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Abstract

The purpose of this research is to study the problem of outliers in ARMA models and compare
two outlier search techniques: Chang and BP methods. The aim of first method is based on an
iterative procedure for parameters estimations then locating the additive and innovative outlier then
distinguishing their types. The objective of second method is to generalize the BP outlier identification
method for time series (ARMA). Our analysis shows that in most cases, the iterative procedure proposed
by Chang is better than BP in detecting outliers. The latter method can not identify the type of declared
outliers. However, there is some situation with adjacent outliers BP method slightly outperforms the
existing techniques.
Keywords: ARMA; additive outlier; innovative outlier; BP; Chang.
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Notation

• AO denotes additive outlier.

• IO denotes innovative outlier.

• LS denotes level shift.

• TC denotes time change.

• ω denotes outlier size.

• T denotes the moment that an outlier is intoduced.

• tsa denotes the method used in R package TSA

• tsout denotes the method used in R package tsoutliers

• robarim denotes the method used in R package robustarima

• i.i.d. means independent identically distributed random variables.
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1 Introduction

In the last few years, the study of outliers received the attention of many authors and is now one of
the main tasks in data analysis. An outlier is a data point that differs significantly from other observa-
tions. Outliers can arise from several different mechanisms and causes; the two major causes are those
arising from errors in the data, and those arising from the inherent variability of the data. Moreover,
outliers are often referred to as anomalies, discordant observations, discords, exceptions, aberrations,
surprises or contaminants.
Nowadays, recent advances in technology allow us to collect a large amount of data over time. This
leads the problem of multiple outliers to become a challenge for many analysts. Therefore, Outliers
Identification become an interesting field for many researchers. It has various applications on time
series data and is widely utilized in diverse research areas such as fraud detection [19], fault detection
[18], medicine [9] and many more.

In the first study on this topic which was conducted by Fox (1972)[10], who defined two charac-
terizations of outliers; Type I or Additive Outlier which affects a single observation; and Type II or
Innovative Outlier which corresponds to the situation in which a single "innovation" is extreme. This
will affect not only the particular observation but also subsequent observations. Also, Fox (1972) pro-
posed the use of maximum likelihood ratio tests to detect them. In 1988, Chang et al. [6] extend the
results of Fox (1972) to ARIMA models and present an iterative procedure for outlier identification and
parameter estimation which were generalized by Tsay (1988) [17] for detecting level shifts and tempo-
rary changes which are other types of outliers. Chen and Liu (1993) [7] proposed an outlier detection
and parameter estimation procedure that is widely used.

In this master thesis, our main goal was to compare the performance of some existing outliers
identification methods in detecting the AO and IO in ARMA models with different outliers size. We
considered two methods, the existing outlier identification method proposed by Chang et al. (1988)[6]
and the generalization of the Bagdonavicius-Petkevicus (BP) method for outlier search in linear regres-
sion models (see [1]) to time series. For the practical usage of proposed procedures; the R packages
TSA, tsoutliers and robustarima and an original R script were used.

The procedures given in packages are based on iterative algorithms for detecting the location of
outliers and then identifying the type of outliers (AO or IO) according to statistical tests. Therefore, we
generate a sample 300 observations using the AR(1), MA(1) and ARMA(1,1) models with φ = 0.6, θ =

0.4 the coefficients of AR and MA respectively; then in the first step, multiple additive outliers with
different effects were introduced to data at different times and then the performance of the mentioned
methods were compared based on masking and swamping values which are investigated in several
simulations. We repeated the same steps with innovative outliers
The rest of this paper is organized as follows. Section 2 presents the literature review. In section 3,
we illustrate the notions of additive and innovative outliers in the ARMA models. Next, we describe
the the considered outlier detection methods. In section 5, we study the performance of the existing
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identifications methods in detecting AO and IO outliers. Finally, the conclusion and some remarks are
summarized in Section 6.

2 Literature Review

The study of outliers in ARIMA models has been a popular subject of research. Fox (1972)[10]
describes additive and innovative outliers and advocates for their detection using maximum likelihood
ratio tests. Chang and Tiao (1983) and Chang et al. (1988) generalize Fox’s (1972) findings to ARIMA
models and provide an iterative technique for outlier identification and parameter estimation. Tsay
(1988)[17] expands on this technique for identifying level shifts and temporary changes.

However, these proposed outlier detection methods suffer from three significant problems. (b) Mask-
ing, the usual procedures based on the detecting outliers one by one, may also fail in the identification
of outliers when they have similar effects. (a) When there is a level shift in the series, most of the
techniques fail to distinguish between the level-shifts and innovative outliers.

Thus, many authors such as Balke (1993)[2] presents a new technique for solving the confusing
problem between level-shift and innovative outliers. Chen and Liu (1993)[7] describe an outlier identifi-
cation and parameter estimation approach that improves upon prior approaches and seems to be widely
used. However, this technique has the potential to misinterpret level shift as innovative outliers, and
certain outliers may be missed entirely because of masking effects. Outliers are not always significant
observations, and Pena (1990, 1991)([15],[14]) gives statistics for determining the outliers’ effect on
model parameters.

These techniques we mentioned have one common factor; they all deal with outliers while estimat-
ing parameters of ARMA models. They begin by estimating the model parameters using maximum
likelihood and then analyze the residuals using an iterative diagnostic technique to locate outliers.

3 Definition of AO and IO in ARMA models and Examples.

3.1 Models and Notations

Suppose that a stationary time series Yt is outliers-free series, t = 0,±1,±2, . . ., is represented by
an ARMA process as follow:

Yt = a1Yt−1 + a2Yt−2 + ...+ apYt−p + εt + b1εt−1 + ...+ bqεt−q

=

p∑
i=1

aiYt−i +

q∑
j=1

bjεt−j + εt, t = 1, ..., n, (1)

The model in (1) can be written more concisely using the back-shift operator as it is described in
Robert, S. et D book [16] as follows:

φ(B)Yt = θ(B)εt (2)
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Where

φ(B) = 1− φ1B − φ2B2 − · · · − φpBp, θ(B) = 1− θ1B − · · · − θqBq. (3)

Here φ(B) and θ(B) are polynomials in B of degrees p and q, respectively, B is the back-shift operator
such that BkYt = Yt−k, E (Yt) = 0, and {εt} is a sequence of independent and identically distributed
random variables of mean zero and variance σ2. The process {Yt} is stationary and invertible because
the root of the polynomial φ(B) are outside the unit circle (See prove [13]). Thus, model 2 can be
defined as follow:

π(B)Yt = εt (4)

with
π(B) =

φ(B)

θ(B)
= 1− π1B − π2B2 − . . . (5)

When Yt has outliers, it becomes a contaminated series, which contains either additive or innovational
outliers. We note it as Zt.
It is said that an AO is observed at the moment t = T if:

Zt =

{
Yt, t 6= T

Yt + ω, t = T

Here ω defines outlier size and it is a constant or a random variable.

Moreover, the presence of the additive outlier (AO) does not influence values of Yt, when t 6=T. So
shortly Zt can be written in the form

Zt = Yt + ω1{t=T}. (6)

where 1{t=T} is an indicator function that takes the value 1 if t = T , and 0 otherwise.
In the other hand, the presence of the innovative outlier (IO) does not effect only YT but also a

sequence of observations YT+1, YT+2, . . .. Thus, the contaminated series Zt is given in the following
manner:

Zt = ωπ−1(B)1{t=T} + Yt

= ωkt−T1{t=T} + Yt (7)

where kt−T are the coefficients of π−1(B) which is defined previously in (5). Denoting k0 = 1, we have

Zt = ωkt−T1{t≥T} + Yt.

Note that

π−1(B)1{t=T} =
∞∑
j=0

kjB
j1{t=T} =

∞∑
j=0

kj1{t−j=T}.

For t < T all indicators 1{t−j=T} are equal to zero. For t ≥ T only one indicator with j = t − T is
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equal to one. So
π−1(B)1{t=T} = kt−T1{t ≥ T}.

Thus, the equation (7) is written as follows:

Yt = ωkt−T1{t≥T} + Yt. (8)

In the case of m outliers are presented in the series:
For AO:

Zt =
m∑
i=1

ωi1{t=Ti} + Yt,

so
Zt = ωi + Yt, t = Ti, i = 1, ...,m, Zt = Yt, t 6= T1, ..., Tm.

For IO

Zt =

m∑
i=1

ωikt−Ti1{t≥Ti} + Yt.

The last formula implies that for t < T(1)

Zt = Yt.

For T(1) ≤ t < T(2)

Zt = ω(1)kt−T(1) + Yt.

T(j−1) ≤ t < T(j), j = 2, ...,m,

Zt =

j−1∑
i=1

ω(i)kt−T(i) + Yt.

For t ≥ T(m)

Zt =
m∑
i=1

ω(i)kt−T(i) + Yt.

Furthermore, let us suppose that in our series m1 AO, and m2 IO are presented; where m1, and m2 ∈ N
. Then

Zt =

m1∑
i=1

ωA1{t=TiA} +

m3∑
i=1

ωIkt−TiI1{t≥TiI} + Yt

3.2 Examples

1) In the case of MA(1) process Yt = εt − b1εt−1, |b1| < 1, we have

φ(B) = 1, θ(B) = 1− b1B, θ−1(B) =

∞∑
j=0

bjBj ,

π(B) = θ−1(B)φ(B) = θ−1(B) =
∞∑
j=0

bjBj .
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εt =

∞∑
j=0

bjyt−j =

t−1∑
j=0

bjyt−j .

For AO:
Zt = ω1{t=T} + Yt.

For IO: Note that 1/π(B) = 1/θ−1(B) = θ(B) = 1− b1B, so k1 = −b1, kj = 0, j > 1,

Zt = ω + yt, t = T, Zt = −ωb1, t = T + 1, Zt = Yt, t 6= T, T + 1.

Shortly:
Zt = ω(1{t=T} − b11{t=T+1}) + Yt.

2) In the case of AR(1) process Yt = a1Yt−1 + εt we have

φ(B) = 1− a1B, θ(B) = 1, θ−1(B) = 1,

π(B) = θ−1(B)φ(B) = φ(B) = 1− a1B.

εt = φ(B)yt = Yt − a1Yt−1.

For AO:
Zt = ω1{t=T} + Yt.

For IO: Note that 1/π(B) = 1/(1− a1B) =
∑∞

i=0 a
i
1B

i, so ki = ai1,

Zt = ω + yt, t = T, Zt = ωat−T1 , t = T + 1, Zt = Yt, t 6= T, T + 1.

Shortly:
Zt = ωkt−T1{t≥T} + Yt = ωat−T1 1{t≥T} + Yt.

So presence of innovative outlier at point t = T influences later observations in exponentially decreasing
manner.

So presence of innovative outlier at point t = T influences only the next observation.
3) In the case of ARMA(1,1) process we have

φ(B) = 1− a1B, θ(B) = 1− b1B, θ−1(B) =

∞∑
i=0

bi1B
i,
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we have,

π(B) = θ−1(B)φ(B) =

∞∑
i=0

bi1B
i(1− a1B)

=

∞∑
i=0

bi1B
i − a1

∞∑
i=0

bi1B
i+1

=
∞∑
i=0

bi1B
i − a1

∞∑
i=1

bi−11 Bi1

= 1 +
∞∑
i=1

(b1 − a1)bi−11 Bi.

Similary

π−1(B) = φ−1(B)θ(B) = 1 + (a1 − b1)
∞∑
i=1

ai−11 Bi.

For AO:
Zt = ω1{t=T} + Yt.

For IO: Note that
kt−T1{t≥T} = 1{t=T} + (a1 − b1)at−T−11 1{t>T}.

It implies:
Zt = ω(1{t=T} + (a1 − b1)at−T−11 1{t>T}) + Yt.

So presence of innovative outlier at point t = T influences later observations in exponentially decreasing
manner.

4 Outlier detection techniques

4.1 Theoretic background for the Chang identification method

The Chang method is an interative procedure for outlier detection based on the one developed by
Chang et al. (1988) [6]. This approach is mainly based on estimating the model parameters using
maximum likelihood and then analysing the residuals with an iterative procedure to detect outliers.
The iterative procedure has two stages. In the first stage, initial parameter estimation, a robust
initial estimates of model parameters are computed. In the second stage, outlier detection, outliers are
identified one by one using the likelihood ratio test.

4.1.1 ARMA Parameters and σ2 Are Known

Supposing that the time series parameters φi’s, and θj ’s are known. It is necessary first to estimate
the effect parameters ω of an IO, and AO in equations (7), and(6) respectively.
For t = 1, . . . , n, we define:

Ut = π(B)Zt (9)
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Note that for AO:
Ut = ωAπ(B)1{t=T} + π(B)Yt = ωAπ(B)1{t=T} + εt,

For IO
Ut = ωIπ(B)kt−T1{t≥T} + εt = ωπ(B)π−1(B)1{t=T} + εt = ωI1{t=T} + εt.

Set i = I, A, and xt = π(B)1{t=T} for AO, and xt = 1{t=T} for IO.
Then Ut can be written in unified way:

Ut = ωixt + εt. (10)

The effect ωI of an IO at time T is estimated by the residual UT at that specific point; where

ω̂I = UT . (11)

However, the information about AO’impact is scattered over a string of "residuals". Thus, the best
estimate for the ωAO is a linear combination of UT , UT+1, · · · ,. It can be computed using the technique
of least squeares (see [7]). Thus, the estimate ω̂A is giving by:

ω̂A = ρ2π(F )UT . (12)

= ρ2π(F )π(B)Zt

where ρ2 =
(
1− π21 + · · · − π2n−T

)−1; F is the forward-shift operator such that FUt = UT+1 and
π(F ) = 1− π1F − π2F 2 − · · · − πn−TFn−T

The variances of these estimators are:

Var (ω̂I) = σ2, Var (ω̂A) = ρ2σ2. (13)

In order to test for a single outlier, one may test the following hypotheses (i) H0 : ωI = ωA = 0; (ii)
HI : ωI 6= 0, (iii) HA : ωA 6= 0, and the likelihood ratio test statistics for testing H0 vs. HI , and HA

are respectively λi,T = ω̂i/σi for i = I, A; where σi is the square root of the variance of the estimators
which are defined previously in 13. More specificity,

H0 vs. HI : λI,T = ω̂I/σ,

H0 vs. HA : λA,T = ω̂A/ρσ (14)

Under the null hypothesis of no outliers, these statistics are asymptotically distributed as N(0, 1).

4.1.2 ARMA Parameters and σ2 Are Unknown

In practice, the ARMA parameters and σ2 are usually unknown. Then the parameters along with
the effect ω can be obtained by maximizing the likelihood function of (φ1, · · · , φp, θ1, · · · , θq, ω, σ2) as
described by Box and Jenkins (1976) [3]. Based on these estimates, the likelihood ratios for testing the
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hypotheses, one against another, in (10) can be computed. Fox (1972) ([10]) first discussed these ratio
criteria in an AR context.

The criteria for detecting an outlier at an unknown position then follow. Fox discussed these ratio
in a model. The maximum likelihood estimates for the parameters, as well as the likelihood ratios, do
not reduce to explicit expressions in general because of the non-linear nature of the AO model and that
of the general ARMA models. In this circumstance, the non-linear estimation algorithms are necessary
to implement the likelihood ratio tests.

Suppose that the time series Zt does not contain outliers.
Let φ̂i, θ̂j , and σ̂2 be the ML estimate of the parameters φi, θj , and σ2 respectively. Moreover, let Ût
be the residuals computed from such an estimated model and π̂(B) = φ̂B/θ̂B.

λ̂I,T =
ω̂I
σ̂
ω̂I

λ̂A,T =
ω̂A
ρ̂σ̂
. (15)

where
ω̂I = ÛT ,

ω̂A = ρ̂2(1− π̂1F − π̂2F 2 − · · · − π̂n−TFn−T )ÛT

and ρ̂2 =
(
1− π̂21 + · · · − π̂2n−T

)−1.
One can see that λ̂I,T , andλ̂A,T are asymptotically equivalent to the likelihood ratio criteria λI,T , and
λA,T in the previous testing hypotheses respectively.

In order to detect an IO or an AO at an unknown position, we can calculate ηt, t = 1, · · · , n where,

ηt = max
{∣∣∣λ̂I,t∣∣∣ , ∣∣∣λ̂A,t∣∣∣}

Where in each iteration, the maximum of a given test statistic is selected as the candidate for that type
of outlier, and the grand maximum across the tests is identified as the most likely outlier. This grand
maximum is then compared with a predetermined positive critical value C so that the existence of an
exogenous outlier can be judged.
At t = T we assume an:

IO : if max ηt =
∣∣∣λ̂I,T ∣∣∣ ≥ C (16)

AO : if max ηt =
∣∣∣λ̂A,T ∣∣∣ ≥ C (17)

4.1.3 Distinguishing an AO From an IO

In practice, there is insufficient information on the discovered outlier’s type; the detection test in
17, and 16 is unclear if it is appropriate for a given situation. When an improper type of test is utilized,
the detecting power of the test may be dramatically decreased. Furthermore, even if it is known that
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an outlier has occurred at a certain moment, the potentially negative impact of the outlier may be
difficult to eliminate unless its nature is properly defined. When the position of the possible outlier
is uncertain, we may need to repeat the test at several time periods, which might be time consuming
problem. To simplify the task, we consider a basic rule proposed by Fox (1972)[10] as a possible
approach to distinguish between an IO and an AO.
At any suspected point T, the possible outlier is categorized as an IO, and AO if

∣∣∣λ̂I,T ∣∣∣ > ∣∣∣λ̂A,T ∣∣∣, and∣∣∣λ̂I,T ∣∣∣ ≤ ∣∣∣λ̂A,T ∣∣∣ respectively.
4.1.4 Iterative Procedure For Outlier Detection

Based on the considerations in section 4.1, an iterative procedure has introduced to handle scenarios
in which there may exist an unknown number of IO’s or AO’s. Simply, the approach begins with
modelling the original series Zt and assuling there is no outlier. Then the outlier-detection steps and
the parameter-estimation processes will be performed alternately. The following is a full description of
the procedure:
I) Outlier-Detection Stage:

1. We compute the residuals Ût from the estimated model, and let σ̂2 = n−1
∑n

t=1 Û
2
t be the

estimate of σ2. A possible robust alternative estimate of σ̂ may be based on the median of the absolute
values of residuals.

2. Compute λ̂I,T and λ̂A,T as in 15 and let ηt = max
{∣∣∣λ̂I,t∣∣∣ , ∣∣∣λ̂A,t∣∣∣} for t = 1, . . . , n. If maxt ηt =∣∣∣λ̂I , T ∣∣∣ > C, where C is a predetermined positive constant, then there is the possibility of an IO at T .

The impact ω of this possible IO is estimated by ω̂I in (2.2a). We then remove its impact by introducing
a new residual ÛT = êT − ω̂I = 0 at T . If maxt ηt =

∣∣∣λ̂A,T ∣∣∣ > C, then there is the possibility of an
AO at T and its effect is estimated by ω̂A in 15. This AO’s effect can be eliminated by defining new
residuals Ût = Ût − ω̂Aπ̂(B)1{t=T} for t ≥ T . In each of the above situations, we obtain new estimate
of σ̂2 based on the modified residuals.

3. If an IO or an AO is found in step 2, recompute λ̂I,T and λ̂A,T using the same initial estimates
of the time series parameters, but based on the modified residuals Ût’s and the estimate σ̂2, and repeat
step 2 .

4. Steps 2 and 3 should be repeated until no further outlier candidates can be discovered.
II) Parameters Estimation Stage:

5. Suppose that IO’s or AO’s are suspected at different k time points T1, T2, . . . , Tk. We consider
these times to be known, and simultaneously we estimate the outlier parameters ω1, ω2, . . . , ωk and the
time series parameters, as given by Box and Tiao (1975) [4], using models of the form

Zt =
k∑
j=1

ωjLj(B)1{t=T} +
θ(B)

φ(B)
εt, (18)

Here Lj(B) = 1 for an AO and Lj(B) = θ(B)/φ(B) for an IO at t = Tj .

Considering model 18, we perform the outlier detection stage again. The notations π̂j ’s, ω̂j ’s and
Ût represent the estimated values derived from the joint estimation of all model parameters in 18. If
no further outliers are detected, we stop. Otherwise, the estimation step is repeated, with the newly

13



detected outliers integrated into model 18, until no more outliers can be discovered and all of the outlier
impacts have been simultaneously estimated with the time series parameters.

4.2 Theoretic background for the BP identification method

Suppose that the ARMA(p, q) model as defined previously in 1

Yt = a1Yt−1 + a2Yt−2 + ...+ apYt−p + εt + b1εt−1 + ...+ bqεt−q =

p∑
i=1

aiYt−i +

q∑
j=1

bjεt−j + εt, t = 1, ..., n,

is considered; here εt ∼ N(0, σ2) are i.i.d. N(0; 1) random variables.
Denote by |ε|(1) ≤ ... ≤ |ε|(n) the ordered absolute values |ε1|, ..., |εn|.

Suppose that Φ is the c.d.f of the normal distribution. Set

bn = Φ−1
(

1− 1

2n

)
, an =

1

bn
. (19)

Note that bn →∞ as n→∞ and for any δ > 0.

lim
n→∞

bn
nδ

= 2δ lim
x→∞

x[1− Φ(x)]δ = 2δ lim
x→+∞

(x
1
δ
−1ϕ(x))δ = 0, (20)

because x[1− Φ(x)] ∼ ϕ(x) as x→ +∞; here ϕ(x) is the probability density function of the standard
normal distribution.

We apply theorem 2.1.1 described in [8] to the random variables |ε|(n)/σ, and we have for fixed s

( |ε|(n)/σ − bn
an

,
|ε|(n−1)/σ − bn

an
, ...,
|ε|(n−s+1)σ − bn

an

)
d→ L0 (21)

as n→∞; here

L0 = (− lnE1,− ln(E1 + E2), ...,− ln(E1 + ...+ Es)) (22)

and E1, ..., Es are i.i.d. standard exponential random variables.
The parameters âi, b̂j and σ̂ are robust estimators of ai, bj , and σ respectively and they are computed
using the R package robustarima. Set

r(i) = |̂ε|(i)(â1, ..., âp, b̂1, ..., b̂q))/σ̂.

If n is large, then for fixed s the distribution of the random vector

( |r|(n) − bn
an

,
|r|(n−1) − bn

an
, ...,
|r|(n−s+1) − bn

an

)
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is approximated by the distribution of the random vector L0, where

L0 = (− lnE1,− ln(E1 + E2), ...,− ln(E1 + ...+ Es))

and E1, ..., Es are i.i.d. standard exponential random variables.

4.2.1 Outlier identification

Begin by computing robust estimators of the parameters ai, bi and σ and the residuals r(i). Set

U
(n)
(n−i+1) = 1− Fχ2

2i
(2e−(|r|(n−i+1)−bn)/an), (23)

where Fχ2
2i

(x) is the c.d.f. of the chi-square distribution with 2i degrees of freedom. Set

U (n)(s) = max
1≤i≤s

U
(n)
(n−i+1). (24)

Under ARMA model and large n the distribution U (n)(s) is approximated by the distribution of
the random variable

V (s) = max
1≤i≤s

Vi,

where Vi = 1−Fχ2
2i

(2(E1 + ...+Ei)), i = 1, ..., s, and E1, ..., Es are i.i.d. standard exponential random
variables. The random variables V1, ..., Vs are dependent identically distributed and the distribution of
each Vi is uniform: Vi ∼ U(0, 1).

Denote by vα(s) the α critical value of the random variable V (s). They are easily found many times
simulating i.i.d. s standard exponential random variables and computing the values of V (s).

Our simulations showed that the below-proposed outlier identification methods based on exact and
approximate critical values of the statistic U (n)(s) give practically the same results, so for samples of
size n ≥ 20 we recommend to approximate the α-critical level of the statistic U (n)(s) by the critical
values vα(s) which depend only on s. We shall see that for the outlier identification only the critical
values vα(5) are needed. We found that the critical values vα(5) are: v0.1(5) = 0.9677, v0.05(5) = 0.9853,
v0.01(5) = 0.9975.

Outlier search procedure begins with an investigation of observations corresponding to the largest
values of |r|(i). We recommend beginning with five largest. So take s = 5 and compute the value of the
statistic U (n)(5) = max1≤i≤5 U

(n)
(n−i+1).

If U (n)(5) ≤ vα(5), then we conclude that outliers do not existed and no further investigation is done.
If U (n)(5) > vα(5), then it is concluded that outliers exist and the following classification scheme is
done.

Note that (see the classification scheme below) if U (n)(5) > vα(5), then minimum one observation
is declared as an outlier. Thus the probability to declare absence of outliers does not depend on the
following classification scheme.
Step 1. Set d1 = max{i ∈ {1, ..., 5} : U

(n)
(n−i+1) > vα(5)}. If d1 < 5, then classification is finished at this

step: d1 observations are declared as outliers, other observations are declared as non-outliers. If d1 = 5,
then it is possible that the number of outliers is higher than 5. Then the observation corresponding to
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i = 1 (i.e corresponding to |r|(n))) is declared as an outlier and we proceed to the step 2.
Step 2. The above written procedure is repeated taking max1≤i≤5 U

(n−1)
(n−i) = U (n−1)(5) instead of

U (n)(5); here
U

(n−1)
(n−i) = 1− Fχ2

2i
(2e−(|r|(n−i)−bn−1)/an−1), i = 1, ..., 5,

Set d2 = max{i ∈ {1, ..., 5} : U
(n−1)
(n−i) > vα(5)}. If d2 < 5, the classification is finished and d2 + 1

observations are declared as outliers.
If d2 = 5, then it is possible that the number of outliers is higher than 6. In such a case, the

observation corresponding to the largest residual |r|(n−1) is declared as an outlier, in total 2 observations
(i.e. corresponding to |r|(n), |r|(n−1)) are declared as outliers at this step, but classification is not finished
and we repeat the procedure.

Classification finishes at the lth step if dl < 5. So we declare (l − 1) outliers in the previous steps
and dl outliers in the last one. The total number of observations declared as outliers is l−1+dl. These
observations correspond to |r|(n), ..., |r|(n−dl−l+2).

Note that for fixed α (α = 0.05, for example) only one critical value vα(5) (v0.05(5) = 0.9853, for
example) is needed.

5 Experiment and Results

5.1 Simulation Scheme

We compare the performance of the Chang and BP outlier identification methods by running several
experiments using three different R libraries; tsa [5], tsoutliers [11], and robustarima [12] for Chang
method, and original R script for generalized BP method. These libraries tsoutliers and robustarima
modify the Chang procedure using different approach of robust estimation and including search of other
than AO and IO types of outliers such as LS and TC. However, we are interested only on AO and IO.
The performance of the methods is concluded according to masking values since the swamping values
are not high in majority of the cases. The simulation scheme is described as follows.

Assume that n = 300,m = 5000, and σ = 1 is the sample size, number of the simulations, and
the value of standard deviation. To allow comparison between the two techniques. Three factors are
considered: (a) type of outlier, AO, and IO; (b) time series structure, AR(1), MA(1) and ARMA(1,1);
(c) outlier size, ±4σ, ±5σ; (d) number of outliers, 8, and 4 for AO and IO cases receptively.

5.2 Additive Outlier Case

5.2.1 Comparative analysis for AR(1)

For fixed n,m, and σ. First, we generate an AR(1)according to the model, yt = 0.6yt−1 + εt. Then,
these series is perturbed with eight additive outliers at different time T = (20, 25, 40, 41, 50, 65, 70, 71),
with outlier’s size ±4σ, then ±5σ.
With ω = 4 which is not large effect (size of outlier), the tsa and tsoutliers methods do not find
adjacent (neighboring) outliers whereas robustarima and BP methods find them often as shown in
Figure 1. Thus, we included into the table 1 only observations neighbouring with outliers because after
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many simulations other observations where declared as outliers very rarely.

(a) Detected outliers by tsa (b) Detected outliers by tsoutlier

(c) Detected outliers by robarim (d) Detected outliers by BP

Figure 1: Detected additive outliers in AR(1) with ω = 4

In Table (1), we can see that outliers at T = 20, 25, 40, 50, 65 were mostly detected by most of
the methods but the highest detecting rate was for robarima. At T = 40 and T = 70 the BP method
considerably outperforms robustarima (0.76 against 0.58 in both cases) . At the next neighboring points
(41 and 71 ) the power is a little smaller for both BP and robustarima methods (0.57 and 0.56) whereas
TSA and tsoutliers methods fail to find outliers.
In other hand, when ω increases to five. Table 2 shows that most of the methods detected the introduced
outliers more often than the previous case with low outlier’s impact (ω = 4). From the results we can
see that the correct detecting rate increase with higher ω = 5. It is varying between 90% to 97% for
all methods. The interesting results were at T = 41, and 71 and even though they are neighbouring
points, the BP and robarim has succefully detect them as true outliers with rate of 87% this time much
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19 20 21 24 25 26
tsa 0.0062 0.6246 0.0152 0.0076 0.6128 0.0168
tsout 0.0284 0.8050 0.0488 0.0316 0.8026 0.0652
robarim 0.0058 0.8408 0.0080 0.0060 0.8358 0.0068
BP 0.0014 0.7630 0.0448 0.0020 0.7614 0.0474

39 40 41 49 50 51
tsa 0.0046 0.4110 0.0550 0.0058 0.6078 0.0190
tsout 0.0264 0.5994 0.1562 0.0294 0.7974 0.0704
robarim 0.0054 0.5834 0.5540 0.0050 0.8344 0.0072
BP 0.0016 0.7586 0.5670 0.0030 0.7576 0.0434

64 65 66 69 70 71
tsa 0.0066 0.6276 0.0158 0.0048 0.4038 0.0442
tsout 0.0342 0.8150 0.0492 0.0298 0.5990 0.1474
robarim 0.0062 0.8382 0.0092 0.0076 0.5834 0.5554
BP 0.0026 0.7602 0.0492 0.0020 0.7586 0.5612

Table 1: Declared AO in AR(1) (ω = 4)

better than last experiment.

19 20 21 24 25 26
tsa 0.0098 0.8982 0.0240 0.0106 0.8950 0.0280
tsout 0.0610 0.9710 0.0884 0.0588 0.9708 0.1194
robarim 0.0036 0.9814 0.0024 0.0054 0.9808 0.0022
BP 0.0010 0.9534 0.0236 0.0024 0.9478 0.0276

39 40 41 49 50 51
tsa 0.0100 0.7226 0.1458 0.0100 0.8944 0.0298
tsout 0.0618 0.8788 0.3688 0.0570 0.9728 0.1264
robarim 0.0050 0.9164 0.8750 0.0052 0.9784 0.0030
BP 0.0024 0.9502 0.8678 0.0028 0.9508 0.0260

64 65 66 69 70 71
tsa 0.0124 0.9004 0.0254 0.0082 0.7210 0.1372
tsout 0.0662 0.9718 0.0834 0.0618 0.8742 0.3542
robarim 0.0046 0.9774 0.0036 0.0054 0.9130 0.8752
BP 0.0020 0.9468 0.0278 0.0020 0.9486 0.8648

Table 2: Declared AO in AR(1) (ω = 5)

Let us compare how BP-method, and Chang iterative procedure work with r = 8 of outliers and
investigate swamping and masking effect to test their performance. For AR(1), masking values are
presented in 3 Table 3 shows that the masking values of the BP and Chang methods is high for a

Method Masking Swamping
tsa 57.66% 0.04%
tsoutlier 40.97% 0.27%
robarim 29.68% 0.1%
BP 28.9% 0.32%

Table 3: The masking and swamping values for AR model (ω = 4)
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small outlier’s effect ω = 4. Chang-method has an enormous masking effect of 57.66% of outliers are
not found; 29.68%, and 28.9% of outliers are not found for robarima and BP respectively. In this
case, BP method has a heavier swamping effect 0.32%, but smaller masking effect. However, robarim
has pretty small masking and swamping values which promote it to be the best method since it can
identify different type of outliers such as (LS, and VC) whereas BP not. The masking values for all
methods decrease when ω increase to five as we can see in table 4. Most of the methods have a
dramatically decrease in the masking values. In this case, only 6.28%, and 7.12% of true outliers are
not identified by robarima and BP respectively. Moreover, the masking values for tsa, and tsoutlier
decreased to 33.56%, and 20.47% respectively. However, the swamping values has slightly increment.
For BP method swamping effect is maximum among the others.

Conclusion: robustarima method (it appeared only in 2021) is the best method, second is the BP
method, other are considerably worse. But in situations with adjacent outliers the BP method slightly
outperforms the robustarima method. The drawback of the BP method is that it does not define the
type of outliers.

Method Masking Swamping
tsa 33.56% 0.07%
tsoutlier 20.47% 0.45%
robarim 6.28% 0.1%
BP 7.12% 0.29%

Table 4: The masking and swamping values for AR model (ω = 5)

5.2.2 Comparative analysis for MA(1)

In this section was investigated the performance of the outlier identification methods in MA(1)
using the following model

Yt = εt − 0.4εt−1.

In this section we noticed almost same remarks as the previous ones (See figure:2). Most of the methods
successfully detected the outliers in different time points. However, they fail to detect the neighbouring
outliers at T = 41, and 71, where tsa and tsout have identified them correctly only 10% time over all
simulations (See table: 5). Also, at same points BP method and robustarima results are almost same
(0.47 in both cases). However, T = 40, and T = 70, BP method considerably outperform robustarima
(0.69 against 0.47 in both cases). Moreover, at T = 20, 25, and 50 robarim has the highest detecting
rates more than 80% but it decreases at some other outliers. One can notice that BP shows good
results, it discovered most of the outliers with steady detection rate around 70% and does not change
much.
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(a) Detected outliers by tsa (b) Detected outliers by tsoutlier

(c) Detected outliers by robarim (d) Detected outliers by BP

Figure 2: Detected additive outliers in MA(1) with ω = 4
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19 20 21 24 25 26
tsa 0.0114 0.6302 0.0144 0.0068 0.6006 0.0198
tsout 0.0624 0.8062 0.0412 0.0342 0.7854 0.0778
robarim 0.0042 0.9428 0.0226 0.0066 0.9424 0.0196
BP 0.0012 0.6976 0.0254 0.0016 0.6866 0.0250

39 40 41 49 50 51
tsa 0.0008 0.3962 0.0242 0.0190 0.6704 0.0256
tsout 0.0098 0.4302 0.0794 0.0704 0.8394 0.0790
robarim 0.0038 0.4770 0.4736 0.0036 0.7252 0.0060
BP 0.0020 0.6966 0.4718 0.0018 0.6900 0.0236

64 65 66 69 70 71
tsa 0.0158 0.6372 0.0188 0.0002 0.3406 0.0316
tsout 0.0602 0.8244 0.0508 0.0158 0.3976 0.0952
robarim 0.0048 0.7270 0.0044 0.0052 0.4674 0.4758
BP 0.0022 0.6906 0.0236 0.0018 0.6944 0.4772

Table 5: Detected AO for MA(1) model (ω = 4)
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19 20 21 24 25 26
tsa 0.0202 0.8972 0.0236 0.0116 0.8862 0.0320
tsout 0.0234 0.9340 0.0222 0.0216 0.9272 0.0388
robarim 0.0040 0.9518 0.0026 0.0044 0.9538 0.0018
BP 0.0010 0.9216 0.0164 0.0018 0.9232 0.0158

39 40 41 49 50 51
tsa 0.0010 0.7230 0.0732 0.0276 0.9192 0.0358
tsoutl 0.0392 0.8688 0.3886 0.0192 0.9272 0.0318
robarim 0.0040 0.8602 0.8428 0.0040 0.9522 0.0018
BP 0.0016 0.9234 0.8252 0.0016 0.9216 0.0158

64 65 66 69 70 71
tsa 0.0230 0.9030 0.0280 0.0002 0.6794 0.0854
tsoutl 0.0278 0.9296 0.0204 0.0416 0.8762 0.3976
robarim 0.0054 0.9484 0.0032 0.0046 0.8578 0.8414
BP 0.0024 0.9234 0.0142 0.0022 0.9264 0.8284

Table 6: Detected AO for MA(1) model (ω = 5)

Table 6 shows that the method’s performance improved when we increase the AO’s size to 5.
With this high outlier’s impact, majority of outliers were detected correctly. BP and robarim has the
highest detecting rate which it reaches 90% at T = 20, 25, 40, 65, and 70. Also, at the neighbouring
points T = 41, and T = 71 robarim and BP methods performance is almost same. The latter method
succeeded in detecting these critical outliers with rate of 82% against robarima with rate approximately
to 85%. However, tsa fails to detect the outliers at the neighbouring points with rate of 0.07, and 0.08

at T = 41, and T = 71 respectively.
Let us compare BP, with Chang method when 8 outliers are introduced and check how both of

these procedures work for different outlier’s sizes.
1) For ω = 4. Table: 7 shows that comparing masking values of BP and Chang methods the latter

method’s value are larger than BP method’s. Masking values for tsa, and tsoutlier are 0.58, and 0.46

respectively. These values are big comparing to BP method which has the lowest value with 0.36 and
it performs better than robarim which has 0.4. From the results, one can notice that swamping values
for tsa and robarim are near to 0. However, the highest value is for tsoutl and this might be due to the
confusing between the AO, and IO. Also, we can notice that swamping values for BP method is 0.22%

and is bigger than robarim.

Method Masking Swamping
tsa 58.36% 0.05%
tsoutlier 46.77% 2.66%
robarim 40.01% 0.06%
BP 36.19% 0.22%

Table 7: The masking and swamping values for MA model (ω = 4)

2) For ω = 5. In table:8 data for all methods shows that all masking values have significant decrease
when ω increases. This prove, that for large outlier’s size all methods detect more outliers than previous
case. Masking value for tsa is higher with 0.35. It is clear that BP-method and robarim have the lowest
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masking values with 10.08%, and 9.8% receptively. This means that the identification methods perform
much better when the size of the outlier is large. In other hand, swamping values on tsoutlier decreases
to around zero but for BP-method remains the same and did not change.

Conclusion: Therefore, the results are very similar as AR model (see Section: 5.2.1). In most
considered scenarios, the BP method is better than the iterative procedure of Chang since swamping
values are not important as masking values.

Method Masking Swamping
tsa 35.41% 0.07%
tsoutlier 21.88% 0.17%
robarim 9.8% 0.07%
BP 10.08% 0.22%

Table 8: The masking and swamping values for MA model (ω = 5)

5.2.3 Comparative Analysis For ARMA(1,1)

In this section, we analyze the performance of BP and Chang methods for ARMA. The following
model is used

Yt = 0.5Yt−1 + 0.6εt−1 + εt.

At T = 20,25, 40, 41, 50, 65, 70, and 71 we introduce eight additive outliers with size four. Table 9
shows that majority of the added outliers were correctly declared as outliers by all methods. In this
situation, tsa and tsout outperform the robarim and BP methods at T = 20, 25, 50, and 65 with
an approximate correct detection rate of 85%, and 96% for tsa and tsout respectively. However, BP
method has the highest identification rate with 61% at T = 40, and T = 70. One can notice that this
rate is steady for other points except at the neighbouring points T = 41, T = 71 where its power is
slightly better than robarim. Moreover, at these adjacent positions, tsa and tsoutl have detection’s rate
near to zero. Furthermore, the correct time detection rate dramatically increases when ω increases to
five as it shown in table 10. At T = 20, 25, 50, and 65, tsa, tsoutl and robarim almost detect all the
outliers with high rate around 0.99 while the results of BP method improved from 61% to 87% while it
performs better than robarim at T = 40, and T = 70. However, the neighbouring outliers at T = 41,
and 71 tsa and tsoutl fail to detect them whereas both of robarim and BP declared them as outliers
with correct detection rate approximately around 64% for both cases.
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19 20 21 24 25 26
tsa 0.1098 0.8510 0.1682 0.0698 0.8592 0.1786
tsout 0.3234 0.9568 0.3546 0.2444 0.9610 0.4420
robarim 0.0030 0.7282 0.0266 0.0050 0.7282 0.0206
BP 0.0020 0.6106 0.1388 0.0026 0.6140 0.1374

39 40 41 49 50 51
tsa 0.0034 0.3268 0.0022 0.1234 0.8820 0.1982
tsout 0.0220 0.2754 0.0154 0.3426 0.9688 0.4580
robarim 0.0048 0.3084 0.2820 0.0050 0.7250 0.0208
BP 0.0016 0.6186 0.2920 0.0030 0.6148 0.1370

64 65 66 69 70 71
tsa 0.1230 0.8644 0.1858 0.0010 0.2942 0.0028
tsout 0.3390 0.9630 0.3852 0.0114 0.2576 0.0202
robarim 0.0040 0.7198 0.0222 0.0058 0.3018 0.2768
BP 0.0020 0.6104 0.1400 0.0024 0.6144 0.2894

Table 9: Declared AO in ARMA(1,1) (ω = 4)

19 20 21 24 25 26
tsa 0.1586 0.9804 0.2394 0.1084 0.9838 0.2546
tsout 0.4642 0.9988 0.4936 0.3904 0.9974 0.5778
robarim 0.0042 0.9428 0.0226 0.0066 0.9424 0.0196
BP 0.0024 0.8722 0.1104 0.0032 0.8788 0.1082

39 40 41 49 50 51
tsa 0.0054 0.6246 0.0072 0.1652 0.9838 0.2626
tsout 0.0526 0.6128 0.0650 0.4738 0.9974 0.5920
robarim 0.0058 0.7144 0.6416 0.0060 0.9372 0.0194
BP 0.0012 0.8812 0.6550 0.0030 0.8784 0.1116

64 65 66 69 70 71
tsa 0.1690 0.9810 0.2588 0.0052 0.5894 0.0092
tsout 0.4760 0.9984 0.5062 0.0330 0.5864 0.0668
robarim 0.0042 0.9398 0.0226 0.0070 0.7000 0.6362
BP 0.0020 0.8790 0.1084 0.0022 0.8738 0.6412

Table 10: Declared AO in ARMA(1,1) (ω = 5)

Let us compare the performance of the methods according to the masking and swamping values.
Table 11 data shows that masking values for all method are close. The values are approximately in
range between 44.77% to 49.12%. The lowest value is for tsoutl and then BP which perfrom better than
robarim. The latter method has the highest masking value, where 49.12% are not detected. Moreover,
swamping value are heavy for tsa and BP methods but for robarim is small enough.

In other hand , table 4 data presents that masking values decrease if the outlier size ω increases to
five. In this case, masking values of BP-method and robarima are 18%, and 19.32% respectively. These
values are much smaller than tsa and tsoutl methods, where 35.5%, and 33.46% of true outliers are not
discovered respectively using these methods. The obtained results confirm that outliers with large size
are more likely to be detected by the majority of methods. Furthermore, swamping values are heavy
for all methods. BP and robarim methods have less swamping values than tsa and tsoutl where 0.49%,
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Method Masking Swamping
tsa 48.96% 0.4%
tsoutlier 44.77% 1.08%
robarim 49.12% 0.09%
BP 46.69% 0.49%

Table 11: The masking and swamping values for ARMA model (ω = 4)

and 0.12% are not detected respectively. It is clear that tsoutl has the highest swamping value with
1.5%.

Method Masking Swamping
tsa 35.5% 0.57%
tsoutlier 33.46% 1.5%
robarim 19.32% 0.12%
BP 18% 0.49%

Table 12: The masking and swamping values for ARMA model (ω = 5)

Conclusion: Considering all data it can be stated that robarim and BP methods work better than
tsa and tsoutl with both outliers size ω = 4, and ω = 5.

5.3 Innovative Outlier Case

5.3.1 Comparative Analysis For AR(1)

In this section, we investigate the performance of previous methods in detecting the innovative
outliers when they are introduced to the series at T = 20, 90, 150, and 200 with outlier size of four.
Table 13 data shows that BP method is better in detecting the outliers in all points with correct
identification rate of 76% then tsout comes next with an approximate rate of 66%. Moreover, robarim
fails to detect the added IO with lowest rate around 45%. Furthermore, from results we see that robarim
and BP methods detect some outliers at the neighbouring since the introduced outliers effect on the
sequence of next observations.

20 21 90 91
tsa 0.5006 0.0000 0.5106 0.0002
tsout 0.6614 0.0006 0.6606 0.0008
robarim 0.4628 0.0070 0.4550 0.0062
BP 0.7630 0.0032 0.7690 0.0032

150 151 200 201
tsa 0.5058 0.0000 0.5130 0.0000
tsout 0.6596 0.0004 0.6648 0.0012
robarim 0.4530 0.0060 0.4624 0.0056
BP 0.7664 0.0032 0.7720 0.0046

Table 13: Declared IO for AR model (ω = 4)

In the other hand, majority of the methods are more likely to detected the introduced outliers
when we increase the outlier size to five. Table 14 data presents that detecting rate of tsa, tsoul and
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robarim improve where almost all the outliers were discovered whereas for BP method was steady with
an approximate 88%.

20 21 90 91
tsa 0.9780 0.2010 0.9796 0.2056
tsout 0.9594 0.1464 0.9628 0.1456
robarim 0.9516 0.0086 0.9550 0.0104
BP 0.8802 0.0816 0.8808 0.0756

150 151 200 201
tsa 0.9798 0.1976 0.9774 0.2122
tsout 0.9610 0.1446 0.9606 0.1546
robarim 0.9512 0.0094 0.9492 0.0090
BP 0.8872 0.0778 0.8784 0.0796

Table 14: Declared IO for AR model (ω = 5)

Let us investigate the power of methods and compare their masking, and swamping values. For
small outlier size ω = 4. Table 15 data shows that the masking value for BP method is 23.24% and is
much smaller than tsoutl which comes second with 33.84% whereas, 54.17% of innovative outliers were
not declared as true outliers with robarim and this may be due to the small size of outlier. Moreover,
the swamping values is high for BP and tsout methods with rate of 0.22%, and 0.19% respectively and
for tsa and robarim is around zero.

Method Masking Swamping
tsa 49.25% 0.04%
tsoutlier 33.84% 0.19%
robarim 54.17% 0.05%
BP 23.24% 0.22%

Table 15: The masking and swamping values for AR model (ω = 4)

Method Masking Swamping
tsa 17.41% 0.09%
tsoutlier 8.72% 0.32%
robarim 23.44% 0.07%
BP 4.76% 0.23%

Table 16: The masking and swamping values for AR model (ω = 5)

In other hand, for large outlier size Table 16 data shows that comparing masking values of the
methods, BP method has lowest value where only 4.73% of true innovative outliers are not detected
whereas tsout comes next with value 0.0872. In this situation, robarim shows worse performance with
with highest masking value 0.2344. However, tsout and BP has the highest swamping values rate 0.23,
and 0.09 receptively.
Conclusion: The data shows that the outlier size does effect on the method’s performance. Moreover,
the results lead to that BP method outperform the robarim method in both cases. The latter method
has high masking values among the other and this might be due to its power to detect other outlier’s
types. Thus, it suffers from the confusion problem between IO and LS.
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5.3.2 Comparative Analysis For MA(1)

In this section, the performance of the outlier detection methods was tested for MA(1) model with
outlier size ω = 4. Table 17 data shows that majority of the outliers were declared by all method.
Outliers at T = 20, 90, 150, and 200 are more often declared correctly as outliers by tsoutl and robarim
with high rate around 82% whereas BP method, and tsa have approximately same rate 70% most of
the time. Furthemore, outliers at the neighbouring points T = 21, 91, 151, and 201 are more likely to
be detected as outliers than previous section 5.2.2 due to the effect of innovative outliers on the next
observations. However, table 18 data shows that the detecting power of all methods increase when
innovational outlier size increase to five (ω = 5). It can be seen that at T = 20, 90, 150, and 200

tsout and robarim have the highest correct identification rate reach 96% and BP method performance
improved to reach 91% whereas tsa fails to detect some outliers where it has rate of 87%. Moreover,
at the neighbouring points T = 21, 91, 151, and 201 tsout and BP perform better than robarim which
detect the innovative outliers only 24% from all the simulations. They successfully detect these adjacent
outliers with an approximate high rate of 67%, and 50% for tsout and BP respectively.

20 21 90 91
tsa 0.6858 0.2762 0.6930 0.2822
tsout 0.8342 0.5242 0.8388 0.5314
robarim 0.8216 0.1658 0.8206 0.1710
BP 0.6928 0.3470 0.7006 0.3462

150 151 200 201
tsa 0.6956 0.2790 0.6960 0.2820
tsout 0.8350 0.5264 0.8446 0.5242
robarim 0.8228 0.1704 0.8188 0.1696
BP 0.6942 0.3476 0.7066 0.3462

Table 17: Declared IO for MA model (ω = 4)

20 21 90 91
TSA 0.8712 0.3720 0.8772 0.3780
tsout 0.9538 0.6772 0.9568 0.6820
robarim 0.9610 0.2422 0.9590 0.2448
BP 0.9196 0.4976 0.9236 0.5014

150 151 200 201
TSA 0.8728 0.3730 0.8812 0.3778
tsout 0.9550 0.6822 0.9528 0.6746
robarim 0.9572 0.2474 0.9590 0.2454
BP 0.9170 0.4996 0.9236 0.5030

Table 18: Declared IO for MA model (ω = 5)

Table 19 data shows that masking values are high for all methods except the robarim that fails to
detect only 8.89% of outliers which is the lowest among the other. Also, tsa and BP methods fail to
detect some true outliers with masking value around 0.3 for both methods. However, swamping values
are heavy for all methods and the heaviest one is for tsoutl with 0.88% then 0.67% for BP.

27



Method Masking Swamping
tsa 30.74% 0.38%
tsoutlier 16.18% 0.88%
robarim 8.89% 0.27%
BP 30.14% 0.67%

Table 19: The masking and swamping values for MA model (ω = 4)

In the other hand, by increasing the outlier size the performance of BP and tsoutl methods signifi-
cantly improved (see Table 20). The masking values of the latter method and BP are 4.54%, and 7.9%

respectively whereas robarim remains the best detecting method with small masking value 4.09%.
Conclusion: robarim method identifies innovational outliers in MA model more successfully than

BP method. This, maybe due to its power to solve the confusion between the IO and LS.

Method Masking Swamping
tsa 12.44% 0.51%
tsoutlier 4.54% 1.15%
robarim 4.09% 0.37%
BP 7.9% 0.89%

Table 20: The masking and swamping values for MA model (ω = 5)

5.3.3 Comparative Analysis For ARMA(1,1)

In this section, we analyze the performance of BP and Chang methods for ARMA in the case of
innovative outliers. For small outlier size (ω = 4), data in Table 21 shows that most of the methods
detect the IO at T = 20, 90, 150, 200 but still some outliers are undeclared. The tsa has the highest
detecting rate with 85% then tsout with 75% whereas the correct identification rate for robarim and
BP methods is 73%, and 62% respectively. It is clear that majority of the methods fail to detect the
adjacent outliers at T = 21, 91, 151, and 201. The BP method outperform robarim (approximately 8%

against 1%) and tsa has the highest detecting rate. In the other hand, Table 22 data shows that the
performance of the methods improve. With large outlier size (ω = 5) most of the outliers are detected
by all methods but more with tsa. However, the methods fail to detect the adjacents outliers and their
performance do not improve.
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20 21 90 91
TSA 0.8534 0.1494 0.8534 0.1484
tsout 0.7514 0.0736 0.7538 0.0754
robarim 0.7338 0.0106 0.7344 0.0116
BP 0.6276 0.0838 0.6292 0.0794

150 151 200 201
TSA 0.8502 0.1420 0.8544 0.1536
tsout 0.7530 0.0656 0.7464 0.0784
robarim 0.7362 0.0098 0.7332 0.0124
BP 0.6322 0.0868 0.6204 0.0854

Table 21: Declared IO for ARMA model (ω = 4)

20 21 90 91
TSA 0.9780 0.2010 0.9796 0.2056
tsout 0.9594 0.1464 0.9628 0.1456
robarim 0.9516 0.0086 0.9550 0.0104
BP 0.8802 0.0816 0.8808 0.0756

150 151 200 201
TSA 0.9798 0.1976 0.9774 0.2122
tsout 0.9610 0.1446 0.9606 0.1546
robarim 0.9512 0.0094 0.9492 0.0090
BP 0.8872 0.0778 0.8784 0.0796

Table 22: Declared IO for ARMA model (ω = 5)

Let us compare the performance of the methods based on the masking and swamping values. Table
23 data shows that tsa has the lowest masking value 0.14 where tsout and robarim have close results
(0.24 and 0.26 for each respectively) whereas BP method does not perform good in detecting the
innovative outliers and its masking value is the highest with rate of 37.26%. Moreover, swamping
values are high for all methods except for robarim which has only 0.04%.

Method Masking Swamping
tsa 14.14% 0.38%
tsoutlier 24.88% 0.19%
robarim 26.56% 0.04%
BP 37.26% 0.33%

Table 23: The masking and swamping values for ARMA model (ω = 4)

However, with large outlier size (ω = 5). One can see that masking values dramatically decrease.
The tsa method has again the lowest masking value but highest swamping value. Despite the masking
value of BP method decreases from 0.37 to 0.11, it remains the highest comparing to the others.

Conclusion: Our analysis shows that for ARMA model the tsa method which based on Chang
procedure perform better in detecting the innovational outliers even though the swamping values are
high. However, BP method does not success in most cases.
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Method Masking Swamping
tsa 2.13% 0.54%
tsoutlier 3.9% 0.37%
robarim 4.82% 0.05%
BP 11.83% 0.36%

Table 24: The masking and swamping values for ARMA model (ω = 5)

6 Conclusion

We compared the performance of two outliers detection methods. As a first remark, we were
interested only in the case of AO and IO. Also, swamping values were not high for all methods, so
more important were the masking values. Generally, the simulation results on the AR(1), MA(1) and
ARMA(1,1) for both cases (AO and IO) showed that the robarim which is based on Chang iterative
procedure but has some modifications to identify other types of outliers (LS and TC) has the lowest
masking value while the BP method shows its power in detecting adjacent outliers and it gives slightly
better results in some situations. However, the drawback of the latter method is the inability to define
the type of outliers and distinguish between AO and IO.

For fixed numbers of additive and innovative outliers, our results showed that the masking value
was affected by the size of the outlier. In the majority of cases, the masking values decreased for all
methods when we use large outlier sizes whereas the swamping values increased.

As a result, our analysis showed that we should recommend using the package robustarima for
outlier search in ARMA (and ARIMA) models.
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