. This way, the documentation can more effectively
keep pace with the evolving codebase, ensuring that valuable insights and solutions are captured

36

in a timely manner.
Ultimately, while the initial effort of creating identifiers and linking notes may require

more time, the modified Zettelkasten method shows great potential as an alternative approach
to software documentation. The author believes that the method can be most advantageous for
software teams following Agile principles or employing a code‑first approach. By addressing the
documentation lag, reducing the risk of oversight, and enabling a more seamless integration of
knowledge, this approach can foster effective knowledge management and enhances collaboration
within the software development process.

4.2. Survey

4.2.1. Evaluation criteria

To measure the effectiveness of using the Zettelkasten method for software documentation,
a survey was conducted. The method was evaluated in two main aspects: how easily can the
documentation be created and read. There were multiple questions in each category, with possible
responses being a rating on a scale of 1 to 10, where higher numbers indicated a better score. This
rating system allowed for a quantitative assessment of participants’ feedback.

By analyzing the survey responses and calculating the average ratings for each question, an
overall assessment of the effectiveness of the Zettelkasten method for software documentation
was derived. The average ratings were used to determine the level of effectiveness:

• not effective ‑ average score below 4;
• partially effective ‑ average score between 4 and 6;
• mostly effective ‑ average score between 6 and 8;
• completely effective ‑ average score above 8.

In order to provide more context to the survey’s answers participants were asked about prior
experiences that would be relevant to the topic. The aim was to establish a baseline understanding
of their background knowledge and potential biases. For the same reason, a quantitative assess‑
ment was done on the wiki method of documentation as well. The results of these questions
would serve as a reference point for comparison and enable the identification of any potential
causality or biases that could influence participants’ perceptions towards the Zettelkasten method.
The answers would also allow for a more in‑depth comparison of the wiki and Zettelkasten doc‑
umentations.

Lastly, participants were asked open‑ended questions about their thoughts on the Zettelka‑
sten method. The goal of this was to gather additional feedback that would give insight into how
the method’s adaptation could be later improved. Answers to these questions would not have a
direct influence on the final evaluation of the method’s effectiveness.

4.2.2. Methodology

The participants of the survey consisted of the author’s colleagues ‑ 10 software developers
from the same company. While not all developers worked directly on the two services being

37

documented, most of them were familiar with these services as they worked on other related
software products.

During the survey, its participants were presented with existing documentation that had
been organized using a wiki and using the Zettelkasten method. Then the participants were
asked to provide feedback and insights by answering a series of survey questions.

The survey was conducted through Google Forms, which provided a convenient and acces‑
sible platform for collecting responses from the participants. Using a survey format allowed for
structured feedback and facilitated a comparative analysis between the Zettelkasten method and
the more traditional approaches for software documentation.

4.2.3. Survey questions

Refer to Appendix 1 for all survey questions2.
The survey consists of four sections, each serving a specific purpose:

1. General Information: This section collects basic demographic information about the
participants, such as their years of experience in software development and their famil‑
iarity with the Zettelkasten method and using a wiki for software documentation. This
information helps provide context to the responses.

2. Reading Documentation: Participants are asked to view the documentation of two ser‑
vices, one organized in a wiki and the other using the Zettelkasten method. They are
then asked to rate their understanding of the system by viewing the documentation at a
quick first glance, the intuitiveness of navigation, the speed of finding information, and
how well the connections between components are represented. These questions aim
to evaluate the accessibility, coherence, and comprehensibility of the documentation
methods.

3. Creating Documentation: Participants are provided with an explanation of the principles
and process of creating documentation using the Zettelkasten method. They are then
asked to rate the ease of learning to create documentation using a wiki and the Zettelka‑
sten method, the speed of adding new documentation, the flexibility in accommodating
changes, and the facilitation of collaboration among team members. These questions
assess the usability and flexibility of the documentation creation process.

4. Overall Feedback: Participants are invited to provide their thoughts on the strengths
and weaknesses of the Zettelkasten method compared to other documentation methods,
suggest improvements, and share their willingness to use the Zettelkasten method for
their own documentation needs. This section aims to gather comprehensive feedback
and additional insights from the participants.

4.2.4. Survey results

Please refer to Appendix 2 for all survey answers.
2Google Forms link: https://forms.gle/BjF22NetHxE6o2z28

38

https://forms.gle/BjF22NetHxE6o2z28

According to the survey results, the Zettelkasten method received an overall average rating
of 7.2875, slightly lower than the wiki’s average of 7.3875. Both methods fell within the range
of 6 to 8, suggesting that according to the set criteria, participants considered the Zettelkasten
method to be mostly effective for software documentation.

The average rating for readability‑related questions regarding the Zettelkasten method was
7.275, slightly higher than the wiki’s average rating of 7.025. This suggests that participants
found the Zettelkasten method to be slightly more readable compared to the wiki for software
documentation.

In terms of ease of creation, the Zettelkasten method received an average rating of 7.3,
slightly lower than the wiki’s average rating of 7.75. This indicates that participants perceived the
wiki as slightly easier to use for creating documentation compared to the Zettelkasten method.

Overall, the survey results indicate that the Zettelkasten method received favorable ratings
in terms of readability, while the wiki was rated higher in terms of ease of creation. A chart
comparing the average ratings for each question about the wiki and Zettelkasten documentation
can be seen in Figure 5.

Figure 5. Average Ratings: Wiki vs. Zettelkasten Documentation

According to the survey results, participants who were more familiar with the Zettelkasten
39

note‑takingmethod tended to rate its usage for software documentationmore positively. Similarly,
participants who were more familiar with using a wiki for software documentation showed a
positive correlation with their ratings of wiki‑related questions.

According to the survey respondents, the Zettelkastenmethod exhibited strengths compared
to other documentation methods. These strengths included its interconnected nature, which
facilitated understanding the context of individual components. Additionally, the concise notes
were praised for their ability to support quick comprehension. The method’s flexibility in finding
information through various approaches was also acknowledged, accommodating different user
needs. Respondents considered the Zettelkasten method well‑suited for ad‑hoc note‑taking and
capturing random information, making it adaptable to diverse scenarios.

On the other hand, the survey respondents also identified several weaknesses of the Zettelka‑
sten method when compared to other documentation methods. A prominent concern raised was
the additional time and training required to effectively utilize this method. Due to its lesser preva‑
lence in work environments compared to more traditional methods, navigating the Zettelkasten,
especially for first‑time users, was deemed challenging. Another commonly mentioned issue was
the time‑consuming process of adding tags and establishing relationships between notes. Lastly,
the absence of strict rules within the system was viewed as a potential source of errors.

4.2.5. Survey bias and limitations

The survey results regarding the effectiveness of the Zettelkasten method for software docu‑
mentation might be inconclusive due to certain limitations. Although the participants were able
to view and explore the organized documentation, their experience was limited to a short dura‑
tion during the survey. They did not have the opportunity to actively use and engage with the
Zettelkasten method for an extended period of time to create their own documentation.

By only experiencing the organized documentation without actively participating in the
creation process, the participants may not have fully grasped the nuances and benefits of the
Zettelkasten method. Creating and maintaining a Zettelkasten requires ongoing engagement,
iterative linking, and continuous refinement over time.

Furthermore, the participants’ understanding and perception of the Zettelkasten method
might have been influenced by their prior familiarity with the wiki‑based documentation. Since
the survey focused on comparing the Zettelkasten method with using a wiki, the participants
might have relied on their existing knowledge and biases from their experience with the wiki
format. This could introduce some subjective biases or preconceived notions that may have
influenced their feedback.

Additionally, the survey questions may not cover all aspects of software documentation,
and there is a possibility of bias toward the Zettelkasten method. Software documentation en‑
compasses a wide range of factors ‑ the survey may not capture the full spectrum of requirements
and preferences that developers have for documentation methods. The questions of the survey
might have also been influenced by the author’s views. Similarly, the participants’ answers might
have been affected by the framing of the questions and the specific language used. The way

40

the questions are presented may inadvertently highlight the strengths of the Zettelkasten method
or downplay the strengths of other documentation methods. It is crucial to acknowledge this
potential bias when interpreting the survey results.

To obtain more conclusive insights on the effectiveness of the Zettelkasten method, it would
be beneficial to conduct a longitudinal study where participants have the opportunity to actively
use the method for an extended period. This would provide a more comprehensive understanding
of the method’s impact on documentation creation, organization, and knowledge management.
Additionally, involving participants with varying levels of familiarity with both the Zettelkasten
method and the wiki format could help capture a more diverse range of perspectives and experi‑
ences.

In summary, while the survey results offer initial insights, the limited exposure of the partic‑
ipants to the Zettelkasten method and potential biases from their and the author’s prior experience
may make the results inconclusive in fully evaluating the effectiveness of the Zettelkasten method
for software documentation. Further research and hands‑on implementation are needed to gain
a more comprehensive understanding of the method’s benefits and limitations.

41

Results

In this thesis, the following results were achieved:

1. Recommendations for using the Zettelkasten method for software documentation were
proposed.

2. A Zettelkasten containing the existing documentation of two services was created.
3. A survey questionnaire was made to evaluate the effectiveness of the Zettelkasten method

compared to other documentation approaches.
4. Survey data was collected, consisting of responses from ten participants regarding their

opinions on the Zettelkasten method.

42

Conclusions

Based on the conducted research and analysis, the following conclusions can be drawn from
this thesis:

1. The adaptation of Niklas Luhmann’s Zettelkasten method for software documentation
was successfully achieved.

2. There is no significant difference in the overall effectiveness between the Zettelkasten
and wiki methods for software documentation. Survey results indicated that both meth‑
ods are effective, with the Zettelkasten method having a slight advantage in terms of
readability and the wiki being easier to use for creating documentation.

3. The Zettelkasten method offers advantages for software teams that adhere to Agile prin‑
ciples or adopt a code‑first approach. This is supported by survey results which indicated
that the Zettelkasten method showcased strengths in terms of concise note‑taking, adapt‑
ability to ad‑hoc scenarios, and accommodating varied information.

4. The implementation of the Zettelkasten method may initially demand a greater time
investment. The survey results confirmed this and highlighted several other weaknesses
associated with this approach, such as the need for additional training for new users, and
the increased potential for errors due to the absence of rigid guidelines.

Further research and experimentation can explore enhancements and optimizations to ad‑
dress the identified weaknesses and maximize the benefits of the Zettelkasten method in software
documentation practices.

43

Glossary

• Zettelkasten method ‑ A note‑taking method developed by Niklas Luhmann, which in‑
volves the creation of a Zettelkasten.

• Zettelkasten ‑ A collection of interlinked notes that is created using the Zettelkasten note‑
taking method.

• Zettel ‑ Also known as a slip, it refers to a note within a Zettelkasten.

44

References

[Ahr17] S. Ahrens. How to Take Smart Notes: One Simple Technique to Boost Writing, Learn‑
ing and Thinking – for Students, Academics and Nonfiction Book Writers. Createspace
Independent Publishing Platform, 2017. 170 p.

[CBB10] P. Clements, F. Bachmann, L. Bass. Documenting Software Architectures: Views and
Beyond (2nd ed.) Addison‑Wesley Professional, 2010. 592 p.

[Eva03] E. Evans. Domain‑Driven Design: Tackling Complexity in the Heart of Software (1st ed.)
Addison‑Wesley Professional, 2003. 560 p.

[HF11] J. Humble, D. Farley. Continuous Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation. Pearson Education, Inc, 2011. 127 p.

[Kad21] D. Kadavy. Digital Zettelkasten: Principles, Methods, and Examples. Kadavy, Inc.,
2021. 88 p.

[Klo06] J. E. Klobas. Wikis: Tools for Information Work And Collaboration (1st ed.) Chandos
Publishing, 2006. 252 p.

[Mae06] J. Maeda. The Laws of Simplicity. The MIT Press, 2006. 100 p.

[Mai09] M. W. Maier. The art systems of architecting (3rd ed.) CRC Press, 2009. 440 p.

[Mar08] R. C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship (1st ed.) Pear‑
son, 2008. 464 p.

[Mar14] R. C. Martin. Agile Software Development, Principles, Patterns, and Practices (1st ed.)
Pearson Education Limited, 2014. 524 p.

[May14] R. E. Mayer. The Cambridge Handbook of Multimedia Learning (2nd ed.) New York,
USA: Cambridge University Press, 2014. 99 p.

[Mit09] M. Mitchell. Complexity: A Guided Tour. New York, USA: Oxford University Press,
2009. 349 p.

[Mor12] J. Morgan. The Collaborative Organization: A Strategic Guide to Solving Your Inter‑
nal Business Challenges Using Emerging Social and Collaborative Tools. McGraw‑Hill,
2012. 304 p.

[MT15] S. Milett, N. Tune. Patterns, Principles, and Practices of Domain‑Driven Design (1st
ed.) Wrox, 2015. 800 p.

[Pre10] R. S. Pressman. Software Engineering: A Practitioner’s Approach (7th ed.)
Raghothaman Srinivasan, 2010. 895 p.

[RMA15] L. Rosenfeld, P. Morville, J. Arango. Information Architecture: For theWeb and Beyond
(4th ed.) O’Reilly Media, 2015. 483 p.

[Rot13] S. Roth. Les Deux Angleterres Et Le Continent: Anglophone Sociology as the
Guardian of Old European Semantics. Journal of Sociocybernetics. 2013, volume IX,
pp. 19–34.

45

[SB95] E. B. for Software Standardisation, C. (BSSC). Guide to software configuration man‑
agement. Noordwijk, The Netherlands: ESA Publications Division, 1995. 43 p.

[Sch18] J. F. Schmidt. Niklas Luhmann’s Card Index: The Fabrication of Serendipity. Socio‑
logica. 2018, volume XII, pp. 53–60.

[Sma13] R. F. Smallwood.Managing Electronic Records: Methods, Best Practices, and Technolo‑
gies (1st ed.) Wiley, 2013. 464 p.

[TH20] D. Thomas, A. Hunt. The Pragmatic Programmer: Your Journey to Mastery (20th An‑
niversary ed.) Pearson Education, Inc, 2020. 127 p.

46

Comparing Software Documentation Methods
This survey is designed to gather feedback from developers who have experience with different methods of software documentation. The survey aims to
compare the Zettelkasten method with existing methods of software documentation, and evaluate the effectiveness of using the Zettelkasten method for
software documentation. The survey provides a means to gather feedback from developers who have used different documentation methods, and
compare their experiences with using the Zettelkasten method.

General Information

1: How long have you been working in software development?

▢ 0 to 2 years
▢ 2 to 5 years
▢ 5 to 10 years
▢ over 10 years

2: How familiar are you with the Zettelkasten note-taking method?

Not at all familiar ▢ 1 ▢ 2 ▢ 3 ▢ 4 ▢ 5 ▢ 6 ▢ 7 ▢ 8 ▢ 9 ▢ 10 Extremely familiar

3: How familiar are you with using a wiki for software documentation?

Not familiar at all ▢ 1 ▢ 2 ▢ 3 ▢ 4 ▢ 5 ▢ 6 ▢ 7 ▢ 8 ▢ 9 ▢ 10 Extremely familiar

4: How familiar are you with the two documented services?

Not at all familiar ▢ 1 ▢ 2 ▢ 3 ▢ 4 ▢ 5 ▢ 6 ▢ 7 ▢ 8 ▢ 9 ▢ 10 Extremely familiar

Reading documentation
Please view the documentation of two services organized in a wiki and the same documentation organized using the Zettelkasten method. Answer the
following questions:

5: How much understanding could you gain about the system documented using a wiki by
viewing the documentation at a quick first glance?

Very little understanding ▢ 1 ▢ 2 ▢ 3 ▢ 4 ▢ 5 ▢ 6 ▢ 7 ▢ 8 ▢ 9 ▢ 10 A comprehensive
understanding

6: How much understanding could you gain about the system documented using the
Zettelkasten method by viewing the documentation at a quick first glance?

Very little understanding ▢ 1 ▢ 2 ▢ 3 ▢ 4 ▢ 5 ▢ 6 ▢ 7 ▢ 8 ▢ 9 ▢ 10 A comprehensive
understanding

Appendices

Appendix no. 1
Comparing Software Documentation Methods ‑ Survey

47

7: How intuitive was the navigation of the documentation organized using a wiki?

Not intuitive at all ▢ 1 ▢ 2 ▢ 3 ▢ 4 ▢ 5 ▢ 6 ▢ 7 ▢ 8 ▢ 9 ▢ 10 Extremely intuitive

8: How intuitive was the navigation of the documentation organized using the Zettelkasten
method?

Not intuitive at all ▢ 1 ▢ 2 ▢ 3 ▢ 4 ▢ 5 ▢ 6 ▢ 7 ▢ 8 ▢ 9 ▢ 10 Extremely intuitive

9: How quickly could you find the information you need using the wiki?

Not quickly at all ▢ 1 ▢ 2 ▢ 3 ▢ 4 ▢ 5 ▢ 6 ▢ 7 ▢ 8 ▢ 9 ▢ 10 Extremely quickly

10: How quickly could you find the information you need using the Zettelkasten method?

Not quickly at all ▢ 1 ▢ 2 ▢ 3 ▢ 4 ▢ 5 ▢ 6 ▢ 7 ▢ 8 ▢ 9 ▢ 10 Extremely quickly

11: How well did the wiki documentation represent connections between components of the
documented system?

Not well at all ▢ 1 ▢ 2 ▢ 3 ▢ 4 ▢ 5 ▢ 6 ▢ 7 ▢ 8 ▢ 9 ▢ 10 Extremely well

12: How well did the Zettelkasten documentation represent connections between
components of the documented system?

Not well at all ▢ 1 ▢ 2 ▢ 3 ▢ 4 ▢ 5 ▢ 6 ▢ 7 ▢ 8 ▢ 9 ▢ 10 Extremely well

Creating documentation
After being explained the principles and process of creating documentation using the Zettelkasten method, please answer the following questions:

13: How easy would it be to learn to create documentation using a wiki?

Not easy at all ▢ 1 ▢ 2 ▢ 3 ▢ 4 ▢ 5 ▢ 6 ▢ 7 ▢ 8 ▢ 9 ▢ 10 Extremely easy

14: How easy would it be to learn to create documentation using the Zettelkasten method?

Not easy at all ▢ 1 ▢ 2 ▢ 3 ▢ 4 ▢ 5 ▢ 6 ▢ 7 ▢ 8 ▢ 9 ▢ 10 Extremely easy

15: How quickly could new documentation be added using a wiki?

Not quickly at all ▢ 1 ▢ 2 ▢ 3 ▢ 4 ▢ 5 ▢ 6 ▢ 7 ▢ 8 ▢ 9 ▢ 10 Extremely quickly

16: How quickly could new documentation be added using the Zettelkasten method?

Not quickly at all ▢ 1 ▢ 2 ▢ 3 ▢ 4 ▢ 5 ▢ 6 ▢ 7 ▢ 8 ▢ 9 ▢ 10 Extremely quickly

17: How flexible would the wiki be in accommodating changes and updates to the
documentation over time?

Not flexible at all ▢ 1 ▢ 2 ▢ 3 ▢ 4 ▢ 5 ▢ 6 ▢ 7 ▢ 8 ▢ 9 ▢ 10 Extremely flexible

18: How flexible would the Zettelkasten method be in accommodating changes and updates
to the documentation over time?

Not flexible at all ▢ 1 ▢ 2 ▢ 3 ▢ 4 ▢ 5 ▢ 6 ▢ 7 ▢ 8 ▢ 9 ▢ 10 Extremely flexible

19: How well would the wiki facilitate collaboration among team members during the
documentation creation process?

Not well at all ▢ 1 ▢ 2 ▢ 3 ▢ 4 ▢ 5 ▢ 6 ▢ 7 ▢ 8 ▢ 9 ▢ 10 Extremely well

20: How well would the Zettelkasten method facilitate collaboration among team members
during the documentation creation process?

Not well at all ▢ 1 ▢ 2 ▢ 3 ▢ 4 ▢ 5 ▢ 6 ▢ 7 ▢ 8 ▢ 9 ▢ 10 Extremely well

Overall Feedback

21: What are the strengths of the Zettelkasten method compared to other documentation
methods?

22: What are the weaknesses of the Zettelkasten method compared to other documentation
methods?

23: Any other comments or suggestions on how the Zettelkasten method could be better
adapted for software documentation?

24: Would you consider using the Zettelkasten method for your own documentation needs?
Please explain why or why not.

Conclusion
Thank you for taking the time to complete this survey. Your feedback is valuable in evaluating the effectiveness of the Zettelkasten method, and will help
identify any areas where the Zettelkasten method adaptation for software documentation may be improved.

Id How long have
you been
working in
software
development?

How familiar are
you with the
Zettelkasten
note-taking
method?

How familiar are
you with using a
wiki for
software
documentation?

How familiar are
you with the
two
documented
services?

How much
understanding
could you gain
about the
system
documented
using a wiki by
viewing the
documentation
at a quick first
glance?

1 5 to 10 years 7 9 7 7

2 0 to 2 years 1 5 5 4

3 2 to 5 years 1 10 1 4

4 over 10 years 4 4 4 7

5 5 to 10 years 2 9 9 7

6 2 to 5 years 1 8 7 8

7 5 to 10 years 4 9 3 9

8 over 10 years 3 8 5 8

9 0 to 2 years 8 3 3 4

10 5 to 10 years 1 10 2 9

Id How much
understanding
could you gain
about the
system
documented
using the
Zettelkasten
method by
viewing the
documentation
at a quick first
glance?

How intuitive
was the
navigation of
the
documentation
organized using
a wiki?

How intuitive
was the
navigation of
the
documentation
organized using
the Zettelkasten
method?

How quickly
could you find
the information
you need using
the wiki?

How quickly
could you find
the information
you need using
the Zettelkasten
method?

1 8 7 8 8 8

2 6 8 10 6 8

3 6 8 6 6 7

4 8 7 7 8 8

5 7 9 6 5 7

6 6 9 4 9 4

7 7 8 6 9 7

8 8 8 10 7 9

9 5 3 6 4 6

10 7 10 7 9 6

Appendix no. 2
Comparing Software Documentation Methods ‑ Survey Results

50

Id How well did
the wiki
documentation
represent
connections
between
components of
the documented
system?

How well did
the Zettelkasten
documentation
represent
connections
between
components of
the documented
system?

How easy would
it be to learn to
create
documentation
using a wiki?

How easy would
it be to learn to
create
documentation
using the
Zettelkasten
method?

How quickly
could new
documentation
be added using a
wiki?

1 7 9 8 6 9

2 5 9 9 8 8

3 6 9 8 9 8

4 6 8 7 7 7

5 5 7 10 7 9

6 7 6 9 6 8

7 7 8 10 8 10

8 8 10 8 6 8

9 7 9 7 8 7

10 8 8 10 7 10

Id How quickly
could new
documentation
be added using
the Zettelkasten
method?

How flexible
would the wiki
be in
accommodating
changes and
updates to the
documentation
over time?

How flexible
would the
Zettelkasten
method be in
accommodating
changes and
updates to the
documentation
over time?

How well would
the wiki
facilitate
collaboration
among team
members during
the
documentation
creation
process?

How well would
the Zettelkasten
method
facilitate
collaboration
among team
members during
the
documentation
creation
process?

1 6 6 5 5 7

2 8 7 6 7 8

3 9 7 10 7 8

4 7 6 8 6 7

5 7 8 8 6 7

6 5 9 6 6 6

7 7 8 8 8 8

8 10 7 9 6 9

9 6 6 9 7 2

10 7 9 8 9 9

Id What are the strengths of the Zettelkasten method compared to other documentation
methods?

1 Structure, map and ease of use.

2 It clearly shows the dependencies of files

3 The graph structure.

4 Information classification

5 I seems that it connects different aspects of documentation together, which could be better for
people not familiar with the documentation.

6 The short notes make it easy to read

7 Many ways to find information, if you don't know what you're looking for

8 Better for ad-hoc taking of notes.

9 better overview

10 Some more random information might fit well in this format, as in developer notes.

Id What are the weaknesses of the Zettelkasten method compared to other documentation
methods?

1 Requires more time to add "tags"/"relations" to the documentation, not a lot of developers are
used to this method, so it usage might require additional training.

2 if the file needs to be moved to another project all the prior links would have to e deleted

3 The lack of hard rules makes it easier to duplicate entries, or link with the wrong ones, or even
not link anything at all. This is a bigger problem for tags, which could allow for multiple
spellings. It's also not guaranteed that all related items will be tagged, thus you could miss them
thinking it should be under a specific tag.

4 Organizing notes correctly can be time-consuming and challenging.

5 It's quite overfilled with information that may not be relevant in some cases, though the tags
help with that a little.

6 Quite difficult to navigate

7 Quite complicated navigation for a first-time user

8 It's not been used in any of my work environments. Probably because the more traditional
ways (like wiki) are easier to share with others and publish as complete documents.
Documenting various aspects of software often involved more significant amount of text and
graphics than one would comfortably fit on a card (...one page).

9 might take time to find the exact item

10 It might take a very long time to set up.

Id Any other comments or suggestions on how the Zettelkasten method could be better
adapted for software documentation?

1 Needs better integration with widely used software as otherwise map view is not visible. AI
integrations for auto generating text.

2 Find a way to make the graphical representation look less messy

3

4 Multiple types of relations between information.

5 Maybe several different trees could be made for different aspects of documentation, so it's
easier to search within a particular scope

6 Improve the tools for navigation, other than that, seems viable for small projects

7 Make links to other nodes more visible, and not jump out of tree view after note is clicked.

8 Not sure, sorry.

9 no

10 Make adding documentation quicker - maybe automatically create links to other notes?

Id Would you consider using the Zettelkasten method for your own documentation needs?
Please explain why or why not.

1 Depending on the project, it is good for internal documentation, but questionable for public API
documentation. For public documentation it would increase the scope while the end result
would be public webpage with the same content: tags, structure, references.

2 Yes, it is more intuitive, makes finding things easier and feels more organised

3

4 No. It is pretty hard and time-consuming to use Zettelkasten method on existing
documentation if it was not prepared as short notes.

5 Yes, I would consider it for personal projects, but it would have to be more complete to use it
for work

6 No, it just doesn't seem as convenient as using a wiki

7 I would, but it would require for it to be explained to co-workers as well

8 Yes, if I had a convenient web-driven system for it. I feel it might be quicker, more agile than
writing wiki pages, which would inspire myself and more of my colleagues to contribute to the
knowledge base.

9 no, it takes too much time and effort

10 No, it doesn't fit my current needs, but might be interesting to try if I have the opportunity.

	Contents
	Abstract
	Santrauka
	Introduction
	Exploring the Zettelkasten method
	Note-taking process
	Indexing system

	Adapting the Zettelkasten method
	Moving to a digital format
	Ever-changing structure
	The problem of collaboration
	Best uses for the method
	Setting common standards
	Setting naming conventions
	Standardizing Zettels
	Standardizing tags

	Requirements for tools
	Integration
	Accessibility
	Tagging
	Graph view

	Using the Zettelkasten method
	Choosing tools
	Organizing existing documentation
	Analyzing the existing documentation
	Breaking the documentation down into Zettels
	Assigning unique identifiers
	Linking related Zettels together
	Creating and assigning tags

	Resulting Zettelkasten
	Recommendations for using the method

	Evaluating the Zettelkasten method
	Theoretical evaluation
	Comparison with wiki
	Zettelkasten and continuous documentation

	Survey
	Evaluation criteria
	Methodology
	Survey questions
	Survey results
	Survey bias and limitations

	Results
	Conclusions
	Glossary
	References
	Appendices
	Appendix 1. Comparing Software Documentation Methods - Survey
	Appendix 2. Comparing Software Documentation Methods - Survey Results

