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Introduction 
 

Motivation 
 

The interest on the pattern formation in optical resonator is essentially 

twofold. First, the broad aperture optical resonator is a transverse pattern 

forming system – the one of many patterns forming system of the Nature. The 

spontaneous pattern formation, the spontaneous emergence of the spatial order 

from the randomness, is a fascinating subject which always interested the 

philosophers and scientists over the centuries. Why the spatial symmetries 

break, why the entropy decreases, why something regular emerges from 

irregular noise? The Nature in fact is patterns of patterns, and unveiling the 

secret of the pattern formation allows us to understand better the Nature. 

Patterns are encountered in almost every field of science – the laser physics is 

no exception. Therefore the studying of patterns in nonlinear optics, helps us to 

understand the pattern formation in general, thus it is of a fundamental 

significance. It is a tool to understand the pattern formation in general.  

Another reason for studying the pattern formation in nonlinear optical 

resonators is the practical one – the hope of their possible applications in 

digital and analog image processing. The light in lasers, being fast, and 

simultaneously being well controllable by external means offers a good 

possibility for efficient applications (image and object recognition with the 

optical “neuron networks“, creation of logic gates with the cavity solitons and 

vortices: some references). From the application point of view the compact 

optical systems, like mini- or micro nonlinear resonators are of extreme 

interest. Just imagine the mini optical pattern processing device in a small 

photo camera, or in a chip.  

Although the theory of the pattern formation (in general, as well as in lasers) 

has been advanced strongly during the last decades, the experimental progress 

in optics is clearly lying behind. In spite of recent attempts [1-3] the pattern 

formation in mini and in micro resonators is still in a very initial stage. 
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Typically the technological limitations were a most serious obstacle preventing 

the experimental studies of pattern formation in mini and micro – resonators. 

Presently the advent of the recent micro- and nano technologies is also 

rapidly accelerating the progress in the field of the pattern formation in micro 

resonators. The appearance of new, artificial materials, both linear and 

nonlinear, gives a hope on in the quick progress of this field. Nonlinear 

materials allow the low threshold lasing or low threshold soliton and nonlinear 

pattern formation. The spatially modulated materials (so called photonic 

crystals) on the other hand allow the modifying of the temporal and spatial 

characteristics of light (appearance of the band gaps in frequency domain, self 

collimation, super refraction in propagation domain, references). Therefore 

there appears a lot of space for the engineering of mini-resonators, with 

different nonlinear, and different diffraction properties. On the one hand allow 

finally to realize experimentally the theoretically predicted patterns, like 

solitons, rolls, and similar. On the other hand, it leads to novel phenomena 

absent in the conventional pattern forming theory (like hyperbolic patterns, sub 

diffractive solitons). Building such nonlinear micro-devices, understanding the 

behavior of light there, experimenting with them, discovering the new 

phenomena specific in such devices, are mayor challenges in the field of 

optical pattern formation in general, and in particulary in this doctoral 

dissertation.  

The initial task of the dissertation was to demonstrate the pattern formation 

in miniresonators, which simultaneously are: 1) nonlinear and, 2) with the 

manipulated diffraction. The nonlinear character of patterns is achieved by 

putting a nonlinear (Kerr, 2χ , amplifying) material inside of the resonator. The 

manipulation of diffraction is achieved by placing a material with the spatially 

modulated refraction index (Photonic crystal) inside of the resonator. The 

initial purpose of the dissertation work was to observe some exotic nonlinear 

patterns in such diffraction-manipulated resonator, like those predicted at that 

time (hyperbolic patterns [4]).  
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However, during the years of work, it comes out, that these two ingradients 

(the nonlinearity, and the index modulation) of the micro resonators, even 

taken separately, lead to a lot of different novel effects. It comes out, that even 

the observation of elementary nonlinear patterns (rolls) in parametric 

miniresonators was never done before, and its observation brought us to novel 

effects (like the experimental proof of 1/f noises of rolls, like the spatial 

tunability of the generated beams in micro-OPO). In this way these 

observations in nonlinear resonator WITHOUT the modulation of index were 

sufficiently challenging and novel. On the other hand – the linear 

miniresonator with photonic crystal inside also showed itself as a novel and 

completely unexplored device, investigation of which lead to discovery of 

novel effects, like sub diffractive patterns, spatial filtering hyperbolic patterns). 

Therefore the Photonic crystal resonators WITHOUT the nonlinearity has 

shown itself sufficiently challenging and novel. 

 

Main objectives 

 

1. To demonstrate optical parametrical generation in monolithic broad aperture 

mini or micro cavities. To investigate transverse light patterns formation in 

mini-cavity OPO. To develop a model describing the system. 

 

2. To obtain experimentally the previously theoretically predicted nonlinear 

light structures in degenerate optical parametrical resonators.  

 

3. To build up and investigate experimentally and theoretically pattern 

formation in plane-mirror Fabry-Perot resonators filled by two and three 

dimensional photonic crystals 
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Scientific novelty 

 

1. Emission in monolithic mini-cavity OPO based on BBO type I crystal, 

pumped by nanosecond pulses was demonstrated experimentally for the 

first time. It was found, that OPO emission in a monolithic mini-cavity 

is conical and multiconical and emission direction can be controlled by 

changing the mini-cavity orientation, by temperature changes or by 

laser frequency change. This phenomenon was well explained by 

developed phenomenological model.  

2. Stripe (roll) patterns in broad aperture plane mirror mini-cavities 

DOPOs was demonstrated experimentally for the first time. 

Stabilization of the stripes pattern was achieved by a week injection at 

sub-harmonic frequency. Absence of the intrinsic locking-to-degeneracy 

mechanism for the spatially dependent systems was highlighted. 

Temporal 1/f – like spectra of the stripe pattern DOPO emission was 

demonstrated experimentally in qualitative accordance with the theories 

of the noise-spectra in the spatially extended systems. 

3. Plane-mirror Fabry-Pérot resonators with the intracavity modulation of 

refraction index, i.e., the resonators containing one longitudinal period 

of the photonic crystal were proposed and realized for the first time.  

4. Calculation method, based on the scattering matrix theory, was 

developed for study and prediction of photonic crystal resonators 

diffraction properties. Analysis predicted that diffraction properties of 

photonic crystal resonators can be manipulated, resulting in sub- and 

superdiffractive dynamics of light in the resonator. 

5. Basic properties of photonic crystal were demonstrated experimentally: 

hyperbolic shape transmission patterns in case of 1D modulation of the 

mirror surfaces, and square shape patterns in case of 2D modulation of 

the mirror surfaces.  
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Practical significance 

 

First purpose of this work was to demonstrate experimentally pattern 

forming phenomena in nonlinear resonators, i.e. broad aperture, plane mirrors 

OPOs. At that time a significant number of theoretical works in this field was 

already published. Most of them were without experimental approve due to a 

high OPO threshold and relatively low cavity coatings damage threshold. 

Experiments of this thesis, carries first successful results in this field. Conical 

and multi-conical OPO emission of monolithic cavity, stripe (roll) patterns 

formation with a presence of weak seed injection and 1/f-like temporal 

spectrum were demonstrated. These results first of all are fundamentally 

interesting and extend the knowledge about pattern formation of doubly 

resonant, mini-cavity OPOs. However, some results of OPO experiments can 

be also practically interesting. OPO emission direction can be controlled 

changing the mini-cavity orientation, temperature or laser frequency. 

Second part of this thesis contains new theoretical and experimental 

results on intracavity photonic crystal devices, a topic which is expected to 

become more and more important in the future. Photonic crystal resonator is a 

new type device, which is obtained by using a Fabry-Perot resonator filled 

with a photonic crystal. Spatial dispersion of this resonator can be manipulated 

resulting in sub- and super-diffractive dynamics. Results show, that PhC 

resonator can be used as alternative device for beam shaping or filtering. As it 

is shown, PhC resonators have a very close relation with bulk PhC crystal 

spatial dispersion properties, especially diffraction less light propagation in the 

PhC media. Moreover, the results are highly relevant to all physicists working 

on pattern formation in optical systems.  

As a future prospective those two parts of the thesis might be conducted 

together creating a new line of nonlinear PhC resonators.  
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Thesis statements 

 

1. Directions of signal and idler waves in a monolithic mini-cavity type I 

optical parametrical oscillator (OPO) depends on the cavity optical axes 

orientation with respect to the pump beam (in phase matching and 

perpendicular direction) and on cavity detuning to laser frequency and 

in general can be described as conical and multiconical emission. 

2. The stabilization of stripe (or roll-) patterns in large Fresnel nuber 

(N > 100) plane-mirror mini-cavity degenerate optical parametric 

oscillator can be achieved by a week seed injection at subharmonic 

frequency. Temporal spectra of the stripe pattern DOPO emission is 1/f 

– like noise spectra.  

3. Plane-mirror Fabry-Pérot resonators filled with a single period of 

photonic crystal (PhC) is a new type of PhC resonators with a PhC-like 

spatial properties. PhC resonators can be conveniently realized by 

adding periodical refraction index modulation on a resonator mirror 

surfaces (i.e. fabricating 1D or 2D phase diffraction grating)  

4. Diffraction properties of photonic crystal resonators can be decribed as 

subdiffractive and superdiffractive dynamics of light in the PhC 

resonator. PhC resonators in case of 1D modulation of the mirror 

surfaces has a hyperbolic angular transmission profiles and in case of 

2D modulation of the mirror surfaces - square shape angular 

transmission profiles. 

5. The developed calculation method, based on the scattering matrix 

theory, enables to study and predict diffraction properties of photonic 

crystal resonators. 
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1. Transverse light patterns in nonlinear optical resonators 
 
1.1 Dissipative patterns in nature 

 

Many different pattern-forming systems are known to exist in the 

Nature, also in controllable laboratory experiments. A common feature of 

pattern forming systems is their openness, or dissipativity; this is why the 

spontaneously appearing patterns are also called by “dissipative patterns“ [5]. 

Openness also means, that a system is out of the thermal equilibrium, in 

contrary to conservative systems, where no patterns spontaneously appear, but 

instead the energy equipartition occurs, leading to most symmetrical, 

maximum entropy states. 

Formation of rolls and hexagons in Rayleigh-Benard convection [6] is a 

seminal example of patterns formation in controllable laboratory experiment. 

Self-sustained oscillations in chemical reactions illustrate the symmetry 

breaking of space and time [7]. These elementary laboratory patterns and 

elementary evolution processes (the transients) can be considered as building 

bricks of more complicated patterns, and more complicated evolution 

processes observed in the nature. One can consider the complicated patterns in 

the nature as elementary patterns multiply nested within the other elementary 

patterns. 

Some universal pattern formation principles are now understood and 

mathematically described. It is known, that the necessary condition for the 

occurrence of Turing patterns is the existence of unstable modes with nonzero 

characteristic spatial (temporal) scale of modulation [8]. The responsible 

physical mechanisms can be different: well known is the mechanism of “local 

activation and lateral inhibition“ being at the root for patterns in many 

biological and chemical systems [9]. The other universal mechanism is also 

known to be responsible for the appearance of patterns in parametrically 

excited (Faraday type [10]) systems: when the system is (parametrically) 

excited at a frequency different than its internal resonance frequency [11]. 
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Turing mechanism can be considered as a primary stage of pattern formation. 

The next stage would mean the secondary instabilities of ideal Turing patterns. 

Some universal principles are also known governing the pattern formation in 

this second stage: the ideal Turing patterns can show Eckhause, Zig-zag, or 

other instabilities, or defects, universally described e.g. by means of amplitude 

and phase equations [12]. 

 
1.2 Transverse patterns in nonlinear resonators 

 

A brief review of transverse patterns formation in nonlinear optical 

resonators is given in this section. According to [13] order parameter equations 

derived for different systems makes it possible to distinguish several large 

groups of nonlinear resonators: 

1) laser-like nonlinear resonators, such as lasers of class A and C, 

photorefractive oscillators, and nondegenerate optical parametric oscillators. 

They are described by complex Swift-Hohenberg equation, and show the 

optical vortices as the basic localized structures, and tilted waves and square 

vortex lattices as the basic extended patterns.  

2) resonators with squeezed phase, such as degenerate optical 

parametric oscillators, and degenerate four wave mixers. They are described by 

real Swift-Hohenberg equation, and show the phase domains and phase 

solitons as basic localized structures, and stripes and hexagons as basic 

extended patterns.  

3) lasers with slow population inversion (class-B lasers). They can not 

be described by single order parameter equation, but at least by two coupled 

equations. Their basic features are self-sustained dynamics, in particular the 

"restless vortex".  

4) subcritical nonlinear resonators, such as lasers with intracavity 

saturable absorbers, or optical parametric oscillators with detuned pump. They 

show bistability, and as consequence of that - they support bistable spatial 

solitons.  
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1.2.1. Order parameter equations 
 

One possibility to study the patterns in nonlinear optical systems (or in 

nonlinear distributed systems in general) is based on corresponding 

microscopic models. The exact microscopic models contain “all information” 

about the system, and their solution can give absolutely precise results. 

However, solution of microscopic equations is often related with difficulties: 

the microscopic equations (usually a system of coupled nonlinear partial 

differential equations) are too complicated to obtain analytical results. The 

numerical study is often complicated too: different field components (e.g. the 

light field, polarization, and population inversion in lasers) may have very 

different relaxation rates. This leads to different time scales, which makes 

numerical calculations time consuming. A natural way to solve the above 

difficulties is to simplify the microscopic model as much as possible. Such a 

simplified equation (or sometimes an equation system) is called the Order 

Parameter Equation (OPE). OPEs simplify analytical and numerical treatment, 

as described above, since the OPEs are structurally more simpler than the 

microscopic equations. Secondly, the OPEs allow to consider patterns in a 

particular system from a general point of view. Thus the derivation of OPEs 

allows to show the analogy between nonlinear optics and hydrodynamics in 

one limit, or between nonlinear optics and oscillatory chemical systems in the 

other limit. One can thus learn apriori about dynamics of the systems without 

solving the equations, but just knowing the analogies with other systems. E.g. 

the knowledge of the existence of vortices in fluids and superfluids allows to 

predict and interpret the vortices in nonlinear optics thanks to the optics-

hydrodynamic analogy. 

OPEs for class-A and class-C lasers was derived in [14, 15] and are 

named Complex Swift-Hohenberg Equation (CSHE): 

2
2
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The CSHE (1.2.1) describes spatio-temporal dynamics of the complex-valued 

order parameter A r t( , )r , which is proportional to the envelope of the optical 

field. The parameter p is the net gain parameter, ∆ is the resonator detuning 

from the gain line frequency, a is the diffraction coefficient depending on the 

total resonator length, and on finesse, ∆ω  is the width of the gain line. 

The CSHE is a central equation for broad aperture (pattern forming) 

systems in nonlinear optics. First derived for lasers, the same equation was 

later derived as the OPE for Photorefractive Oscillators, and nondegenerate 

Optical Parametric Oscillators (OPOs), as shown in [16-20]. CSHE describes 

pattern formation not in a particular system, but in a class of nonlinear optical 

system characterized by:  

1) Phase invariance. The CSHE is invariant with respect to the phase of 

the order parameter A r t( , )r . It is the consequence of well known fact that in 

lasers (and laser-like systems) the phase of the optical field is arbitrary;  

2) Diffraction. The nonlocality in lasers and laser-like systems is 

predominantly of diffractive type, which is different from e.g. the chemical 

systems, where diffusion is a dominating nonlocality.  

3) Supercritical Hopf bifurcation. The order parameter changes 

continuously from zero when the gain parameter crosses zero. This is typical 

for type II (continuous) phase transition. Some systems in nonlinear optics 

(e.g. lasers with saturable absorber) are subcritical, and show hysteresis [21-

23]  

4) Spatial frequency selection. The third right hand term is responsible 

for spatial frequency selection. The laser, with a narrow gain line can be tuned 

not only over the longitudinal, but also over the transverse modes (transverse 

wave numbers). This tuning, or the spatial frequency selection, is 

mathematically described by the corresponding term.  

 

OPE for Degenerate Optical Parametric Oscillators (DOPOs) is derived 

in [13, 19] and is so named Real Swift-Hohenberg Equation (SHE): 
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There the order parameter A r t( , )r  is a real-valued field. ∆ is also the resonator 

detuning for the signal wave, like in case of lasers (1.1). The parameter ∆ω , 

the analog of the width of the gain line is equal to 2  for the DOPO case.  

The SHE (1.2.2) is encountered in many pattern forming problems, 

including the seminal ones: in Rayleigh-Benar convection, and formation of 

Turing patterns in morphogenesis. The derivation of SHE (2) for DOPOs 

allows to introduce another class of pattern forming systems in nonlinear optics 

which are characterized by following ingredients:  

1) Squeezed phase. The phase of the order parameter is not invariant as in 

CSHE, but restricted to two values 0 and π , due to real-valuedness of the order 

parameter.  

2) Suppressed diffraction. The diffraction in DOPOs (and in some other 

degenerate optical systems, like degenerate four wave mixers) is suppressed 

due to the phase-sensitive coupling of its components (e.g. of signal and idler 

waves of DOPOs);  

3) Supercritical pitchfork bifurcation. In some limits (in particular for 

nonzero detuning of pump wave) the pitchfork bifurcation may be subcritical, 

and show hysteresis [21, 23].  

4) Spatial frequency selection. The frequency of subharmonics of DOPO, 

being fixed by frequency of the pumping laser may be tuned with respect to the 

resonance of the cavity, thus the tuning over both longitudinal and transverse 

modes is possible. 

 Most pattern forming systems in nonlinear optics fell into one of these 

two classes defined by the OPEs (1.2.1) and (1.2.2). There are however 

systems beyond description by real and complex GLE. Such are subcritical 

systems, and they can be described by extensions of (1.2.1) and (1.2.2). 
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1.2.2. Vortex motion in moderate Fresnel number lasers 
 

A normal laser has a resonator composed of two curved mirrors. If the gain 

line of the medium is narrower than the longitudinal mode separation, selected 

transverse modes may be excited by choice of resonator length. The frequency 

spacing of the transverse modes (of transverse order N) depends on the mirror 

radii R1, R2, and their distance d as: 

21arccos
2

gg
l

cf
π

=∆  (1.2.3) 

where gi are )(1 iRl−  (Ri : mirror curvature radii, l: resonator length, c: 

velocity of light). The transverse order N is m+n for Hermite modes in 

rectangular geometry, where m and n are the numbers of nodes along the two 

orthogonal directions in the transverse plane.  

For circular geometry (Laguerre modes) N =2p+l where p and l are the 

numbers of nodes along the azimuthal and radial direction in the transverse 

plane.  

With a narrow gain line several modes can be excited simultaneously if 

they are roughly not further apart in frequency than their resonance widths.  

To excite modes with arbitrary indices simultaneously we have often 

utilised the fact that two transverse modes from different longitudinal orders 

can be made degenerate by a proper choice of resonator length and mirror 

curvature radii.  

The resonator typically used in the experiments [24] is shown in 

Fig. 1.1. For the active medium photorefractive materials were used, mostly 

BSO. The amplification results from scattering of light out of the pump wave 

into the signal wave (resonator field) by a refractive index grating produced by 

the interference of the pump field with the signal (resonator) field. A “gain 

line” of width 0.1–10 Hz(!) results, which evidently means an enormous 

frequency pulling of a photorefractive oscillator, slowing down dynamics by a 

factor of 106–108(!)[24]. 
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Although this light amplification mechanism is completely different 

from the mechanism of light amplification of lasers, it can be shown that a 

laser of class A and a photorefractive oscillator as used here are described by 

the same equation [17]. Thus we can use the photorefractive oscillator with its 

characteristic time of 10–1000 ms as a “slow-motion laser” permitting 

recording of 2D dynamics, which is impossible with normal lasers, which have 

1–100 ns characteristic times. 

 
Fig. 1.1. Optical arrangement for observing laser dynamics on a two-wavemixing 
photorefractive oscillator. The active ring is formed by M1–M4, with BSO as the amplifying 
material. The resonator length is controlled actively using the bypass which is formed by 
PBSs and M5 [24]. 

 
 Since the active medium amplifies in one direction, but absorbs in the 

opposite direction, a ring resonator is used. The spacing between transverse 

modes or degeneracies of those is controlled by the spacing of the two lenses. 

The tuning of the resonator has to be constant within a few hundred kHz, given 

a typical mode width of a few MHz. This is accomplished by active resonator 

length control. The resonator field can differ in frequency from the pump field 

at most by a few Hz. Consequently the resonator length is controlled with 

respect to the pump frequency. The photorefractive active material has a 

sizeable linear loss, thus the bypass formed by PBS and M5, which is 

distinguished from the active resonator by polarization forms a resonator of 
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high finesse, providing a sharp resonance for length stabilization. The 

difference between the active and the bypass resonator lengths is kept small by 

symmetric arrangement of the bypass elements on an Invar plate. It was found 

that stabilizing the bypass resonator resulted in a stability of the active 

resonator of a few 100 kHz for times of 10 minutes. Given the time scale of the 

photorefractive oscillator between 0.01 and 1 s, this stability is sufficient to 

ensure constant tuning of the active resonator for recordings of adequate 

length. 

 The simplest emission form of a field with a vortex is the emission 

called “TEM01x hybridmode” in the laser literature (a TEM01 Laguerre mode) 

which is bistable with respect to 

helicity [24]. 

Figure 1.2 shows the intensity of such a field and by an interferogram 

proves its vortex character (i.e. the helicity of the wave fronts). Tuning the 

resonator to higher transverse mode families (order N) we noted a strong 

preference for emitting fields with a central N-fold phase singularity 

 

 
Fig. 1.2. Intensity (a) and interferogram (b) of a Gaussian field with a central phase 
singularity (“Doughnut-mode” field) as recorded from a BSO photorefractive oscillator [24]. 

 

Superposition of such fields with other fields splits the N-fold charged vortex 

into N singly charged vortices. If the two fields have different optical 

frequencies, periodic motion of the structure of the total field at the difference 

frequency results. For an added field symmetrical with respect to the optical 

axis vortices circle about the optical axis. The radial position of the vortices 
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depends on the intensity ratio of the two fields. The angular position of the 

vortices is given by the phase difference between the mode fields, as in a 

helical wave (vortex) spatial angle and phase obviously correspond. Different 

frequencies (i.e. linear increase of phase difference in time), consequently, lead 

to circling vortices. Fig. 1.3(a) shows a single vortex circling about the optical 

axis. Fig. 1.3(b) shows 3 and 8 vortices moving on concentric circles. 

bb
 

Fig. 1.3. (a) A vortex off the center of a Gaussian field (snapshot). The vortex circles with the 
frequency difference between the TEM00 and TEM01 field around the optical axis. (b) 8 
vortices and 3 vortices counter circling on concentric trajectories [24]. 
 

1.2.3 Large Fresnel number lasers 
 

 Fresnel number first was introduced in the context of diffraction theory 

for beam propagation. Later Fresnel number has also been applied to optical 

resonators, in particular to laser resonators. Fresnel number is determined by 

formula: 

λL
aN F

2

=  (1.2.4) 

where a is the radius of the end mirrors, L is the resonator length and λ is 

the wavelength.  

 In large-Fresnel-number resonators conversely the effects of the 

boundaries are unimportant and the dynamics is determined by the 

nonlinearities of the medium alone. Experiments under such conditions allow 

one therefore to test predictions of the fundamental equations describing the 

system, without the constraints of boundary conditions.  
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For such a resonator, in addition to large Fresnel number, the transverse 

modes must be degenerate in frequency to permit arbitrary images to be 

resonant.  

The simplest cases of such degenerate resonators are the two-mirror-

plane or -concentric resonators. Both, however, are very lossy and require 

exceedingly high gain to be excited. More complicated resonator structures 

[25], on the other hand, allow one to fulfill simultaneously the conditions of 

low loss and degeneracy. These can be described as consisting of “thick” 

mirrors (i.e. mirrors whose principal planes do not coincide with the mirror 

plane). It appears that the stability diagram of such resonators is a 3D 

continuation of the familiar 2D stability diagram of thin-mirror resonators. A 

resonator version, in which points representing stability and degeneracy 

simultaneously exist, as was used in the experiments, is the 4-f resonator and 

its equivalent 8-f ring [26-28]. With such resonators infinite Fresnel numbers 

are formally possible (within the frame of the paraxial wave approximation). 

Such resonators are equivalent to a plane resonator of length d if their length 

differs by d+  from the degeneracy length. 0=d  corresponds to infinite 

Fresnel number. For finite d the Fresnel number is reduced. Fresnel numbers of 

104 are easily achieved. This is to be contrasted with only ≈10 for stable two-

mirror resonators[24]. 

 For these high-Fresnel-number resonators, where boundaries and 

frequency non-degeneracies can be disregarded, the complex Swift–Hohenberg 

equation, which describes a class A laser [29], predicts the following pattern 

formation: 

 For zero detuning of the resonator from the gain line the emission is a 

homogeneous plane wave with wave fronts perpendicular to the optical axis. 

 For detuning, the emission breaks up by way of a Turing instability into 

a regular square lattice of vortices of alternating charge (reminiscent of an 

alkali-halide crystal). The lattice constant is proportional to detuning. The 
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orientation of the lattice is 

arbitrary, i.e. it is determined by 

a spontaneous breaking of the 

rotational symmetry (Fig. 

1.4(a)). 

 If the pump is increased, 

defects appear in the lattice (Fig. 

9(b)) in a manner reminiscent of 

the melting of a solidstate 

crystal. The defects are mobile 

and become more numerous and 

more mobile with increasing pump (Fig. 1.4(b, c)). 

 At some pump the crystal lattice is “molten”, i.e. we have an irregular 

space–time dynamics with pair creation/anihiliation of oppositely charged 

vortices. This state one may call a “vortex fluid”.[24] 

 

 
Fig. 1.4. Numerical solution of the laser GLE with detuning. The vortex lattice, which is 
stable near threshold, develops more numerous and more mobile defects as the pump is 
increased (near field) [24]. 
 
Increasing the pump further leads to a more ordered state: domains of 

differently oriented wave tilt (the latter corresponding in magnitude to the 

detuning chosen) appear, often separated by rows of vortices of equal charge 

(Fig. 1.5). Such state of the field can be described by a negative temperature 

[30], suggesting that an amplification of certain wave structures could occur 

under these conditions. It would therefore seem that the “vortex fluid” 

corresponds to a high positive (in the limit, infinite) temperature. 

Fig. 1.5. 3-wave domains of opposite 
tilt (flow) separated by rows of vortices 
of equal charge [24].
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Further increase of pump then leads to a growth of certain domains (of 

“flow” or tilt) until the whole laser cross section is filled with a uniform wave 

of constant tilt [30]. Evidently under these conditions the wave has to show a 

“source” and a “sink” [31] at boundaries, without which a tilted (“travelling”) 

wave or “flow” can not be sustained continuously in a finite cross section. 

More detailed predictions of the CSHE which describes a class A laser are 

reviewed in [24].  

 Experiments on these predictions was experimentally verified in [32]. 

An 8f ring resonator with BaTiO3 as the active medium was used. (gain in two 

wave mixing is unidirectional: thus a ring resonator was used). Pump was a 

single-mode Ar laser at 514 nm. The near and far field was simultaneously 

recorded [32]. Figure 1.6 shows the square vortex lattice observed at small 

pump power and with detuning.  

 

 
Fig. 1.6. A vortex lattice observed experimentally. The four tilted waves (coupled at a phase 
angle of π/2) forming the lattice are visible in the far field (Compare with Fig. 1.4) [32]. 
 
Figure 1.7 shows two domains of tilted waves (tilt is apparent in the far field), 
separated by a row of vortices, (compare with the theoretical calculation Fig. 
1.5). The vortex row is plausible, considering that the domains have opposite 
tilt, and “shear flow” occurs therefore. 
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Fig. 1.7. Two domains of opposite tilt (flow) observed experimentally [32]. Compare with 
Fig. 1.5. 

1.2.4. Solitons in DOPO and parametric mixing 
 

Whereas the phase of the optical field of lasers is free – the laser can choose 

any phase value – in wave mixing the phase of the generated field(s) is coupled 

to the phase(s) of the pump field(s). For degenerate mixing such as degenerate 

four-wave mixing (D4WMO) or degenerate parametric mixing (DOPO) the 

generated field is thus a real quantity with respect to the pump field. 

 The order parameter of many non-optical pattern forming systems is 

also real. Such systems are for example a periodically forced Belousov–

Zhabotinsky reaction or driven space charge wave fields. Another prominent 

system is Rayleigh–Benard convection, for which Turing patterns (rolls, 

hexagons) are characteristic. The spatio-temporal dynamics of these systems 

can be described by a real Swift–Hohenberg equation (SHE) (1.2.2)  [33, 34]. 

 Turing patterns occur for large positive detuning ∆, for example in the 

form of stripes )cos(34)( rkrA rr
≈  with a resonant wave-number ∆=k

r
. This 

limit of large detuning is characteristic for Rayleigh–Benard convection, where 

convective rolls have a defined size. SHE (1.2.2) with zero detuning describes 

parametrically excited systems, for which solutions of homogeneous amplitude 

and phase of 00 =ϕ  or π are preferred. As opposed to non-optical systems the 

optical parametric resonators allow one to realize pattern formation for the 

whole detuning range, in particular, the intermediate patterns. Such patterns are 

contracting or expanding domains, and spatial localized structures. 
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 There are only two possible values of the field phase: the optical field is 

bistable in its phase. As opposed to lasers where the continuously variable 

phase admits vortices (around whose core the phase varies continuously) in 

degenerate mixing vortices are consequently impossible. Allowed are lines of 

field zero between domains of opposite sign of the real field, i.e. of opposite 

phase. 

 Such dark lines in presence of nonlinearity become 1D continuations of 

“kink” solitons [35]. These dark lines or “fronts” [36] move in relation to their 

curvature [34]. They expand with a rate that is a growing function of the 

resonator detuning. For tuning close to zero the rate is negative (i.e. the fronts 

contract). It grows with detuning and becomes positive at a certain detuning, 

further growing with further detuning [34].   

Figure 1.8 shows the front expansion rate as a function of the detuning 

as calculated from the real Swift–Hohenberg equation which describes these 

systems [34]. 

 
Fig. 1.8. The potential of a ring-shaped phase domain as a function of domain radius for 
different detunings ∆. For ∆ around 0.45 a potential minimum indicates a stable structure, i.e. 
a spatial soliton. Inset: curve for ∆ = 0:45 with vertical axis magnification [34]. 

 

 For detuning corresponding to shrinking, dark fronts, initially curved, 

will in time straighten. For detuning corresponding to expanding lines the final 
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pattern will be a labyrinth structure that fills the whole available area [16]. The 

spacing of dark lines of this labyrinth pattern is given by the detuning (Turing 

pattern).  

Although these dark fronts have soliton properties, they are not 

localized (particle-like) structures, as are the vortices and bright solitons in 

lasers. 

However, a closer investigation shows that localized structures (“Ising 

structures”) do exist [34]. Within the detuning range of dark front contraction, 

a front forming a closed loop will shrink. For small enough detunings its area 

goes to zero and the loop disappears. For larger detunings (where the 

expansion rate of dark fronts is still negative, however) such closed loops 

cannot shrink to zero because – simply speaking – two fronts repel, and the 

repelling of every two pieces of front on opposite sides of the loop can 

counterbalance the contraction of the front. 

Thus detuning range closed loop fronts contract to a stable circle of 

finite radius. As the contraction strength of the front depends on the detuning, 

the stable circles have radii weakly dependent on the detuning. 

These structures can again be pictured in a fluid analogy: the 

contraction of a closed loop front corresponds to the surface tension of a 

bubble. If it is large enough, (detuning close to zero) it can annihilate the 

bubble. For larger detuning the surface tension is counterbalanced by the 

pressure inside the bubble and for still larger detunings the internal pressure 

exceeds the surface tension. This analogy is nicely observed in the calculation 

and in experiments: inside the front loops the light intensity (= fluid density = 

pressure) is higher than outside. Clearly the light inside is “compressed” (See 

Fig. 1.9)[24]. 

These stable closed circular front loops (or the region inside the circle, 

which has opposite phase to the light outside) are clearly localized structures. 

In fact, analogously to the bright spatial solitons of lasers or non-linearly 

absorbing resonators, they are bistable. 
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a b dca b dc

 
Fig. 1. 9. Different stable localized structures for a DOPO as calculated (“molecules”). (a) - 
Fundamental solitons. (b) - Bound states between fundamental and higher order solitons. (c) - 
2 second-order solitons. (d) - A complicated bound state [24]. 
 

 Quite obviously at the location of such a localized structure, which is 

distinguished from its surrounding by the phase, the phase could as well be the 

same as that of the surrounding; in which case there would be no localized 

structure. Consequently, the localized structure described here is equally 

bistable and free to move around, to be “written” and “erased”, as are the 

bright spatial solitons of nonlinear (laser-) resonators. Figure 1.9 shows such 

localized structures as calculated for the DOPO equation. 

 As a larger number of theoretical investigations about the dark fronts in 

DOPOs exists [16], experiments were conducted to prove the theoretical 

predictions experimentally [37]. 

 For the experimental system degenerate four-wavemixing was chosen, 

which permits (using again photorefractive nonlinear material) observation on 

a convenient time scale. It is described by the same real SH equation as 

DOPOs [19]. The experimental setup is given in Fig. 1.10. Two pump waves 

with two generated waves form an index grating in the nonlinear material from 

which light is scattered from the pump waves into the generated waves. The 

generated fields combined form the resonator field of a linear resonator. The 

resonator for the generated field is again laid out as a 4f self-imaging resonator 

to permit realization of a low-loss resonator with degenerate transverse modes 

and very large Fresnel number allowing resonance of complex patterns.  
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Fig. 1.10. Optical arrangement for observing structures in four-wave mixing (or DOPO) is a 
self-imaging linear 4f resonator with photorefractive BaTiO3 as mixing medium and 2 pumps 
[24]. 
 
The fields generated were found experimentally to show all predicted features. 

Typically, domains separated by black lines of irregular shape were observed 

in the emission (Fig. 1.11(a)). The domain boundaries can have quite a 

complicated form, including self-crossings, and move in general. Fig. 1.11(b) 

shows the intensity of a portion of the emitted radiation, as well as a 

interferogram made with a plane wave Fig. 1.11(c), showing a phase difference 

of π between domains, thus proving the real-valued nature of the order 

parameter of emitted field. 

 

 
Fig. 1.11. Domains of complicated shape as obtained experimentally: (a) The near field of the 
whole beam, (b) a small section from the whole beam, and (c) interferogram, showing that the 
adjacent domains have opposite phase [37]. 



 36

1.2.5. Spatial structures in synchronously pumped optical parametric 
oscillators 
 

First report of experimental observation spatial patterns was in 

synchronously pumped 

degenerate optical parametric oscillators (SPOPOs) on type I and type II phase 

matching crystals [3]. A 

confocal resonator 

configuration, providing 

high Fresnel numbers and 

high degeneracy of 

resonator transverse modes 

was used for experiments. 

Nd:glass laser with passive mode locking and active negative feedback was 

used as a pump for the SPOPO. The parameters of pump pulses: duration 1.7 

ps, wavelength 527 nm, energy (of a single pulse in the train) 60 µJ. The 

confocal SPOPO (Fig. 1.12) consisted of the concave mirrors M1, M2 of 95% 

reflectivity in the spectral region 950–1110 nm, and a nonlinear crystal (NC). 

The nonlinear crystal was pumped through the mirror M1. The transmission of 

the mirrors for the pump wave was more than 85 %. The optical length of the 

SPOPO cavity was equal, twice or three times shorter than the length of the 

pump laser cavity. The exact tuning of the SPOPO resonator to modelocked 

pumping was achieved by continuous displacement of the mirror M2. The 

experiments were performed on type I (CDA and KDP) and type II (KDP) 

phase matching crystals. Cylindrical focusing was used to reach the threshold 

intensity and to ensure a large Fresnel number (~20–60), at least in one plane. 

Pump beam size on the entrance face of the crystal was 6 x 0.3 mm (at the e−2 

level) in horizontal and vertical directions, respectively. The signal reflected 

from the glass plate (thickness 6 mm), placed inside the cavity, was directed to 

the CCD camera. The distance between the CCD camera and nonlinear crystal 

was 22 cm 

Fig. 1.12. Experimental set-up of SPOPO 
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The SPOPO spatial structure has shown dependence on the resonator 

length mismatch and mirror misalignment. The largest variation of the 

transverse structure caused by mirror misalignment was observed in the case of 

the confocal cavity with mirrors with radii R1 = R2 = 560 mm and the largest 

Fresnel number. In this case the characteristic stripe structure consisted of 2, 3 

and 6 stripes (Fig. 1.13). In case of resonator length mismatch, the beam 

structure transforms from stripe to circle and back to a stripe (Fig 1.14).  

 

 
Fig. 1.13. Spatial structure of SPOPO (crystal CDA, type I phase matching) emission in the 
case of large (a) and small (b) mirror misalignment with respect to the pump beam axis. 
Misalignment takes place in the phase matching plane [3]. 

 

 
Fig. 1.14. Spatial structure of SPOPO (CDA crystal, type I phase matching). Dependence 
versus resonator length detuning. ∆L is the mismatch from L = 807 mm, the resonator length, 
which corresponds to the maximum of synchro-resonance curve. White line indicates the 
position of the beam when ∆L = 0 [3]. 
 

As concluding, it has been shown experimentally in [3] that complicated 

light field structures can appear in SPOPOs due to boundary effects (pumping 

(a) (b) 
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conditions, different resonator configurations, phase matching conditions) and 

can be interpreted as the simultaneous excitation of the transverse resonator 

modes, but not essentially nonlinear pattern formation. The spatial structure 

formation in such circumstances is driven by noncollinear parametric 

interaction and oscillation of higher transverse modes. For SPOPO cavities 

with small Fresnel numbers when higher transverse mode generation is not 

possible the spatial structure formation is caused mainly by noncollinear 

parametric interaction, however, for SPOPO cavities with large Fresnel 

numbers the variation of the spatial structure due to the SPOPO mirror 

misalignment and cavity length mismatch is caused by the oscillation of higher 

transverse modes and additionally due to noncollinear parametric interaction. 

 

1.3 Temporal and spatial properties of photonic crystals 
 

1.3.1 Nature and properties of photonic bandgaps 
 
 The idea of the periodic photonic crystal was conceived by 

Yablonovitch [38] who initially proposed to use such structures for the control 

of spontaneous emission 

processes in semiconductors. 

The initial concept was 

developed further in a series of 

subsequent works [39-41]. It 

relies heavily on the analogy 

between electrons in the 

periodic potential of the 

crystalline atomic lattice, and 

EM waves in a medium with 

periodically modulated optical 

        
Fig. 1.15. Schematic images of 3D cubic 
photonic crystals: primitive cell with 
spherical dielectric “atoms” having ε2 and 
placed at the lattice nodes in the medium 
with ε1 ≠ ε2
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properties. Broader explanation of the physical principles and ideas motivating 

the PhC research, are given by Yablonovitch [42, 43] and by Joannopoulos et 

al. [44]. More condensed reviews are given in [45].  

Response of the material to EM waves, including light waves, is 

described by its dielectric permittivity ε and magnetic susceptibility µ. The 

dielectric permittivity is in general a complex quantity ε = ε’ + iε’’. Its real part 

ε’ describes the refractive properties of the material, and is often represented 

by the refractive index n = 'ε . The imaginary part ε’’ describes dissipative 

damping of the wave’s amplitude via absorption. (In terms of this work 

negligible absorption can be assumed) The material is regarded as non-

magnetic, i.e. µ = 1 independent of the spatial coordinates. 

The most important similarity between photonic and solid crystals is 

their translational symmetry. Photonic crystals can be formed from materials 

satisfying the requirements outlined above by periodically modulating their 

dielectric properties ε (or n) in space. A simple way to do so is to periodically 

remove volumes of homogeneous dielectric material with ε1, and fill them with 

another dielectric with ε2 ≠ ε1. As a result, a periodic dielectric arrangement 

with dielectric contrast ε2/ε1 (refractive contrast n2/n1) will be created. Since air 

has low value ε = 1, PhC can be fabricated by periodically removing some 

parts of the material from a dielectric with ε > 1. Alternatively, one can 

assemble spatially periodic arrangements from small dielectric “atoms” in air 

or other medium. One of the most common characteristics of photonic 

structures is the filling ratio, which describes the percentage of total crystal 

volume occupied by the dielectric material. Fig. 1.15 sketches a unit cell of a 

PhC structure that consists of spherical “atoms” (marked by darker shades of 

gray) placed at the nodes of a 3D cubic lattice. An extended periodic PhC can 

be obtained by translating the unit cell along the vectors: 

Tijk = ix + jy + kz,  (1.3.1) 

where x, y and z are the primitive translation vectors, and i, j and k are arbitrary 

integers. Photonic lattice type definitions and classifications are adopted from 
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crystallography. Since we anticipate importance of periodicity in PhCs, a 

reciprocal lattice with primitive vectors g1, g2 and g3 is defined in reciprocal 

space by analogy with solid state physics: 
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 Photonic crystals must have a period comparable to the EM wavelength 

(typically in the range from microwave to visible). The first photonic crystal 

working in the microwave spectral region was fabricated by Yablonovitch et 

al. [40] by mechanical drilling of oriented holes through a slab of dielectric. 

 If an EM wave with wavelength λ is incident on a PhC, dielectric 

discontinuities introduced by the “atomic” sites will result in multiple 

scattering and diffraction. Interference between the scattered fields, may be 

constructive or destructive, as in the case of X-rays (or electronic waves) in 

solids. The well-known Bragg condition [46] describes complete X-ray 

reflection in the periodic crystal at λ = 2d sin(θ +δ), where θ and δ are 

incidence and reflection angles, respectively, and d is the distance between the 

atomic planes. This condition also applies for EM waves in photonic crystals. 

 Propagation of EM waves is described by the set of Maxwell’s 

equations: 
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It can be shown that Maxwell’s equations can be transformed into the 

following expression for harmonic magnetic modes: 
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(Mathematically similar electron propagation is described by the Schrödinger 

equation [46]) For EM waves in isotropic medium, Eq. (1.3.9) have plane 

wave solutions )](exp[),,( 0 trkiEtrEk ωω −=
rrrr

. In this case, the dispersion is also 

continuous but is described by the linear law (Fig. 1.16 (a)): 
ε

ω ck= , where 

c is the speed of light.  

 

a) b) c)a) b) c)

 
Fig. 1.16. Dispersion relations for electromagnetic waves in isotropic media (a), (plotted as 
solid lines). Sketch of one-dimensional periodic dielectric susceptibility ε(x) (b). The 
dispersion relations for EM waves modified due to the periodicity are sketched in (a) by 
dashed lines. Folding of the k-space to the first Brillouin zone and representation of the 
energy bands within this domain for EM waves (c) [47]. 
 

 Periodic modulation of the environment can be described by following 

condition: )()( rTr rrr εε =+ , where T
r

 is a translation vector. For EM waves, an 

approach equivalent to the weakly perturbed electron approximation is realized 

by substituting the EM Bloch waves into Eq. (1.3.9), and yields E(k) 
dependencies, modified as schematically shown in Fig. 1.16(b) by dashed 

lines. Just as in the case of electrons, the dispersion relations are no longer 

smooth, and manifest forbidden energy gaps, or photonic band gaps at ki. The 

periodicity of photonic lattice folds the dispersion relations into the first 

Brillouin zone ([−π/a; π/a]) in reciprocal space, as shown in Fig. 1.16(c). EM 

states with energies in the PBG are forbidden, and if such waves are incident 

on the structure from outside, they will be rejected. This mechanism of light 

reflection is widely exploited in dielectric Bragg mirrors, which in fact are 
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stacks of alternating dielectric layers with different values of refractive index, 

and thickness equal to a quarter of the EM wavelength. Conventional 

explanation of almost 100 % Bragg mirror reflectivity within some wavelength 

range (stop-band) is based on the destructive interference between waves, 

multiply reflected from the internal interfaces. On the other hand, stop-bands 

can be understood as manifestations of one-dimensional photonic band gaps. 

 Two-dimensional photonic crystals systems exhibit most of the 

important characteristics of photonic crystals, from nontrivial Brillouin zones 

to topological sensitivity to a minimum index contrast, and can also be used to 

demonstrate most proposed photonic-crystal devices. The key to understanding 

photonic crystals in two dimensions is to realize that the fields in 2D can be 

divided into two polarizations by symmetry: TM (transverse magnetic), in 

which the magnetic field is in the (xy) plane and the electric field is 

perpendicular (z); and TE (transverse electric), in which the electric field is in 

the plane and the magnetic field is perpendicular. 

 Corresponding to the polarizations, there are two basic topologies for 

2D photonic crystals, as depicted in Fig. 1.17: high index rods surrounded by 

low index (top) and low-index holes in high index (bottom). Here, we use a 

hexagonal lattice because, as noted earlier, it gives the largest gaps. Recall that 

a photonic band gap requires that the electric field lines run along thin veins: 

thus, the rods are best suited to TM light ( E
r

 parallel to the rods), and the holes 

are best suited to TE light ( E
r

 running around the holes). This preference is 

reflected in the band diagrams, shown in Fig. 1.17, in which the rods/holes 

(top/bottom) have a strong TM/TE band gap. For these diagrams, the rod/hole 

radii is chosen to be 0.2a/0.3a, where a is the lattice constant (the nearest 

neighbor periodicity) and the high/low ε is 12/1. The TM/TE band gaps are 

then 47%/28% as a fraction of mid-gap frequency, but these band gaps require 

a minimum ε contrast of 1.7/1 and 1.9/1, respectively. Moreover, it is 

conventional to give the frequencies ω in units of 2πc/a, which is equivalent to 

a/λ (λ being the vacuum wavelength)—Maxwell’s equations are scale-
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invariant, and the same solutions can be applied to any wavelength simply by 

choosing the appropriate a. For example, the TM mid-gap ω in these units is 

0.36, so if one wanted this to correspond to λ = 1.55µm one would use a = 

0.36·1.55µm = 0.56µm. 

 
Fig. 1.17. Band diagrams and photonic band gaps for hexagonal lattices of high dielectric 
rods (ε = 12, r = 0.2a) in air (top), and air holes (r = 0.3a) in dielectric (bottom), where a is 
the center-center periodicity. The frequencies are plotted around the boundary of the 
irreducible Brillouin zone (shaded triangle, left center), with solid-red/dashed-blue lines 
denoting TE/TM polarization (electric field parallel/perpendicular to plane of periodicity). 
The rods/holes have a gap in the TM/TE bands. 
 

 The Brillouin zone (a hexagon) is shown in the inset, with the 

irreducible Brillouin zone shaded (following the sixfold symmetry of the 

crystal); the corners (high symmetry points) of this zone are given canonical 

names, where Γ always denotes the origin k
r

 = 0, K is the nearest-neighbor 

direction, and M is the next-nearest-neighbor direction. The Brillouin zone is a 

two-dimensional region of wave vectors, so the bands )(kn

r
ω  are actually 

surfaces, but in practice the band extrema almost always occur along the 



 44

boundaries of the irreducible zone (i.e. the high-symmetry directions). So, it is 

conventional to plot the bands only along these zone boundaries in order to 

identify the band gap, as is done in Fig. 1.17. Actually, the hole lattice can 

display not only a TE gap, but a complete photonic band gap (for both 

polarizations) if the holes are sufficiently large (nearly touching). 

 

1.3.2 Nondifractive light propagation in photonic crystals  
 

A decade after first Yablonovitch works [38, 40] it was found that the spatial 

dispersion (diffraction) characteristics also modify substantially in periodic 

materials: the diffraction can become negative [48, 49], or can vanish to zero 

[50-54], resulting in the so-called self-collimation effect in the latter case. A 

self-collimated beam of light does not spread when it propagates in photonic 

crystal. In contrast to spatial solitons, where the nonlinearity of homogeneous 

medium counteracts the natural spreading of the beam due to diffraction, the 

formation of self-collimated, or self-guided, beams in photonic crystal is a 

purely linear phenomenon. The spreading of the beam is counteracted by the 

crystal anysotropy, such that all wave vectors building the beam lead to the 

power flux in the same direction.  

 
Fig. 1.18. Convex (red), concave (blue) and flat (black) iso-frequency contours. Iso-
frequency contours on the left (right) panel correspond to the second band of a two-
dimensional square (triangular) lattice photonic crystal made of dielectric rods in vacuum. 
Rods have the refractive index 2.9 and radius r = 0.15d, where d is the lattice period. The 
wave vectors resulting in the Bloch eigenwaves with the group velocity pointing to the 
direction normal to the Brillouin zone boundary are depicted with arrows [52]. 



 45

This can be realized for the wave vectors ending at the flat regions on an iso-

frequency surface of a photonic crystal. The self-collimation regime reported 

by Kosaka et al. [55] relies on the inflection points of an iso-frequency surface, 

where the Gaussian curvature of the surface tends to zero. Typically, a flat 

region spreads over very limited wave vector directions centered at the wave 

vector ending at the inflection point. As a consequence, selfcollimation can 

occur only for very limited orientations of the beam with respect to the crystal 

lattice and for limited beam widths. 

For some frequencies the form of iso-frequency surface mimics the 

form of the Brillouin zone of the crystal. In Fig. 1.18, iso-frequency contours 

for realistic square (left) and triangular (right) lattice photonic crystals are 

depicted. With changing frequency, the anisotropy of a photonic crystal 

changes dramatically, its iso-frequency contours evolve from convex (red 

contours in Fig. 1.18) to concave (blue contours in Fig. 1.18). There exists a 

frequency range where an iso-frequency contour forms almost perfect square 

or hexagon. Then, a wide angular range of flat dispersion exists canceling out 

diffraction of a light beam with the corresponding range of wave vectors 

(Fig. 1.18). 

 
Fig. 1.19. Photonic band structure of the square lattice photonic crystal made of dielectric 
rods in vacuum. Rods have the refractive index 2.9 and radius r = 0.15d, where d is the lattice 
period. The band structure is given for TM polarization. The frequency is normalized to 
Ω =ωd/2πc = d/λ . c is the speed of light in the vacuum. Insets show the first Brillouin zone 
(left) and a part of the lattice (right) [52]. 
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2D infinite size photonic crystal (Fig. 1.19) is studied with restriction to 

the case of in-plane propagation. Consequently, the problem of 

electromagnetic wave interaction with a 2D photonic crystal is reduced to two 

independent problems, which we call TE (TM) when the magnetic (electric) 

field is parallel to the rods axis. In what follows, we limit ourselves to the case 

of TM modes. The photonic band structure of the square lattice photonic 

crystal made of dielectric rods in vacuum is shown in Fig. 1.19. The refractive 

index of the rods is 2.9 and their radius is r = 0.15d, where d is the period of 

the lattice. A band structure calculations was done using the plane wave 

expansion method [56].  

The analysis is performed with first two bands of the crystal, the iso-

frequency contours of which evolve from convex to concave topology. In Fig. 

1.20 transition iso-frequency contours corresponding to the normalized 

frequencies Ω = d/λ = 0.3567 (the first band) and Ω = d/λ = 0.5765 (the second 

band) are depicted. 

The iso-frequency contour for the normalized frequency 

Ω = d/λ = 0.3567 forms a square with rounded corners, rotated by 45± with 

respect to the Brillouin zone and centered at M-point of the first Brillouin zone 

(Fig. 1.20, left). The iso-frequency contour for the normalized frequency Ω = 

d/λ = 0.5765 consists of two branches, which are plotted in red and blue in Fig. 

1.20, right. Both branches mimic the form of the first Brillouin zone of the 

crystal being squares with rounded corners. The ”red” branch is centered at the 

G-point and the ”blue” branch is centered at the M-point of the Brillouin zone 

(Fig. 1.20, right).  

The important feature of the wave propagation inside a photonic crystal 

at the considered normalized frequencies is that even a cylindrical initial wave 

results in an energy flow strongly focused along some specific directions, 

while it remains negligible for all other directions. To emphasize this special 

type of self-collimated electromagnetic wave propagation inside a photonic 

crystal will refer to it as self-guiding. 
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Fig. 1.20. Iso-frequency diagram for the normalized frequencies Ω = d/λ = 0.3567 (left) and 
Ω = d/λ = 0.5765 (right). The shaded regions show the wave vectors resulting in the Bloch 
eigenwaves with the group velocity vectors pointing to the same direction. The crystal 
parameters are given in Fig. 1.19 caption [52]. 
  

 In Fig. 1.21 the electric modulus field map is shown, when a 30x30 rod 

crystal is excited by a point isotropic source at the normalized frequencies W = 

d/l = 0.3567 (left) and W = d/l = 0.5765 (right). The point source is placed in 

the middle of the crystal, at x0 = 0 and y0 = 0. The emitted light is guided in 

channels in the [11] and [10] directions, correspondingly, as it was predicted in 

the previous section. 

 
Fig. 1.21. Modulus of the electric field map for a 30x30 rod photonic crystal excited by a 
point isotropic source. Left, W = d/l = 0.3567; right, W = d/l = 0.5765. The axis scales are in 
units of d and the colorscale is from 0 (blue) to 1 (red) [52]. 
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Fig. 1.22. Self-guiding in a limit-size photonic crystal. Left: Modulus of the electric field map 
for a 20x40 rod photonic crystal illuminated by a Gaussian beam with W/d = 2.5, Ω = d/λ = 
0.5765. Right: Modulus of the electric field of the incident Gaussian beam. The axis scales 
are in units of d and the colorscale is from 0 (blue) to 1 (red) [52]. 
 

In Fig. 1.22, a rigorous numerical simulation of self-guided Gaussian 

beam is presented for a normalized frequency Ω = d/λ = 0.5765. Figure 1.22, 

right shows the field map of the TM polarized incident beam, where the width 

of the beam is W/d = 2.5 and the waist is located at x0 =0 and y0/d =19.5. The 

self-guiding in the [10] lattice direction is shown in Fig. 1.22 left. The crystal 

is made of 20x40 rods and is illuminated from the top by an incident Gaussian 

beam. The guiding of the beam is obvious in the photonic crystal, as seeing by 

comparing the width of the beam at the bottom of the crystal and at the same 

ordinate in free space. The width of the incident beam fully defines the width 

of the self-guided beam in the crystal. In the same time, the presence of the 

self-guiding phenomenon does not depend on the incident beam width. It is 

important to note that in this study we did not make any attempt to optimize 

the coupling of the incident beam. The transmitted energy below the crystal is 

about 33% of the incident one. 

 

Diffractionless propagation over 12 diffraction lengths for both 

polarizations theoreticaly and experimentaly was demostrated by R.Iliew et. al. 

[53]. PhCs with a width of 100 mm and a length of 128 mm, 255 mm and 510 
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mm were fabricated for operation near 1.5 µm. The scanning electron 

microscope (SEM) images (see Fig. 1.23) of the optical facet reveal deeply 

etched holes (total depth 950 nm) and an average hole diameter of 285 nm. In 

order to couple light of a defined width into the structure ridge waveguide 

tapers were used, where the ridge waveguide width at the photonic crystal 

interface was 1.5 or 2.5 mm. 

 

 
Fig. 1.23. SEM images of the fabricated photonic crystals consisting of holes with a diameter 
of 285 nm and a depth of 950 nm (aspect ratio of 1:3) in a quadratic lattice with pitch 600 nm 
[53]. 

 

To evaluate the propagation loss and to monitor the selfguiding 

behavior the light of a tunable continuous-wave optical parametric oscillator 

was coupled with the desired polarization (TE or TM) into the taper via a 

standard telecom fiber, and the top view stray light was recorded for different 

fixed wavelengths via a microscope objective (125X, NA = 0.8) and an 

infrared camera. The self-collimation effect in dependence on the wavelength 

could be monitored directly. For obtaining the propagation loss first the stray 

light intensity was integrated over the transverse beam coordinate. Then the 

resulting dependence on propagation length was fitted with an exponential 

decay function. For TE polarization the stray light images revealed that for 

wavelengths between 1.578 and 1.612 µm the input beam is neither broadened 

nor does it split up upon propagation over 510 µm in the PhC (see Fig. 1.24). 

This wavelength range of self-collimation is in full agreement with the 

numerically obtained transmission spectrum. In contrast, detuning the 
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wavelength the beam splits up into two or even more individual beams. 

However, this splitting does not become apparent up to a propagation length of 

150 µm. 

 
Fig. 1.24. Stray light images showing the last 200 µm of the 510 µm long PhC for TE 
polarization at a wavelength (a) of 1.599 µm, (b) of 1.622 µm, and (c) for TM polarized light 
at 1.492 µm. Streaks of reflected light mark the boundaries of the PhC region. (d) FDTD 
calculation for TE monochromatic excitation at l=1.6 mm, the white line denoting the PhC 
interface; (arrowsdirectionof propagation) [53]. 
 
 Analytical study of nondiffractive light propagation in photonics 

crystals phenomenon is presented by K.Staliunas and R.Herrero in [54]. 

Superposition of two periodic lamellaelike refraction index gratings: 

∆n(r)=2m[cos(q1r)+cos(q2 r)] with 1q  = 2q  =q at angles ±α to the optical 

axis, as shown in Fig. 1.25.  

 

 
Fig. 1.25. Harmonic modulation of refraction index as, e.g., imposed holographically in 
photorefractive material. In this twodimensional case the grating is written by two pairs of 
counter propagating beams [54] 
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 This results in refractive index modulation profile 

)cos()cos(4),( zqxqmzxn ΙΙ⊥=∆ , with qII = q cos(α), and q⊥ = q sin(α). The 

crystallographic axes of such a harmonic photonic crystal are  π(±1/q||, 1/q⊥), 

and the reciprocal lattice vectors of the photonic crystal are q1 and q2. We 

further assume for simplicity that the spatial period of the photonic crystal is 

significantly larger than the wavelength of the probe beam. This legitimatizes 

paraxial approximation for the description of propagation of the probe beams:  

[ ] 0),(),(22 2
0

22
0 =∆+∂∂+∂∂ zxAkzxnxzik  (1.3.10) 

Here A(x, z) is the slowly varying complex envelope of the electromagnetic 

field in two-dimensional space tizikezxAtzxE 00),(),,( ω−=  propagating along the z 

direction with a wave number k0= ω0/c.  Advantage of the use of paraxial 

approximation is a substantial simplification of the problem to the explicit 

analytical expressions in asymptotical cases. The disadvantage is that the 

treatment is restricted for the photonic crystal with the modulation period 

larger than the wavelength of the probe beam. 

Analytical study of the propagation is performed by expanding the 

electromagnetic field into a set of spatially harmonic (Bloch) modes. 

( ) ∑ +⊥=
lj

zikxik
lj

lIIjeAzxA
,

,
,,,  (1.3.11) 

with kj,l=(k⊥,j, k||,l) =( k⊥+jq⊥, k||+lq||)    , j , l=...−2,−1,0,1,2,..., respectively. The 

expansion (1.3.11) results in a coupled system for the amplitudes of harmonics: 
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Solvability of Eq. (1.3.12) results in a transverse dispersion relation (the 

dependence of the longitudinal component k⊥ on the transverse component k|| 

of the wave vector). We restricted to the five most relevant harmonics in our 

study (respectively, nine components for three-dimensional case), consisting of 

a central component with the wave vector k = (k⊥, k||), and four most relevant 

modulated (sideband) components with the wave vectors ( k⊥ ± jq⊥, k|| ± lq||), 

respectively. The transversal dispersion relations as calculated numerically 
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from Eq. (1.3.12) are given in Fig. 1.26. In the absence of refractive index 

modulation m = 0 the formal solution of Eq. (1.3.12) consists of a set of 

parabolas [dashed curves in Fig. 1.26, (a)] shifted one with respect to another 

by the vectors of photonic crystal lattice q1,2. These parabolas represent the 

transverse dispersion curves for uncoupled harmonic components of the 

expansion (1.3.10). For a nonparaxial description of light propagation these 

parabolas would be substituted by circles. The modulation of the refractive 

index m ≠ 0 lifts the degeneracy at the crossing points and gives rise to band 

gaps in spatial wave number domain [Fig. 1.26(a)]. We focus on the 

appearance of plateaus on the transverse dispersion curves, indicating the 

vanishing of diffraction. For some particular parameters, essentially the 

geometry of photonic crystal given by vectors q1,2 and modulation depth m, the 

upper dispersion branch, corresponding to the most homogeneous Bloch mode 

(see insets of Fig. 1.26), can become nondiffractive, with zero curvature at 

k⊥ = 0 (Fig. 1.26 (b)). The insets of Fig. 1.26 show the field eigenfunctions at a 

particular propagation distance (the envelopes A(x, z) = 0)). 

 
Fig. 1.26. Transverse dispersion relation obtained by numerical integration of Eq. (1.3.12) 
considering the five most relevant modes (j, l = −1, 0 ,1): (a) in absence of modulation m = 0 
(dashed parabolas), and for a weak modulation of refraction index m = 0.003 (solid line); and 
(b) for particular amplitude of modulation m = 0.0175 inducing zero diffraction. Insets show 
corresponding Bloch modes calculated at k⊥ = 0. Parameters: λ = 500 nm (k0 = 4π106 m−1), 
q⊥ = 2π106 m−1, and q|| = 0.75*106 m−1 [54]. 
 

Predicted phenomenon of nondiffractive propagation was checked by 

direct numerical integration of Eq. (1.3.10) for a two-dimensional modulation 

of refractive index (Fig. 1.27) and also for the three-dimensional case. The 
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integration shows an evident decrease of the diffraction: whereas in the 

absence of spatial modulation of the refractive index the narrow prove beam is 

diffractively broadening [Fig. 1.27 (a)], in the presence of refraction index 

grating of particular parameters the spreading was strongly suppressed [Fig. 

1.27 (b)]. The magnified part of the nondiffractive propagation plot [Fig. 1.27 

(e)] indicates that the nondiffractively propagating beam is in fact an envelope 

of the spatially modulated nondiffractive propagation mode. Calculations in 

the three-dimensional case result in essentially the same nondiffractive 

behavior as in two dimensional cases shown in Fig. 1.27. 

 
Fig. 1.27. Diffractive (a) and nondiffractive (b) propagation of a gaussian beam obtained by 
numerical integration of Eq. (1.3.10). (c) and (d) show initial and final envelopes of the beam 
(intensity), and (e) shows a magnified area from (b). The real world parameters: λ = 500 nm, 
n0 = 1, m = 0.0175, λ0⊥ = 1.0 µm, and λ0|| = 7.0 µm. The initial beam waist W0 = 2.82 µm, with 
corresponding Rayleigh length: z0 = 50 µm [54]. 
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2. Optical Parametrical Oscillation in monolithic mini-cavities 

 

Material related to this chapter was published in [A1-A4]. 

 

2.1. Introduction 

 

Transverse pattern formation in broad aperture lasers and in other nonlinear 

optical resonators like photorefractive oscillators, and Optical Parametric 

Oscillators (OPOs) is attracting an increasing interest. The interest stems both: 

from the fundamental physical viewpoint, since the nonlinear optical systems 

are convenient systems for studies of self-organization and pattern formation in 

spatially extended systems; from the viewpoint of applications, since optical 

patterns have an application potential for parallel information processing, for 

image processing, nonlinear microscopy, and related topics. Pattern formation 

in nonlinear micro- and mini-cavities is especially attractive from the 

application viewpoint due to the compactness of the system.  

Transverse patterns have been predicted to occur and observed in several 

different nonlinear optical systems (see e.g. [13] for a review). In the case of a 

quadratic nonlinear interaction patterns have been predicted in OPOs [57-59], 

in degenerate OPOs [16, 19, 60], and in second harmonic generation SHG [61-

63]. Degenerate OPOs are particularly interesting due to the possibility of 

excitation of phase patterns [34, 36, 64], and of phase solitons [33]. 

Experimentally transverse patterns have been observed for OPOs [1-3], and for 

second harmonic generation [65]. No patterns have been seen for degenerate 

OPOs, or for OPOs in monolithic cavities. 
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2.2. Multiconical Emission of a monolithic mini-cavity Optical 

Parametric Oscillator 
 

This chapter presents a step towards spatial pattern generation in degenerate 

OPOs: we show the linear and weakly-nonlinear stage of the pattern formation, 

i.e. the conical (off-axis) emission. It is known that conical emission is an 

essential ingredient of transverse pattern formation: the patterns occur due to 

the instability of a homogeneous (trivial - dark or nontrivial - bright) solution 

with respect to spatially modulated modes with the modulus of transverse 

wave-number k  depending on the resonator detuning. This means an off-axis 

(conical) emission with the cone angle depending on the detuning, which is a 

“weakly nonlinear” precursor of the nonlinear transverse patterns.  

The experiments used a BBO type I crystal of size 5x5x1.7 mm, with the 

thickness 1.7 mm along the propagation direction.  The phase matching 

direction for degenerate parametric down conversion at 532 nm is coincident 

with the optical axis of the cavity (crystal orientation angles are: °= 8.22θ , and 

°= 90φ ). High-transmission coatings for 532 nm and high-reflection coatings 

for 1064 nm were used, resulting in a monolithic mini-cavity for subharmonic 

radiation. Fig. 2.1 shows experimentally recorded spectral characteristics of 

micro-cavity coatings for 1064 nm wave region. High reflectivity 94 % at 

1064 nm results in finesse of the cavity Q = 50. Spectral measurements show 

that degenerate operation at 1064 nm occurs, resulting in a higher threshold for 

nondegenerate operation. 

The experimental scheme is shown in Fig. 2.2. The pump source is a 

Nd:YAG passively modulated laser, generating 1064 nm pulses of 13 ns 

duration, 5 mJ energy and TEM00 spatial mode. Laser temporal profiles 

(Fig. 2.3) hints a single (or two near) longitudal mode operation. A Nd:YAG 

double pass amplifier enhances the energy of the pulses up to 50 mJ. The 

diameter of the beam is ~2 mm after reduction by a two lens telescope. 



 56

900 930 960 990 1020 1050 1080 1110
74

76

78

80

82

84

86

88

90

92

94

96

98

 

 

R
ef

le
ct

io
n,

 %

λ, nm

 

Fig. 2.1. Spectral characteristics of the coatings of the monolithic OPO mini-cavity. 

 

The OPO pumping is performed by the second harmonic of the pump 

laser, generated in a DKDP type II crystal. A 2λ  wave plate is used for 

energy attenuation of the pump beam. After second harmonic generation the 

fundamental frequency is completely filtered, so no seed injection was present 

in the experiments. In the case of 13 ns pulse duration around 1000 resonant 

wave cavity round trips is possible in a 1.7 mm long BBO resonator. Q 

switching of the pump laser leads to emission with a small number of 

longitudinal modes (usually a single- or two neighboring longitudinal modes 

are emitted).  

 

 

Fig. 2.2. Experimental scheme: F.I. - Faraday isolator; L1, L2 - telescope lenses; L3 – far field 
imaging lens. 

Passively Q-switched 
Nd:YAG laser 

Nd:YAG 
amplifier 

SHG 

DKDP type II 

far 
field  BBO type I 

monolitic 
micro-cavity 

F.I. 

SH filter  FH 
filter  

L2 

L1 

L3 
2
λ

CCD 



 57

The mini-cavity orientation with respect to the pump beam can be 

changed in both directions. After passing the mini-cavity the pump beam is 

filtered out. A CCD camera and f – f lens system was used for observation and 

recording of the OPO far-field pattern. 

 
Fig 2.3 Laser pulse temporal profile. (a) – smooth shape appearing with 90% 

probability; (b) –modulated with two near longitudal laser modes. 
 

First transmission of the cold resonator was measured by illuminating it 

with radiation at the sub-harmonic at λ = 1064 nm in the absence of a pump 

beam. Transmission resonances were observed at some angles as shown in 

Fig. 2.4. The good separation of longitudinal modes (resonant rings) indicates 

relatively good finesse of the Fabry-Perot resonator, and certifies the above 

evaluated value of resonator finesse. An additional variation of the detuning 

(the cavity length) is possible by changing the temperature of the monolithic 

mini-cavity, resulting in variation of the radii of the concentric rings. 

Temperature change over 10 oC corresponds to the change of the full cavity 

length by one λ, i.e. allows tuning over a free spectral range of the mini-cavity 

transmission.  

In the case of a monolithic BBO mini-cavity only a few parameters can 

be varied for achieving optical parametrical oscillation: 1) cavity face plate 

orientation with respect to the direction of the pump beam in both directions: 

along the phase matching direction and transversally to it; and 2) cavity 

detuning through temperature induced crystal length change. 

a b 
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Fig. 2.4. Resonances of the cold cavity: an experimentally recorded transmission coefficient 
depending on a tilt of the cavity in one (of two possible) direction.  

 

In this experiment we kept the cavity temperature constant. The BBO 

monolithic mini-cavity was pumped with 532 nm pulses of 10 mJ energy, and 

13 ns duration. The pump beam diameter at the mini-cavity face plate was 2 

mm. OPO radiation was observed for mini-cavity optical axes oriented at small 

0.5-1.2 deg angles with respect to the pump beam in the phase matching 

direction. The lowest OPO threshold of 7 mJ per pulse at pump beam intensity 

17 MW/cm2 was observed for 0.75 deg incidence angle (OPO conversion 

efficiency to signal and idler waves for a 10 mJ pump pulse was 2.5 %). 

  

Fig. 2.5. Typical far field pattern of mini-cavity OPO emission. The empty spot indicates the 
direction of the mini-cavity optical axis, while the white spot indicates the direction of the 
pump. 

 

Fig. 2.5 shows a typical far field OPO emission pattern. Signal and idler 

waves are always generated with a particular angle between them (conical 

5 deg 
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emission). The pump beam direction is always between the signal and idler 

waves. In this picture a faint pattern of cold cavity rings can also be observed.  

The directions of the signal and idler waves and the angle of conical 

emission depend strongly on the mini-cavity orientation with respect to the 

pump beam as Fig. 2.6(a-d) shows. Fig. 2.6(a) shows the generation on one 

resonant cone; Fig. 2.6(b) indicates that two cone emission is possible. This 

generation pattern is very sensitive to cavity orientation in the phase matching 

direction, and is very weakly dependent on the pump energy, which indicates 

that the regime is quasi-linear.  

When the mini-cavity orientation is changed in the non phase matching 

direction, then the signal and idler waves rotate around the direction of the 

pump beam (Fig. 2.6(e-h)). Here the mini-cavity orientation angle in the phase 

matching direction was fixed at a 0.75 deg angle. Our observations show that 

the signal and idler waves rotate around the pump beam direction by nearly 

180 deg when the orientation is changed by ± 1 deg. The OPO threshold 

increases when the mini-cavity orientation in the non phase matching direction 

exceeds 0.5 deg. At the value of 1 deg the OPO threshold energy rises from 7 

mJ to 15 mJ. (36 MW/cm2).  

 
Fig. 2.6. Experimentally recorded far field pattern of DOPO. (a-d)– mini-cavity orientation as 
the pump beam is tilted in the phase-matching direction, (e-h) – in the non phase-matching 
direction. xα  - angle between coupling beam and cavity optical axes in phase matching 
direction, yα - angle in non phase matching direction.ϕ  – angle between signal and idler 
waves. 
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2.3 Phenomenological interpretation of conical OPO emission 
 

For a theoretical interpretation of the observed conical and multiconical 

patterns, we first describe the formation of the ring structure of the far field in 

the cold cavity. We assume that the OPO radiation resides on the resonant 

rings of the cavity in accordance with the theory of multiconical OPO emission 

in monolithic resonators [66], and based on this assumption we describe the 

formation of OPO patterns.  

1) Resonant rings of the cold cavity:  The intensity transmission 

coefficient (transparency) of the Fabry-Perot cavity is:  

( )ϕcos21 2121

21

rrrr
tt

T
−+

=  (2.3.1) 

where 2,1r  and 2,1t   are the reflection and transmission coefficients of the 

mirrors, calculated for the field amplitude (the intensity reflection and 

transmission coefficients are 2
ii rR = , 2

ii tT =    and  1=+ ii TR ). The resonator 

finesse is related with the cavity parameters via a standard definition 

( )21
4/1

21 1)( RRRRF −= π , which in the limit of good cavity simplifies to 

( )212 TTF +≈ π . The ϕ  is the phase shift over full resonator roundtrip of a 

wave tilted at the angle α  with respect to the optical axis of the cavity: 

( )( ) λπαϕ 2cos 0 ⋅−= ll . l  is the full length of the cavity, 0l  is the full resonant 

length of the cavity, and λ  is the wavelength. (2.3.1) results in a well know 

ring structure (Fresnel rings) of the large aspect ratio resonators. Fig. 2.7 shows 

the ring structure as following from (2.3.1), and taking into account parameters 

of the cavity used in experiments: we use the value of the full cavity length l  

in (1) as directly taken from experiments, and we choose the resonant cavity 

length 0l  by matching the radii of the inner resonant ring in experimental 

observations and in numerical calculations. The rough interpretation of the 

experimentally observed patterns is illustrated in Fig. 2.7. We fix, for 

simplicity the origin of the coordinate system with the direction of the optical 
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axis of the resonator, but vary the angle of the pump ),( ,0,00 yx αα=α  in both x, 

and y, directions, which correspond to the direction along and transversally to 

the direction of phase matching.  

                         

Fig.2.7. Ring structure of a cold cavity. The white spot indicates direction of the pump beam, 
and the pairs of symmetrically (with respect to the pump direction) placed pattern spots 
illustrate possible directions of the OPO generation. The pair 1 illustrates OPO generation on 
the same (first) ring, the pair 2 – on two different rings. The ring density is inverse 
proportional to the full cavity length, and the radius of the inner ring depends on the off-
resonance detuning. 
 

The OPO emission is determined essentially by three conditions:  

1) by the resonance conditions for the mini-resonators (multicones with 

respect to the optical axis of the resonator) as described by (2.3.1), which 

means that the emission should reside on the resonant rings.  

2) by the phase momentum conservation condition, which means that the 

emission in the far field domain must be symmetric with respect to the 

direction of the pump.  

3) by the phase matching condition.  

The pattern spots, as shown in Fig. 2.7, indicate the direction of OPO 

generation. It is obvious from this illustration that the fulfilment of the above 

conditions results in a complicated angular structure of the OPO generation.  

Mathematically the total gain of the OPO in the linear regime is given by:  

( ) ( ) ( ) ( ) ( ) ( )( )
22

2
22112
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as easily obtained from solution of equations describing parametric gain in 

lossy media (see e.g. [67] ). Here ( )2,12,1 αβ  are the coefficients of the losses for 

both generated waves depending on their angles (corresponding to the resonant 

ring structure – see condition 1), and ( )2,1αγ  is the gain coefficient, which is 

dependent on the angles of both generated waves (the cone of phase matching 

in the case of vectorial synchronism – see condition 3). For a strong gain 

2,1βγ >>  (2.3.2) simplifies to ( ) ( ) ( ) ( )( ) 222112,12,1 αααα ββγ +−=g . The 

coefficients of losses follow directly from (2.3.1). Next we take into account 

the momentum conservation condition with respect to the direction of pump 

beam. If we assume that the pump beam is a plane wave (spatial −δ function in 

the far field domain) then the emission angles of both waves 2,1α  fulfil: 

021 2ααα =+ . This allows to eliminate one angle (say 2α ) from (2.3.2). Finally 

introducing (e.g. phenomenologically) the expression of the phase matching 

( )2,1αγ  one obtains an analytical expression for the direction of the OPO 

generation 1α . The resulting analytical expression for the angular distribution 

of OPO radiation in the far-field is cumbersome, and we do not give it here. 

Instead we plot the intensity distributions predicted by the formula in Fig. 2.8.  

Qualitatively the correspondence between experimentally observed 

(Fig. 2.6) and numerically obtained (Fig. 2.8) distributions is good. The conical 

emission angle varies with the angle of the pump by varying the pump angle in 

the phase matching direction (by varying the phase matching cone angle 

phenomenologically) as shown in series (a - d). Also the far field patterns 

rotate by varying the pump angle in the direction perpendicular to the phase 

matching direction, as shown in series (e - h). Typically upon varying the 

pump angle, the radial and the azimuthal emission angles vary smoothly, 

before they jump abruptly to new locations. The quantitative correspondence 

between the far-field distributions for different angles between the pump wave 

and the optical axis of the resonator is also good.  
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Fig. 2.8. Simulated OPO far field pattern. Resonator detuning 2.0=∆  (as normalized to free 
spectral range), finesse 50=Q , gain 5=γ  (as calculated for the photon propagation length 
in a cold cavity), ϕ  - the phase matching angle of OPO emission; xα  - angle between 
coupling beam and cavity optical axes in phase matching direction, yα - angle in non phase 
matching direction. Dashed concentric rings indicate the resonance rings of the cold cavity.  
 

2.4 Non-mean-field theoretical interpretation for OPO 

 

Most of the theoretical - numerical studies on transverse patterns in 

nonlinear optics consider mean field approximation, which means equivalently 

a single longitudinal mode assumption. Within this assumption the emission of 

a spatially extended system evolves on a resonant ring in the far field domain 

with the ring radius dependent on the detuning on the resonator: 

ck )(2 0
2 ωω −=⊥ k , where ⊥k  is the transverse wave-number of the emitted 

radiation, cω=k , ω  is the gain frequency (atomic gain frequency in lasers, 

half-pump-frequency for degenerate OPOs, and the frequency of injection in 

passive systems), 0ω  is the eigenfrequency of the (closest) longitudinal mode 

of the resonator, and c is the velocity of light in material. Therefore the off-axis 

(conical) emission with the cone angle depending on the detuning is a “weakly 

nonlinear” precursor of the nonlinear transverse patterns. The basic mechanism 
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of the “essentially nonlinear” pattern formation in lasers is the tilted wave 

selection, i.e. a selection of one or several waves from those allowed by the 

above resonant ring condition [68]. Analogously the basic mechanism of the 

essentially nonlinear” pattern formation in degenerate OPOs is the stripe 

pattern selection with the spatial Fourier components lying on the resonant ring 

[16, 58, 59, 69].  

Simple geometrical interpretation of the conical emission is that if the 

modulus of the wave-vector of the generated radiation k  is larger than that of 

the resonant one nk>k  ( Lnkn π2=  is the wave-number corresponding to the 

nearest longitudinal mode of the resonator of length L), then the radiation is 

emitted at some angle in order to match the resonance condition: 222
nkk −=⊥ k . 

Assuming, however, that several longitudinal modes can be excited with 

Ljnk jn )(2 −=− π  j=0, 1, 2,… the multi-conical emission can be expected, 

with 222
, jnj kk −⊥ −= k . Theoretically the multi-conical emission for OPOs was 

predicted in [66]. Experimentally nonlinear multiconical patterns were never 

observed in OPOs, however were observed in a related system - 

Photorefractive Oscillators [27, 70]. We report here the results of our study of 

multiconical emission of monolithical OPOs: 1) we present the results of 

numerical study based on numerical integration of OPO equations without 

using the mean field approximation; 2) we give the experimental evidence of 

multiconical emission.  

 

Theoretical study is based on the non-mean-field model of a degenerate 

OPO, introduced e.g. in [22]:  
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for the slowly varying complex envelopes of the subharmonic ( )tzyxA ,,,1  and 

pump ( )tzyxA ,,,0  waves propagating along the longitudinal direction z, and 

diffracting in the transverse space: ( )22222 yx ∂∂+∂∂=∇⊥  with the diffraction 

coefficients )2(1 ii kd = . The phase mismatch k∆  in the present study is set to 

zero, assuming a phase matched interaction for simplicity. Equations (2.4.1) 

are coupled with the boundary conditions:  

( ) ( ) ϕ∆⋅⋅=== iertLzyxAtzyxA ,,,,0,, 11  (2.4.2.a) 

( ) EtzyxA == ,0,,0  (2.4.2.b) 

where r is the reflectivity of the output mirror (assuming 100 % reflectivity for 

subharmonics of input mirror), L is the full resonator length, kL=∆ϕ  is the 

phase mismatch over the resonator roundtrip, and E is the intensity of the 

pump wave entering into the resonator. The boundary condition Eq. (2.4.2.a) 

means, that subharmonic field ( )tzyxA ,,,1  reflects from the input mirror 

instantaneously (with no delay). 

 We integrated Eq. (2.4.1) using a split step technique, i.e. integrating the 

nonlinear part in the space domain and the diffractive part in the spatial wave-

vector (Fourier) domain on a grid of (nx, ny, nz) = (256,256,128). Typical 

numerical results are shown in Fig. 2.9. Two stages of the evolution of spatial 

patterns can be distinguished:  

1) a weakly nonlinear stage, characterized by formation of multiple ring 

structure in the far field, with the radius of the inner ring depending on the 

detuning of the resonator kL=∆ϕ  (see Fig. 2.4.1(a) and (b) illustrating the 

patterns for different values of the detuning). The near field (intensity as well 

as the phase) looks completely irregular at that stage.  

 2) an essentially nonlinear stage, characterized by a further selection of 

radiation modes  belonging to the different, as well as on the same resonant 

rings. The nonlinear patterns are very different for different detunings. 
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Fig.2.9. Transverse patterns in multi-longitudinal-mode OPOs, as obtained by numerical 
integration of Eq. (2.4.1). Intensity distributions of subharmonic field (near field) on the left, 
phase of the field (grayness corresponds to phase ranging from 0 to π2 ) at the middle, and 
intensity distribution in spatial Fourier domain (far field) on the right. Parameters used in 
integration: total losses of the resonator: 95.0=r  (resonator finesse 62=Q ), unsaturated 
gain per resonator roundtrip: 5.0=ELσ , Fresnel number of the resonator for subharmonics: 

400)4()( 1
22 === LdaLaF πλ  (a is the transverse size of integration window with 

periodic boundary conditions). Integration is performed on the grid 256*256 in transverse 
space and 128 in longitudinal direction. Cases (a) and (b) correspond to the linear stage of 
pattern evolution with the number of roundtrips 10=roundtripn , and cases (c), (d), (e) and (f) 

to the nonlinear stage with  200=roundtripn . Cavity detuning: (a) and (c) 0=∆ϕ , (b) and (d) 

75.0=∆ϕ , e) 3=∆ϕ , and (f) 3.0=∆ϕ ;    

a) 

f) 

e) 

d) 

c) 

b) 
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For small detuning the zigzagged phase domains can appear, where zigzagging 

is due to coexistence of the radiation on two different resonant rings (different 

space scales) (Fig. 2.9(c)). For moderate detuning the locking between spatial 

field harmonics on different resonant rings can occurs, leading e.g. to stripes 

with pronounced high harmonics (flat top stripes) (Fig. 2.9(d)). At some values 

of detuning a competition between the different resonant rings can occur, 

leading to spatial separation of radiation on different longitudinal modes (Fig. 

2.9(e)). In the latter case the patterns with two different spatial scales are 

clearly visible. Apart from above listed patterns, which are typical for multi-

longitudinal-mode case, the patterns analogous to those predicted by mean 

field theories are also observed. Fig. 2.9(f) is one such example: it shows phase 

(or dark ring) solitons (Fig. 2.9(e)) whose analogs have been found in mean 

field approximation [33]. 

 

2.5. Experimental attempt to observe transverse near field patterns 

in OPO 
 

Experiments in this chapter presents attempt to observe near field 

transverse patterns in OPO. Experimental setup is very much close to one 

discussed in previous chapter 2.2. The main technical difference was a better 

quality BBO type I crystal of size 5x5x1.5 mm, with the thickness 1.5 mm 

along the propagation direction and 2f – 2f lens imaging system for near field 

recording (Fig. 2.30). The BBO monolithic mini-cavity was pumped with 

532 nm pulses of 10 mJ energy. The pump beam diameter at the mini-cavity 

face plate was 2 mm.  

Fig. 2.31 shows a typical near field OPO emission pattern. First of all the 

quality of the monolithic crystal was not ideal: several defects, in bulk as well 

as on the surface, were present resulting in distorted near field distributions 

(white spot surrounded by concentric rings). 
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Fig. 2.30. Experimental scheme: F.I. - Faraday isolator; L1 - 2f – 2f near field imaging 

lens; L2 – f - f far field imaging lens. 
 

These defects limit severely the ability to observe theoretically predicted 

patterns, however several signatures of theoretically predicted multi-

longitudinal-mode patterns can be identified. The coexistence of stripes with 

different spatial scales is observed.  

 

 
Fig. 2.31. Typical near field pattern of mini-cavity OPO emission.  

 

2.6  Stripe Patterns in Degenerate Optical Parametric Oscillators 
 
Stripe (or roll-) patterns appear in a variety of spatially extended systems 

in Nature, like ripples of sand, or markings of the skins of the animals, and also 

in variety of laboratory systems, like in Rayleigh-Benard convection [71], or 

Taylor-Couette flows [72]. Stripe patterns were predicted to occur also in 

nonlinear optical systems, such as degenerate optical parametric oscillators 
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(OPOs) [16, 73], and degenerate four wave mixing [19]. In the latter system 

the stripe patterns were observed experimentally [37]. Despite the large variety 

of pattern forming systems, a universal description of stripe patterns is 

possible. Universal features of stripe pattern dynamics (e.g. the zig-zag or 

Eckhaus instabilities) are well known, as investigated on universal model 

equations: on the Swift-Hohenberg equation as an order parameter equation for 

stripes in spatially isotropic system [74], or on the Newell-Whitehead-Segel 

equation as an amplitude equation for perturbations of stripe patterns [75, 76].  

In spite of many theoretical-numerical works on stripes in degenerate 

OPOs, and some experimental attempts [10], the stripes have never been 

convincingly observed experimentally up to now. There are several reasons for 

the difficulties to observe those predicted patterns: i) the theoretical models 

usually consider single-longitudinal-mode approach, whereas the real systems 

are the multi-longitudinal-mode ones. In multi-longitudinal mode case the 

system is no more two-dimensional (two transversal dimensions plus time) but 

rather three-dimensional one (with additionally the longitudinal space 

coordinate involved). The basic three dimensional OPOs patterns are not 

stripes but the lamellae patterns [11], which however can be tilted arbitrarily in 

space (as illustrated by a pair of empty circles in Fig. 2.32). The tilted lamellae 

pattern in 3D results in a moving 2D stripe in output radiation, what results in 

the homogeneous spatial distributions in the averaged (in time) observations; 

ii) the stripes, even belonging to the same longitudinal mode (denoted by a pair 

of filled circles in Fig. 1) drift in space as driven by quantum and technical 

noise, which in average smears the observed pattern. We solved these both 

problems by using the short (millimeter length) cavities, which allowed to 

increase substantially the frequency separation between the longitudinal modes 

(free spectral range). We also used a weak injection at the frequency of 

subharmonics, which allowed to fix the position and the 2D stripes (orientation 

of the 3D lamellae), and thus make them observable. In this way we were able 
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to observe experimentally the stripe pattern for the degenerate OPOs for the 

first time, what is the first key result reported in the present paragraph. 

Another key result reported here is the observation of unusual properties of 

the temporal spectra of the signal emitted by the broad aperture degenerate 

OPO. Usually the OPOs have a Lorenzian profile of temporal spectra. This is 

related with the resonance line of the driven oscillator universally 

(independently on the physical system) showing a Lorenzian profile, with the 

asymptotic decay law 2−− rezωω  (for the frequencies sufficiently far from the 

resonance). The emission spectra reported here however show the character of 

decay more similar to the 1−− rezωω  law, i.e. the so called 1/f noise. The 1/f-, 

or "flicker" noise is found that many different kinds of systems, from physics, 

technology, biology, astrophysics, geophysics and sociology, where the power 

spectra show α−f  dependence, with α  around one, i.e. 5.15.0 ≤≤ α  [77-79].      

 

 
Fig. 2.32. Illustration of pattern formation in degenerate OPOs. Parabola depicts the spatial 
dispersion curve (dependence of the longitudinal component of the wavenumber ||k  on the 

transversal one ⊥k ) for a given (subharmonic) frequency. The resonator tuning leads to the 
vertical shift of the modes (dashed lines) and result in the of axis emission (filled circles on 
parabola) which leads to stripe formation. However, in addition to degenerate stripes, the 
nondegenerate stripes are also possible (a pair of empty circles) with frequencies shifted by 

...2, ωω ∆±∆± . The insets illustrate the forward-propagating field configuration in 
resonator.  
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The presence of the 1/f noise has been recently related with the presence of 

the spatial degrees of freedom in the system [80]. In particular the 1/f noise 

was predicted for condensates described by a stochastic Ginzburg-Landau 

equation, where the dependence of the exponent α on the dimension of space 

D was derived to be 2)2(1 D−+=α .  

The results were also extended to the stripe patterns leading to essentially 

the same dependence of power exponent on the dimensionality of the system 

[81]. We interpret experimentally observed 1/f-like spectra basing on these 

models, as well as on numerical integration of the corresponding equations.    

The basis of experiment is OPO in a monolithic plane mini-cavity in the 

presence of week injection. The detailed experiment scheme (without the 

injection) is described in paragraph 2.2. The main technical difference is a 

better quality BBO type I crystal of size 5x5x1.5 mm, with the thickness 

1.5 mm along the propagation direction. Additionally to the experiment 

scheme described in paragraph 2.2 seed injection (0.2 mJ) can be added for 

optical parametrical amplification OPA process observation (Fig. 2.33). A 

CCD cameras were used for simultaneous observation and recording of the 

OPO far-field and near-field patterns. Spectrometer “Avantes AvaSpec-2048“ 

was used for OPA emission temporal spectrum recording.  

In the absence of injection the collinear OPO generation was obtained for 

the mini-cavity orientation to pump beam at 0.7 deg in phase matching 

direction. By tuning the resonator (by means of temperature and cavity 

orientation) the off-axis emission in the far field was achieved. The radiation in 

the far field consists of two spots placed symmetrically with respect to the 

pump direction (Fig. 2.34(b)), with the tunable distance between the spots. 

According to common opinion this far-field distribution should correspond 

to the stripe pattern in the near fields, however no stripes were observed. The 

near field distribution was always obtained nearly homogeneous (Fig. 2.34(a)). 

Moreover the spectral analysis of the subharmonics radiation showed broad 
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spectra, centered around the subharmonics frequency, however with no sign of 

locking to the degenerate regime.  

 

 
Fig. 2.33. Experimental scheme: F.I. - Faraday isolator; L1, L2 - telescope lenses; L3 – far 
field imaging lens; L4 – near field imaging lens. 

 

These (negative) observations hinted on the necessity to revisit the theory 

of the process of locking to degeneracy for broad aperture OPOs. The locking 

process is a well established fact for the zero-dimensional systems, i.e for the 

systems with the evolution occurring in time, but not in space. We perform 

therefore here the analysis on the governing equations of broad aperture 

degenerate OPO, which in the presence of spatial degrees of freedom,  as 

described by parametrically driven Ginzburg-Landau equation (PDGLE) [3,4]:  

AiAiAAAA
t
A 22* ∇+∆+−+−= γ

∂
∂  (2.6.1) 

Here the complex-valued order parameter ),( tA r , which is proportional to the 

slowly varying envelope of the electric field, is defined in D-dimensional space 

r  (space coordinates are normalized to convert the diffraction coefficient to 

unity), and evolving in time t (time is normalized to photon life-time in the 

cold cavity). γ  is normalized parametric gain coefficient (threshold at 1=γ ), 

∆  is the detuning parameter, determining the resonant transverse wavenumber 

of the stripe pattern 0k : ∆=2
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Fig. 2.34. Experimentally observed stripe pattern in OPO without injection (a, b) and with 
week injection (c, d) in the near field (a, c) and the far field (b, d). The “doubled” character of 
the far fields is the experimental artifact. 
 

In the absence of special degrees of freedom 02 →∇  and for the zero 

detuning 0=∆ , locking to the degenerate regimes occurs as the linear stability 

of (2.6.1) analysis shows. One searches for a solution in form 

( ) ( ) ( ) )exp()exp( titatitatA ωω −+= −+ , and looks for its exponential growth 

( ) )exp( tta λ∝± . For 1>>ω  the growth exponents are (as follows from the 

linear stability analysis of (1)): γλ ±−= 12,1 . However for 1<<ω , when the 

parametric interaction of the each wave by itself is sensible (taking into 

account the terms ( ) ( ) )...2exp(... * titadttda ωγ −+= ++  and 

( ) ( ) )...2exp(... * titadttda ωγ −− +=  in the linear stability analysis), and the growth 

exponents are: 11 −=λ  and γλ 212 +−= . As the expressions for 2λ  indicate, the 

parametric gain at the degenerate frequency is double to that at the 

300 µm c) 2 deg d) 

300 µm a) 2 deg b) 
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nondegenerate frequencies. Physically this means that the close-to-degeneracy 

frequency components of quantum noise with 1≤ω  amplify two-times 

stronger than those far from degeneracy This is the locking mechanism 

responsible for that the degenerate frequency components win the competition 

against the nondegenerate components.    

For the stripe patterns the above locking-to-degeneracy mechanism is 

absent. Indeed, the linear stability analysis of (2.6.1) with respect to the 

resonant stripes ( ) ( ) ( ) )exp()exp( 00 rkrk ititaititatA −−++= −+ ωω   with ∆=2
0k  

shows that the parametric self-coupling term is always absent for 1<<ω . The 

spatial dependence (the modulation with the wavevector 0k ) removes totally 

the mechanism of the frequency locking. This means that for the stripe patterns 

the degeneracy has no physical sense, since all frequency components are 

amplifying equally, and each component can win the competition. Also that the 

radiation frequencies can drift randomly at around the degeneracy frequency, 

as driven by quantum or technical noise.   

The above analysis implies a need to seek for another locking-to-

degeneracy mechanism in order to observe experimentally the stripes, as the 

mechanism of intrinsic locking does not work. We applied therefore a week 

injection at the subharmonic frequency to ensure the “external” locking to 

degeneracy. We prepared the injection radiation from the pump laser (taking a 

part of its radiation (0.2 mJ) before the second harmonic generator and 

expanding beam diameter in order to match OPO mini-cavity aperture 6 mm). 

With the injection the stripe pattern was observed in near field image 

(Fig 2.34(c)). Fig. 2.34(d) shows the far field of the OPO emission. Weak point 

in the center indicates transmitted injection which is collinear with a pump. 

Signal and idler waves reside symmetrically with respect to the pump (and 

injection) in the far field. Although the far field with injection visually does not 

differ much from the one without injection – the near field distributions differ 

dramatically. The formation of stripes in presence of injection is evident.   
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 Finally, we recorded temporal spectra by taking a part of the OPO 

emission and focusing it into a spectrometer fiber through a diffuser. A 

pronounced peak at subharmonic frequency (Fig. 2.35) also evidences the 

locking to degeneracy. In addition, we observe that the decay of the spectra 

follows the power law α−− rezff , with the exponent α varying in the range 

between 0.5 and 1 and asymptotically approaching 0.5. The observations of 

spectra qualitatively agree with [80, 81], which state that the presence of the 

spatial degrees of freedom results in the f1 -like spectra with the power 

exponent 1≈α , whereas in the absence of spatial degrees of freedom 2=α . In 

the presence of spatial degrees of freedom, one has a continuum of oscillators 

of different eigenfrequencies (spatial modes with the different transverse 

wavenumbers 0k
r

). The summation over modes (integration over 

wavenumbers 0k
r

) results in 1≈α . Leaving the detailed analysis of the f1  

character of the spectra, we note that the very fact of its observation indicates 

that we observe the spatial patterns, and not the discrete transverse modes, 

according to the theory [80, 81]. 

 

 
Fig. 2.35. Experimentally recorded temporal spectra in OPO with week injection: (a) linear-
log scale and (b) log-log scale. The dashed lines indicate 1−f  and 21−f power laws. The log-
log spectra contain the right part as well as the mirror-reflected left part of spectra (with 
respect to subharmonics frequencies) for three realizations. 
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2.7 Conclusions 
 

• We demonstrated OPO generation in a monolithic BBO type I 

crystal mini-cavity. We show that OPO emission in a monolithic 

mini-cavity is conical and multiconical, so signal and idler wave 

directions depend on cavity detuning to laser frequency, phase 

matching cone and cavity orientation with respect to the pump 

beam. This allows the OPO emission direction to be controlled by 

changing the mini-cavity orientation, by temperature changes or 

by laser frequency change. In the case of external monolithic mini-

cavity refractive index change, or external phase matching 

condition change, the OPO emission angles can be modulated or 

attenuated (external electric field or external light induced 

refractive index change). We expect that OPO far field control is 

also possible for a non-monolithic cavity, although the monolithic 

mini-cavity is attractive for compactness and stability of the cavity 

alignment.  

• We demonstrate experimentally the stripe patterns in broad 

aperture optical parametric oscillators in plane mirror mini-cavities 

for the first time. We highlight the absence of the intrinsic locking-

to-degeneracy mechanism for the spatially dependent systems. We 

achieve the stabilization of the stripes by a week injection at 

subharmonic frequency. Finally we measure the temporal spectra 

and obtain the 1/f like spectra in qualitative accordance with the 

theories of the noise-spectra in the spatially extended systems.   
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3. Resonators with Intracavity Photonic Crystals 
 

Material related to this chapter was published in [A5-A6]. 

 

3.1. Introduction  

 

Photonic crystals (PhCs), the materials with periodic in space refraction index, 

is an object of intensive study since their proposal in 1987 [38, 82]. The studies 

were focused initially on the temporal dispersion characteristics of the PhCs. It 

was discovered that the dispersion curves strongly depend on the periodic 

modulation of refraction index, and demonstrate a band structure - a most 

celebrated feature of the PhCs. More recently it was found that the spatial 

dispersion (diffraction) characteristics also vary substantially in periodic 

materials: the diffraction can become negative [48, 49], or can vanish to zero 

[50-54], resulting in the so-called self-collimation effect in the latter case. 

Diffraction manipulation affects primarily the linear propagation of 

light beams in bulk PhCs [48-54] However, diffraction manipulation can also 

create phenomena in more complicated systems based on PhCs. In particular, 

the periodic index modulation in Kerr-nonlinear materials leads to the 

nonlinear formation of light field, such as band gap solitons [83], 

subdiffractive solitons [84], and others. Periodic index modulation in quadratic 

nonlinear materials leads to modification of the spatial phase matching profile 

[85]. The present work is based on the idea that the periodic modulation of the 

refractive index can also substantially alter the properties of the resonator 

filled by such material. The transverse and longitudidal mode structure as well 

as the angular transmission profile are (strongly) dependent on diffractive 

characteristics of resonator. Manipulation of diffractive characteristics leads to 

changes of mode and angular transmission profiles. 
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3.1.1. Spatial dispersion curves of PhC resonator 
 
The transverse and longitudinal mode structure of homogeneous plane-mirror 

(Fabry-Perrot) resonators are well known. Fig. 3.1(a) illustrates formation of 

the resonator modes for the monochromatic radiation of frequency ω  (and 

correspondingly of the modulus of the wave-vector λπω 2== ck ). As the 

presence of the resonator imposes conditions on the longitudinal component of 

the wave-vector: ( )lmk 22|| π=  (here m  is the longitudinal mode number, and l  

is the linear cavity length), then the transverse wave-numbers of the plane 

mirror resonator are: ( ) ( )222
||

2 lmckk πω −=−=⊥ k , resulting in the well 

known Fresnel ring structure. For many applications (e.g. lasers, nonlinear 

optical systems) only the isotropic central Fresnel spot ( 0ωω ≈ ), or the central 

ring 0ωω ≈  determines the angular profile of the resonator transmission, where 
lm00 πω =  is the resonance frequency of the 0m -th longitudinal mode.  

Here we investigate the mode structure of the resonator filled by two 

dimensional (2D) photonic crystal (PhC), i.e. the resonator with the refraction 

index modulated in the longitudinal and in one transverse direction. It is 

known that the diffraction properties of light propagating through PhCs can be 

substantially modified [48-54, 83] The diffraction of light in index modulated 

materials can be inverted in sign (can become negative) [48, 49, 83], or can be 

set to zero [50-54] resulting in the so called self-collimation effect. In the latter 

case one also uses the term “subdiffraction” [54], since when the leading order 

of diffraction is eliminated, the light propagation is governed by the higher 

orders of diffraction (with spatial derivatives of the order larger than two), i.e. 

by subdiffraction. The origin of the subdiffraction is that the spatial dispersion 

curves (or spatial dispersion surface in 3D case) are modified due to the 

presence of the PhCs in such a way, that it develops flat segments (or flat 

surface areas in the 3D case). The wavevectors lying on the flat segments have 

the same longitudinal components, thus the plane wave constituents of the 

beam do not dephase during the propagation, and the beam propagates without 
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the diffractive spreading (see Fig. 3.1(b)). The beam width is inversely 

proportional to the width of plateau. Consequently only sufficiently broad 

plateaus of the diffraction curve result in subdiffraction; the narrow plateaus 

result in the opposite effect of spatial frequency filtering.   

 The idea behind this chapter is that the deformation of the diffraction 

curve (or of diffraction surface in 3D case) strongly modified the mode 

structure of the resonator too. In particular the broad angular region of the 

wave-vectors can be at resonance for a fixed detuning for subdiffractive 

intracavity PhCs, as Fig. 3.1(b) illustrates. The broad spatial spectrum at the 

resonance means that the resonator supports relatively small space scale 

structures. The dashed line in a) indicates the spatial dispersion curve without 

paraxial approximation (half-circle). The dashed lines in b) indicate the 

dispersion curves in the limit of vanishing index modulation ( 0→s ). 
 

 
Fig. 3.1. The spatial dispersion curves of the monochromatic plane waves in homogeneous 
media (a) and of the Bloch modes in photonic crystals (b). The dispersion curve is calculated 
by a standard technique of harmonic wave expansion [A5]. The dashed lines in (b) indicates 
the dispersion curves of the uncoupled plane waves (or equivalently of the Bloch modes in 
the limit of vanishing index modulation ( 0→s )). The thick fuzzy lines in (a, b) indicate the 
resonances of the resonator as characterized by the condition of the longitudinal component 
of the wavevector ( )lmk 22|| π= .  (c) the Fresnel ring structure of the homogeneously filled 
resonator, and (d) shows the mode structure for the resonator with index modulation in one 
transverse direction. 
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 The resonator for our experiments was fabricated having in mind that 

the nondiffractive propagation in the first propagation band occurs along 

diagonal direction of the square- or the rhombic lattice of PhC [50-54]. The 

resonator, as used in experiments, is shown schematically in Fig. 3.2(a). 1D (or 

2D) periodical refractive index modulation was added on a mirrors surface.  

The mirrors were shifted one with respect to another by the half of the grating 

period in order to mimic the 2D photonic crystal with the optical axis directed 

along the diagonals of rhombs (see Fig. 3.2(b) for the unfolded structure of the 

resonator). In this way the radiation in a round trip along the resonator “sees” 

exactly one longitudinal period of the unfolded PhC.  

 
 

3.1.2 Mode expansion method 
 

The theoretical analysis of the resonator is based on the unfolded structure of 

the modulated resonator (Fig. 3.2(b), with the refraction index periodic in the x 

(transversal) and z (longitudinal) directions with the corresponding periods d  

and l2 . We solve first the paraxial equation for the light propagating through 

the unfolded PhC structure:  

( ) ( )[ ] ( )rrr AViAZ +∇=∂ ⊥
2 , (3.2.1.1) 

where 22222 YX ∂∂+∂∂=∇⊥  is the Laplace operator acting in the transverse 

plane. The transverse coordinates  YX ,  are normalized to π20 dx =  in order 

to make the normalized transverse wave-number of the index grating equal to 

)a

1qr 2qr

d
)b

l

x

z

 Fig. 3.2. The scheme of the 
resonator used in experiments a), 
and the corresponding unfolded PC 
structure b). The dashed lines 
indicate crystolographic axes of the 
unfolded PC structure, and the 
arrows represent the vectors of the 
reciprocal lattice.  
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unity 1=⊥q , and the longitudinal coordinate is normalized to 2
00 2 xz k=  in 

order to make the coefficient of diffraction equal to one. The longitudinal 

period of the index grating in the new coordinates Z  is then ( ) ( )222 dlL kπ=  

and the corresponding wave-number is ( )ldLq λπ 2
|| 2 == . ( )rV  is 

proportional to the refraction index: ( ) ( )rr nxV 2
02= .    

We expand the field into a set of the plane waves:  

( ) ( ) ( ) ( )∑ −+=
nm

ZnqmXi
nm

YkXki eZaeA yx

, ,
||r . (3.2.1.2) 

Substitution of Eq. (3.2.1.2) into Eq. (3.2.1.1) yields the coupled equation 

system: 

( )[ ] ∑
≠≠

+−++−=∂
nqmp

qpnmnmyxnmz aifanqkkmia
,

,,,||
22

,   (3.2.1.3) 

for the amplitudes of the plane waves nma , . Here nmf ,  is the matrix of the 

coupling coefficients depending on the modulation of the index: 

( ) ( )∫ −−−= rr deVcf ZnqmXi
nm

||1
, , as integrated over unit cell of the PhC lattice, c  

being the area of the cell.  

It comes out that only the three harmonics in the expansion (3.2.1.2) are 

relevant for the subdiffractive propagation through the PhC (see e.g. [54, 84], 

and consequently for the subdiffractive dynamics of the resonator. We 

therefore rewrite (3.2.1.3) in terms of the vector of the amplitudes of plane 

waves: { }1101,1 ,, aaa−=A . In the limit of zero coupling these are the waves 

propagate with wave-vectors ( ) ( ) ( ){ }|||||||||| ,1,,,,1 qkkkkqkk +++− ⊥⊥⊥ . The 

integration of (3.2.1.3) over one longitudinal period of the PhC (equivalently 

over one resonator round trip) leads to the mapping:  

( ) ( ) ( )ZeLZ LAA FP+=+  (3.2.1.4) 

P  is diagonal propagation matrix with the elements: 
( ) ( )( )||

22
||

2 1,,1 iqkiikiqki ++−−+−− ⊥⊥⊥ , and F  is the scattering matrix:  
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⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

0
0

0

ifif
ifif
ifif

F  (3.2.1.5) 

We considered here all off diagonal elements of F  equal, as guided by 

experimental measurements of the scattering from the grating, however the 

qualitative results are not sensitive to the form of the matrix F .  

We calculated the propagation through unfolded PhC structure (and 

consequently performed a search of the zero diffraction point) by diagonalising 

the propagation and the scattering matrix SP + . The imaginary part of the 

eigenvalues yields the dispersion relation ( )YXZ kkk , . Respectively the 

imaginary part of the eigenvalues of the propagation operator over longitudinal 

period of the PhC yields the phase shift of the Bloch modes over the PhC 

period. Fig. 3.1(b) shows the dispersion relation at cross-section 0=yk , as 

calculated at zero diffraction point. The zero diffraction point means that 

initially parabolic segments of the dispersion curves interact, pull one from 

another at the crossing points, and disshape into the flat segments. The degree 

of the lift of degeneracy is proportional to the coefficient of coupling. It 

follows from the geometric considerations that the zero diffraction point occurs 

close to- (but not exactly at-) the point of the triple intersection of the spatial 

dispersion curves π2=L  (see Fig. 3.1(b)) with the distance depending on the 

scattering strength s . 

Asymptotic analysis was performed in order to localize the zero diffraction 

point. In the limit of weak scattering 1<<f , also near to triple intersection 

point 1|| →q  ( π2→L ), the spatial dispersion curve (the corresponding 

eigenvalue of (3.2.1.4)) can be obtained as the series expansion at the point 

0== yx kk : 

( ) ( )64
4

22
20, XXYXYXZ kOkDkkDDkkk +−−−=  (3.2.1.6) 

For the scalings see e.g. [54, 84]. Here ( )||
2

0 12 qfD −=  is the uniform shift of 

the wavenumber due to the modulation of refractive index; 
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( )3
||

2
2 181 qfD −−=  is the first (leading) order diffraction coefficient, which 

can be tuned to zero at ( )3
||

2 18 qf −= ; ( )5
||

2
4 132 qfD −=  describes the second 

order diffraction, which becomes dominant at- or close to the zero diffraction 

point. The spatial dispersion surface (3.2.1.6) has a single maximum in normal 

diffraction regime ( ( )3
||

2 18 qf −< ), however it has the shape of saddle in case of 

negative or zero diffraction.  

Next, in order to consider the resonator, we introduce the nonzero 

transmission of the mirrors (by adding the losses to the mapping (3.2.1.4)), the 

resonator phase shift, and take into account the incident light at every 

roundtrip. The role of the mirrors were accounted by considering the diagonal 

matrix with elements 2t : 12t , where 1  is the unit matrix, and t  denote the 

transmission of a mirror (the resonator of two identical mirrors was 

considered). The resonator phase shift was described by term 1ϕie . The incident 

light was accounted by adding the incident light )0,,0( t=0A  at every resonator 

round trip. We consider for simplicity in the limit of a good finesse cavity (this 

means the weak scattering in the PC structure and the highly reflecting 

mirrors), which allows to simplify the propagation operator in (3.2.1.4) by 

expanding it in series ( ) ( ) ...++++≈++ 1FP11FP ϕϕ iLe iL . This expansion actually 

means a close-to resonance limit. We calculate the resonator transmission in an 

analogous way as the transmission of the homogeneous plane-mirror Fabri-

Perror resonator, however manipulating not with the scalar field, rather with 

the vector A  consisting of plane wave components. We required, in a standard 

way, that the radiation inside the cavity is unaltered during the round trip. 

( ) ( ) ( )( ) ( ) 0
2 01 AAFP1A ++++−= LitL ϕ , where I  is the unit matrix. Then the 

calculation of the resonator transmission results in the inversion of the matrix:  

( ) ( )( ) TFP1R 12 −
+−−= Lit ϕ   (3.2.1.7) 

The element 22R  of the resonator matrix (3.2.1.7) yields the transmission of 

the central component of the resonator.  
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Fig. 3.3. The transmission of the resonator: (a), (c) show transmission on the cross sections 

0=Yk  (solid lines) and 0=Zk  (dashed lines). (b), (d) show 2D transmission profiles. (e) 
shows the full transmission as containing not only the central transmission component given 
by 22R  but also the first diffraction maxima given by 21R  and 

23R . Parameters for (a), (b) are 
5.9=L , 75.0== fLs , 1.0=t , 0.395−=ϕ ; for (c)-(e), 5.7=L , 45.0== fLs , 44.0=t , 0.35−=ϕ .  

 
The transmission of the resonator can be calculated at the zero diffraction 

point numerically, as based on (3.2.1.7). The cross sections and the 2D shapes 

of the angular intensity transmission are given in the Fig. 3.3 in two different 

limits. Figs. 3.3(a, b) represents the subdiffraction limit, where the angular 

transmission function is broadened in the direction of modulation, as compared 

to the distribution in homogeneous resonator. This case corresponds to the 

situation when the plateau of the manipulated spatial dispersion curve is 

relatively broad. The Figs.3.3(c-e) represent the opposite limit, when the 

dispersion curve develop relatively narrow plateaus, resulting not in 

subdiffraction but rather to the filtering function of the resonator. In all cases 

the formation of strongly anisotropic (of hyperbolic or X-like form) 

transmission distributions is evident.  
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 Set of captions (Fig. 3.4(a-c)) are calculated at optimal resonator length 

d = 4.75 for subdiffraction regime with slightly different resonator detuning. 

Subdifraction regime is clearly visible in Fig. 3.4(b) and shows X-shape form 

and central plateo. Phase difference in Fig. 3.4 between (a) and (b) and (b) and 

(c) recounted in length will be in order 24 – 30 nm. That is about 20 times 

smaller compared to illuminating light (532 nm) and makes the resonator very 

sensitive to any mechanical impact and complicates attenuation of a cavity.  

 

 
 
 PhC resonator superdiffraction regime can be evaluated at shorter cavity 

length and higher mirrors transmission. Typical 2D angular transmission 

profile is shown in Fig. 3.5. 

Fig. 3.4. Transmission of a PhC resonator counted using mode expansion method at zero 
diffraction length 57.4=d . Parameters: s = 0.75, t = 0.01, d = 4.75, m=π, φ(a) = -0.35; 
φ(b) = -0.395; φ(c) = -0.45. Transmission in homogeneous case (d) 



 86

 
Fig. 3.5. Transmission of a PhC resonator counted using mode expansion method at 

superdiffraction length d = 3.75 with parameters: s = 0.45, t = 0.15¸φ = -0.35 (a) and in 
homogeneous case: t = 0, φ = 0 (b). 

 

3.1.3. Point scattering method 
 

Another theoretical-numerical analysis of the resonator modes is based on the 

multiple scattering matrix technique. We analyze a round trip propagation of 

light along the resonator, and calculate the transformation of the field on each 

of the elements consecutively: i) the diffraction on the modulated surface of the 

mirror; ii) the free space propagation between the mirrors (diffraction in 

homogeneous material); iii) the lateral shift of the periodic structure of the 

mirrors with respect one to another, iv) the partial reflections from the mirrors. 

After calculating the field transformation in a resonator roundtrip (by applying 

the transformation operators, i.e. by multiplying by corresponding 

transformation matrices), we calculate the resonator transmission matrix by the 

standard techniques: by adding the entering plane wave to the resonators, and 

by searching for a stationary state. This is essentially a classical approach to 

calculate the mode structure of the homogeneously filled Fabry-Perrot 

resonator, with the difference that the field transformations on each of the 

element in the resonator now are not the scalars but operators (represented by 

matrices).  
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The periodic modulation of the mirror surface results in a set of diffraction 

components in reflected light with transverse the components of the 

wavevectors nmqk ,
rr

+⊥ , here ( )yx kkk ,=⊥

r
  is the transverse wavevector of the 

incident light, and ( )yxnm nqmqq ,, =
r  are the multiples of the modulation 

wavevector. Strictly speaking one should consider all the possible field 

harmonics, however, it comes out that the consideration of the central 

component plus the first order sidebands is sufficient [A5]. For 1D modulation 

of the mirrors this results in three components (as considered in [A5]), for 2D 

square modulation of the mirrors - in five components [86]. We approximate, 

therefore, the optical field in the following way:  

( ) ( )( )xiqxiqykxki xxyx eaeaaeA 0,10,10,0 +
−

−
+ ++=r  (3.1.3.1) 

For convenience, the field is represented by the column-vector of plane wave 

components:  

( )TaaaA 0,10,00,1 ,, +−=
r

 (3.1.3.2) 

The xqq =⊥  are the wavevector of the index modulation in the transverse 

direction (the field is expanded in its harmonics). Next we list separately all 

the field transformations in the resonator roundtrip.  

Scattering by the phase grating   The periodically modulated phase of the 

field on the reflection of the surface of the mirror couples the components of 

the field vectors. For the harmonic modulation the coupling occurs between the 

central component 0,0a  and the sidebands in this tree harmonic model. We 

introduce the phenomenological scattering coefficient xs . The scattering s can 

be linked to microscopic parameters of the coating, as the depth of the 

modulation, and the refraction index of the photoresist. However it is more 

convenient to keep the macroscopic scattering parameter, as it is directly 

linked with the experimentally accessible diffraction efficiency of the grating 



 88

(s is the square root of the scattering intensity into the sidebands). The 

scattering matrix is:   

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

∧

00
0

00

x

xx

x

is
isis

is
ExpS  (3.1.3.3) 

More convenient (for numerical purposes) is however to simplify the scattering 

operator, which in (3.1.3.3) is the matrix exponent:  

 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞⎜

⎝
⎛ −+−+⎟

⎠
⎞⎜

⎝
⎛ −+−

−

⎟
⎠
⎞⎜

⎝
⎛ −+−⎟

⎠
⎞⎜

⎝
⎛ −+−+

=
∧

22

2

22

2112
112112

1
21

2112
12112

11

xxx

xxx

xxx

siss

issis

siss

S  (3.1.3.4) 

Free propagation. The free propagation over the linear length of the resonator 

is considered by the paraxial propagation equation:  

( ) ( )rr A
k
iAz

2

02 ⊥∇=∂  (3.1.3.5) 

where 22222 yx ∂∂+∂∂=∇⊥  is the Laplace operator acting in the transverse 

plane. Substitution of expansion (3.1.3.1) into (3.1.3.5) yields the equation 

system: 

( )[ ] nmyxxnmz akkmq
k
ia ,

22

0
, 2

++−=∂ , (3.1.3.6) 

Integration of (3.1.3.6) over one linear resonator length results the diagonal 

transformation matrix:  
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( )

( ) ⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=
+−−

−

+−

2

2

2

1

1

00
00
00

x

x

x

kid

idk

kid

e
e

e
P
r

, (3.1.3.7) 

Here ( )02klL =  is the normalized length of the resonator, representing its 

diffraction.  

Lateral shift of the mirror. We account for the lateral shift of the grating 

(determined by mr ) using the following trick. We fix the reference frame with 

the position of the first mirror. Then, for the calculation of the scattering from 

the laterally shifted second mirror we change the reference frame, by applying 

the operator:  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
−im

im

e

e
M

00
010
00

r
 (3.1.3.8) 

Then, after calculation the scattering on the second mirror (by using (3.1.3.3) 

or (3.1.3.4)) in the new reference frame), we restore the original reference 

frame, by applying 1−M
r

. 

Resonator mirrors. Since the reflectivity is the same for all harmonic 

components of the wave, it is accounted in a standard way – by multiplication 

by a scalar r . Without losing generality in theory, and in accordance to our 

experiment, we consider the both mirrors of the same reflectivity. 

Resonator roundtrip. The variation of the field in a resonator roundtrip is 

calculated by applying consecutively all the operators discussed above:  

SPMSMPrR ˆˆˆˆˆˆˆ 12 −=  (3.1.3.9) 

Resonator transfer function. The plane wave entering into the resonator is 

denoted in this vector form by ( )TBA 0,0,,0,0 00 =
r

. Then we calculate the 
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radiation balance in one resonator roundtrip, and analogously to the 

homogeneous Fabry-Perot case, we obtain:   

( ) 0

1ˆ1̂ ARtA
rr −

−=  (3.1.3.10) 

for the radiation at the entrance mirror. The only difference from the 

homogeneous Fabry-Perot case is that here we deal with the vectors of the 

wave components and transformation matrices, instead of complex scalar 

factors. Finally the resonator transmission matrix is: 

( ) ( ) 112212 ˆˆˆˆˆˆ1̂ˆ1̂ˆ −−−
−=−= SPMSPMrtRtT . (3.1.3.11) 

The transmission for the homogeneous component is given by the element 0,0T  

of the transfer matrix (3.1.3.11). The scattering of the resonator into the 

sidebands harmonics is described by the corresponding off-diagonal column 

elements of the matrix: by 0,1−T  and 0,1+T  into the diffraction components in x 

direction.  

Set of captions (Fig. 3.6(a-c)) are calculated at optimal resonator length 

d = 4.75 for subdifraction regime with slightly different resonator detuning. 

Subdifraction regime is shown in Fig. 3.6(c) Resonator 2D transmission 

profilles are in general the same as calculted using mode expansion method 

(Fig. 3.4). Phase difference in Fig. 3.4 between (a) and (b) and (b) and (c) 

recounted in length will be of the order of 15 nm. That is aabout 40 times 

smaller compared to illuminating light wavelength (532 nm) and predicts even 

bigger resonator sensitivity to mechanical impact than that obtained by mode 

mode expansion method.  

Resonator superdiffraction regime profiles are shown in Fig. 3.7. Fig. 

3.7(a) shows strict X shape profile calculated for high finesse cavity (t=0.01). 

Fig. 3.7(b) shows typical transmission profile and is the same character as it 

was obtained by mode expansion method (Fig. 3.5(a)). 
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Fig. 3.6. Transmission of a PhC resonator counted using point scattering method at zero 
diffraction length d = 4.75 with parameters: s = 0.35, t = 0.07, d = 4.75, m = π, φ(a) = -0.22, 
φ(b) = -0.25, φ(c) = -0.24. Transmission in homogeneous case (d) φ = 0, s = 0. 

 

Difference between these two methods is evident if full transmission is 

containing not only the central transmission component given by 22R  but also 

the first diffraction maxima given by 21R  and 23R  (Fig. 3.8). In case of point 

scattering method resonator Freshnel ring structure is presented. As it will be 

shown experimentally, point scattering method can fully describe PhC 

resonator.  
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Fig. 3.7. Transmission of a PhC resonator counted using point scattering method at 

superdiffraction length d = 3.6 with parameters: (a) – s = 0.2; t = 0.01; m = π; φ = -0.27; (b) – 
s = 0.2; t = 0.15; m = π; φ = -0.27; (c) – homogeneous case s = 0; φ = 0; t = 0.15. 
 

 
Fig. 3.8. 2D PhC resonator full transmission containing not only the central transmission 
component given by 22R  but also the first diffraction maxima given by 21R  and 23R . Point 
scattering method in (a) with parameters: s = 0.35; t = 0.07; φ = -0.27 and mode expansion 
method in (c) with parameters: s = 0.75; t = 0.07; φ = -0.395. Corresponding homogeneous 
case in (b) and (d). 

 

3.1.4. Parameter analysis 
 

It is convenient to analyze 2D resonator spatial characteristics by using 

transmission cross sections 0=Yk . Resonator transmission profile depends on 

cavity length (d) and fine tuning, or phase φ, diffraction efficiency s, mirrors 
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transmission t. As it was mentioned above, two cavity spatial dispersion 

characteristics can be distinguished: superdiffraction (filtering) and 

subdiffraction. Thought critical length for subdiffraction can be evaluated in 

general there are appropriate parameter limits for one or another regime. 

Figs. 3.9(a, c, e) represents superdiffraction, Figs. 3.9(b, d, f) subdiffraction. 

Black line in Fig. 3.9 indicates transmission of a homogeneous cavity.  

 
 

Resonator phase is attenuated for maximum transmission and filtering. At low 

diffraction efficiency (Fig. 3.9(a) s = 0.1 and 3.3 ≤ d ≤ 3.8 filtered central peak 

Fig. 3.9. Resonator transmission cross section at ky = 0 for different cavity parameters. 
Super-diffraction case considered in (a, c, e). Subdifraction considered in (b, d, f). 
Resonator transmission t = 0.1 fixed for all cases.
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transmission exceeds 0.9, but the boarders are relatively high. If length is 

shorter cavity transmission decreases rapidly. For the higher length angular 

transmission spectrum is wider than homogeneous resonator. Boarders gets 

smaller if diffraction efficiency is increased (see Fig. 3.9(c)). For diffraction 

efficiency s = 0.35 Fig. 3.9(e) boarders are insignificant, but central peak 

transmission decreases down to 0.8. 

Cavity length for subdifraction regime is in range 4.5 ≤d ≤ 5. If 

diffraction efficiency is low (s = 0.1) subdifraction is insignificant (Fig. 3.9(b)) 

and the central peak transmission is near 1. Higher diffraction efficiency makes 

transmission broader than homogeneous one (Fig. 3.9(d)). Dispersion curve 

has abrupt edges so the cavity still can be used as a filter. In case of high 

diffraction efficiency (Fig. 3.5(f)) dispersion exhibits quadratic-like shape with 

nearly flat platou. There should be noted, that in case of high diffraction 

efficiency the shape of dispersion curve is very sensitive to cavity phase.  
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Fig. 3.10. 2D modulated resonator spatial dispersion cross section at ky = 0 dependence on 
cavity mirrors transmission t. Superdiffraction case considered in (a, c). Subdifraction 
considered in (b, d). 
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 Cavity finesse influence on spatial dispersion characteristic is 

summarized in Fig. 3.10. Two sets of parameters are used to explore filtering 

and subdifraction. Transmission of uniform resonator is indicated by dashed 

lines. Higher cavity finesse (lower mirrors transmission) reduces borders 

around central peak in all cases. Figs. 3.10(a, c) shows filtering regime. One 

can see, that filtering is possible at any cavity mirrors transmission or gratings 

diffraction efficiency. Though lower mirrors transmission reduces boarders but 

does not affect central peak intensity very much. After filtering central peak 

intensity is lower by number of 20-40 %. From application point of view that 

might be a problem. 

 Contrarily to filtering, subdifraction regime cannot be realized in cavity 

with high transmission mirrors (Figs. 3.10(b, d)). Cavity transmission for 

diffraction efficiency s = 0.2 and constant phase is shown in Fig. 3.10(b). Half 

intensity width is almost unchanged, but for low transmission mirrors three 

intensity peaks appear. In Fig. 3.10(d) phase is attenuated to form nearly flat 

top. It is evident from this picture, that subdiffraction regime takes place in a 

cavity with relatively high finesse and diffraction efficiency.  

 

3.2. Phase diffraction gratings fabrication on dielectric mirror surface 

 

There are several ways of producing refractive index modulation on 

dielectric mirror surface. It might be photolithography or two photon 

polymerization. Photolithography technology seems to be acceptable because 

of relatively simple large area processing. Three different methods were 

considered in this thesis: 

• contact UV photolithography technology; 

• interference photolithography technology; 

• plasma chemical etching. 
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The task for technological part was to fabricate harmonic refraction index 

modulation, i.e. phase diffraction grating. According to resonator parameter 

analysis presented in the previous chapter, diffraction efficiency to the ±1 order 

maxima should be 10 % and 80 % should be left at zero order. Diffraction 

efficiency to the higher order should be as negligible as possible. Grating 

period is in range from 2 µm to 15 µm. This task was solved by scientist of 

Kaunas University of Technology, Institute of Physical Electronics. 

 The low roughness (λ/20) fused silica substrates were used for 

fabrication of the mirrors. Working side of a mirror was covered with high 

reflection (98.5 % at 532 nm wavelength) coatings and the other side with 

antireflection coatings at 532 nm wavelength. The surfaces of the mirrors were 

first covered with a thin film of positive MICROPOSIT® S1805® photoresist 

using spin-on coating technique. This part was the same for all three methods 

listened above.  

Using contact UV photolithography technology layer of photoresist is 

exposed to UV light through 2 µm, 4 µm or 15 µm period photomask. Positive 

photoresist becomes soluble in the basic developer when exposed. This 

chemical change allows some of the photoresist to be removed by a special 

solution. 

Typical spinning speed of 3000-4500 rpm using MICROPOSIT® S1805® 

photoresist allow to fabricate 490-420 nm thickness layer. This is an optimal 

thickness for producing phase diffraction gratings with high diffraction 

efficiency for 532 nm wavelength (m = 0.5, Fig. 3.12), but it is not acceptable 

for direct formation of low efficiency grating. It is also not acceptable because 

of non harmonic profile and higher order diffraction maximums. The problem 

might be solved by heating the sample. Fig. 3.13 shows the influence of 

sample heating on diffraction efficiency. During heating process rectangular 

photoresist groves are melting and forms harmonic-like profile (Fig. 3.14). 

Groves height are also reduced during heating. Despite process simplicity it is 

hard to repeat results from sample to sample. 
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Fig. 3.12. Standing wave number in a transmission phase grating as a function of photoresist 

thickness (λ = 532 nm, α = 00, n = 1.6602) [http://www.microresist.de (visited on 2008 09 
08)]. 

 
 Depth of the periodical structures was estimated using atomic force 

microscope (AFM). The AFM images (see Fig. 3.14(a–d)) have shown that the 

profile formed in the photoresist is harmonic-like for 2 µm grating. Profile of 

4 µm grating has scotch on top.  

 Interference photolithography technology can also be used for periodic 

structure formation on dielectric mirrors coatings. Two coherent laser beam 

interference pattern is formed in a thin photoresist layer. Modulation period 

Fig. 3.13. Diffraction efficiency of a 2 µm grating after sample heating 



 98

depends on a laser beam wavelength and the angle between interfering beams. 

 
Positive photoresist becomes soluble in the basic developer when exposed. 

This chemical change allows some of the photoresist to be removed by a 

special solution. An advantage of this method is a possibility to control 

modulation period and physical contact-less processing. On the other side 

mirrors should be both side coated with antireflection coatings for interference 

pattern forming laser. Fig. 3.15(a) shows a 2 µm grating formed by using 

interference photolithography. Two HeCd laser (λ = 441.6 nm) beams overlap 

at 12.70 angle to form a 2 µm interference pattern. Antireflection coatings 

reduced reflection coefficient for writing laser down to 1% and it wasn’t 

enough to escape parasitic fringes (Fig. 3.15(b)).  

Fig. 3.14. AFM images of 2 µm (a) and 4 µm (b) period gratings.  

a) 

b) 
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Employing microlithography and plasma chemical etching it is possible to 

transfer 2 µm period gratings formed in softly baked photoresist to the SiO
2 

top 

layer of the MLD structure using CF
4 

/ O
2 

plasma processing [87]. Diffraction 

gratings were formed on (10 × 10) mm
2 

substrates using standard contact-

optical lithography processes and plasma chemical ion etching. The photoresist 

was deposited on the substrates employing spin-on coating at 4500 rpm 

(thickness of the layer 430 nm). The exposition (5 s – 6 s) was performed with 

the MA 750 contact optical lithography equipment. Residual layer of the 

developed resist in the grooves of the gratings was removed employing radio 

frequency (RF) oxygen plasma processing (RF = 13.56 MHz, P = 0.3 W/cm2, 

p = 133 Pa, t = 60 s). The periodical structures formed in the resist were softly 

baked in the infrared oven (T = 100 °C) preparing photoresist as a mask for the 

plasmochemical processing. 2D structures profiles in the SiO2 were etched in 

the CF4 / O2 feedstock gas mixture (80 % : 20 % and 85 % : 15 %) RF plasma. 

The etching was performed using plasma-etching equipment PK-2430PD at 67 

Pa pressure, total flux of gases was 300 sccm, and 0.75 W/cm2 RF power 

density. After PCE processing the etching mask was removed boiling the 

samples in dimethylformamide (DMF). Figure 3.16(a) shows diffraction 

efficiency dependence on the duration of PCE treatment. AFM image of 2 µm 

Fig. 3.15. 2 µm grating formed on a interference mirror by Interference 
photolithography. (a) – image of a optical microscope, (b) – different fringes observed 
on a samples. 

a)

b) 
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period grating plasmochemicaly etched in SiO2 shows a harmonic-like 

modulation of a surface.  

 

 

Fig. 3.16 (a) Diffraction efficiency (DE) dependence on the duration of PCE treatment in CF4 
/ O2  -80 % / 20 % plasma. (b) AFM image of 2 µm period grating plasmochemicaly etched in 
SiO2 after 150 s of etching [87]. 

 

Despite method complexity it allows fine control of grating diffraction 

properties (Fig. 3.16(a)). SiO2 has a higher optical damage threshold and 

mechanical strength. This might be useful for third material (for example 

nonlinear χ2 material) filled photonic resonator construction.  

 

 

(a) 

(b) 
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3.3. Experimental realization of photonic crystal resonators  

 

Construction of a photonic crystal resonator in principal is not complicated. 

Two flat, high reflection dielectrics mirrors with a diffraction grating on a 

dielectric coating should be parallel at particular critical length. Principal 

scheme of a PhC resonator is presented in Fig. 3.17. Diffraction gratings must 

be parallel and shifted by half of a modulation period. The first mirror has two 

degrees of freedom and can be turned around x and y axes. The second mirror 

has all six degrees of freedom and can be turned around x, y and z and laterally 

shifted along x, y, z axes (Fig. 3.17). For the firs step second mirror is placed 

and tuned perpendicular to laser beam. It is convenient to tune surface 

modulation direction along x axes. (i. e. diffraction maxima resides in 

horizontal plane). On a next step the first mirror is placed and turned 

perpendicular to the laser beam. It was also tuned roughly to match modulation 

on a second mirror. Optical holder of the first mirror is massive and 

substantially mounted to the optical table. For maximum accuracy and stability 

the micrometers screws of a holder are turned by worm-gear.  

 
Resonator is adjusted depending on a central transmission spot. Diffuser is 

placed in front of the first cavity mirror order to obtain wide spatial spectrum. 

For a precise lateral positioning of a second mirror piezo electrical 10 nm 

Fig. 3.17. Photonic crystal resonator. 
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resolution translation stage was used. For large scale translation in z direction 

mechanical translator was used. Though construction looks simple technically 

it is very sensitive to any mechanical impact. Experimental setup for resonator 

spatial transmission registration is shown in Fig. 3.18. The resonator was 

illuminated by the cw laser beam (wavelength 532 nm, beam width 2.5 mm, 

power 10-30 mW). A diffuser was placed in front of the resonator in order to 

generate broad spatial spectrum of the illuminating radiation. A place of a 

diffuser was tuned in order to find a best picture quality. For a resonator with 

2 µm and 4 µm diffuser was placed at 1 mm distance from a resonator front 

mirror. Since a quality of a gratings was not uniform a beam position on a 

diffuser was scanned for a best picture quality. A lens of 58 mm focal distance 

collected the transmitted radiation on CCD camera for the far field recording 

(Fig. 3.18(a)). In case of a 2 µm modulation resonator a transmitted radiation 

cannot fit into a lens aperture since the distance from a cavity is limited by an 

optical holder. White screen and digital photo camera were used for far field 

recording in this situation (Fig. 3.18(b)). 

.

 
Fig. 3.18. Experimental schemes for PhC resonator transmission recording. (a) – for a 4 µm 
and 15 µm period modulation of a mirrors surface, (b) – for a 2 µm period modulation. 

PhC resonators with 1D modulation of the mirror surfaces.  

532nm CW 
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b) 
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First experiments were done with 15 µm period modulated mirrors. 

Diffraction grating was fabricated using standard photolithography technology 

(chapter 3.2). In experiments we tuned the length of the resonator on a large 

scale in order to obtain the zero diffraction regimes, which, according to the 

theoretical calculations calculated value ( 5.7=L ) was evaluated to be 

mml 55.0=  (the critical point of triple interaction occurs at 

mmdl 44.02 == λ ). The length of the resonator was also tuned on the small 

(submicron) scale in order to vary the phase, and tune to the resonance. 

Fig. 3.19 shows the experimentally recorded and numerically simulated far 

field pattern. Experimentally obtained distribution corresponds well to the 

theoretically calculated X-like structure. 

 
Fig. 3.19. 2D transmission profiles.(a, b, c, d) experimentaly recorded, (e, f, g, h) shows 

numerically calculated the full transmission as containing not only the central transmission 
component given by 22R  but also the first diffraction maxima given by 21R  and 

23R .Parameters: s = 0.75, t = 0.2, d = 3.75, φ(e) = 0, φ(f) = -0.94, φ(g) = -1.26, φ(h) = -1.57. 
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 It is clearly visible, that side bands, as appearing from the first 

diffraction maxima (Fig. 3.19(e-h)) are also observed experimentally. 

Numerical simulation also works well for different cavity length tuning in 

submicron scale. 

 Apart from the central part, however a lot of higher order diffraction 

components are present in experimentally recorded transmission pattern 

(Fig. 3.20). Those components are beyond the theoretical treatment, as related 

with the higher diffraction orders (in theoretical treatment only the first 

diffraction orders are considered) as well as related with the different 

longitudinal modes (in the theory the single longitudinal mode treatment is 

considered).  
 

 
Fig. 3.20. The full transmission spectrum of the resonator containing higher harmonics as 
obtained experimentally in the far field representation. (a) the dashed circles fit the resonator 
modes calculated in the limit of weak index modulation. (b) cold resonator modes visible as 
obtained iluminating a part of notmodulated cavity. 
 

 Point scattering method allows us to evaluate resonator transmission 

profile for different lateral tilt of a resonator gratings. Though almost all 

experimental our attempts to demonstrate lateral tilt wasn’t successful. The 

reason for it might be slight crossing of a gratings which is hard to escape for 

small (2 µm and 4 µm) period modulation.  
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Fig. 3.21. The full transmission spectrum of the resonator with shifted gratings. (a) – 

represents normal case, then gratings are shifted by m = π. (b) – m = 0 Other parameters for  
(a), (b) are: s = 0.4, t = 0.45, d = 4.5, m = π, φ = 0 (c), (d) experimentaly obtained 
transmission spectrum. 

 

For 2 µm period grating even 0.01 deg misalignment causes gratings 

crossing over 1cm modulated area. For a 15 µm grating gratings this 

misalignment is 0.1 deg. Fig. 3.21 shows resonator transmission profiles with 

half grating period shifted (a) and not shifted (b) and corresponding 

experimentally obtained profiles (c, d). Correspondence is fair but still 

comparable with theory.  
 

Modulation of mirror surface (dx = 2 µm) implies the critical cavity 

length of mdlcr µλ 5.72 == . Modulated mirror surface is shown in 

Fig. 3.14(a). Fig. 3.22 shows the resonator transmission function obtained at 

around the critical length of the resonator, and by varying the fine tuning 

condition, as characterized by the roundtrip phase nlk πϕ 22 0 −= . The 

roundtrip phase in experiments could not be directly determined, and was 

indirectly restored from the comparison with the corresponding numerical plots 

(with explicitly defined phase). The far field of the transmitted radiation as 

recorded experimentally (left column in Fig. 3.22) is in good qualitative 

correspondence with calculated numerically (right column in Fig. 3.22). The 

case (b) corresponds to the multiple resonance of all three waves, i.e. to the 

case when the frequency of the plateau of dispersion curve is fine-tuned to the 

a)

b) d) 
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resonance. The cases (a) and (c) are characteristic for situations when the 

resonator is fine-tuned to the opposite directions from the resonance.  

 The multiple resonance conditions can be interpreted also in a geometric 

way. The discussed above rough tuning condition means that the radius of the 

first Fresnel ring (at resonance) is approximately equal to diffraction angle of a 

grating of the mirror. 

. 
Fig. 3.22. Far field of the radiation transmitted through the resonator with 1D modulated 
mirror surface as recorded experimentally, and calculated numerically from (3.1.3.11). The 
lateral shift of the mirrors is a half of modulation period. Parameters used in numerics: 
s = 0.4, t = 0.2, d = 4.0, m = π. The resonator roundtrip phase was varied to fit the 
experimental plots. 
 
The fine tuning condition means that the Fresnel rings from two diffracted 

components overlap on the spot of the central component. Fig. 3.23 shows the 

ring structure of the PhC cavity, illustrating the above discussed resonance 

condition. The ring structure around the diffraction maxima is clearly visible in 

both numerical and experimental field distributions, and the resulting far-field 

transmission pattern can be well interpreted with the help of the system of the 

Fresnel rings.  
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Fig. 3.23. Ring structure of the resonator with 1D modulated mirrors. (a) – cavity ring 

structure with the absence of a modulation (S=0); (b) – numerical simulation of PhC resonator 
(s = 0.4). Parameters: t = 0.2, d = 4.0, m = π; φ = -0.63; (c) - Experimentally obtained 
resonator transmission. Rings are the same as (a, b) (asymmetry is experimental artifact).  
 
3.4. PhC resonators with the single modulated mirror. 

 
It was found during experiments, that a cavity with one modulated 

mirror also exhibits similar properties as with two modulated mirrors. The 

principal scheme of such resonator is shown in Fig. 3.24. The first mirror of a 

resonator is 1D modulated and has two degrees of freedom in order to tilt with 

respect to optical axes. The second mirror can be tilted with respect optical 

axes and can be moved along it. From the experimental view it is more 

convenient since there is no need for precise one grating alignment with 

respect to another (as in Fig. 3.17). Theoretically single modulated mirror PhC 

resonator can be analyzed by using mode expansion or point scattering 

method. 



 108

 
 

 Fig. 3.24(b) shows unfolded structure of such a resonator. Point 

scattering method (presented in chapter 3.1.3) can be easily adopted for single 

modulated mirror case by removing scattering and shifting operators in 

formula (3.1.3.11): 

( ) ( ) 12212 ˆˆˆ1̂ˆ1̂ˆ −−
−=−= SPPrtRtT . (3.4.1) 

Calculated resonator transmission profile gives basic properties expected: sub-

diffraction (Fig 3.25(a)) and super-diffraction (Fig 3.25(c)) The profile shape 

in general is the same for one and two modulated mirrors resonator (as 

evaluated in Fig. 3.6 and Fig. 3.7). Optimal resonator length, phase and 

transmission are slightly different.  

 For experiments was used 1D modulated 4 µm period mirror. 

Modulation profile is shown in Fig. 3.14(b) Diffraction efficiency of a grating 

was 27 % in zero order, 30.5 % in +-first order and 5 % ir the ±second order 

maxima. Experimental results are in good correspondence with numerical one 

(Fig. 3.26). In Fig. 3.26(b) filtering regime is evident. All experimentally 

obtained transmission profiles corresponds well at high resonator mirrors 

transmission (i.e. low resonator finesse). As it came out analyzing resonator 

Fig. 3.24. Photonic crystal resonator with a single 1D modulated mirror. (a) – physical 
construction, (b) corresponding unfolded PhC structure. 

z 1qr 2qr

d

l

x

a)

b)
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parameters at chapter 3.1.4 subdiffraction regime can’t be evaluated if 

transmission is high t = 0.2. Mirrors actual transmission is t = 0.015. It should 

be enough for sub-diffraction registration, though it fails. 

 

 
 

Fig. 3.25. Transmission of a PhC resonator with single modulated mirror counted using 
point scattering method. (a) shows sub-diffraction angular transmission profiles at length 
d = 4.2 with parameters: s = 0.4, t = 0.01, φ = -0.1; (b) is a homogeneous case of (a) at 
s = 0, φ = 0. (c) shows superdiffraction angular transmission profiles at length d = 3.7 with 
parameters: s = 0.4, t = 0.2, φ = -0.25 (d) is a corresponding homogeneous case of (c). 
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The reason for low finesse seems to be diffraction grating. Profile of a 

grating isn’t strictly harmonic (Fig. 3.14(b, d)) and diffraction efficiency to 

higher order maxima is 10 % (counting both ±2’d order). This causes losses 

and reduces finesse of a cavity. Thought qualitative experimental-theoretical 

correspondence at low finesse shows possible success if appropriate mirrors 

and modulation parameters achieved.  

 

 
Fig. 3.26. Far field of the radiation transmitted through the resonator with 1D single 
modulated mirror as recorded experimentally, and calculated numerically. Parameters: s = 0.4, 
t = 0.2; physical ant theoretical resonator length l = 35 µm (a, b) and l = 38 µm (c, d). 
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3.5. PhC resonators with 3D intracavity modulation 

 

 In chapter 3.1 2D intracavity 

modulation resonators were analyzed. 

In this chapter we extend 2D case into 

3D. Principal idea of resonator filling 

media construction is in Fig. 3.27. Two 

crossed phase gratings were fabricated 

on a mirrors and laterally tilted in 

bought directions by half of a period 

with respect to another grating.  

For fabrication of a samples we used 

contact UV photolithography technology. All technological approach is 

presented in chapter 3.2. The only difference - photoresist is exposed twice 

after crossing of a photo-mask. AFM image of a fabricated 4 µm period 2D 

mirror surface modulation is in Fig. 3.28. Diffraction efficiency of a fabricated 

gratings was 26 % at zero order and ~13 % at four first order maxima. 

Diffraction efficiency to second order maxima was ~1 %, transmission ~2 %. 

Other 16 % seams to be scattered to higher order maximas and adds high 

losses to a cavity.  

 

Fig. 3.28. AFM image of a 2D modulated mirror surface 

Fig. 3.27. Two 2D modulated 
gratings shifted by half of a period 
in x and y direction
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Theoretical model of 3D PhC resonators 
 
For the theoretical-numerical analysis of the resonator modes we developed an 

approach, based on the multiple scattering matrix technique. We analyze a 

round trip propagation of light along the resonator, and calculate the 

transformation of the field on each of the elements consecutively: i) the 

diffraction on the modulated surface of the mirror; ii) the free space 

propagation between the mirrors (diffraction in homogeneous material); iii) the 

lateral shift of the periodic structure of the mirrors one with respect to another, 

iv) the partial reflections from the mirrors. After calculating the field 

transformation in a resonator roundtrip (by applying the transformation 

operators, i.e. by multiplying by corresponding transformation matrices), we 

calculate the resonator transmission matrix by the standard techniques: by 

adding the entering plane wave to the resonators, and by searching for a 

stationary state. This is essentially a classical approach to calculate the mode 

structure of the homogeneously filled Fabry-Perrot resonator, with the 

difference that the field transformations on each of the element in the resonator 

now are not the scalars but operators (represented by matrices).  

The periodic modulation of the mirror surface results in a set of diffraction 

components in reflected light with transverse the components of the 

wavevectors nmqk ,
rr

+⊥ , here ( )yx kkk ,=⊥

r
  is the transverse wavevector of the 

incident light, and ( )yxnm nqmqq ,, =
r  are the multiples of the modulation 

wavevector. Strictly speaking one should consider all the possible field 

harmonics, however it comes out that the consideration of the central 

component plus the first order sidebands is sufficient [A5]. For 1D modulation 

of the mirrors this results in three components (as considered in [A5], for 2D 

square modulation of the mirrors) in five components [86]. We approximate, 

therefore, the optical field in the following way:  
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( ) ( )( )yiqyiqxiqxiqykxki yyxxyx eaeaeaeaaeA 1,01,00,10,10,0 +
−

−+
−

−
+ ++++=r  (3.5.1) 

The field is, for convenience, represented by the column-vector of plane wave 

components:  

( )TaaaaaA 1,00,10,00,11,0 ,,,, ++−−=
r

 (3.5.2) 

The ( )yx qqq ,=⊥  are the wavevectors of the index modulation in the transverse 

direction (the field is expanded in its harmonics). In general xq  and yq  can be 

different one from another, but throughout the article we will consider the 

square lattice ⊥== qqq yx  in the 2D modulation case. The plane-wave set 

(3.5.2) is tilted with respect to the optical axis, as represented by the factor in 

(3.5.1) with nonzero ( )yx kkk ,=⊥

r
.  

Next we list separately all the field transformations in the resonator roundtrip.  

Scattering by the phase grating. The periodically modulated phase of the 

field on the reflection of the surface of the mirror couples the components of 

the field vectors. For the harmonic modulation the coupling occurs between the 

central component 0,0a  and the sidebands in this five harmonic model. We 

introduce the phenomenological scattering coefficients xs  and ys  into the both 

transverse directions respectively. In the square grating (2D) case sss yx == , 

and the 1D modulation case by: ssx = , 0=ys . The scattering s can be linked 

to microscopic parameters of the coating, as the depth of the modulation, and 

the refraction index of the photoresist. However it is more convenient to keep 

the macroscopic scattering parameter, as it is directly linked with the 

experimentally accessible diffraction efficiency of the grating (s is the square 

root of the scattering intensity into the sidebands). The scattering matrix is:   
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More convenient (for numerical purposes) is however to simplify the scattering 

operator, which in (3.5.3) is the matrix exponent. The simplification is being 

done by series expansion of (3.5.3), which truncated to three expansion terms 

reads:  

⎟⎟
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⎟
⎟
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⎞
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⎜
⎜
⎜

⎝

⎛

−−−−
−−−−

−−
−−−−
−−−−

=

21222
22122

1
22212

22221

ˆ

22

22

22

22

22

yyxyyxy

yxxxxyx

yxyxxy

yxxxxyx

yyxyyxy

sssissss
sssissss

isisssisis
sssissss

sssissss

S  (3.5.4) 

The simplified scattering matrix (3.5.4) is an approximate expression, and 

therefore does not preserve the energy precisely during the scattering process. 

The absolute values of eigenvalues of the matrix (3.5.4) are not equal to unity 

as the truncation introduces errors in the absolute values of eigenvalues of the 

order of ( )4sO . For the experimental values used 3.02.0 ÷≈s  the 

nonconservation of the energy is therefore negligible.  

Free propagation. The free propagation over the linear length of the resonator 

is considered by the paraxial propagation equation:  

( ) ( )rr A
k
iAz

2

02 ⊥∇=∂  (3.5.5) 

where 22222 yx ∂∂+∂∂=∇⊥  is the Laplace operator acting in the transverse 

plane. Substitution of expansion (3.5.1) into (3.5.5) yields the equation system: 

( ) ( )[ ] nmyyxxnmz aknqkmq
k
ia ,

22

0
, 2

+++−=∂ , (3.5.6) 
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The integration of (3.5.6) over one linear resonator length results to the 

diagonal transformation matrix:  

( ) ( ) ( ) ( )( )2222222222
0 ,,,, xyyyxxyxyxxxyy iLkqkiLiLkqkiLiLkiLkiLkqkiLiLkqkiLilk eeeeeDiagonaleP −−−−−−−−−+−−+−⋅=

r

, (3.5.7) 

Here ( )02klL =  is the normalized length of the resonator, representing its 

diffraction.  

Lateral shift of the mirror. We account for the lateral shift of the grating 

(determined by ( )yx mmm ,=
r ) using the following trick. We fix the reference 

frame with the position of the first mirror. Then, for the calculation of the 

scattering from the laterally shifted second mirror we change the reference 

frame, by applying the operator:  

( )yyxxxxyy qimqimqimqim eeeeDiagonalM −−++= ,,1,,
r

 (3.5.8) 

Then, after calculation the scattering on the second mirror (by using (3.5.3) or 

(3.5.4)) in the new reference frame), we restore the original reference frame, by 

applying 1−M
r

. 

Resonator mirrors. Since the reflectivity is the same for all harmonic 

components of the wave, it is accounted in a standard way – by multiplication 

by a scalar r . Without losing generality in theory, and in accordance to our 

experiment, we consider the both mirrors of the same reflectivity. 

Resonator roundtrip. The variation of the field in a resonator roundtrip is 

calculated by applying consecutively all the operators discussed above:  

SPMSMPrR ˆˆˆˆˆˆˆ 12 −=  (3.5.9) 

Resonator transfer function. The plane wave entering into the resonator is 

denoted in this vector form by ( )TBA 0,0,,0,0 00 =
r

. Then we calculate the 
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radiation balance in one resonator roundtrip, and analogously to the 

homogeneous Fabry-Perot case, we obtain:   

( ) 0

1ˆ1̂ ARtA
rr −

−=  (3.5.10) 

for the radiation at the entrance mirror. The only difference from the 

homogeneous Fabry-Perot case is that here we deal with the vectors of the 

wave components and transformation matrices, instead of complex scalar 

factors. Finally the resonator transmission matrix is: 

( ) ( ) 112212 ˆˆˆˆˆˆ1̂ˆ1̂ˆ −−−
−=−= SPMSPMrtRtT  (3.5.11) 

The transmission for the homogeneous component is given by the element 0,0T  

of the transfer matrix (3.5.11). 

The scattering of the resonator 

into the sidebands harmonics is 

described by the corresponding 

off-diagonal column elements of 

the matrix: by 0,1−T  and 0,1+T  into 

the diffraction components in x 

direction, and by 1,0 −T  and 1,0 +T  

into the diffraction components 

in y direction.  

 Typical calculated 3D 

resonator transmission profile is 

shown in Fig. 3.29(a, c). 

Parameter analysis shows basic 

2D modulated resonator properties. By changing the length of cavity and 

tuning the phase we can obtain subdiffraction or superdiffraction regime 

(Fig. 3.30(a)) Maximum transmission for cavity length d = 4.6 can reach 90 %. 

Fig. 3.30(b) shows near flat top transmission profiles for s = 0.35 and s = 0.25 

diffraction efficiency. For a higher and lower diffraction efficiency flat top 

Fig. 3.29. Rectangular transmission profile of 
a 3D modulated PhC resonator (a, c) 
Parameters: s = 0.4, t = 0.2, d = 4.5, mx = π, 
my = π; φ(a,c) = -0.78. Homogeneous 
resonator transmission (b).  
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can’t be evaluated for Fig 3.3(b) parameters set. Analogically to 2D single 

modulated mirror case (chapter 3.4) 3D resonator can also be calculated for 

single mirror approach. Fig. 3.30(b) also shows calculated case of single 

modulated mirror transmission.  

 
Fig. 3.30. 3D resonator parameter analysis. (a) – transmission cross section dependence on a 
cavity length. (b) transmission cross section dependence on a diffraction efficiency. Phase is 
turned for maximum transmission and flat top. 
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3.6. Experimental analysis of 3D PhC resonators  

 
In 3D experiments the periods of the modulation of mirror surface was 

(dx = 4 µm, dy = 4 µm ), (quadratic structure Fig. 3.28), which implies the 

critical cavity length of mdlcr µλ 302 == . Fig. 3.31 shows the resonator 

transmission function obtained at around the critical length of the resonator, 

and by varying the fine tuning condition. Also in 2D modulation case a good 

qualitative correspondence with numerically obtained results was observed. 

Here again, the resonant case was obtained, characterized by relatively flat 

(homogeneous) and broad resonator transmission function. This case is 

analogous to the case in Fig. 3.6(c), however here obtained as a simultaneous 

resonance of the five waves. Also in analogy to 2D cases the typical off-

resonance transmission distribution were obtained, and shown in Fig. 3.31(b, 

c).  

 
Fig. 3.31. Far field of the radiation transmitted through the resonator with 2D modulated 
mirrors as recorded experimentally, and calculated numerically (3.5.9). The lateral shift of the 
mirrors is a half of modulation period in both directions (mx = my = π). Parameters: S = 0.4, 
T = 0.2, d = 4.5.  
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The multiple resonance condition, and the appearance of plateau can be also 

interpreted in a geometric way, like in 2D modulation case. Differently from 

2D case, here it seems that the most homogeneous plateau appears under 

participation of the two resonant rings from the diffraction maxima, as 

indicated in Fig. 3.32. This means, that also the longitudinal n - 2 modes 

participate in formation of sub-diffractive pattern.  

 

 
Fig. 3.32. Ring structure of 2D modulated mirrors cavity. Experimental results (a) and 
numerical simulation (b) as taken from Fig.5. Dashed red rings indicate imaginary place of 
transmission rings around diffraction maxima. (c) shows 3D resonator transmission structure, 
showing the role of two resonance rings, as obtained from numerics of Eq. (3.5.11). 
 

 
Fig. 3.33. Far field of the radiation transmitted through the resonator with 2D modulated 
mirrors and different lateral shift as recorded experimentally, and calculated numerically 
(3.5.11). Parameters: s = 0.4, t = 0.2, d = 4.5. 
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The resonator transmission pattern was sensible with respect to the lateral shift 

of the resonator mirrors one with respect to another. Fig. 3.33 reports the result 

of study of the lateral shift. As expected, the lateral shift by the value different 

than ππ 5.0,, =yxm  results in asymmetric pattern with respect to the direction 

with broken symmetry (Fig. 3.33(a). The lateral shifts of  0, =yxm  and π=ym  

results in different patterns, as shown in Fig. 3.33(b).  

 

3.7 Conclusions  

 

Concluding, we build the PhC resonator with the intracavity modulation of 

refraction index, i.e. the resonator containing one longitudinal period of the 

PhC for the first time. We develop the method of the calculation of such 

resonator, based on the scattering matrix theory, and we reproduce the 

experimentally observed transmission patterns by numerical integration of the 

developed model. We demonstrate experimentally the basic properties 

expected, i.e. the hyperbolic shape transmission patterns in case of 1D 

modulation of the mirror surfaces, and square shape patterns in case of 2D 

modulation of the mirror surfaces.  

The PhC resonator shows basic properties expected – the relatively flat 

angular transmission profile. The maximum transmission area is of quadratic 

shape, due to a quadratic symmetry of the modulation of the mirror surfaces. 

The more symmetric modulation patterns (hexagonal, or octagonal) are 

expected to result in a more isotropic transmission spot.  

Finally, the resonators investigated here can be used to observe the 

nonlinear subdiffractive effects. The investigation of the nonlinear effects in 

diffraction manipulated systems already have been started investigated 

(hyperbolic patterns in optics [88], hyperbolic patterns in Bose-Einstein 

Condensate [89]). Also the nonlinear effects (modification of instabilities) in 

the resonators with the refraction index modulated in one transverse direction 

were investigated (in 1D PCs in resonators with )2(χ  [90] and )3(χ  [91] 
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nonlinearities). The nonlinear resonators with “true” photonic crystals, the 2D 

as in the present chapter, or also 3D, however, never been investigated up to 

now. In particular the significant narrowing of nonlinear structures (solitons) in 

subdiffractive regimes, and significant enhancement of spatial stability of the 

structures in filtering regimes, can be expected. 
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List of results and conclusions  

 

1. Optical parametrical oscillation (OPO) in a large Fresnel number 

monolithic BBO type I phase matching crystal mini-cavity was 

demonstrated experimentally. It was shown, that OPO emission is 

conical and multiconical and depends on the cavity optical axes 

orientation with respect to the pump beam and on cavity detuning to 

laser frequency. In case of increasing angle between cavity optical axes 

and pump beam in phase matching direction conical emission angle 

increases abruptly at values 0,680±0,010; 0,750±0,010 and two pairs of 

signal and idler waves are emitted. In case of changing angle between 

cavity optical axes and pump beam in not phase matching direction ±10 

signal and idler waver rotates around pump beam near 1800. OPO 

threshold rises up to 15 mJ (36 MW/cm2) if angle between cavity 

optical axes and pump beam exceeds 0.50 in not phase matching 

direction. Developed theoretical model can explain and reproduce 

behavior of OPO emission. 

2. Stabilization of the stripes (rolls) pattern in large Fresnel number 

(N > 100) BBO type I degenerate OPO was achieved by a week 

injection at subharmonic frequency. Measured temporal spectra of roll 

pattern shows 1/f like power spectra  

3. Adding periodical refraction index modulation on a resonator plane 

mirror surfaces is a convenient method for PhC resonators fabrication.  

4. Diffraction properties of photonic crystal resonators depends on cavity 

length, diffraction efficiency of a gratings, gratings tilt and cavity 

mirrors reflection coefficient. In case cavity length is near critical 

λ2dlcr =  the PhC resonator shows basic properties expected - sub and 

superdiffractive dynamics of light in the resonator, and in hyperbolic 

angular transmission profiles in case of 1D modulation of the mirror 
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surfaces, and square shape angular transmission profiles in case of 2D 

modulation of the mirror surfaces. 

5. The developed calculation method, based on the scattering matrix 

theory is capable to qualitatively reproduce transmission profiles of all 

PhC resonator types, including PhC resonators with single modulated 

mirror and it is suitable method for studying and predicting diffraction 

properties of photonic crystal resonators. 
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Summary 

 

 This Ph.D. thesis contains experimental and theoretical analysis of 

nonlinear optical pattern formation in monolithic mini-cavity optical 

parametrical oscillators and spatial properties of linear photonic crystal 

resonators. The thesis consists of introduction, literature review and two 

chapters. In the first chapter experimental investigation of optical parametrical 

oscillation (OPO) in broad aperture monolithic (5x5x1.5 mm) BBO type I 

crystal mini-cavity is described. OPO was pumped by second harmonic 

(532 nm) 13 ns duration, 7-15 mJ energy pulses, of Nd:YAG laser. Optical 

patterns were registered in a near and far field of OPO emission. Experiments 

and theoretical interpretation revealed that emission of such resonator can be 

conical and multiconical and direction of signal and idler waves can be 

controlled by changing the mini-cavity orientation with respect to pump beam. 

It was also showed, that the stabilization of stripes (or roll) pattern can be 

achieved by a weak seed injection at subharmonic frequency and temporal 

spectrum of the stripe pattern degenerate OPO emission is 1/f – like noise 

spectrum . In the second chapter plane-mirror Fabry-Pérot resonators filled 

with a single period of photonic crystal (PhC) are introduced and analyzed. 

PhC resonators are realized by adding periodical 2 µm, 4 µm and 15 µm 

refraction index modulation on a resonator mirror surfaces (i.e. fabricating 1D 

or 2D phase diffraction grating). PhC resonator angular transmission measured 

by using broad spatial spectrum of 532 nm wavelength CW laser. Mode 

expansion and scattering matrix methods were used for the theoretical analysis 

of PhC resonator. The results show that diffraction properties of PhC 

resonators can be manipulated, resulting in sub- and superdiffractive dynamics 

of light in the resonator. 
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Summary in Lithuanian 

 
 Šioje disertacijoje teoriškai ir eksperimentiškai tiriamas erdvinių šviesos 

darinių formavimasis didelės apertūros monolitiniuose parametriniuose šviesos 

generatoriuose (PŠG), nagrinėjamos fotoninių kristalų (FK) rezonatorių 

erdvinės dispersijos savybės. Darbas susideda iš įvado, literatūros apžvalgos ir 

dviejų pagrindinių dalių. Pirmoje dalyje aprašomas PŠG tyrimas didelės 

apertūros (5x5x1,5 mm) BBO I fazinio sinchronizmo tipo kristalo 

monolitiniame mini rezonatoriuje. Generatoriui kaupinti naudojami antros 

Nd:IAG lazerio harmonikos (532 nm) 13 ns trukmės ir 7-15 mJ energijos 

impulsai. Erdviniai šviesos dariniai registruojami artimajame ir tolimajame 

laukuose. Eksperimentiškai parodoma ir teoriškai interpretuojama, kad tokio 

rezonatoriaus emisija gali būti kūginė ir daugiakūgė, o signalinės ir skirtuminės 

bangų kryptys gali būti valdomos keičiant kampą tarp rezonatoriaus optinės 

ašies ir kaupinimo pluošto. Taip pat parodoma, kad dryžių erdvinio šviesos 

darinio formavimasis gali būti pasiekiamas injektuojant pagrindinio dažnio 

užkrato signalą. Antrojoje disertacijos dalyje pristatomi ir tiriami plokščiųjų 

veidrodžių Fabri ir Pero tipo rezonatoriai su vidine lūžio rodiklio moduliacija, 

atitinkančia vieną fotoninio kristalo (FK) išilginį periodą. FK rezonatoriai 

sukurti veidrodžių paviršiuje suformuojant 2 µm, 4 µm ir 15 µm periodinę 

lūžio rodiklio moduliaciją (t.y. suformuojant vienmatę arba dvimatę fazinę 

difrakcinę gardelę). FK rezonatorių kampinis pralaidumas matuotas naudojant 

plataus erdvinio spektro 532 nm bangos ilgio, nuolatinės veikos lazerio 

pluoštą. Rezonatorių difrakcinės savybės tiriamos naudojantis skleidimo 

modomis ir sklaidos matricų teorija paremtais modeliais. Tyrimo rezultatai 

parodė, kad FK rezonatoriaus difrakcinės savybės gali būti valdomos. Išskirti 

du režimai: subdifrakcinis ir superdifrakcinis. 

 
 
 


