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Summary of doctoral thesis

Scientific problem

In this thesis we will consider divisibility properties of some recurrent sequences, Newman
polynomials and computer calculations in those and related questions of number theory.

Aims and problems

First we will investigate divisibility properties of recurrent sequences first. For this we
consider the following questions:

• When is the sequence periodic?
• Has an infinite bounded sequence infinitely many zeroes?
• How the amount of zeros in the sequence depends on the choice of the first element?

Second, we will search for effective algorithms. Those algorithms are related to:

• recurrent sequences
• calculation of infP∈Pn Q2(P ), where P is Newman polynomial and

Q2(P ) = (deg(P ) + 1)H(P 2)/P (1)2.

Actuality

Mathematic and calculations are related. First mechanisms for calculations were used in
antic times by mathematicians, engineers and merchants. Developing technologies mecha-
nisms evolved. Informatics - the new branch of science which research information process-
ing was born after computers development. Computers have big potential in calculations,
especially for complex mathematical calculations or modelling. Such tasks have computa-
tional complexity problem. Computational complexity theory is a branch of the theory of
computation in computer science that investigates the problems related to the resources
required to run algorithms, and the inherent difficulty in providing algorithms that are
efficient for both general and specific computational problems. Often it is important to
know how much time an algorithm will run. One of the oldest questions in number theory
is to find the integer sequence with infinitely many prime numbers. Thus, we decided to
research the calculations of recurrent sequences. The other part of this thesis is related to
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Newman polynomials. In the last few years they got much attention, because they appear
in various questions of number theory.

Methods

In the first part of this work we are using analytical and elementary methods of number
theory: modulo properties, induction, and some classical results of number theory like
Ferma and Euler theorems. We used mathematical package Maple for algorithms and
computational complexity theory to estimate the complexity of acquired algorithms.

In the second part we used C++ programming language, some combinatorial and statis-
tical methods like regression analysis.

Novelty

All results presented in this thesis are new. They were presented at conferences (see "Ap-
probation") and published in the refereed journals and others publications (see "Principal
publications"). The results have both theoretical and practical aspects.

Structure of thesis. The thesis is written in lithuanian language. It consists of
introduction, two sections, conclusions, bibliography and the list of publications. The size
of the work - 67 pages.

Review and main results. There are several unsolved problems concerning the
sequence [αn], n = 1, 2, 3, . . . , where α > 1 is a fixed real number and where [x] stands for
the integral part of a real number x. It is indeed surprising that some of them are unsolved.
For instance, if α is not an integer, even a simple question like whether or not the sequence
[αn], n = 1, 2, 3, . . . , contains infinitely many composite numbers remains unsolved except
for very few special cases. It is expected that there are infinitely many composite numbers
of the form [αn], n ∈ N, for every α > 1. Forman and Shapiro proved that for α = 3/2 and
α = 4/3 and Dubickas and Novikas proved that for α = 5/4. No other rational noninteger
number α for which the sequence [αn], n = 1, 2, 3, . . . , is proved to contain infinitely many
composite numbers is known. Guy has raised the question whether the sequence [αn],
n = 1, 2, 3, . . . , where α is a rational noninteger number, contains infinitely many prime
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numbers. Naturally, this problem is expected to be even more difficult. It remains unsolved:
not a single α with this property is known. However, Mills, Wright and later Alkauskas
and Dubickas gave some existence results. One should remark that metrical results are well
known. They are not difficult to obtain and follow from an old work of Koksma: for every
ξ 6= 0, the sequence of fractional parts {ξαn}, n = 1, 2, 3, . . . , is uniformly distributed in
the interval [0, 1) for almost all α > 1. Applying this result to ξ = 1/2, we easily see that,
for such α, {αn/2} < 1/2 for infinitely many n. So, the sequence [αn], n = 1, 2, 3, . . . , has
infinitely many even numbers for almost all α > 1. Hence the results for integral parts are
closely related to relevant results for fractional parts.

The beginning of this work is related to the theorem of Alkauskas and Dubickas:

Theorem. Let
xn ≡ (xnn−1 + n− 1) (mod g), (1)

where n ∈ N, x0 ∈ N, be the recurrent sequence. If g is prime number > 2 then the sequence
have infinitely many zeroes .

We are interested in the following questions:

• is this sequence periodic?
• has this sequence infinitely many zeroes?
• is there some dependence between the zeroes and the first element x0?

First we considered the recurrent sequence of the theorem. Some results were proved and
some computer calculations were made.

The next proposition is interesting because it is possible to prove it in a simple analytic
way.

Proposition 1.1. Let xn be the sequence (1) and x0 is even positive integer. If g = 2m,
m > 1 and m ∈ N, then the sequence has infinitely many zeroes.

Separate group is made from Carmichael numbers.

Definition 1.2. A Carmichael number is a composite positive integer n which satisfies

an−1 ≡ 1 (mod n)

for every integer a > 2 coprime to n.

Korselt’s Theorem. A composite integer n ∈ N is a Carmichael number if and only
if n is square-free, and for all prime divisors p of n, it is true that (p− 1)|(n− 1).

Carmichael numbers are sometimes called "absolute pseudoprime" and satisfying Ko-
rselt’s criterion. R. D. Carmichael was the first who found the first and smallest such
number in 1910. The first few Carmichael numbers are 561, 1105, 1729, 2465, 2821, 6601,
8911, 10585, 15841, 29341, ...
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Proposition 1.3. If g is a Carmichael number then the sequence (1) has infinitely many
zeroes.

Definition 1.4. We call the sequence x1, x2, x3, ... periodic if there exists a t ∈ N such
that xn = xn+t, for every n > N , N ∈ N.

Proposition 1.5. Let xn be the sequence (1). If g > 2 is a prime number then the
sequence is periodic with period g(g − 1). If g = 2 then the sequence is periodic with period
4.

Proposition 1.7. If g = 2m, m > 1, then the sequence (1) is periodic with period g.

Proposition 1.8. The sequence (1) is periodic for Carmichael numbers with period
g(g − 1)

According to the statistical calculations we can guess for sure that the questions above
are true for the sequence. Data was acquired for different groups of numbers: primes, the
power of 2 and so on. Sequence is periodic but the zeroes in the sequence depends from
the first element. We will formulate few conjectures.

Conjecture 1.9. Let xn be the sequence (1). If x0 = 2k, k = 0, 1, 2, ... then the sequence
xn has infinitely many zeroes.

Conjecture 1.13. Let xn be the sequence (1). If g = pa, where a = 2, 3, ..., then the
sequence xn has infinitely many zeroes.

Conjecture 1.14. Let xn be the sequence (1). If g = pa, where a = 2, 3, ..., then the
sequence xn is periodic with period pa(p− 1).

We must note that the last two Conjectures are related. Although we cannot prove them,
but one can explain why they are expected to be correct. Both of them depends on Euler’s
theorem.

Euler’s theorem. Let ϕ(n) be Euler’s totient function and a, n ∈ N. If a is coprime
to n then

aϕ(n) ≡ 1 (mod n)

Some groups of sequences have interesting properties.

Definition 1.10. Let g > 1 is fixed. We call recurrent sequence g-stable if there exists
such N ∈ N that all elements in the sequence are independent from x0.

Example 1.11. Let a0 = 2, g = 5. Then

Dubickas proved periodicity for more general case.
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

0 1 3 4 3 4 0 2 0 4 4 2 4 4 3
1 2 0 3 2 4 0 2 0 4 4 2 4 4 3
2 0 2 4 3 4 0 2 0 4 4 2 4 4 3
3 0 2 4 3 4 0 2 0 4 4 2 4 4 3
4 2 0 3 2 4 0 2 0 4 4 2 4 4 3

Theorem. Let x0 and m > 1 be two integers, and let F (z) be an arbitrary polyno-
mialwith integer coefficients. Then the sequence defined by the recurrent relation xn =

xnn−1 + F (n), n = 1, 2, 3, . . . , is ultimately periodic modulo g.

Next we will study some more complicated sequences and will search for the effective
algorithm to calculate them. We studied next recurrent sequences.

(1) xn ≡ xn
r

n−1 + 1 (mod g)

(2) xn ≡ xn!
n−1 + 1 (mod g)

(3) xn ≡ xr
n

n−1 + 1 (mod g)

The following theorems were formulated.

Theorem 1.15. The sequence xn ≡ xn
r

n−1 + 1 (mod g) is periodic with the period T 6

gϕ(g) and pre-periodic part t 6 [ r
√

log2(g)] + 1 + g.

Theorem 1.16. The sequence xn ≡ xn!
n−1 + 1 (mod g) is periodic with the period T 6 2

and pre-periodic part t 6 ϕ(g).

Theorem 1.17. The sequence xn ≡ xr
n

n−1 + 1 (mod g) is periodic with the period T 6

gϕ(ϕ(g)) and pre-periodic part t 6 [log2 log2(g)] + 1 + gϕ(ϕ(g)).

According to the theorems above we developed and improved the algorithm to calculate
sequences length and pre-periodic part’s length. The improved algorithm has polynomial
complexity instead of exponential, which is characteristic in the similar tasks of exhaustive
search. One of the main theorems of the thesis is the following:

Theorem 1.18. Let d be a positive integer, F (z0, . . . , zd−1) ∈ Z[z0, . . . , zd−1], f : N 7→ N
and g : Z 7→ Z. Suppose that f and g are ultimately periodic modulo q for every integer
q > 2, and limn→∞ f(n) =∞. Let x1, . . . , xd ∈ Z and

xn+1 = F (xn, . . . , xn−d+1)
f(n) + g(n)

for n = 1, 2, 3, . . . . Then, for each m > 2, the sequence xn (mod m), n = 1, 2, 3, . . . , is
ultimately periodic.

The following corollary generalizes the main result in one of the previous papers of A.
Dubickas.
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Corollary 1.19. Let f : N 7→ N and g : Z 7→ Z be two functions which are ultimately
periodic modulo q for every integer q > 2, and limn→∞ f(n) =∞. Suppose that x1 ∈ N and

xn+1 = xf(n)
n + g(n)

for n = 1, 2, 3, . . . . Then, for each m > 2, the sequence xn (mod m), n = 1, 2, 3, . . . , is
ultimately periodic.

We also give a statement in the opposite direction:

Proposition 1.20. Let m > 3 be an integer, which is not a power of 2, and let f : N 7→
N. Suppose that x1 ∈ N and

xn+1 = xf(n)
n + 1

for n = 1, 2, 3, . . . . If the sequence xn (mod m), n = 1, 2, 3, . . . , is ultimately periodic, then
there are positive integers q, n0, t, where 2 6 q 6 m− 1, such that the sequence f(n0 + ut)

(mod q), u = 0, 1, 2, . . . , is purely periodic.

The condition that m is not a power of 2 is essential. Evidently, any sequence given by
xn+1 = x

f(n)
n + 1, where f : N 7→ N, is purely periodic modulo 2. If m = 2s, where s > 2,

we can take any function f : N 7→ N satisfying f(n) > s for each sufficiently large n. It is
easy to see that, starting from some n0, the sequence xn (mod 2s) is 1, 2, 1, 2, 1, 2, . . . , so
xn (mod 2s), n = 1, 2, 3, . . . , is ultimately periodic.

Lemma 1.22. Let f : N 7→ N be a non-decreasing function satisfying

lim
n→∞

f(n) =∞

with the property that, for every m ∈ N, there is an integer nm such that f(n+m)−f(n) 6 1

for each n > nm. Then there is no arithmetic progression au+b, u = 0, 1, 2, . . . , with a, b ∈ N
such that, for some q > 2, the sequence f(au + b) (mod q), u = 0, 1, 2, . . . , is ultimately
periodic.

Now we can construct more examples of non-periodic sequences. It is easy to see that
the functions f(n) = 1 + [log n], f(n) = [αnσ], where α > 1 and 0 < σ < 1, satisfy the
conditions of the lemma. Hence, by proposition, the sequences given by x1 ∈ N and

xn+1 = x1+[logn]
n + 1,

or
xn+1 = x[αnσ ]

n + 1,

are ultimately periodic modulo m ∈ N, if and only if, m = 2s with some integer s > 0.
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For a subset A of an abelian group (usually Z), define

A∗(k) := |{(a1, a2) ∈ A×A : a1 + a2 = k}|

and
A◦(k) := |{(a1, a2) ∈ A×A : a1 − a2 = k}|.

In 1932, Simon Sidon considered sets of integers with both A∗ and A◦ bounded. It is easily
shown that A∗(k) 6 2 for all k if and only if A◦(k) 6 1 for all k 6= 0. This led Sidon to ask
how large a subset of {1; 2; . . . ;n} can be with the property that A∗(k) 6 2? Since that
time such sets, e.g., {1, 2, 5, 7}, have been known as Sidon sets.

Now we will give the definition of the Sidon set.

Definition. Sidon sequence (or Sidon set) is a sequence A = a0, a1, a2, . . . of natural
numbers in which all pairwise sums ai + aj, i 6 j are different.

Some time ago Yu considered the quantity

lim inf
k→∞

deg(Pk)H(P 2
k )/P 2

k (1),

where Pk, k = 1, 2, . . . , is a sequence of Newman polynomials with deg(P1) < deg(P2) < . . . .
He conjectured that this limit is always at least 1 if

Pk(1)/ deg(Pk)→ 0,

as k → ∞. Martin and O’Bryant in their paper gave a lower bound for Sidon sets which
was obtained using probabilistic methods. This result was also obtained by Cilleruelo for
Newman polynomials. It was shown that a corresponding limit can be as small as π/4 and
so the conjecture was disproved.

We will remind that Newman polynomials are those that have coefficients in the set
{0, 1}.

Dubickas proved that it is sufficient to consider the quantity

Q2(P ) = (deg(P ) + 1)H(P 2)/P (1)2,

because there is always a sequence of Newman polynomials Pk, k = 1, 2, ..., with increasing
degrees such that

lim inf
k→∞

Q2(Pk) = Q2(P ).

The purpose of the last work was to create an effective algorithm to calculate this quantity.
The main result is given below.

Theorem 2.3. For each Newman polynomial P of degree at most 36 we have

Q2(P ) > Q2(P0) = 432/529 = 0.816635 . . . ,
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where the coefficients of the polynomial P0 of degree 35 in ascending order are given by

110111010111111110101000000110101111.

Also we answered one of the few questions asked by Berenhaut and Saidak. They asked
if is it true that Q = 8/9 occurs only for families of polynomials for which

P (1)

deg(P )
=

3

4
?

As we see in the following table, the answer is no.

Table 1: Q2(P ) values for some polynomials P

Q2 degP P (1)
degP

8
9

3, 7, 11, 15 1, 6
7
, 9

11
, 4

5

15
16

4, 9 1, 8
9

21
25

13, 27, 34 10
13
, 20

27
, 25

34

5
6

19, 26 12
19
, 9

13

240
289

23, 29 17
23
, 17

29

We did not managed to create an effective algorithm but we managed to found some
properties which can be useful to create one. For example, we found out that values P (1)

form the linear regression

y =
9003

6545
+

4336

6545
x.

5 10 15 20 25 30 35

5

10

15

20

25

Figure 1: Graph for P (1)
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Also, if our conjecture is correct then it is sufficient to check only those Newman poly-
nomials whose degrees satisfy

degP = 2 (mod 3).
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Conclusions

In the thesis, the following results are established (see the subsection "Aims and prob-
lems"):

• We investigated the conditions for periodicity of recurrent sequences modulo m.
• We proved that there are infinitely many zeros in some sequences.
• We proved that the existence of zeros depends from the first element of sequence
for some sequences.
• We found good enough algorithm for finding periodicity of recurrent sequences.
• We answered one of the few questions asked by Berenhaut and Saidak.
• We created algoritm to calculate infP∈Pn Q2(P ) and found some dependences to
create better algorithm.
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Approbation
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Reziumė

Šiame darbe aptariamos problemos, su kuriomis susidūriau studijuodamas doktorantūroje
Vilniaus universitete. Aš tyrinėjau rekurenčiąsias sekas, Niumano polinomus ir kompiuterių
galimybes skaičiuojant sekų periodus ir tam tikrą dydį Niumano polinomams, susijusį su
Sidono sekomis. Darbą sudaro įvadas, 2 skyriai, išvados ir bibliografija. Pirmame skyri-
uje įrodomos kai kurių rekurenčiųjų sekų savybės ir pateikiamas pakankamai efektyvus
algoritmas apskaičiuojantis sekos periodo ir priešperiodinės dalies ilgius. Antrame skyriuje
pateikiami rezultatai apskaičiuojant dydį

Q2(P ) = (deg(P ) + 1)H(P 2)/P (1)2.

Taip pat buvo atsakyta į vieną iš anksčiau Berenhauto ir Saidako iškeltų klausimų.
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