
VILNIUS UNIVERSITY

FACULTY OF MATHEMATICS AND INFORMATICS

MODELLING AND DATA ANALYSIS

MASTER'S STUDY PROGRAMME

APPLICATIONS OF TIME-SERIES,

AND MACHINE LEARNING MODELS IN

CRYPTOCURRENCY MARKETS

Master's thesis

Author: �ükrü Yavuz

VU email address: sukru.yavuz@mif.stud.vu.lt

Supervisor: prof. dr. Igoris Belovas

Vilnius

2022

Abstract

In recent years, with the increase in the prevalence of cryptocurrencies, the interest in the prob-

lem of predicting cryptocurrencies has also started to increase. This study aims to predict Bitcoin's

return using di�erent machine learning and time series models. Di�erent training data intervals, cross-

validation, feature engineering, and various statistical tests are used to achieve high performance in

each model. The training data is taken from Binance API. The results show that machine learning

algorithms outperform time-series models. Machine learning algorithms blending helps to obtain even

better results.

Keywords: time series, bitcoin, ARIMA, VAR, VARMA, SVM, LightGBM, XGBoost, Random

Forest, Decision Tree, Adaboost, blending, time-series forecasting, machine learning, cryptocurrency,

permutation feature importance, Extra Trees, cross-validation, feature selection

Santrauka

Pastaraisiais metais, did
ejant kriptovaliutu� paplitimui,
em
e did
eti ir susidom
ejimas kriptovaliutu�

prognozavimo problema. �io tyrimo tikslas yra numatyti Bitcoin gr¡º¡ naudojant skirtingus ma²ininio

mokymosi ir laiko eilu£iu� modelius. Norint pasiekti auk²t¡ kiekvieno modelio na²um¡, naudojami

skirtingi mokymo intervalai, kryºminis patvirtinimas, funkciju� inºinerija ir i�vair	us statistiniai testai.

Empiriniai duomenys paimti i² Binance API. Rezultatai parod
e, kad ma²ininio mokymosi algoritmai

pranoksta laiko eilu£iu� modelius. Be to, ma²ininio mokymosi algoritmu� derinimas leidºia pasiekti dar

geresniu� rezultatu�.

Raktiniai ºodºiai: laiko eilut
e, bitkoinas, ARIMA, VAR, VARMA, SVM, LightGBM, XGBoost,

atsitiktinis mi²kas, sprendimu� medis, Adaboost, mai²ymas, laiko eilu£iu� prognozavimas, ma²ininis

mokymasis, kriptovaliuta, permutacijos funkcijos svarba, papildomi medºiai, kryºminis patvirtinimas,

funkciju� pasirinkimas

1

Contents

1 Literature Review 9

2 Scienti�c Research 14

2.1 Machine learning Models . 14

2.1.1 Decision Trees . 15

2.1.2 Random Forest . 16

2.1.3 LightGBM . 17

2.1.4 XGBoost . 18

2.1.5 Extra Trees . 19

2.1.6 AdaBoost Regressor . 19

2.1.7 Catboost Regressor . 20

2.1.8 Huber Regressor . 20

2.1.9 Multiple Linear Regression . 21

2.1.10 Ridge Regression . 21

2.1.11 Lasso Regression . 22

2.1.12 Support Vector Regression . 22

2.1.13 K-Nearest Neighbor Regressor . 23

2.2 Time-Series . 24

2.2.1 Time-Series Components . 24

2.2.2 Stationary Time Series . 25

2.2.3 Autocovariance, Autocorrelation and Partial Correlation Functions 25

2.2.4 Di�erencing . 26

2.2.5 Unit Root Tests . 26

2.3 Time-Series Forecasting . 26

2.3.1 Naive Forecaster . 27

2.3.2 Seasonal Naive Forecaster . 27

2.3.3 Exponential Smoothing . 27

2.3.4 Autoregressive Models (AR) . 27

2.3.5 Moving Average (MA) . 28

2.3.6 Autoregressive Moving Average (ARMA) . 28

2.3.7 Autoregressive Integrated Moving Average (ARIMA) 29

2.3.8 Vector Autoregression (VAR) . 29

2.3.9 Vector Autoregressive Moving Average (VARMA) 29

2.3.10 Vector Autoregressive Moving Average with Exogenous Regressors (VARMAX) . 30

2.3.11 Prophet . 30

2.4 Model Selection and Evaluation . 31

2.4.1 RMSE . 31

2.4.2 MAPE . 31

2.4.3 Time Series Cross Validation . 32

2.5 Feature Selection . 32

2

2.5.1 Permutation Feature Importance . 32

3 Experiments and Results 33

3.1 Dataset . 33

3.2 Target (Independent) Variable . 33

3.3 Feature Engineering . 33

3.4 Optimal Training Set Experiments . 36

3.4.1 Experiments for December, 2020 - December, 2021 36

3.4.2 Experiments for January 1, 2021 - December 1, 2021 37

3.4.3 Experiments for February 1, 2021 - December 1, 2021 38

3.4.4 Experiments for March 1, 2021 - December, 2021 38

3.4.5 Experiments for April 1, 2021 - December 1, 2021 39

3.4.6 Experiments for May 1, 2021 - December 1, 2021 40

3.4.7 Experiments for June 1, 2021 - December 1, 2021 40

3.4.8 Experiments for July 1, 2021 - December 1, 2021 41

3.4.9 Experiments for August 1, 2021 - December 1, 2021 42

3.4.10 Experiments for September 1, 2021 - December 1, 2021 42

3.4.11 Results of Experiments for Training Set . 43

3.5 Experiments for Machine Learning Models . 43

3.5.1 Experiment of Lasso Regression . 44

3.5.2 Experiment of Extra Trees . 45

3.5.3 Experiment of LightGBM . 47

3.5.4 Experiment of Random Forest . 48

3.5.5 Experiment of Extreme Gradient Boosting . 49

3.5.6 Experiment of Ridge Regression . 50

3.5.7 Experiment of AdaBoost Regression . 51

3.5.8 Experiment of Huber Regression . 52

3.5.9 Experiment of Linear Regression . 53

3.5.10 Experiment of K - Nearest Neighbors . 54

3.5.11 Experiment of Decision Trees . 55

3.6 Evaluation of All Algorithms . 56

3.7 Blending of Best Models . 57

3.8 Experiments for Univariate Time Series Models . 58

3.8.1 Autocorrelation . 58

3.8.2 Naive Forecaster . 59

3.8.3 Seasonal Naive Forecaster . 60

3.8.4 ETS . 61

3.8.5 ARIMA . 62

3.8.6 Exponential Smoothing . 63

3.9 Experiments for Multivariate Time Series Models . 64

3.9.1 Vector Autoregression . 66

3

3.9.2 Vector Autoregression Moving Average . 67

3.10 Blending of Best Time Series Models . 68

3.11 Blending of All Models . 69

4 Conclusions 70

List of Figures

1 The �owchart of work�ow . 8

2 Time Series Cross Validation . 32

3 Lasso Regression's Performance on both Training and Test Sets 45

4 Extra Trees Regression's Performance on both Training and Test Sets 46

5 LightGBM Regression's Performance on both Training and Test Sets 47

6 Random Forest Regression's Performance on both Training and Test Sets 48

7 Extreme Gradient Boosting's Performance on both Training and Test Sets 49

8 Ridge Regression's Performance on both Training and Test Sets 50

9 AdaBoost Regression's Performance on both Training and Test Sets 51

10 Huber Regression's Performance on both Training and Test Sets 52

11 Linear Regression's Performance on both Training and Test Sets 53

12 K-Nearest Neighbor Regression's Performance on both Training and Test Sets 54

13 Decision Tree Regression Performance on both Training and Test Sets 55

14 Blended Models' Performance on both Training and Test Sets 57

15 Autocorrelation Plot of Bitcoin Return Prices with 15-minute Time Steps 58

16 Naive Forecaster Predictions on Test Data . 60

17 Seasonal Naive Forecaster Predictions on Test Data . 61

18 ETS Predictions on Test Data . 62

19 ETS Predictions on Test Data . 63

20 ETS Predictions on Test Data . 64

21 VAR Predictions on Test Data . 67

22 VARMA Predictions on Test Data . 68

23 Blending of Time Series Models . 68

24 Blending Results of Time Series and Machine learning Models 69

List of Tables

1 Experiment of Models for the date range December 1, 2020 - December 1, 2021 (with

15-minute time steps) . 37

2 Experiment of Models for the date range January 1, 2021 - December 1, 2021 (with

15-minute time steps) . 37

3 Experiment of Models for the date range February 1, 2021 - December 1, 2021 (with

15-minute time steps) . 38

4

4 Experiment of Models for the date range March 1, 2021 - December 1, 2021 (with 15-

minute time steps) . 39

5 Experiment of Models for the date range April 1, 2021 - December 1, 2021 (with 15-

minute time steps) . 39

6 Experiment of Models for the date range May 1, 2021 - December 1, 2021 (with 15-minute

time steps) . 40

7 Experiment of Models for the date range June 1, 2021 - December 1, 2021 (with 15-

minute time steps) . 41

8 Experiment of Models for the date range July 1, 2021 - December 1, 2021 (with 15-minute

time steps) . 41

9 Experiment of Models for the date range August 1, 2021 - December 1, 2021 (with

5-minute time steps) . 42

10 Experiment of Models for the date range September 1, 2021 - December 1, 2021 (with

5-minute time steps) . 43

11 Mean and Standard Deviation of MAPE for Each Month Interval 43

12 RMSE and MAPE scores of Lasso Regression for Each Fold 45

13 RMSE and MAPE scores of Extra Trees Regress�on for Each Fold 46

14 RMSE and MAPE scores of LightGBM Regression for Each Fold 47

15 Random Forest Regression's Performance on both Training and Test Sets 48

16 Extreme Gradient Boosting's Performance on both Training and Test Sets 49

17 AdaBoost Regression's Performance on both Training and Test Sets 51

18 Huber Regression's Performance on both Training and Test Sets 52

19 Linear Regression's Performance on both Training and Test Sets 53

20 K-Nearest Neighbor Regression's Performance on both Training and Test Sets 54

21 Decision Tree Regression's Performance on both Training and Test Sets 55

22 MAPE (with Mean and Standard Deviation) Results of Each Algorithm 56

23 MAPE (with Mean and Standard Deviation) Results of Blended Models 57

24 Parameter Selection for ARIMA models with Akaike Information Criterion Test 59

25 RMSE and MAPE scores of Naive Forecaster for Each Fold 60

26 RMSE and MAPE scores of Seasonal Naive Forecaster for Each Fold 61

27 RMSE and MAPE scores of Seasonal Naive Forecaster for Each Fold 62

28 RMSE and MAPE scores of ARIMA for Each Fold . 63

29 RMSE and MAPE scores of Exponential Smoothing for Each Fold 64

30 ADF Test for Exogenous Variables . 65

31 ADF Test for Exogenous Variables after First-Order Di�erencing 66

32 AIC for each order . 66

33 Results of Blended Models . 69

5

Introduction

In today's global world, where the economic borders between countries have disappeared, and

social, cultural, and social values are constantly changing, �decision making� represents a challenging

process for states, companies, and individuals from all segments of society. Because the continually

changing conditions and the presence of ambiguous data negatively a�ect the decision-making process,

this process involves the ability of investors to invest by making the right decision, or in other words,

to make portfolio management correctly. For this reason, in the decision-making process, which is

also crucial for investors, investors need to access information such as the trading volume, transaction

amount, market value of the stock they invest in and predict the stock's future prices.

The future price prediction of stocks, which is essential for portfolio management, when done cor-

rectly, can help investors achieve higher pro�ts than their current pro�ts or reduce or eliminate their

losses. Due to this importance, many studies have been carried out on stock future price prediction,

and many studies have been carried out on stock price prediction, and many methods, such as Arti�cial

Neural Networks (ANN), Autoregression (AR), Moving Average (MA), Autoregressive Moving Aver-

age (ARMA), Autoregressive Integrated Moving Average (ARIMA), Support Vector Machines (SVM),

Linear Regression, Decision Trees, Random Forest, Markov Chains have been proposed [1�5].

Uncertainty, chaotic market movements, and the non-linear dynamic structure of �nancial time

series make precise estimations very di�cult. Moreover, the fact that stock market indices are in�uenced

by many macroeconomic factors, such as political shifts, the general stance of the economy, investors'

expectations, and investment preferences, makes index estimations both complicated and attractive.

Thus, various factors should be considered, and an accurate estimation approach must be chosen.

Under all these circumstances, approaching the stock price prediction problem with only one model

seems inappropriate. In the present study, we employ and compare Machine Learning and Time-Series

Models.

Approaching the forecasting problem with di�erent models requires di�erent ways to prepare the

empirical data. First, in the world of machine learning, stock price prediction is a regression problem.

Hence, to forecast with Machine Learning Algorithms, independent variables are necessary. Therefore,

the �rst challenge of using Machine Learning algorithms is preparing the target variable, the stock's

closing price, for each time interval. A one-step-ahead forecasting approach is used to deal with this

problem. Yesterday's independent variables (open, high, low) aligned with the target variable of today's

closing price. This strategy allows models to predict the price for tomorrow with today's input data.

Other preprocessing techniques such as di�erencing, deseasonalizing, detrending, and combination of

all three were tested and applied. To increase the performance of machine learning models, feature

engineering is used. Details about generated features are given in chapter 3.3 on page 33. Generated

features are tested with Permutation Feature Importance. Machine learning algorithms that are used in

this study are Linear Regression, Lasso Regression, Ridge Regression, Huber Regressor, Support Vector

Machines [7], K-Nearest Neighbors, Decision Trees [8], Random Forest [9], Extra Trees Regressor [10],

Adaboost Regressor [11], Gradient Boosting Regressor [12], Extreme Gradient Boosting [13], Light

Gradient Boosting [14], and Catboost Regressor [15]. In addition, Hyperparameter tuning [16] and

Cross-Validation [17] techniques (with Hold-out sets) are used to ensure each model is robust and

6

performs at its best. The performance of Machine learning algorithms is evaluated with MAPE and

RMSE. Best performance based on MAPE was achieved with Blended Machine learning Models. There

are four di�erent machine learning models under this blended model. These models are:

� Extra Trees

� Linear Regression

� Ridge Regression

� Huber Regression

� Adaboost Regression

The performance of Machine Learning algorithms is evaluated with Root Mean Squared Error

(RMSE). The data preparation stage for time-series models starts with decomposing for further analysis

such as trend, seasonality, and error, followed by Augmented Dickey-Fuller Test (ADF) for stationarity,

Akaike Information Criterion (AIC) for determination of the parameters of Time Series algorithms.

Both Univariate and Multivariate time-series methods are used in this study. For Univariate methods,

the date and return of the stock; for Multivariate methods, opening price, minimum price, maximum

price, and other generated features are used. These features are mentioned in 3.3 on page 33. Univariate

time-series methods used in this study are ARIMA, Exponential Smoothing, Seasonal Naïve Forecaster,

Naïve Forecaster, ETS. Multivariate time-series methods are Vector Autoregression (VAR) [60], Vector

Autoregression Moving-Average (VARMA). In addition, Time-Series Cross-Validation is applied for

this case. All forecasting methods are evaluated with RMSE. The best performing models are:

� Seasonal Naive Forecaster

� VAR

The importance of training data is also covered in this study. In addition to comparing machine

learning and time series prediction models and combining their strengths in this study, the e�ect of the

training data's date range on the prediction results will be investigated, the best results for the date

range will be identi�ed, and all models will be learned using this training data. While the machine

learning approach covers how the skill was acquired, the most appropriate date range for the training

data addresses where the skill was learned. Di�erent time intervals as training data were used and

tested. The mean and standard deviation MAPE were calculated for every model with 10-fold cross-

validation during the testing of training data. The dataset used in this study is collected through

Binance's Application Programming Interface (API) with 15-minute intervals, and the optimal date

range is July 1st, 2021 � December 13th, 2021 for Bitcoin.

The rest of the work�ow is as follows; in Chapter 1, literature research is illustrated by analyzing

works related to this study's subject. The following chapter demonstrates de�nitions and theoretical

concepts of Machine learning, Time Series Models in this study's practical section. Next, mentioned

models' real-world application, evaluation, comparison, and combination are demonstrated with exper-

iments of selecting the right training dataset in chapter 3. Finally, the conclusions are given in Chapter

4.

7

The �owchart of work�ow is given below:

Figure 1: The �owchart of work�ow

8

1 Literature Review

Financial markets, by their nature, can be closely associated with price volatility and the ability

to predict prices. In this context, many econometric, statistical, and mathematical models are used in

price predictions. However, when the studies in the literature on the prediction of all cryptocurrencies

are examined, it is seen that the vast majority predict mostly Bitcoin prices and returns by using

di�erent methods and approaches.

Almeida et al. [20], using ANNs, tried to predict the future Bitcoin price using daily USD price for

the next 730 steps equal to two years. Before predicting the price of Bitcoin, to avoid over�tting and

increase the performance of ANNs, min-max scaling was applied. The arti�cial neural networks model

was used in the study, and as a conclusion, it is mentioned that ANNs are quite successful in predicting

the price of Bitcoin.

Amjad and Shah [21] predicted the movement of Bitcoin prices using classi�cation algorithms and

obtained more accurate results than the ARIMA technique. Three possible outcomes for the Bitcoin

price were considered: an increase, a decrease, and the assumption that the price does not change.

Rather than utilizing regression to solve Time Series issues with stationary data, the performance of

classi�cation techniques demonstrated that they should be used.

Sean McNally [22] aimed to determine how accurately the trend of Bitcoin price (in USD) can be

predicted. In this context, the author used both classi�cation and Time Series predictions. To evaluate

the performance of the algorithms, K-Fold Cross Validation, RMSE, and classi�cation metrics such as

Accuracy, Sensitivity, Speci�city, and Recall were used. For feature engineering, Simple Moving Average

(SMA) indicator was used. To eliminate and reduce the number of features, the Boruta algorithm was

used. Principal Component Analysis was also conducted, but it was not included in the �nal results. As

a result of the study, they concluded that nonlinear Deep Learning methods outperform the estimation

made by the ARIMA. Long Short-Term Memory (LSTM) was the best performing among all algorithms

used.

Georgoula et al. [23] explored the factors of the Bitcoin price using Sentiment Analysis and Support

Vector Machines (SVM). According to the authors, there is a positive correlation between Wikipedia

tra�c and the network's hash rate. On the other side, a negative link is discovered between the

USD/EURO exchange rate and bitcoin price.

Madan et al. [24], utilized the Bitcoin exchange and payment data to develop an algorithmic trading

system, with the issue handled as a classi�cation problem. The authors separated the investigation

into two phases: in phase one, they added 25 extra characteristics to boost classi�cation algorithms'

e�ectiveness, and they tested with various time intervals; in phase two, they just used the closing price

and produced predictions. The �rst phase with data collected at ten-minute intervals was the preferred

technique. Authors employed Binomial Generalized Linear Models (GLM), SVM, and Random Forest

(RF).

Ji et al. [25] applied Deep Neural Networks (DNN), LSTM, Convolutional Neural Networks (CNN),

ResNet, Convolutional Recurrent Neural Network (CRNN), and ensembling in their study. Both clas-

si�cation and regression models were used and evaluated. The results showed LSTM slightly out-

performed other models for regression, DNN outperformed for classi�cation. A comparison of those

9

models is made using a simpli�ed trading strategy. The authors found out that classi�cation models

outperformed regression models.

Jang and Lee [26] aimed to reveal the e�ect of Bayesian neural networks (BNN) by analyzing the time

series of Bitcoin prices. Additionally, they constructed models by extracting the most relevant elements

from the Blockchain data underlying Bitcoin supply and demand. On the other hand, compared the

Bayesian neural network to other linear and non-linear models in models for predicting the Bitcoin price

time process and discovered that the BNN performs well in predicting the Bitcoin price time series and

explaining the recent Bitcoin price's high volatility.

Lahmiri and Bekiros [27] used deep learning techniques to predict the price of the three most traded

digital currencies, namely Bitcoin, Digital Cash, and Ripple, based on historical data. They concluded

that deep learning is highly e�ective in predicting the natural chaotic dynamics of cryptocurrency

markets.

Simon and Geetha [28] used linear regression and polynomial regression to predict the next block

reward to the miner. The Long Short Term Memory (LSTM) algorithm was used to forecast the next

ether price in the market.

Phaladisailoed and Numnonda [29] aimed to discover the most e�cient and most accurate model for

predicting Bitcoin prices within various Machine learning algorithms. They tried di�erent regression

models with Scikit-Learn and Keras libraries, using 1-minute interval trading data on the Bitcoin

exchange website Bitsamp from January 1, 2012, to January 8, 2018. The best results showed Mean

Squared Error (MSE) as low as 0.00002 and R-Squared (R2) as high as 99.2.

Jaquart et al. [30] compared six di�erent Machine learning models which are trained on nine months

of cryptocurrency-related data. They used RNNs and XGBoost that surpassed arbitrary classi�cation.

Furthermore, they employed blockchain-based and technical features for various time horizons from one

to sixty minutes. After testing the importance of features, the authors observed that technical features

are most relevant for the algorithms.

Xiaoleia et al. [31] made predictions with various economic indicators by using three di�erent

Machine learning methods: SVM, Random Forest, and LightGBM for 42 di�erent features. In the

study, daily data from 01.01.2018 - 06.30.2018 were used. Stock market indices of various countries, US

Dollar Index and Crude Oil WTI Futures Price, were used as economic indicators. Forecasts are made

to determine whether prices will increase or decrease, not prices. The methods used to give the best

results for the medium term (2 weeks). In addition, more successful predictions have been obtained for

more widely used cryptocurrencies. One of the study's essential �ndings is that LightGBM gives better

resistance results than SVM and Random Forest and is an e�ectively uses method for many data and

variables.

Hattori [32] made a representative volatility indicator for the Bitcoin market and modeled volatility

using GARCH, GJR-GARCH, EGARCH, APARCH, and IGARCH models. The data obtained by

the author in the 5-minute frequency range from January 2016 to July 2018 were used. In the study,

�performed volatility,� calculated by the squares of the daily return, is used as an indicator of volatil-

ity. The EGARCH and APARCH asymmetric volatility models provided more successful estimations.

Normally distributed volatility models provided more successful results than models with thick-tailed

distributions such as t-skewed.

10

Mallqui and Fernandes [40] aimed to determine the highest and lowest values, direction, and closing

price of Bitcoin price in their study. The data used to belong to August 19, 2013 - July 19, 2016. The

study used collective algorithms based on SVM, ANN and RNN, and K-Means clustering algorithms.

The study used 80 � 20 (range 1) and 75 � 25 (range 2) rates as training and test data. For estimation

according to the regression trials, the most successful results were obtained with SVM in predicting

the largest, smallest, and closing prices for both ranges. Similarly, SVM achieved the best results in

predicting closing prices.

Aalborg et al. [34] aimed to determine which variables should be used to predict Bitcoin's return,

volatility, and trading volume. Variables used are trading volume, the number of unique user addresses,

the VIX index, and the number of Google searches. The multivariate regression model was used in the

study. Daily and weekly data from March 1, 2012, to March 19, 2019, were used in the study. Models

are insu�cient in estimating Bitcoin returns; Although relatively successful results are obtained in

daily volatility estimation, it has been determined that the models are inadequate for weekly volatility

estimation. In addition, only Google searches increased the performance of the models for trade volume.

In their work, Adcock and Gradojevic [35] made price and density predictions for Bitcoin returns.

ARIMAX, GARCH-M, linear regression, quantile regression ANN and kernel regression with the date

range 19 July, 2010 - 5 March, 2010 were used in the study. The study used a 50-day buy-sell signal,

200-day buy-sell signal, and VIX volatility index. In the study, the predictive performance of all models

was compared with that of the random walk model. Only recurrent neural networks gave better results

than the random walk model of the models used. Similarly, the ANN model provided the most relevant

results for density prediction.

Kristjanpoller and Minutolo [36] made volatility predictions for Bitcoin price with the ANN �

GARCH model, a hybrid of arti�cial neural networks, and the GARCH model. The study used daily

data from 13 September 2011 to 26 August 2017. Volatility is represented by a 22-day (1-month) return

variance. In addition, 10-day and 44-day variances with seven technical indicators were used for 12

di�erent models with di�erent combinations of hyperparameters. Using technical indicators increased

all models' performance with MSE values. The best hybrid models in this group are those with the

fewest layers and neurons. The authors also used PCA on technical indexes, which helped increase the

models' performance.

Walther et al. [37] made daily, weekly, and monthly volatility predictions for Bitcoin, Etherium,

Litecoin, Ripple, Stellar, and the cryptocurrency index (CRIX). Seventeen external �nancial and eco-

nomic indicators were used in forecasting models in the study. Daily prices consist of data until 31 July

2019, although the starting date varies according to currencies. GARCH and GARCH-MIDAS models

were used in the study. The best predictions in the study were obtained with the model in which the

global actual economic activity index is used externally. The second best prediction was obtained with

the prediction averages of all models. Roy and Ojha stated that Twitter is a big gold mine where peo-

ple share their instant feelings and thoughts, and based on this, they carried out a sentiment analysis

on Twitter. Three deep learning models were created and compared for sentiment analysis. Google

Bidirectional Encoder Representations from Transformers (BERT) [38], LSTM, and CNN algorithms

were used, and it was determined that the BERT model outperformed the others. The language of the

study was English, which was an increasing factor for the accuracy rate.

11

Mallqui and Fernandes [40] aimed to determine the machine learning algorithms that achieved the

best results in price predictions with the help of Bitcoin daily prices between the years 2010-2013. They

tried to predict the direction and severity of Bitcoin price movement with the help of Arti�cial Neural

Networks (ANN), SVM, and Ensemble algorithms (based on Recurrent Neural Networks (RNN) and

k-means clustering method). Similarly, ANN and SVM are used for Bitcoin's maximum, minimum,

and closing prices regression model. As result, it was revealed that the SVM algorithm gave the best

results for all predictions (maximum, minimum, and closing prices) and both ranges.

Briere et al. [41], using weekly data for the period 2010-2013 in their study, analyzed Bitcoin

investments for the US investor who has a diversi�ed portfolio with both traditional assets (stocks,

bonds, �xed currencies) and alternative investments (including commodities, hedge funds, real estate).

During the mentioned period, Bitcoin investments were found to have very distinctive features, including

the exceptionally high average return and volatility. They were found to have a very low correlation

with other assets.

Catania [42] compared various alternative univariate and multivariate models to predict the prices

of cryptocurrencies with the largest trading volume, Bitcoin, Litecoin, Ripple, and Ethereum. In the

study, a series of cryptography experiments were applied to combine the predictors, and combinations of

univariate and multivariate models were proposed. The results showed statistically signi�cant changes

when using combinations of univariate models.

Kodama et al. [43] analyzed the time series dataset of Bitcoin prices, which recorded individual

transactions in Euro in the Coinbase market between April 23, 2015, and August 15, 2016. The study

applied the Markov technique to classify regions of variable volatility represented by three latent state

regimes using the univariate autoregressive and the dependent mix models. At the end of the study,

they found that cryptocurrency series can also be applied to causality inference of iterative neural

networks, such as exchange rate time series data.

Karakoyun [44], predicted Apple stock and Bitcoin prices, applying LSTM and ARIMA as deep

learning architectures. The author compared the performance of these two architectures. Apple stock

pricing data from September 7, 1984 to February 28, 2018 were used in the study. The data included

8428 Apple stock prices in total, belonging to the daily closing prices of the relevant stock. The dataset

used for training deep learning models included Bitcoin prices between April 28, 2013, and October 29,

2017. The study collected 1646 price data, and the deep learning model was asked to make a pricing

forecast for the next 30 days. When Apple stock price prediction is made with the ARIMA model, the

result obtained in the RMSE metric is 34.04762. To make predictions with the LSTM model using the

same data set, LSTM with 64 neurons in the input layer, LSTM with 128 neurons in the second layer,

MLP with 32 neurons in the third layer, and MLP with one neuron in the output layer was used. In the

results obtained with the LSTM obtained with the same data, the value obtained in the RMSE metric

was 9.61. A lower RMSE means a more successful model, and the LSTM model was more successful

in predicting Apple stock prices. In the prediction of Bitcoin prices, the ARIMA model took 1146.067

RMSE. In the prediction of Bitcoin prices with LSTM, LSTM with 64 neurons in the input layer, LSTM

with 128 neurons in the second and third layers, MLP with 64 neurons in the fourth and �fth layers,

an MLP with one neuron in the output layer were used, and RMSE of 93.27 was taken. These results

have proven that the LSTM model is more successful than traditional statistical models.

12

Namini and Namin [45] revealed how advanced new algorithms, emerged with the development of

more complex structures such as deep learning, with the increase in the processing capacity of the

computer, compared to traditional algorithms in terms of success rate and margin of error. The study

showed that the LSTM model obtained results from the output layer with an 85 lower error margin

than the ARIMA model.

Björklund and Uhlin [46] reviewed the existing properties of �nancial time series and conducted a

study on the e�cient market hypothesis, in which potential anomalies were emphasized by using their

statistical properties in an arti�cial neural network. Based on the theoretical review, an interdisciplinary

approach between machine learning and �nance has evolved into a quarterly prediction of the expected

time series. In a related context, they used exchange rates and indices from di�erent asset classes, such

as stocks and commodities, using the stock optimization model to evaluate the use of future return

forecasts.

Grachev [47] examined the e�ciency and limitations of time series models such as ARIMA, GARCH,

and ARMA-GARCH for the stock market. The study �rst assesses the unique features of �nancial

data, particularly the �uctuation, clustering, and excesses in the return distribution. It addresses the

limitations of using autoregressive integrated moving average (ARIMA) models in �nancial economics.

Second, the application of ARMA-GARCH models for estimating both conditional means and the

conditional variance of returns is examined. Finally, the prediction performance of various candidate

ARMA-GARCH models is discussed using standard model selection criteria such as AIC, BIC, SIC,

and HQIC. For MSCI World Index excess return and Fama-French 3-factor excess return models, an

ARMA (1.0) + GARCH (1.1) yielded the best results in both groups in the same period.

Moreno [48] presented a description and comparison of the leading models of ANNs that have proven

helpful in time series estimation and a standard list of steps for the practical application of ANN in this

type of task. MLP, Radial Basis Function (RBF), Generalized Regression Neural Network (GRNN),

and RNN models were analyzed. For this purpose, they used a time series consisting of 244-time points.

Their comparative study showed that the error made by the four neural network models analyzed was

less than 10. The model with the best performance is RBF, followed by RNN and MLP. The GRNN

model has the worst performance.

Fakhr and Baasher [49] studied the foreign exchange market (FOREX), a highly volatile complex

time series, for which forecasting the daily trend is a challenging problem. The high exchange rate daily

trend is taken as a binary classi�cation problem with the results of uptrend and downtrend. Many

key features resulting from time-series data, including technical analysis features, were created using

multiple historical time windows. Various feature selection and feature extraction techniques were used

to �nd the best subsets for the classi�cation problem. RBF, MLP, and SVM machine learning methods

were tested and analyzed for each feature subset. While analyzing four major FOREX currency pairs,

it was found that the results showed consistent success in daily forecasts and expected pro�ts.

13

2 Scienti�c Research

This chapter demonstrates the de�nition and formulas of Machine learning Models, Time Series

Models, Model Evaluation Techniques, Feature Selection Techniques.

2.1 Machine learning Models

Machine learning (ML) is the technique of assisting a computer in learning without receiving strict

orders. This is a subcategory of Arti�cial Intelligence (AI). Machine learning algorithms are used to

discover patterns in data. Additionally, these patterns are utilized to build a predictive data model.

Just as people grow with practice, machine learning outcomes progress with more data and expertise.

Due to its versatility, machine learning is an excellent alternative in situations when data, demands, or

tasks are continually changing, or where coding a solution properly is not feasible. Basic concepts of

ML are:

� Dependent Variable: This is the primary feature in the machine learning task that we are

attempting to forecast. (e.g. return of the stock)

� Independent Variable: The independent variable is the one that assists us in estimating the

dependent variable. (opening price, closing price)

� Over�tting: It is possible that the data set is learnt really e�ectively, almost to the point of

memorizing, but makes errors while attempting to make predictions on the data set just observed.

� Under�tting: Over�tting is the polar opposite of under�tting. In this instance, models are

unable to capture critical characteristics in the data set and so cannot do the essential learning.

Algorithms of ML can be categorized as two: Supervised Learning, and Unsupervised Learning [71].

� Supervised Learning: In supervised learning, the data set and the intended output are known.

Supervised learning enables the extraction of a function (a match between the input and result

data) from this information by feeding the data and the results back to the computer. As a result,

the machine gains an understanding of the link between the dependent and independent variables

[71]. There are two sub�elds of Supervised Learning: Classi�cation, and Regression.

� Classi�cation: Classi�cation is a supervised learning technique used in machine learning

and statistics in which the computer software learns from the input data and then utilizes

this knowledge to categorize fresh observations. These datasets may be binary in nature

(for example, detecting whether a person is male or female, or whether an email is spam or

not) or multi-class in nature (multiclass classi�cation in machine learning is a problem of

classifying instances into one of three or more classes) [72].

� Regression: Cause-e�ect connections are often examined in regression analysis using sta-

tistical models comprising two or more independent variables. In other words, the degree

to which one or more factors in�uence one or more other variables is investigated. If there

is a connection between the variables, the relationship's degree is indicated mathematically.

14

This is referred to as the regression function. In a regression issue, we attempt to forecast

the values of continuous output variables; that is, we attempt to map the input data to some

continuous function [72].

� Unsupervised Learning: Unsupervised learning is a kind of machine learning approach in

which the model is not supervised. Rather than that, model �nds out about the data on its own.

In comparison to supervised learning, unsupervised learning algorithms enable to do more com-

plicated processing tasks. Unsupervised learning does not need the system to be taught; instead,

it learns from the data. Unsupervised machine learning discovers any previously undiscovered

pattern in data. Clustering is one of the most popular Unsupervised Learning techniques [71].

� Clustering: Clustering is a statistical technique that is used in unsupervised learning, a

subset of machine learning. Unlabeled data used in unsupervised learning are categorized

using the clustering approach according to the features they exhibit. Consider the following

scenario: you have a data repository; thousands of data are clustered according to their

common features; as a consequence, a particular number of datasets are produced based on

the data's closeness to one another [73].

In the following sections, the foundations of the ML regression algorithms that are used in this

study is given.

2.1.1 Decision Trees

In many studies, a number of methods are needed when performing certain operations in order to

make the best decision about the problem at hand. Among these methods, the decision tree method

is one of the most widely used classi�cation and regression models, which provides convenience to

the decision-maker in terms of use, has high reliability and has been used recently [50]. Decision

Tree is a graphical technique that evaluates all possible action options, all possible factors that may

a�ect these action options, and each possible outcome based on all these factors, depending on the

data, and that facilitates the decision-maker to understand the problem through the use of geometric

symbols such as lines, squares, and circles. Tree-based approaches provide a high degree of accuracy,

stability, and interpretability. Unlike linear models, they can also map nonlinear relationships quite

well. Classi�cation or regression can be adapted to solve any given problem. Methods such as decision

trees, random forest, gradient reinforcement are widely used in all kinds of data science problems.

Decision tree learning is a technique for approximating discrete-valued target functions that uses a

decision tree to represent the learnt function. Learned trees can be represented as if-then rule sets to

increase human readability. The decision tree creates classi�cation or regression models in the form of

a tree structure. When dividing a dataset into smaller and smaller subsets, an associated decision tree

is progressively developed at the same time. The terminology of Decision Trees is given below:

� Root Node: It represents the entire instance, and this node is then split into two or more subsets.

� Splitting: Dividing one node within two or more sub-nodes.

� Decision Node: If a child node is divided into other child nodes, it is called a decision node.

15

� Leaf Node: Nodes that do not divide are called Leaf or Terminal nodes.

� Pruning: When child nodes of the decision node is removed, it is called pruning. In other words,

it is vice versa of the splitting process.

� Subtree: A sub-section of the entire tree is called a branch or sub-tree.

� Parent and Child Node: A node which is divided into child nodes is called the parent node and

the child nodes of the child nodes are called the child node.

The goal in decision trees is to create as pure, homogeneous nodes as possible. In other words, decision

trees use multiple algorithms to decide whether a node (attribute) should be split into two or more

child nodes. With the creation of sub-nodes, the data is divided into sub-nodes in a more homogeneous

and understandable way. Various methods are used to split nodes.

� Continuous Target Variable

� Reduction in Variance

� Categorical Target Variable

� Gini Impurity

� Information Gain

� Chi-Square

This study aims to predict the numerical output. Thus, only Reduction in Variance will be explained;

Reduction in Variance is an algorithm used for continuous target variables (regression problems). It is

used to explore features that e�ectively reduce the variance of the numerical output variable, and uses

the standard variance formula to choose the best split. The formula is given below:

σ2 =

n∑
i=1

(xi − µ)2

n

Reduction in Variance follows this steps throughout the learning process of the algorithm:

� Calculating the variance for the node.

� Each split's variance is derived as the weighted average of the variances of each node.

2.1.2 Random Forest

The Random Forest algorithm is a method consisting of decision trees and nodes developed by

Breiman [9]. As the name suggests anyway, it creates a forest and does it somehow randomly. The

"forest" algorithm builts is a collection of decision trees that are mostly trained by the "bagging"

method. Bagging is short for bootstrap aggregation. It means bringing together the trees obtained by

the resampling method. In this respect, it opened up a completely di�erent perspective to single tree

structures and moved the world of machine learning ahead [50].

16

In this method, new trees are formed by continually drawing representatives from the sample data

set to substitute them, and a community arises from these trees. Based on this, they are referred as

ensemble methods. All of the resulting trees are used for modeling, and each one is asked for their

opinion. The result of the whole process is given as a single output by taking a vote/average opinion

by evaluating the opinion of each. Bagging should be seen as a methodology. For example, when the

CART algorithm is secured, a bagged tree emerges. When the CART algorithm is connected on the

basis of both observations and variables, Random Forests emerge. With Random Forest, regression and

classi�cation analyzes can be performed. In order to branch the nodes according to the method, the

best random value in the nodes is selected, and certain weights are given to the created decision trees.

These weights are determined according to the internal errors of the decision trees, and the decision tree

with the lowest error is given the highest weight, and the decision tree with the highest error is given

the lowest weight. These given weights are used for voting in class estimation. Afterward, these votes

are collected, and the �nal decision is made. Thus, with the random forest algorithm, more reliable

predictions are made by combining the results of multiple decision trees and making a single decision

on behalf of the forest. The steps of this algorithm is as follows:

� Step 1: In the �rst step, the number of decision trees (n) to be created according to the data

properties is determined.

� Step 2: At each node in the created decision trees, m random variables are selected, and the best

branch is determined by calculating with the Gini index.

� Step 3: The best branch determined in the previous step is divided into two sub-branches. This

process is continued until the Gini index becomes zero, in other words, until there is only one

class left in each node.

� Step 4: In the last stage, if it is a classi�cation problem, the class with the highest number of

votes is chosen as the �nal decision, if it is a regression problem, the average of individual trees'

output is returned as estimation among the predictions made by n decision trees.

2.1.3 LightGBM

With the rapid increase in data size and diversity in recent years, the importance given to algorithm

optimizations is increasing. For this reason, as an alternative to the Gradient Boosting algorithm,

algorithms such as XGBoost, LightGBM, Catboost that can be considered versions of Gradient Boosting

have been developed. With these algorithms, it is aimed to achieve faster training and higher accuracy.

LightGBM is a boosting algorithm developed in 2017 as part of the Microsoft DMTK (Distributed

Machine learning Toolkit) project. Compared to other boosting algorithms, it has advantages such as

high processing speed, large data processing, less resource (RAM) usage, high prediction rate, parallel

learning and GPU learning support. According to the article "LightGBM: A Highly E�cient Gradient

Boosting Decision Tree" in which the model is introduced, studies have concluded that LightGBM is

20 times faster than other models [14].

There are two strategies, level-wise or depth-wise, or leaf-wise, can be used in learning decision

trees. In the level-oriented strategy, the tree's balance is maintained as the tree grows. In the leaf-

17

focused strategy, on the other hand, the division process continues from the leaves, which reduces the

loss. Thanks to this feature, LightGBM di�ers from other boosting algorithms. The model has less

error rate and learns faster with the leaf-oriented strategy. However, a leaf-oriented growth strategy

causes the model to be prone to over-learning in cases where the number of data is low. As a result,

the methodology is better suited for usage with large amounts of data. In addition, parameters such

as tree depth and the number of leaves can be optimized to prevent over�tting.

LightGBM also uses two di�erent techniques from other algorithms. These include Gradient-based

One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB), which both address the issue of

the quantity of data samples and variables [14].

� GOSS: GOSS aims to reduce the number of data while maintaining the accuracy of decision trees.

Traditional Gradient Boosting scans all data samples to calculate the information gain for each

feature, but GOSS uses only the important data. Thus, the number of data is reduced without

a�ecting the distribution of the data too much.

� EFB: EFB aims to reduce the number of variables without harming the accuracy rate and ac-

cordingly increase the e�ciency of model training. EFB has two processing steps. These are

creating packages and merging variables into the same package. With EFB, sparse features are

combined to create denser features. This leads to reduced complexity and a faster training process

with lower memory consumption. In summary, GOSS reduces data size to calculate information

gain, omitting data that may be considered less important, while EFB aggregates variables to re-

duce dimensionality. With these two functions, LightGBM increases the e�ciency of the training

process.

2.1.4 XGBoost

XGBoost(eXtreme Gradient Boosting) is a high-performance version of the Gradient Boosting al-

gorithm optimized with various modi�cations. It became a part of our lives with the article titled

"XGBoost: A Scalable Tree Boosting System" published by Tianqi Chen and Carlos Guestrin in 2016.

The most important features of the algorithm are that it can achieve high predictive power, prevent

over-learning, manage empty data and do them quickly. According to Tianqi, XGBoost runs ten times

faster than other popular algorithms.

The �rst step in XGBoost is to forecast the initial score. This estimate can be any number as

the correct result will be reached by converging with the actions to be taken in the next steps. This

number is 0.5 by default. The evaluation of these estimations is examined with the residuals of the

model. These errors are found by subtracting the estimated value from the observed value. The next

step is to construct a decision tree that predicts errors. The aim here is to learn from the errors and

get closer to the correct prediction.

The similarity score is calculated for each branch of the tree created. The similarity score indicates

how well the data are grouped into branches. After the similarity scores are calculated, the next

question is whether a better guess can be made. Trees of all possible possibilities are constructed to

answer this question. Similarity scores are calculated for all of them. The gain will be calculated in

order to decide which tree is better. While branches are evaluated with similarity score, the whole tree

18

is evaluated with gain. The �rst tree is completed with the above-mentioned operations (establishing

trees that predict errors, calculating similarity and gain scores for trees, pruning, and obtaining model

outputs). After the �rst tree is completed, with the �rst prediction, learning rate, and �rst tree, the

second forecast is made. In this way, trees are calculated, and the predictions continue to be corrected.

These processes will continue until the errors are very low or the speci�ed number of trees is reached.

By default, branches are split down six times.

2.1.5 Extra Trees

The Extra Trees algorithm is a di�erent version of the Random Forest method. As in the Random

Forest method, the model is trained using copies of the data set, but in the branching phase of the

nodes, random branching is done instead of using the decision criterion to make the optimum separation.

Although this idea reduces the complexity and processing load in solving some data analysis problems,

it has poor performance in analyzing large data sets with high noise. When evaluated statistically, this

method generally causes an increase in bias and decreases the variance [51]. On the one hand, bootstrap

representative of the training dataset forms each tree during the training of the RF algorithm. During

the training of the Extra Trees algorithm, the whole training dataset is �tted to each decision tree.

Extra Trees also randomly samples the features during the splitting of a tree. On the other hand, unlike

Random Forest, the Extra Trees algorithm picks a splitting point randomly. This random selection

makes trees throughout the ensemble less correlated, at the same time, it increases algorithm's variance

[51].

2.1.6 AdaBoost Regressor

Boosting, one of the learning algorithms, is an ensemble algorithm based on machine learning, which

was developed by Schapire in 1990 and used in solving both classi�cation and regression problems. The

ampli�cation algorithms were mainly developed to answer the question: can a single strong learner

form from a set of weak learners? These algorithms work iteratively. In this method, a strong learner

is created by adding a new weak learner at each iteration. In other words, a strong learner is formed by

gathering weak learners. Individual models do not perform well on the entire dataset, but work well for

a portion of the dataset. Therefore, each model actually improves the performance of the ensemble. One

of the best known and most successful boosting algorithms is AdaBoost (Adaptive Boosting) algorithm

developed by Freund and Shapire in 1996. It consists of an iterative process in which new models are

added to create a community. It is adaptive in a sense. With each new iteration of the algorithm, new

models are built to overcome the mistakes made in previous iterations. In this method, a sequential

process is performed in which each subsequent model tries to correct the errors in the previous model.

That is, the later models are dependent on the previous model. Although the AdaBoost algorithm is

mainly developed for solving classi�cation problems, it can also be used to solve regression problems.

The work�ow of AdaBoost is given below:

� A subset of the original dataset is constructed.

� At �rst, all data points are weighted equally.

19

� A base model is created in this subset.

� This model is used to make predictions on the entire dataset.

� Errors are calculated using observation and prediction values.

� Incorrectly predicted observations are given higher weight.

� On the dataset, another model is developed and predictions are generated.

� Similarly, many models are produced, with each one rectifying the preceding model's �aws.

� The �nal model (strong learner) is the weighted average of all models (weak learners).

2.1.7 Catboost Regressor

Catboost is an open-source machine learning algorithm based on Gradient Boosting developed by the

Yandex company. It was introduced in April 2017 with the article �CatBoost: unbiased boosting with

categorical features� as an alternative to XGBoost and LightGBM, which were developed to increase

the performance of Gradient Boosting. Its name comes from a combination of the words �Category�

and �Boosting�. High learning speed, ability to work with both numerical, categorical, and text data,

GPU support, and visualization options are the most distinguishing features from other algorithms.

CatBoost has an important position by shortening the data preparation phase. It can deal with empty

data, encoding categorical data [15].

The reason why it can work with categorical data with high performance is that it has a unique

coding method. In other words, there is no need for a separate coding process while preparing the data.

In fact, it is highly recommended not to code. This will a�ect both the learning speed and the quality

of the results. Also, Catboost builds symmetrical trees. In this way, it achieves a high prediction rate

without establishing very deep trees and overcomes the over-learning problem. If over-�tting occurs,

the algorithm stops learning before it reaches the properties speci�ed in the parameters (for example,

the speci�ed number of trees). This option is set from the initial parameters [15].

2.1.8 Huber Regressor

For the M- Estimation method developed by Huber (1964), the objective function is known as;

ρ(r) =

{
1
2r

2 , |r| < k

k|r| − 1
2k

2, |r| ≥ k

The constant k in this function is called the tuning constant and its value is used as 1.345. Here, the

purpose of k is to ensure that the e�ciency of the function used is approximately 95 if the data really

has a normal distribution. The most important feature of Huber M- Estimators is that the function

behaves like a normal in the (−k, k) interval, while in other places it behaves like a Laplace (Double

Exponential) distribution. For the Huber M-estimator, the Impact function and the Weight function

20

are denoted by

ψ(r) =

{
r , |r| < k

ksign(r) , |r| ≥ k

w(r) =

{
1 , |r| < k
k
|r| , |r| ≥ k

2.1.9 Multiple Linear Regression

A linear regression refers to a regression model that consists entirely of linear variables. It may

aid in the comprehension and prediction of the behavior of complex systems, as well as the analysis of

experimental, �nancial, and biological data. A linear regression model's general equation is:

y = k + β1x1 + β2x2 ++ βnxn (1)

Multiple Linear Regression is an analysis to reveal the relationship between a dependent variable

and a series of independent variables associated with it. Multiple linear regression examines the linear

relationship between two or more independent variables and one dependent variable. It helps to estimate

the dependent variable when the independent variable is a known factor after the results are obtained

[52]. Multiple Linear Regression is denoted as:

Yi = β0 + β1X1i + β2X2i + . . .+ βkXki + εi (2)

where :

Yi = i th observation of the dependent variable Y, i = 1, 2, . . . ,n

Xj = independent variables, j = 1, 2, . . . , k

Xji = i th observation of the j th independent variable

β0 = intercept term

βj = slope coe�cient for each of the independent variables

εi = error term for the i th observation

n = number of observations

k = number of independent variables

2.1.10 Ridge Regression

Ridge Regression (also known as Tikhonov regularization) is obtained by adding a regularization

term (α
∑n

i=1 θ
2
i) to the cost function in linear regression. With this addition, the learning algorithm

both learns the data and tries to keep the model weights as small as possible. The α hyper-parameter

controls the amount of regularization on the model. Ridge regression for α = 0 is the same as linear

regression. The solution technique of Ridge regression is similar to the simple least-squares method. In

the Ridge regression method, the regression is performed by adding a small and positive constant to

the diagonal elements of the (X ′X) matrix formed by the variables in standard form before calculating

21

the coe�cient estimates [53]. Accordingly, the ridge regression is denoted as:

argminβ
∑
i

(
yi − β′xi

)2
+ λ

K∑
k=1

β2k (3)

Ridge regression is resistant to over-�tting and o�ers a solution to multidimensionality by creating a

model with all variables, does not remove irrelevant variables, only brings their coe�cients closer to

zero. It is necessary to �nd a good value for α (penalty) when building the model [53]. To do so,

cross-validation is used. The details of cross-validation is explained in 2.4.3 on page 32.

2.1.11 Lasso Regression

Lasso regression (Least Absolute Shrinkage and Selection Operator Regression) is another regular-

ized variant of linear regression: α
∑n

i=1 |θi| is added. An important characteristic of Lasso regression

is that it eliminates the weights of the least important features (for example, making it zero). In other

words, Lasso regression employs L1 regularization, which imposes a penalty proportional to the amount

of the coe�cients' absolute value. Regularization of this approach might lead to sparse models with few

coe�cients; certain coe�cients may become zero and are therefore deleted from the model. Increased

penalties result in closer-to-zero coe�cient values, which is suitable for constructing simpler models.

[54]. Lasso regression is denoted as:

β̂lasso = arg min
β

n∑
i=1

(
yi −

(
β0 + βTxi

))2
+ λ‖β‖1 (4)

2.1.12 Support Vector Regression

Support Vector Machines (SVM) is a supervised learning method developed by Vapnik and is used

for classi�cation and regression. Points outdoor the tube are support vectors due to the fact they

are helping the shape or formation of the tube. These characteristic vectors had been named support

vectors due to the fact intuitively you may say that they �aid� the keeping apart hyper-plane, or it

might be said that for the keeping apart hyper-plane, the support vectors play an equal function similar

as the pillars to a building. Compared to other traditional learning methods, this method has much

better performance and ability to solve nonlinear problems [7].

In classi�cation problems, the aim is to �nd the appropriate classi�er function that separates the

two classes. The goal is to �nd the best linear classi�er plane even for nonexistent data. In the case

of SVMs, the maximum distance between two classes is called the margin. There are in�nitely many

lines to separate these two classes. But there is only one line that maximizes the margin. This line is

called the best separating hyperplane. In SVM, the goal is to transform the classi�cation problem into

a quadratic programming problem; to get the best hyper is to �nd the global minimum that represents

the plane.

ŷ =

{
0 if wT · x + b < 0

1 if wT · x + b ≥ 0
(5)

SVM, which has been successfully applied in classi�cation problems, can be applied to regression

22

problems by giving an alternative loss function. In some cases, the data can't be separated with a linear

line. But, if one of the classes in the data set is lifted a little higher, it will be possible to separate the

two classes with a plane to be placed between the lower class and the upper class. Here, the process of

raising one of the classes a little bit is done by means of kernels. Many classes that are intertwined with

the same logic can be easily separated from each other by means of kernels. Thanks to this solution,

SVMs are preferred for classi�cation processes in many di�erent application areas. In this way, it is

possible to increase the size of the classes that cannot be separated by a straight line and to separate

them by a plane. There are di�erent types of kernel functions used in the literature for this purpose

[55].

The kernel aids in the discovery of hyperplanes in higher dimensional space without requiring more

computing e�ort. Generally, the larger the dimension of the data, the more computational complexity.

This dimension increase is necessary when the separation hyperplane cannot be found in a particular

dimension and needs to be moved to a higher dimension.

� Polynomial Kernel: In this method, to solve the problem, it is acted as if it is going out of two

dimensions and operating in three or more dimensions. We cannot classify the left (2 dimensions)

distribution with a straight line. For this, the Polynomial Kernel can be used for such problems.

When operating in the third dimension, a plane is used instead of a straight line to classify and

can be classi�ed higher margin [7]. The equation of Polynomial Kernel is given below:

k (xi,xj) = (xi · xj + 1)d (6)

� Radial Basis Function: The RBF kernel is also known as the Gaussian kernel. The feature space

has an in�nite number of dimensions because it can be expanded in the Taylor series. In the

following form, the parameter y de�nes how much impact a single training example has. The

larger it is, the closer the other examples need to be considered. This is a universal kernel. It is

used when there is no prior knowledge of the data [7]. The equation is given below:

k (xi,xj) = exp
(
−γ ‖xi − xj‖2

)
(7)

� Sigmoid Kernel: The hyperbolic tangent kernel is also known as the sigmoid kernel or multilayer

perceptron (MLP) kernel. The sigmoid kernel comes from the realm of neural networks. Here,

the bipolar sigmoid function is often used as the activation function for arti�cial neurons. It can

be used as a proxy for neural networks [7]. Sigmoid Kernel is denoted as:

k(x, y) = tanh
(
αxT y + c

)
(8)

2.1.13 K-Nearest Neighbor Regressor

Unlike other Supervised Learning algorithms, K-Nearest Ne�ghbor does not have a training phase.

Training and testing are pretty much the same thing. It is a lazy type of learning. Therefore, kNN is not

an ideal candidate as the algorithm required to process large dataset. With KNN, KNN searches for the

points that are nearest to the new point. K is the number of the unknown point's closest neighbors. The

23

algorithm's k quantity (usually an odd number) is chosen to predict the results. In pattern recognition,

kNN is a non-parametric method used for classi�cation and regression. Both scenarios use the k closest

training examples in the feature space as the input. The output depends on whether the kNN will be

used for classi�cation or regression [57]. The formulas for distance calculations that can be used are

given below.

� Euclidean Distance

d (p, q) =

√√√√ n∑
i=1

(qi − pi)2 (9)

� Manhattan Distance
n∑
i=1

|xi − yi| (10)

� Minkowski Distance (
n∑
i=1

|xi − yi|p
)1/p

(11)

2.2 Time-Series

A time series is a sequence of observations made over period of well-de�ned data elements. For

instance, a time series might be created by calculating the value of retail sales for each month of the

year. This is because sales income is properly de�ned and recorded at regular periods. Time series are

not data that are gathered seldom or just once [68].

Three components may be identi�ed in an observed time series: the trend (long-term direction),

the seasonal (systematic, calendar-related motions), and the irregular (unsystematic, short term �uc-

tuations).

2.2.1 Time-Series Components

� Seasonal Variation: is often a yearly period that happens for a large number of measurement

series where comparable behavior patterns are seen at certain periods of the year, such as weekly,

monthly, or quarterly. The ice cream sales model series is a good illustration of this, since it is

usually popular throughout the summer. If a time series is only monitored yearly (for example,

once a year), seasonal variation cannot be seen [68].

� Trend: When a series demonstrates a consistent upward or downward growth or drop throughout

at least many successive time periods, this is referred to be a trend. While a trend may be

described as "average long-term change," there is no mathematical description that is completely

adequate. Perception of trends is somewhat determined by the duration of the observed series

[68].

� Cyclic Variation: This term refers to periodic cyclic variation that occurs over a longer length

of time than one year. As examples, �ve-year business cycles and the daily rhythm of biological

activity of living things might be cited [68].

24

� Irregular Fluctations: The phrase irregular �uctuations is often used to refer to "leftover"

variations that remain after trend, seasonality, and other systematic variables are eliminated. As

a result, they might be utterly unexpected and random [68].

Taking into account the impacts of these four components, two distinct kinds of time series models

are often used: additive and multiplicative. These models are as follows for components at time t: yt:

observation, Tt: trend, St: seasonal, Ct: cyclical, and It: irregular �uctation:

Additive Model: yt = Tt + St + Ct + It (12)

Multiplitive Model: yt = Tt + St + Ct + It (13)

The multiplicative model is predicated on the premise that the four components of a time series are

not always independent of one another and may interact. The four components of the additive model

may be completely independent of one another.

2.2.2 Stationary Time Series

A stationary time series is one whose attributes remain constant regardless of the time interval over

which it has been monitored. Thus, time series that exhibit trends or seasonality are not stationary

� the trend and seasonality will impact the time series' value at various points in time. On the other

hand, a white noise series is stationary � regardless of when it is seen, it should seem almost identical

at any particular time [67].

2.2.3 Autocovariance, Autocorrelation and Partial Correlation Functions

If a time series is stationary, this means that the joint probability yt and yt+k distribution of and its

observation is the same for time periods t and t+k separated by the same interval k. Useful information

about the nature of these time series may be created by drawing a scatter diagram of all of the yt, yt+k
data pairs separated by the same k interval. The k interval is called lag [68].

The autocovariance at the k delay indicated by the equation below is the covariance among y and

its value yt+k in an another time period.

γk = Cov (yt, yt+k) = E [(yt − µ) (yt+k − µ)] (14)

gammak obtained for k = 0, 1, 2... is called autocovariance function [68].

A speci�c statistical procedure examines the relationship between two random variables at dis-

tinct times in time. An alternative method for determining the link between yt and yt+r is to �lter

away the linear in�uence of the random variables and then compute the transformed random variables

yt+r, yt+r−1. This phenomenon is referred known as partial autocorrelation [68].

ηkk = Corr (yt − Γ (yt | yt+1, . . . , yt+k−1) , yt+k − Γ (yt+k | yt+1, . . . , yt+k−1)) (15)

25

2.2.4 Di�erencing

Calculating the di�erences between successive observations is one approach to make a time series

stable. This is referred to as distinguishing. Di�erentiation eliminates level variations in a time series

and hence aids in the stabilization of the mean by controlling (or eliminating) trend and seasonality.

Apart from visualizing the data's chronology, the autocorrelation function graph may also be used to

detect non-stationary time series. The autocorrelation function of a stationary time series approaches

zero relatively fast, but the autocorrelation function of non-stationary data decreases slowly [69].

2.2.5 Unit Root Tests

Unit root testing is one method for objectively determining the requirement for di�erentiation.

These are stationarity statistical hypothesis tests that are used to establish whether or not a di�erence

must be taken. There are several unit root tests, each with its own set of assumptions [69].

� Augmented Dickey-Fuller Test: This test is denoted as:

y′t = α+ βt + ϕyt−1 + γ1y
′
t−1 + γ2y

′
t−2 + . . .+ γky

′
t−k (16)

� y′t speci�es the series taken �rst di�erence.

� y′t = yt − yt−1 and k is the number of lags to include into the regression and is often set to three.

2.3 Time-Series Forecasting

Time series forecasting is the process of analyzing time series data with the use of statistics and

modeling in order to provide predictions and improve strategic decision-making. It is not always an

accurate prediction, and forecasting probabilities may vary dramatically; particularly when dealing

with regularly changing variables in time series data as well as external events.

Forecasting is used in a variety of sectors. It is useful for a variety of purposes, including weather

forecasting, climate forecasting, economic forecasting, healthcare forecasting, technical forecasting, �-

nancial forecasting, retail forecasting, commercial forecasting, environmental studies forecasting, and

social studies forecasting. Essentially, anybody with reliable historical data may examine it using time

series analysis techniques and then model, forecast, and predict it. The whole purpose of time series

analysis in certain businesses is to aid with predicting. Developed on the idea that time-dependent

events are random and that time series relating to these occurrences are stochastic processes, this ap-

proach assumes that the time series to which it is applied is a discrete and stationary series with evenly

spaced observation values. However, in fact, the mean and variance of the time series alter throughout

time. This shift, which is often seen in non-stationary time series, is caused by trend, regular, irregular,

and random �uctuations [68]. To use the Box-Jenkins technique to forecast non-stationary time series,

the series must �rst be transformed to become stationary. Prediction occurs in four steps using the

Box-Jenkins Method [70].

1. Model Determination: The Box-Jenkins model suitable for the time series is determined at

this stage.

26

2. Parameter Estimation: It is the stage where the parameters related to the model determined

during the model determination phase are estimated.

3. Test of Suitability: At this stage, where the suitability of the model to the data set is tested

with statistical methods, if the model is found suitable, the �nal stage is passed, if not, the �rst

stage is returned to determine another model.

4. Prediction: The selected best �t model is used for estimation.

In the following chapters, with their equations, di�erent methods of forecasting is given.

2.3.1 Naive Forecaster

The naive method takes into account what happened in the preceding period and forecasts that it

will happen again. This method is denoted as:

ŷT+h|T = yT (17)

Naive Forecaster may give good results when examined with metrics, but they may not be very useful

in cases where decisions need to be made based on the estimates made.

2.3.2 Seasonal Naive Forecaster

Seasonal Naive Forecasting is a scenario in which each prediction is equal to the most recent mea-

sured value from the same year's season (e.g., the same month of the previous year)

ŷT+h|T = yT+h−m(k+1) (18)

2.3.3 Exponential Smoothing

The exponential smoothing method is a method in which estimates or predictions are constantly

updated, taking into account the latest changes and jumps in the data. In this context, exponential

smoothing of time series data is the assignment of exponentially decreasing weights for the newest and

oldest observations. In other words, the larger the data, the less priority we�ght is given to the data.

Newer data is seen as more relevant and given more weight [58]. Exponential Smoothing is denoted as:

ŷT+1|T = αyT + α(1− α)yT−1 + α(1− α)2yT−2 (19)

The forecast for time T + 1 is built on a weighted average of all observations in the series y1, ..., yT .

The parameter depends on the rate at which the weights drop.

2.3.4 Autoregressive Models (AR)

The AR(p) model does not reveal the relationship between a dependent variable and the independent

variables that explain this variable, as in the multiple regression model. Still, it is di�erent from the

multiple regression model because it explains the relationship between the observed value of the same

27

variable for a certain t-period and the observation values of the previous periods. Autoregressive

processes make intuitive sense since the next observed value is a tiny modi�cation of the most recent

observations; in other words, the current value of the series is linearly dependent on its previous value,

with some random error. Because yt is regressed on itself, this model is named an AR model. [61].

Denoted as:

yt = φ1yt−1 + φ2yt−2...+ φpyt−p + wt, (20)

Can be rephrased as:

yt =

p∑
j=1

φjyt−j + wt, (21)

� φ1, φ2, ..., φp are �xed constants.

� wt random variable with mean 0 and variance.

2.3.5 Moving Average (MA)

The Moving Average (MA) approach is the most straightforward and fundamental of all-time series

forecasting algorithms. This model is used to analyze a univariate time series (which has just one

variable). The output (or future) variable is supposed to have a linear relationship with an MA model's

present and previous values. As a result, the new series is constructed using the average of the previous

data. MA models are well-suited for recognizing and emphasizing trends and trend cycles. MA models

are models in which the observation value in any period of a time series is expressed as a linear

combination of the error terms of the same period and the error terms of a certain number of past

periods. MA models are called �rst-order, second-order, and generally q-order MA models according

to the number of past error terms they contain [62]. MA(q) is denoted as:

yt = wt + θ1wt−1 + ...+ θqwt−q (22)

May be rephrased as:

yt =

q∑
j=0

θjwt−j (23)

� θ1, θ2, ..., θq �xed contants.

� wt random variable with mean 0 and variance.

Considering the white noise series as a collection of stochastically uncorrelated data points that emerge

at each time step and are merged with other data points to create the observation at time. Thus, moving

average models are advantageous for modeling series that are impacted by a number of unexpected

events that have both immediate and probable long-term consequences [62].

2.3.6 Autoregressive Moving Average (ARMA)

ARMA models are used to model stationary time series and combine AR and MA models. In these

models, the observation value for any period of a time series is expressed as a linear combination of a

28

certain number of previous observation values and the error term. If the ARMA model is a combination

of the p-term AR and the q-term MA model, it contains p+q terms and is written as ARMA(p,q) [63].

It is denoted as:

yt = φ1yt−1 + ...+ φpyt−p︸ ︷︷ ︸
AR

+ θiwt−1 + ...+ θqwt−q︸ ︷︷ ︸
MA

(24)

2.3.7 Autoregressive Integrated Moving Average (ARIMA)

ARIMA models are applied to non-stationary series but converted to stationary by di�erence-taking.

Models used to non-stationary series but converted to stationary by di�erence-taking are called non-

stationary linear stochastic models. These models are AR, applied to series with a d-degree di�erence.

The variable's value in the t-period is expressed as a linear function of a certain number of back-period

values and the error term in the same period. The variable's value in the t-period is the error term in

the same period and a certain number of back-period error terms. It is a combination of MA models in

which it is expressed as a linear function [59]. The general representation of the models is ARIMA (p,

d, q). Here, p and q are the degrees of the autoregressive (AR) model and the moving average (MA)

model, respectively, and d is the degree of di�erence. ARIMA is denoted as:

y′t = φ1y
′
t−1 + ...+ φpy

′
t−p + θiwt−1 + ...+ θqwt−q (25)

� y′t is di�erenced series

2.3.8 Vector Autoregression (VAR)

VAR is an econometric model that generalizes univariate AR models, giving the evolution and inter-

dependence between multiple time series. VAR models are distinguished from univariate autoregressive

models in that they may be used to evaluate and predict time series data with multiple variables. The

fundamental distinction between the ARIMA family and VAR models is that all ARIMA models apply

to univariate time series, while VAR models apply to multivariate time series. Additionally, ARIMA

models are unidirectional, implying that the dependent variables are impacted only by their past or

lag values. In contrast, VAR models are bidirectional, implying that a dependent variable is in�uenced

either by its previous value or by the value of another variable, or by both [64]. If we consider the Yt
and Xt series, the VAR model is denoted as:

Yt = α+
m∑
i=1

βjYt−j +
m∑
j=1

δjXt−j + ε1t (26)

Xt = α+

m∑
j=1

θjYt−j +

m∑
j=1

ϑjXt−j + ε2t (27)

2.3.9 Vector Autoregressive Moving Average (VARMA)

VARMA model is a combination of VAR and Vector Moving Average (VMA) models. It is possible

to say that VARMA is a generalized version of ARMA for multivariate time series forecasting. As

29

ARMA, VARMA models are also represented with p, and q [65]. They can be denoted as:

yt = c+

p∑
j=1

Φjyt−j +

q∑
k=1

Θkεt−k + εt (28)

2.3.10 Vector Autoregressive Moving Average with Exogenous Regressors (VARMAX)

Economic and �nancial variables are frequently contemporaneously connected and with each other's

previous values. These sorts of temporal correlations may be modeled using the VARMAX technique.

Factors outside the underlying process impact the variables of interest in many economic and �nancial

applications. The VARMAX technique may be used to simulate the temporal relationship among

dependent and independent variables as well as among dependent and independent variables [66].

VARMAX models are generally denoted as:

Yt =

p∑
i=1

ΦiYt−i +

b−1∑
i=0

BiXt−i +

q∑
i=1

ΘiEt−i + C + Et (29)

� Yt denotes a vector containing n response variables

� Xt denotes a vector containing m exogenous variables

� p the number of preceding periods for the endogenous variables in the model

� q the number of preceding periods included in the moving average

� b the number of preceding periods of exogenous variables included

� Φi is an n∗n matrix of autoregressive parameters

� Bi is an n ∗m matrix of exogenous variable parameters

� Θi is an n∗n matrix of moving average parameters

� Et is the residual Yt,
(
Yt − Ŷt

)
.

2.3.11 Prophet

The Prophet model is an open-source forecasting application developed by the Facebook data science

team. It includes procedures that enable making annual, quarterly, weekly, and daily forecasts on non-

linear time series data. In addition, the Prophet model can handle data loss and extreme values

successfully. The model is actively used in many applications within Facebook today [19]. The model

has three main components: seasonality, holidays, and trend. These components' combination under

the Prophet model is denoted as:

y(t) = g(t) + s(t) + h(t) + εt (30)

Where:

30

� g(t) shifts in non-periodic manner

� s(t) periodical shifts

� h(t) e�ects of holidays

� εt idiosyncratic shifts

2.4 Model Selection and Evaluation

After modeling the empirical data using Machine Learning, we estimate the adequacy of our model.

Numerous performance assessment techniques have been suggested. Note that measures must employ

di�erent facts depending on the dataset [59]. We apply two evaluation metrics for both Machine

Learning and Time-Series models: Mean Absolute Percentage Error (MAPE) and Root Mean Squared

Error (RMSE). On the other hand, a Cross-Validation technique is used rather than testing the model's

�t on one set of observations. Cross-validation is a model selection approach used to estimate the error

of a test run on a machine learning model. Cross-validation is a technique that generates sample

observation segments, referred to as validation sets, from the training data set. After �tting a model

to the training data, its performance is evaluated against each subsequent validation set, providing a

more accurate estimate of the model's performance when attempting to predict new observations. The

number of partitions required depends on the number of observations in the sample dataset. The choice

about bias-variance balance alters as more divides result in a lower bias and more variance.

2.4.1 RMSE

The root mean square error (RMSE) is the standard deviation of the estimate errors (residues) [59],

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2

n
(31)

� ŷ1, ŷ2, . . . , ŷn are predicted values

� y1, y2, . . . , yn are observed values

� n is the number of observation

2.4.2 MAPE

The mean absolute percentage error (MAPE) is widely used to quantify prediction accuracy in

regression and time series models. When MAPE is used to compare the accuracy of estimators, it is

biased in that it consistently selects a technique with very low estimates. This tiny but signi�cant issue

may be resolved by calculating the ratio of expected to actual values [59].

MAPE =
100%

n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ (32)

� n is the number of observation

31

� ŷ1, ŷ2, . . . , ŷn are predicted values

� y1, y2, . . . , yn are observed values

2.4.3 Time Series Cross Validation

Time series cross-validation is a more complicated variant of training/test sets. This process consists

of several test sets, each containing a single observation. The equivalent training set contains only

observations that arise before the test set's observations. As a result, forecasts cannot be generated

using future data. The �rst observations are not included in the test set since a valid estimate cannot

be obtained from a tiny training sample [74]. The following graphic depicts a series of training and test

sets, with blue observations representing the training sets and orange observations representing the test

sets:

Figure 2: Time Series Cross Validation

2.5 Feature Selection

The process of choosing and locating the most valuable characteristics in a data collection is called

feature selection. This technique has a signi�cant impact on the machine learning model's perfor-

mance. There are other ways for this selection process. However, the one employed out this research is

Permutation Feature Selection.

2.5.1 Permutation Feature Importance

The feature's relevance is determined by the increase in the model's prediction error when the order

of the data underneath the feature is shu�ed. A feature is considered important if combining its values

raises a model error since the model relies on the feature for prediction in this situation. A feature is

trivial if mixing its values results in no change in the model error since it then dismisses the feature for

forecasts. Breiman pioneered the use of permutation features to determine the relevance of Random

Forests [9].

32

3 Experiments and Results

The �ndings of the studies on the literature review and the methodologies speci�ed will be shown

and discussed in this section of the study. Python was used to �nd the best date range for the learning

set, to analyze the results and accomplishments of all the models stated above, to �nd the best feature

sets, and to choose the best hyperparameters for all the models.

3.1 Dataset

The dataset used in this study has been taken through Binance API with Python. The features

and their explanations are given below:

1. Open Time: The starting time of the time interval

2. Open: The opening price at the beginning of that speci�c time interval

3. High: The maximum price of the stock within that speci�c time interval

4. Low: The maximum price of the stock within that speci�c time interval

5. Close: The last price of the stock within that time interval

6. Volume: The trading volume of the stock in that time interval

7. Close Time: Closing time of the time interval

8. Number of Trades: Number of trades in that time interval

3.2 Target (Independent) Variable

As the target variable, Close variable will be used to calculate the return. A return is the change

in price of a commodity, investment over time, expressed in either money amount terms or terms of

percentage. Return is denoted as:

Return =
EndingPrice− StartingPrice

StartingPrice
(33)

3.3 Feature Engineering

In machine learning, the real-world data provided to the models is in the form of feature vectors, and

these feature vectors are retrieved from the raw data in order to train the models. Feature engineering

is the practice of identifying the most useful features from data in order to improve the performance of

a machine learning model or job. The number of features is just as critical as the features themselves;

if the features in the feature vectors that represent the model's input data are insu�cient, the model

will fail to perform its primary task; if an attribute vector contains redundant and irrelevant features,

the model will still fail to produce correct results. Not only the model, but also the features used

to describe the data are chosen throughout the machine learning process. While well chosen features

simplify future modeling phases and enhance the capacity of the eventual model to accomplish the

33

target job, if features are not chosen appropriately, a considerably more complicated model may be

necessary to attain the same level of performance. The list of created features with their equations are

given below:

� Day of Week: The number of the day is extracted from "Open Time" column. The numbers

vary from 0 to 6.

� 0 - Monday

� 1 - Tuesday

� 2 - Wednesday

� 3 - Thursday

� 4 - Friday

� 5 - Saturday

� 6 - Sunday

� Week Number: Number of the week for the year. Numbers vary from 0 to 51

� Hour: Hour within the day. Numbers vary from 0 to 23

� Rolling Mean Hourly: The average of last n values in unweighted manner, and n is based on

time intervals. For example, if the range between two data ticks is 5 minutes:

n =
60

5
(34)

� Rolling Median Hourly: The median of last n values in unweighted manner. n is decided the

same way.

� Rolling Max Hourly: The maximum of the last n values. n is decided the same way.

� Rolling Standard Deviation Hourly: The standard deviation of the last n values. n is decided

the same way.

� Hourly Range Close: Hourly range within the last n data ticks. This might give idea about

how volatile was the cryptocurrency within the hour.

HourlyRangeClose = max (Xt, Xt−1, ..., Xt−n)−minXt, Xt−1, ..., Xt−n (35)

� X denotes Close value.

� t denotes time point.

� n denotes previous number of time points.

� Hourly Range Number of Trades: Hourly range of number of trades within the hour. Also

this might give idea about the external factors that might e�ect the number of trades such as

34

Telegram groups or Social Media Platforms. A sudden increase in the number of trades might

mean that there is an update or some news about the cryptocurrency.

= HourlyRangeNumberofTrades = maxXt, Xt−1, Xt−2, Xt−3 −minXt, Xt−1, Xt−2, Xt−3

(36)

� X denotes number of trades.

� t denotes time point.

� n denotes previous number of time points.

� Number of Trades Percentage Change: This feature gives a number of percental change in

trades within last tick. The aim of this feature is to catch sudden changes.

NumberofTradesPercentageChange =
Xt −Xt−1

Xt
× 100 (37)

� Xt denotes the number of trades in the current data point

� Xt−1 denotes the number of trades in the previous data point

� Volume Percentage Change: This feature gives a number of percental change in volume within

last tick. The aim of this feature is to catch sudden changes.

V olumePercentageChange =
Xt −Xt−1

Xt
× 100 (38)

� Xt denotes the amount of volume in the current data point

� Xt−1 denotes the amount of volume in the previous data point

� Month Start Flag: This feature gives information about if the date is around the start (�rst

week) of the month. The aim is try to catch if number of trades or amount of volume is increasing

during the �rst days of the month. Numbers vary from 0 to 1, subject to True and False.

� Month End Flag: This feature gives information about if the date is around the end (last week)

of the month. The aim is try to catch if number of trades or amount of volume is increasing or

decreasing through the last days of the month. Numbers vary from 0 to 1, subject to True and

False.

� Weekend Flag: This feature gives information about whether the date is at the weekend or in

the weekdays. Numbers vary from 0 to 1, subject to True and False.

� Business Hours: This feature gives information about whether it is business hours (9-17).

Numbers vary from 0 to 1, subject to True and False.

� Weighted Average of Close: The logic behind this feature is very similar to Exponential

Smoothing. Calculating the average of last n values by assigning more weight to recent values.

x̄ =
n∑
i=1

wixi (39)

35

3.4 Optimal Training Set Experiments

Apart from comparing machine learning and time series prediction models and combining their

strengths, the e�ect of the date range of the selected training data on the prediction results will be

examined in this study. The best results for the date range will be identi�ed, and all models will be

learned on this training data. While the machine learning technique addresses the issue of how it was

learned, the ideal date range for the training data addresses the question of where it was taught. To

ensure that all the models perform at their highest level, which will also provide of selecting the optimal

dataset for maximum performance, time-series cross-validation (mentioned in 2.4.3 on page 32), and

Permutation Feature Importance (mentioned in 2.5.1 on page 32) were employed. Experimented date

ranges for training data are given below:

� December 1, 2020 - December 1, 2021 (15 - minute intervals)

� January 1, 2021 - December 1, 2021 (15 - minute intervals)

� Februar 1, 2021 - December 1, 2021 (15 - minute intervals)

� March 1, 2021 - December 1, 2021 (15 - minute intervals)

� April 1, 2021 - December 1, 2021 (15 - minute intervals)

� May 1, 2021 - December 1, 2021 (15 - minute intervals)

� June 1, 2021 - December 1, 2021 (15 - minute intervals)

� July 1, 2021 - December 1, 2021 (15 - minute intervals)

� August 1, 2021 - December 1, 2021 (15 - minute intervals)

� September 1, 2021 - December 1, 2021 (15 - minute intervals)

The results for each time interval is given the following chapters.

3.4.1 Experiments for December, 2020 - December, 2021

The table below shows the results of the experiments for models trained on the historical data

between December 1, 2020 - December 1, 2021. The time step in this training dataset is 15 minutes.

With this date interval and time steps, this dataset has 35040 observations. All models are evaluated

with both MAPE and RMSE.

36

Model RMSE MAPE

Lasso Regression 0.0044 1.1504

Extra Trees Regressor 0.0034 2.9856

Random Forest Regressor 0.0033 3.0766

Light Gradient Boosting Machine 0.0034 3.1015

Gradient Boosting Regressor 0.0036 3.2124

K Neighbors Regressor 0.0039 3.2272

Huber Regressor 0.0039 3.5873

AdaBoost Regressor 0.0043 3.588

Ridge Regression 0.0037 3.6113

Linear Regression 0.004 4.4087

Decision Tree Regressor 0.0048 5.9403

Mean of the Models 0.0038 3.4444

Standard Deviation of the Models 0.0004 1.0894

Table 1: Experiment of Models for the date range December 1, 2020 - December 1, 2021 (with 15-minute
time steps)

3.4.2 Experiments for January 1, 2021 - December 1, 2021

The table below shows the results of the experiments for models trained on the historical data

between January 1, 2021 - December 1, 2021. The time step in this training dataset is 15 minutes.

With this date interval and time steps, this dataset has 32064 observations. All models are evaluated

with both MAPE and RMSE.

Model RMSE MAPE

Lasso Regression 0.0044 1.1164

Extra Trees Regressor 0.0039 2.8993

Random Forest Regressor 0.0033 3.15

Light Gradient Boosting Machine 0.0036 3.2039

Gradient Boosting Regressor 0.0034 3.2569

K Neighbors Regressor 0.0034 3.3261

Huber Regressor 0.0038 3.4976

AdaBoost Regressor 0.0042 3.6177

Ridge Regression 0.0037 3.6275

Linear Regression 0.0045 4.9957

Decision Tree Regressor 0.0048 6.5365

Mean of the Models 0.0039 3.5661

Standard Deviation of the Models 0.0004 1.2714

Table 2: Experiment of Models for the date range January 1, 2021 - December 1, 2021 (with 15-minute
time steps)

37

3.4.3 Experiments for February 1, 2021 - December 1, 2021

The table below shows the results of the experiments for models trained on the historical data

between February 1, 2021 - December 1, 2021. The time step in this training dataset is 15 minutes.

With this date interval and time steps, this dataset has 29088 observations. All models are evaluated

with both MAPE and RMSE.

Model RMSE MAPE

Lasso Regression 0.0044 1.095

Extra Trees Regressor 0.0034 3.064

Random Forest Regressor 0.0035 3.2856

Light Gradient Boosting Machine 0.0036 3.3391

Gradient Boosting Regressor 0.0035 3.3941

K Neighbors Regressor 0.0044 3.467

Huber Regressor 0.0039 3.5919

AdaBoost Regressor 0.0038 3.6226

Ridge Regression 0.0038 3.8857

Linear Regression 0.0051 4.1797

Decision Tree Regressor 0.0049 6.4051

Mean of the Models 0.0040 3.5754

Standard Deviation of the Models 0.0005 1.1704

Table 3: Experiment of Models for the date range February 1, 2021 - December 1, 2021 (with 15-minute
time steps)

3.4.4 Experiments for March 1, 2021 - December, 2021

The table below shows the results of the experiments for models trained on the historical data

between March 1, 2021 - December 1, 2021. The time step in this training dataset is 15 minutes. With

this date interval and time steps, this dataset has 26400 observations. All models are evaluated with

both MAPE and RMSE.

38

Model RMSE MAPE

Lasso Regression 0.0045 1.0429

Extra Trees Regressor 0.0034 2.9168

Random Forest Regressor 0.0035 3.0237

Light Gradient Boosting Machine 0.0035 3.0974

Gradient Boosting Regressor 0.0044 3.5433

K Neighbors Regressor 0.0037 3.6776

Huber Regressor 0.0039 3.6842

AdaBoost Regressor 0.0039 3.8827

Ridge Regression 0.0038 3.9043

Linear Regression 0.0102 3.9537

Decision Tree Regressor 0.0047 5.7086

Mean of the Models 0.0045 3.4941

Standard Deviation of the Models 0.0018 1.0543

Table 4: Experiment of Models for the date range March 1, 2021 - December 1, 2021 (with 15-minute
time steps)

3.4.5 Experiments for April 1, 2021 - December 1, 2021

The table below shows the results of the experiments for models trained on the historical data

between April 1, 2021 - December 1, 2021. The time step in this training dataset is 15 minutes. With

this date interval and time steps, this dataset has 23424 observations. All models are evaluated with

both MAPE and RMSE.

Model RMSE MAPE

Lasso Regression 0.0038 1.0414

Extra Trees Regressor 0.0029 2.3807

Random Forest Regressor 0.0028 2.4718

Light Gradient Boosting Machine 0.0029 2.5219

Gradient Boosting Regressor 0.0032 2.643

K Neighbors Regressor 0.003 2.6469

Huber Regressor 0.0034 2.6677

AdaBoost Regressor 0.0032 2.7276

Ridge Regression 0.0037 3.3061

Linear Regression 0.0033 3.7387

Decision Tree Regressor 0.0042 4.9629

Mean of the Models 0.0033 2.8280

Standard Deviation of the Models 0.0004 0.9210

Table 5: Experiment of Models for the date range April 1, 2021 - December 1, 2021 (with 15-minute
time steps)

39

3.4.6 Experiments for May 1, 2021 - December 1, 2021

The table below shows the results of the experiments for models trained on the historical data

between May 1, 2021 - December 1, 2021. The time step in this training dataset is 15 minutes. With

this date interval and time steps, this dataset has 20544 observations. All models are evaluated with

both MAPE and RMSE.

Model RMSE MAPE

Lasso Regression 0.0036 1.065

Extra Trees Regressor 0.0032 1.7993

Random Forest Regressor 0.0028 2.4127

Light Gradient Boosting Machine 0.0027 2.5298

Gradient Boosting Regressor 0.0028 2.5918

K Neighbors Regressor 0.0031 2.6097

Huber Regressor 0.0029 2.7443

AdaBoost Regressor 0.0031 2.9846

Ridge Regression 0.0031 3.1443

Linear Regression 0.0036 3.8844

Decision Tree Regressor 0.004 5.4612

Mean of the Models 0.0031 2.8388

Standard Deviation of the Models 0.0003 1.0749

Table 6: Experiment of Models for the date range May 1, 2021 - December 1, 2021 (with 15-minute
time steps)

3.4.7 Experiments for June 1, 2021 - December 1, 2021

The table below shows the results of the experiments for models trained on the historical data

between June 1, 2021 - December 1, 2021. The time step in this training dataset is 15 minutes. With

this date interval and time steps, this dataset has 17568 observations. All models are evaluated with

both MAPE and RMSE.

40

Model RMSE MAPE

Lasso Regression 0.0036 1.0703

Extra Trees Regressor 0.0031 2.1566

Random Forest Regressor 0.0027 2.4321

Light Gradient Boosting Machine 0.0028 2.4517

Gradient Boosting Regressor 0.0026 2.5219

K Neighbors Regressor 0.0031 2.5426

Huber Regressor 0.0027 2.5899

AdaBoost Regressor 0.0035 2.8051

Ridge Regression 0.0031 3.0622

Linear Regression 0.0032 3.292

Decision Tree Regressor 0.0039 4.7022

Mean of the Models 0.0031 2.6933

Standard Deviation of the Models 0.0003 0.8341

Table 7: Experiment of Models for the date range June 1, 2021 - December 1, 2021 (with 15-minute
time steps)

3.4.8 Experiments for July 1, 2021 - December 1, 2021

The table below shows the results of the experiments for models trained on the historical data

between July 1, 2021 - December 1, 2021. The time step in this training dataset is 15 minutes. With

this date interval and time steps, this dataset has 14688 observations. All models are evaluated with

both MAPE and RMSE.

Model RMSE MAPE

Lasso Regression 0.0035 1.1298

Extra Trees Regressor 0.0027 2.462

Random Forest Regressor 0.0027 2.4806

Light Gradient Boosting Machine 0.0028 2.495

Gradient Boosting Regressor 0.0026 2.5105

K Neighbors Regressor 0.0031 2.5765

Huber Regressor 0.003 2.7259

AdaBoost Regressor 0.0035 2.8468

Ridge Regression 0.0035 3.1523

Linear Regression 0.003 3.2987

Decision Tree Regressor 0.0038 4.9868

Mean of the Models 0.0031 2.7877

Standard Deviation of the Models 0.0003 0.8735

Table 8: Experiment of Models for the date range July 1, 2021 - December 1, 2021 (with 15-minute
time steps)

41

3.4.9 Experiments for August 1, 2021 - December 1, 2021

The table below shows the results of the experiments for models trained on the historical data

between August 1, 2021 - December 1, 2021. The time step in this training dataset is 15 minutes. With

this date interval and time steps, this dataset has 11712 observations. All models are evaluated with

both MAPE and RMSE.

Model RMSE MAPE

Lasso Regression 0.0036 1.0642

Extra Trees Regressor 0.0031 2.2711

Random Forest Regressor 0.0031 2.4019

Light Gradient Boosting Machine 0.003 2.5228

Gradient Boosting Regressor 0.0028 2.6788

K Neighbors Regressor 0.0029 2.6895

Huber Regressor 0.0028 2.755

AdaBoost Regressor 0.0029 2.7901

Ridge Regression 0.003 3.1227

Linear Regression 0.0035 3.3862

Decision Tree Regressor 0.004 5.7802

Mean of the Models 0.0031 2.8602

Standard Deviation of the Models 0.0003 1.0806

Table 9: Experiment of Models for the date range August 1, 2021 - December 1, 2021 (with 5-minute
time steps)

3.4.10 Experiments for September 1, 2021 - December 1, 2021

The table below shows the results of the experiments for models trained on the historical data

between September 1, 2021 - December 1, 2021. The time step in this training dataset is 15 minutes.

With this date interval and time steps, this dataset has 8736 observations. All models are evaluated

with both MAPE and RMSE.

42

Model RMSE MAPE

Lasso Regression 0.0035 1.1378

Extra Trees Regressor 0.003 1.8434

Random Forest Regressor 0.003 2.6791

Light Gradient Boosting Machine 0.0028 2.8631

Gradient Boosting Regressor 0.0028 2.985

K Neighbors Regressor 0.003 3.001

Huber Regressor 0.003 3.0278

AdaBoost Regressor 0.0028 3.1425

Ridge Regression 0.0028 3.1452

Linear Regression 0.0035 3.4628

Decision Tree Regressor 0.0039 5.6433

Mean of the Models 0.0031 2.9937

Standard Deviation of the Models 0.0003 1.0518

Table 10: Experiment of Models for the date range September 1, 2021 - December 1, 2021 (with
5-minute time steps)

3.4.11 Results of Experiments for Training Set

MAPE metric was used to determine the optimal interval for the training set. The mean and

standard deviation of MAPE for each month were evaluated. After the evaluation, it is determined

that the best interval for training data is June 1, 2021 - December 1, 2021, which has 17568 observations.

The results are given in the table below:

Date Interval Mean MAPE Standard Deviation MAPE

December 2020 - December 2021 3.4444 1.0894

January 2021 - December 2021 3.5661 1.2714

February 2021 - December 2021 3.5754 1.1704

March 2021 - December 2021 3.4941 1.0543

April 2021 - December 2021 2.8280 0.9210

May 2021 - December 2021 2.8388 1.0749

June 2021 - December 2021 2.6933 0.8341

July 2021 - December 2021 2.7877 0.8735

August 2021 - December 2021 2.8602 1.0806

September 2021 - December 2021 2.9937 1.0518

Table 11: Mean and Standard Deviation of MAPE for Each Month Interval

3.5 Experiments for Machine Learning Models

Results of all the Machine Learning models that were mentioned in 2.1 on page 14 will be demon-

strated in this section. To make the evaluation step fairly, models were trained with the historical

43

data of June 1, 2021 - December 1, 2021, and tested on December 13, 2021 - December 14, 2021, with

10-folds time-series cross-validation. The aim of evaluating all models with di�erent training and test

sets is to ensure that the model is robust and will perform well on unseen data. 10-folds time-series

cross-validation is also employed throughout the application of Permutation Feature Importance, and

the most valuable features are given below. All of the features are explained in chapter 3.3 on page 33.

� Rolling Median Hourly

� Weighted Average

� Volume Change Percentage

� Number of Trades

� Volume

� Number of Trades Change Percentage

� Rolling Standard Deviation Hourly

� Number of Trades - Min Max Range

� Close Price - Min Max Range

� Rolling Mean Hourly

� Hour

� Week Number

� Day of Week

All Machine Learning models were trained with 13 features and 17568 observations. In the following

sections, MAPE and RMSE of the results and visualizations of the results will be demonstrated for

each model. The top �ve best-performing models are selected and blended.

3.5.1 Experiment of Lasso Regression

The model is trained with 13 features and 17568 observations with 15-minute time steps. The

model's performance is evaluated with MAPE and RMSE throughout all 10-folds. Mean MAPE,

RMSE, and Standard Deviation of MAPE and RMSE were calculated for evaluation. The aim of

calculating the model's mean and standard deviation is to ensure that the model is robust and stable

within each fold. Results of Lasso Regression are given below:

44

Fold RMSE MAPE

0 0.0053 1.004

1 0.003 1.0219

2 0.0041 1.0461

3 0.0035 1.0293

4 0.0033 1.0669

5 0.004 1.029

6 0.0035 1.0194

7 0.0036 1.0945

8 0.003 1.2125

9 0.0037 1.0256

Mean of the Models 0.0037 1.0549

Standard Deviation of the Models 0.0006 0.0580

Table 12: RMSE and MAPE scores of Lasso Regression for Each Fold

The table above shows good performance within MAPE metrics. But RMSE is not very promising.

Thus, additional visualizations are used to ensure the model is performing well.

(a) Lasso Regression on Training Set. (b) Lasso Regression on Test Set.

Figure 3: Lasso Regression's Performance on both Training and Test Sets

By looking at the �gure above, it is possible to see that Lasso Regression predicted the same constant

value for each observation. From this, it can be understood that just looking at the metrics will not be

enough: visualizations should support. Thus, Lasso Regression is not used in further steps.

3.5.2 Experiment of Extra Trees

The model is trained with 13 features and 17568 observations with 15-minute time steps. The

model's performance is evaluated with MAPE and RMSE throughout all 10-folds. Mean MAPE, RMSE,

45

Standard Deviation of MAPE, and RMSE were calculated for evaluation. The aim of calculating the

mean and standard deviation of the model is to make sure that the model is robust and stable within

each fold. Results of Extra Trees are given below:

Fold RMSE MAPE

0 0.0042 2.3539

1 0.0024 3.2646

2 0.003 2.2322

3 0.0026 2.8609

4 0.0023 2.1529

5 0.0031 2.4872

6 0.0024 2.6247

7 0.0027 2.4403

8 0.0022 4.029

9 0.0026 1.9028

Mean of the Models 0.0027 2.6348

Standard Deviation of the Models 0.0005 0.5882

Table 13: RMSE and MAPE scores of Extra Trees Regress�on for Each Fold

(a) Extra Trees Regression on Training Set. (b) Extra Trees Regression on Test Set.

Figure 4: Extra Trees Regression's Performance on both Training and Test Sets

In �gure 4a it is impossible to separate the lines of predictions and actual values, which is a good

sign. But it is not possible to be sure about the model's performance without checking the performance

on the test set. Thus, in �gure 4b, we can see that the Extra Trees Regressor is performing well on the

test set too.

46

3.5.3 Experiment of LightGBM

The model is trained with 13 features and 17568 observations with 15-minute time steps. The

model's performance is evaluated with MAPE and RMSE throughout all 10-folds. Mean MAPE, RMSE,

Standard Deviation of MAPE, and RMSE were calculated for evaluation. The aim of calculating the

mean and standard deviation of the model is to make sure that the model is robust and stable within

each fold. Results of LightGBM are given below:

Fold RMSE MAPE

0 0.0044 2.8626

1 0.0024 5.1535

2 0.003 2.4974

3 0.0026 2.8452

4 0.0025 2.1109

5 0.0031 2.3745

6 0.0024 2.1937

7 0.0028 2.2953

8 0.0023 5.4166

9 0.0027 1.9802

Mean of the Models 0.0028 2.9729

Standard Deviation of the Models 0.0005 1.1888

Table 14: RMSE and MAPE scores of LightGBM Regression for Each Fold

(a) LightGBM Regression on Training Set. (b) LightGBM Regression on Test Set.

Figure 5: LightGBM Regression's Performance on both Training and Test Sets

Standard deviation must be low within the folds to perform at a high level with these algorithms.

Each time models make predictions on unseen data, models should perform at a good but stable level

to be robust. In �gure 5a and 5b, LightGBM performs well in both training and test data.

47

3.5.4 Experiment of Random Forest

The model is trained with 13 features and 17568 observations with 15-minute time steps. The

model's performance is evaluated with MAPE and RMSE throughout all 10-folds. Mean MAPE, RMSE,

Standard Deviation of MAPE, and RMSE were calculated for evaluation. The aim of calculating the

mean and standard deviation of the model is to make sure that the model is robust and stable within

each fold. Results of Random Forest are given below:

Fold RMSE MAPE

0 0.0042 2.5888

1 0.0024 3.8524

2 0.003 1.9868

3 0.0026 2.5365

4 0.0024 2.1586

5 0.0032 2.4872

6 0.0025 2.9399

7 0.0028 2.7956

8 0.0023 3.7288

9 0.0027 1.971

Mean of the Models 0.0028 2.7045

Standard Deviation of the Models 0.0005 0.6221

Table 15: Random Forest Regression's Performance on both Training and Test Sets

(a) Random Forest Regression on Training Set. (b) Random Forest Regression on Test Set.

Figure 6: Random Forest Regression's Performance on both Training and Test Sets

Random Forest Regression also performs well on both training data and test data. Both in �gure

?? and ??, the lines are overlapping which means the model is following the trend in both plots.

48

3.5.5 Experiment of Extreme Gradient Boosting

The model is trained with 13 features and 17568 observations with 15-minute time steps. The

model's performance is evaluated with MAPE and RMSE throughout all 10-folds. Mean MAPE, RMSE,

Standard Deviation of MAPE, and RMSE were calculated for evaluation. The aim of calculating the

mean and standard deviation of the model is to make sure that the model is robust and stable within

each fold. Results of Extreme Gradient Boosting are given below:

Fold RMSE MAPE

0 0.0042 2.4969

1 0.0024 5.0354

2 0.0031 2.0864

3 0.0027 2.8286

4 0.0025 2.2181

5 0.0032 2.5816

6 0.0027 2.7106

7 0.0029 2.2475

8 0.0024 4.1457

9 0.0028 2.0715

Mean of the Models 0.0028 2.8422

Standard Deviation of the Models 0.0005 0.9285

Table 16: Extreme Gradient Boosting's Performance on both Training and Test Sets

(a) Extreme Gradient Boosting on Training Set. (b) Extreme Gradient Boosting on Test Set.

Figure 7: Extreme Gradient Boosting's Performance on both Training and Test Sets

With the Standard Deviation MAPE 0.9285 and RMSE with 0.0005, and overlapping lines in �gure

7a with tight lines in �gure ??, the Extreme Gradient Boosting algorithm is performing well on both

seen and unseen data.

49

3.5.6 Experiment of Ridge Regression

The model is trained with 13 features and 17568 observations with 15-minute time steps. The

model's performance is evaluated with MAPE and RMSE throughout all 10-folds. Mean MAPE, RMSE,

Standard Deviation of MAPE, and RMSE were calculated for evaluation. The aim of calculating the

mean and standard deviation of the model is to make sure that the model is robust and stable within

each fold. Results of Ridge Regression are given below:

Fold RMSE MAPE

0 0.0044 2.3056

1 0.0029 4.3775

2 0.0034 3.1719

3 0.003 2.9904

4 0.0028 2.3448

5 0.0035 2.8321

6 0.0029 2.764

7 0.0031 2.0848

8 0.0026 3.642

9 0.0031 2.2735

Mean of the Models 0.0031 2.8786

Standard Deviation of the Models 0.0004 0.6747

(a) Ridge Regression on Training Set. (b) Ridge Regression on Test Set.

Figure 8: Ridge Regression's Performance on both Training and Test Sets

With the Standard Deviation MAPE 0.6747 and RMSE with 0.0004, and overlapping lines in �gure

8a with very tight lines in �gure 8b, the Ridge Regression algorithm is performing well on both seen

and unseen data.

50

3.5.7 Experiment of AdaBoost Regression

The model is trained with 13 features and 17568 observations with 15-minute time steps. The

model's performance is evaluated with MAPE and RMSE throughout all 10-folds. Mean MAPE, RMSE,

Standard Deviation of MAPE, and RMSE were calculated for evaluation. The aim of calculating the

mean and standard deviation of the model is to make sure that the model is robust and stable within

each fold. Results of AdaBoost Regression are given below:

Fold RMSE MAPE

0 0.0045 2.6796

1 0.0027 4.5383

2 0.0034 1.976

3 0.0031 2.3948

4 0.0028 2.593

5 0.0035 2.1883

6 0.003 3.5833

7 0.0032 2.2197

8 0.0026 3.3237

9 0.0032 2.4064

Mean of the Models 0.0032 2.7903

Standard Deviation of the Models 0.0005 0.7533

Table 17: AdaBoost Regression's Performance on both Training and Test Sets

(a) AdaBoost Regression on Training Set. (b) AdaBoost Regression on Test Set.

Figure 9: AdaBoost Regression's Performance on both Training and Test Sets

With the Standard Deviation MAPE 0.7533 and RMSE with 0.0005, and overlapping lines in �gure

9a with slightly close lines in �gure 9b, AdaBoost Regression algorithm is performing well on both seen

and unseen data.

51

3.5.8 Experiment of Huber Regression

The model is trained with 13 features and 17568 observations with 15-minute time steps. The

model's performance is evaluated with MAPE and RMSE throughout all 10-folds. Mean MAPE, RMSE,

Standard Deviation of MAPE, and RMSE were calculated for evaluation. The aim of calculating the

mean and standard deviation of the model is to make sure that the model is robust and stable within

each fold. Results of Huber Regression are given below:

Fold RMSE MAPE

0 0.0045 2.1008

1 0.0029 3.9094

2 0.0034 2.2361

3 0.003 2.5354

4 0.0029 2.1278

5 0.0036 2.3858

6 0.0029 2.3399

7 0.0032 2.2825

8 0.0026 4.1732

9 0.0032 2.1258

Mean of the Models 0.0032 2.6216

Standard Deviation of the Models 0.0005 0.7233

Table 18: Huber Regression's Performance on both Training and Test Sets

(a) Huber Regression on Training Set. (b) Huber Regression on Test Set.

Figure 10: Huber Regression's Performance on both Training and Test Sets

With the Standard Deviation MAPE 0.7233 and RMSE with 0.0005, and overlapping lines in �gure

10a with very close lines in �gure 10b, the Huber Regression algorithm is performing very well on both

seen and unseen data.

52

3.5.9 Experiment of Linear Regression

The model is trained with 13 features and 17568 observations with 15-minute time steps. The

model's performance is evaluated with MAPE and RMSE throughout all 10-folds. Mean MAPE, RMSE,

Standard Deviation of MAPE, and RMSE were calculated for evaluation. The aim of calculating the

mean and standard deviation of the model is to make sure that the model is robust and stable within

each fold. Results of Linear Regression are given below:

Fold RMSE MAPE

0 0.0045 2.5568

1 0.003 4.1591

2 0.0034 3.5073

3 0.003 3.0731

4 0.0051 2.5023

5 0.0036 2.9483

6 0.0029 2.8338

7 0.0031 2.1013

8 0.0026 3.9432

9 0.0031 2.3031

Mean of the Models 0.0034 2.9928

Standard Deviation of the Models 0.0007 0.6529

Table 19: Linear Regression's Performance on both Training and Test Sets

(a) Linear Regression on Training Set. (b) Linear Regression on Test Set.

Figure 11: Linear Regression's Performance on both Training and Test Sets

With the Standard Devation MAPE 0.6529 and RMSE with 0.0007, and overlapping lines in �gure

11a with very close lines in �gure 11b, Linear Regression algorithm is performing very well on both

seen and unseen data.

53

3.5.10 Experiment of K - Nearest Neighbors

The model is trained with 13 features and 17568 observations with 15-minute time steps. The

performance of the model is evaluated with MAPE and RMSE throughout all 10-folds. Mean MAPE,

RMSE, and Standard Deviation of MAPE, and RMSE were calculated for evaluation. The aim of

calculating the mean and standard deviation of the model is making sure that the model is robust and

stable within each folds. Results of K - Nearest Neighbors are given below:

Fold RMSE MAPE

0 0.0053 1.9161

1 0.0032 3.3137

2 0.004 3.0678

3 0.0035 2.9494

4 0.0033 2.7757

5 0.004 2.64

6 0.0034 4.4082

7 0.0036 3.0586

8 0.003 3.4244

9 0.0037 2.4048

Mean of the Models 0.0037 2.9958

Standard Deviation of the Models 0.0006 0.6309

Table 20: K-Nearest Neighbor Regression's Performance on both Training and Test Sets

(a) K-Nearest Neighbor Regression on Training Set. (b) K-Nearest Neighbor Regression on Test Set.

Figure 12: K-Nearest Neighbor Regression's Performance on both Training and Test Sets

With the Standard Devation MAPE 0.6309 and RMSE with 0.0006, and overlapping lines in �gure

12a with slightly close lines in �gure 12b, K-Nearest Neighbor Regression algorithm is performing very

well on both seen and unseen data.

54

3.5.11 Experiment of Decision Trees

The model is trained with 13 features and 17568 observations with 15-minute time steps. The

performance of the model is evaluated with MAPE and RMSE throughout all 10-folds. Mean MAPE,

RMSE, and Standard Deviation of MAPE, and RMSE were calculated for evaluation. The aim of

calculating the mean and standard deviation of the model is making sure that the model is robust and

stable within each folds. Results of Decision Tree Regressor are given below:

Fold RMSE MAPE

0 0.0055 4.3292

1 0.0035 8.9912

2 0.0045 4.0901

3 0.0036 4.0419

4 0.0032 4.0229

5 0.0046 4.7191

6 0.0036 3.762

7 0.0038 4.0524

8 0.0032 8.9865

9 0.0039 3.3371

Mean of the Models 0.0039 5.0332

Standard Deviation of the Models 0.0006 2.0058

Table 21: Decision Tree Regression's Performance on both Training and Test Sets

(a) Decision Tree Regression on Training Set. (b) Decision Tree Regression on Test Set.

Figure 13: Decision Tree Regression Performance on both Training and Test Sets

With the Standard Devation MAPE 2.0058 and RMSE with 0.0006, and overlapping lines in �gure

13a with slightly close lines in �gure 13b, Decision Tree Regression algorithm is performing not well on

both seen and unseen data. Having bigger standard deviation means that the model is not very stable.

55

Thus, Decision Tree will not be used in further steps.

3.6 Evaluation of All Algorithms

To compare all the algorithms, all the results are combined and evaluated with MAPE. Training

conditions for all algorithms are:

� Time-Series Cross Validation with 10 folds

� Training data is from July 1, 2021 to December 1, 2021 with 17568 observations with 13 features.

� Test data is from December 14, 2021 to December 15, 2021 with 96 observations.

� All algorithms were evaluated with Line Plots, MAPE and RMSE.

The combined results of each Machine Learning model is given in the table below:

Model MEAN MAPE Standard Deviation MAPE

Lasso Regression 1.0549 0.058

Extra Trees 2.6348 0.5882

LightGBM 2.9729 1.1888

Random Forest 2.7045 0.6221

Extreme Gradient Boosting 2.8422 0.9285

Ridge Regression 2.8786 0.6747

AdaBoost Regression 2.7903 0.7533

Huber Regression 2.6216 0.7233

Linear Regression 2.9928 0.6529

K - Nearest Neighbors 2.9958 0.6309

Decision Trees 5.0332 20058

Table 22: MAPE (with Mean and Standard Deviation) Results of Each Algorithm

Throughout the experimentation step, Lasso Regression and Decision Trees were problematic. These

2 algorithms did not �t the data well as it can be seen in �gure 3a on page 45, and 3b on page 45

for Lasso Regression, and it can be seen that Decision Trees are over�tted on training data in �gure

13a, thus, they did not �t well on training data on �gure 13b. On the other hand, best performing

algorithms are:

� Extra Trees

� Ridge Regression

� Linear Regression

� Huber Regression

� AdaBoost Regression

56

3.7 Blending of Best Models

Using blending technique, these models will be combined and used as the champion model. The

model is trained with 13 features and 17568 observations with 15-minute time steps. The performance

of the model is evaluated with MAPE and RMSE throughout all 10-folds. Mean MAPE, RMSE, and

Standard Deviation of MAPE, and RMSE were calculated for evaluation. The aim of calculating the

mean and standard deviation of the model is making sure that the model is robust and stable within

each folds. Results of Blended Models are given below:

Fold RMSE MAPE

0 0.0043 2.0794

1 0.0027 3.4056

2 0.0033 2.1452

3 0.0029 2.1757

4 0.0025 1.9657

5 0.0034 2.3064

6 0.0028 2.8384

7 0.003 1.9548

8 0.0025 3.4089

9 0.003 2.0125

Mean of the Models 0.00304 2.42926

Standard Deviation of the Models 0.0005 0.5455

Table 23: MAPE (with Mean and Standard Deviation) Results of Blended Models

The table above shows that blending increased the overall performance of models. The best results

of MAPE (with standard deviation and mean) is achieved. The predictions on training and test set are

given in the plots below:

(a) Blended Models on Training Set. (b) Blended Models on Test Set.

Figure 14: Blended Models' Performance on both Training and Test Sets

57

In �gure 14a, it is possible to see that the blended model was successful to catch the trend, but as

mentioned before, the predictions on the test results must be similar or close to make sure that model

is fair and robust. In �gure 14b, the predictions are very close to the actual values. Thus, blending is

successful. This blended model will be used in the further steps.

3.8 Experiments for Univariate Time Series Models

All models that were described in chapter 2.3 on 26 are used throughout the experiments. For these

models, the training data interval is from July 1, 2021 to December 13, 2021, with 15-minute time

steps. All models are trained with 15814 observations. Univariate models are trained with 1 feature,

multivariate models are trained with 13 features as in Machine learning models. Models are evaluated

with MAPE and RMSE. 10-fold time series cross-validation was used. ADF test was employed to

test for stationarity. Since this study forecasts the return rather than the closing price, the data is

stationary with p − value = 0. To �nd the best parameters for the ARIMA model's p, d, q, AIC test

was employed. The results of the AIC test are given below:

3.8.1 Autocorrelation

To have a better understanding of the data, the experiments started with Autocorrelation plots.

An autocorrelation graph is used to determine whether the components of a time series are positively,

negatively, or independently associated. The graph is given below:

Figure 15: Autocorrelation Plot of Bitcoin Return Prices with 15-minute Time Steps

The autocorrelation plot for daily returns on Apple stock demonstrates that the majority of peaks

are statistically insigni�cant. This means that, as seen above, the returns are not signi�cantly corre-

lated.

58

Model Parameters AIC

ARIMA(2,0,2) -132873.412

ARIMA(0,0,0) -132869.721

ARIMA(1,0,0) -132868.941

ARIMA(0,0,1) -132869.005

ARIMA(0,0,0) -132870.664

ARIMA(1,0,2) -132875.173

ARIMA(0,0,2) -132877.035

ARIMA(0,0,3) -132875.235

ARIMA(1,0,1) -132868.270

ARIMA(1,0,3) -132861.712

ARIMA(0,0,2) -132877.942

ARIMA(0,0,1) -132869.967

ARIMA(1,0,2) -132876.085

ARIMA(0,0,3) -132876.136

ARIMA(1,0,1) -132869.276

ARIMA(1,0,3) -132862.658

Table 24: Parameter Selection for ARIMA models with Akaike Information Criterion Test

The table above shows that the best model is ARIMA(0,0,2) with the AIC value of -132877.035.

These parameters are used for ARIMA models in further steps.

3.8.2 Naive Forecaster

Model is trained with 15814 observations from July 1, 2021 to December 13,2021 with 15-minute

time steps. The aim of calculating the mean and standard deviation of the model is making sure that

the model is robust and stable within each fold. Results of Naive Forecaster are given below:

59

Fold RMSE MAPE

0 0.0041 4.1483

1 0.0034 1.9281

2 0.0111 3.6892

3 0.0055 3.5867

4 0.0122 20.7644

5 0.0048 12.2264

6 0.0042 2.3761

7 0.0079 6.7995

8 0.0098 12.5297

9 0.0057 4.7343

Mean of the Models 0.0068 7.2783

Standard Deviation of the Models 0.0030 5.7411

Table 25: RMSE and MAPE scores of Naive Forecaster for Each Fold

Figure 16: Naive Forecaster Predictions on Test Data

Naive Forecaster predicted a constant value for each observation. Thus, this model is not used in

further steps.

3.8.3 Seasonal Naive Forecaster

Model is trained with 15814 observations from July 1, 2021 to December 13,2021 with 15-minute

time steps. The aim of calculating the mean and standard deviation of the model is making sure that

the model is robust and stable within each fold. Results of Seasonal Naive Forecaster are given below:

60

Fold RMSE MAPE

0 0.005 4.7872

1 0.0048 7.8029

2 0.0104 2.4609

3 0.0067 5.1401

4 0.0065 7.4647

5 0.006 4.7211

6 0.0051 5.1075

7 0.006 3.433

8 0.0059 3.8407

9 0.0073 6.1684

Mean of the Models 0.0063 5.0927

Standard Deviation of the Models 0.0015 1.6003

Table 26: RMSE and MAPE scores of Seasonal Naive Forecaster for Each Fold

Figure 17: Seasonal Naive Forecaster Predictions on Test Data

Forecasting results of Seasonal Naive Forecaster looks promising. The lines for predicted values are

close to the actual values' lines. Thus, Seasonal Naive Forecaster is used in the further steps.

3.8.4 ETS

Model is trained with 15814 observations from July 1, 2021 to December 13, 2021 with 15-minute

time steps. The aim of calculating the model's mean and standard deviation is to make sure that the

model is robust and stable within each fold. Results of ETS are given below:

61

Fold RMSE MAPE

0 0.0036 1.0019

1 0.0032 1.0016

2 0.0102 0.00009994

3 0.0047 1.0113

4 0.0045 1.3758

5 0.0027 1.0117

6 0.0039 1.0078

7 0.0037 1.0008

8 0.0045 0.00009818

9 0.0043 0.00009881

Mean of the Models 0.0045 1.038

Standard Deviation of the Models 0.0019 0.00001

Table 27: RMSE and MAPE scores of Seasonal Naive Forecaster for Each Fold

Figure 18: ETS Predictions on Test Data

Even though ETS has low Mean and Standard Deviation MAPE, the graphic above shows that it

predicted a constant value for each observation. Thus, it will not be used in further experiments.

3.8.5 ARIMA

Model is trained with 15814 observations from July 1, 2021 to December 13,2021 with 15-minute

time steps. The aim of calculating the model's mean and standard deviation is to make sure that the

model is robust and stable within each fold. Results of ARIMA are given below:

62

Fold RMSE MAPE

0 0.0036 1.0292

1 0.0032 1.0442

2 0.0102 1.0009

3 0.0047 1.0059

4 0.0045 0.00009849

5 0.0027 1.0603

6 0.0039 1.0012

7 0.0037 0.00009994

8 0.0045 1.0116

9 0.0043 1.0111

Mean of the Models 0.00453 1.0149

Standard Deviation of the Models 0.0019 0.00002

Table 28: RMSE and MAPE scores of ARIMA for Each Fold

Figure 19: ETS Predictions on Test Data

Even though ARIMA has low Mean and Standard Deviation MAPE, the graphic above shows that

it predicted a constant value for each observation. Thus, it will not be used in further experiments.

3.8.6 Exponential Smoothing

Model is trained with 15814 observations from July 1, 2021 to December 13,2021 with 15-minute

time steps. The aim of calculating the model's mean and standard deviation is to make sure that the

model is robust and stable within each fold. Results of Exponential Smoothing is given below:

63

Fold RMSE MAPE

0 0.0036 0.00009843

1 0.0032 1.007

2 0.0102 0.00009991

3 0.0047 1.0113

4 0.0045 1.0201

5 0.0027 1.1706

6 0.0039 1.0097

7 0.0037 1.002

8 0.0045 1.0427

9 0.0044 1.0363

Mean of the Models 0.00454 1.0283

Standard Deviation of the Models 0.0019 0.0005

Table 29: RMSE and MAPE scores of Exponential Smoothing for Each Fold

Figure 20: ETS Predictions on Test Data

Even though ETS has low Mean and Standard Deviation MAPE, the graphic above shows that it

predicted a constant value for each observation. Thus, it will not be used in further experiments.

3.9 Experiments for Multivariate Time Series Models

All models that were described in chapter 2.3 on 26 are used throughout the experiments. For

these models, the training data interval is from July 1, 2021 to December 13, 2021 with 15-minute time

steps. All models are trained with 15814 observations. Multivariate models are trained with 1 feature,

multivariate models are trained with 15 features. Models are evaluated with MAPE and RMSE. 10-

64

fold time series cross-validation was used. ADF test was employed to test for stationarity. During

the experiments of Univariate models, only one ADF test was conducted. Since there are 15 numeric

features for Multivariate models, 15 tests are run. The results of the ADF tests are given below.

Test Name Column Name P Value Stationarity

ADF Open 0.498519 Non-Stationary

ADF High 0.511696 Non-Stationary

ADF Low 0.442089 Non-Stationary

ADF Close 0.497759 Non-Stationary

ADF Volume 2.56E-21 Stationary

ADF Number of Trades 2.33E-20 Stationary

ADF Rolling Mean Hourly 0.468676 Non-Stationary

ADF Rolling Median Hourly 0.470616 Non-Stationary

ADF Rolling Max Hourly 0.484866 Non-Stationary

ADF Rolling Std Hourly 0 Stationary

ADF Hourly Range Min - Max 4.09E-22 Stationary

ADF Number of Trades Hourly Range 3.61E-22 Stationary

ADF Number of Trades Percental Change 0 Stationary

ADF Percental Change of Volume 0 Stationary

ADF Weighted Average 0.485478 Non-Stationary

Table 30: ADF Test for Exogenous Variables

The table above shows that any calculations that include percentages remove stationarity. The

features that are not stationary will be transformed to stationary using di�erencing. The table below

shows the results of the ADF test after �rst-order di�erencing.

65

Test Name Column Name P Value Stationarity

ADF Open 0 Stationary

ADF High 0 Stationary

ADF Low 0 Stationary

ADF Close 0 Stationary

ADF Volume 0 Stationary

ADF Number of Trades 0 Stationary

ADF Rolling Mean Hourly 4.15E-24 Stationary

ADF Rolling Median Hourly 0 Stationary

ADF Rolling Max Hourly 0 Stationary

ADF Rolling Std Hourly 0 Stationary

ADF Hourly Range Min - Max 0 Stationary

ADF Number of Trades Hourly Range 0 Stationary

ADF Number of Trades Percental Change 0 Stationary

ADF Percental Change of Volume 0 Stationary

ADF Weighted Average 0 Stationary

Table 31: ADF Test for Exogenous Variables after First-Order Di�erencing

After �rst-order di�erencing, every exogenous variable is stationary.

3.9.1 Vector Autoregression

All models that were described in chapter 2.3 on 26 are used throughout the experiments. For

these models, the training data interval is from July 1, 2021 to December 13, 2021 with 15-minute time

steps. All models are trained with 15814 observations. Multivariate models are trained with 1 feature,

multivariate models are trained with 15 features. Models are evaluated with MAPE and RMSE. 10-

fold time series cross-validation was used. ADF test was employed to test for stationarity. During

the experiments of Univariate models, only one ADF test was conducted. Since there are 15 numeric

features for Multivariate models, 15 tests are conducted, and non-stationary columns are transformed

to stationary. After �nishing the preprocessing, to decide the p of VAR, the AIC test is applied. The

test results are given in the table below:

Test Name Order Value

AIC 1 109.662

AIC 2 99.963

AIC 3 70.524

AIC 4 71.864

Table 32: AIC for each order

In the table, the highest lag order 1 has the highest AIC. Thus, p is 1. With the p value of 1, the

results of VAR is given below:

66

Figure 21: VAR Predictions on Test Data

Forecasting results of VAR looks promising. The lines for predicted values are close to the actual

values' lines. Thus, VAR is used in the further steps.

3.9.2 Vector Autoregression Moving Average

All models that were described in chapter 2.3 on 26 are used throughout the experiments. For

these models, the training data interval is from July 1, 2021 to December 13, 2021 with 15-minute time

steps. All models are trained with 15814 observations. Multivariate models are trained with 1 feature,

multivariate models are trained with 15 features. Models are evaluated with MAPE and RMSE. 10-

fold time series cross-validation was used. ADF test was employed to test for stationarity. During

the experiments of Univariate models, only one ADF test was conducted. Since there are 15 numeric

features for Multivariate models, 15 tests are conducted, and non-stationary columns are transformed

to stationary. The result of VARMA is given below:

67

Figure 22: VARMA Predictions on Test Data

Forecasting results of VARMA is not looking very good. Thus, VARMA is used in the further steps.

3.10 Blending of Best Time Series Models

After the experiments, the superior Time Series models are Seasonal Naive Forecaster and VAR.

Thus, these models will be blended. The results are given in the plot below:

Figure 23: Blending of Time Series Models

The blending of Time Series models looks better than single Time Series models. But, the perfor-

mance of Machine learning models looked better. In the �nal steps, both Time Series and Machine

68

learning models will be blended and evaluated.

3.11 Blending of All Models

In this chapter, both Machine learning and Time Series models will be blended. On the other hand,

their MAPE will be evaluated to see if any of those models perform better. MAPE results of each type

of model are given in the table below:

Models MAPE

Machine learning - Blended 2.429

Time Series - Blended 9.285

Time Series and Machine learning Blended 5.729

Table 33: Results of Blended Models

Figure 24: Blending Results of Time Series and Machine learning Models

Results show that the Blended Machine learning model was the superior model. The list of blended

models is as follows:

� Extra Trees

� Ridge Regression

� Linear Regression

� Huber Regression

� Adaboost Regression

69

4 Conclusions

The purpose of this research was to evaluate various models and to guarantee that each model

performs to its full capacity and then to blend these models to produce even more excellent outcomes.

To maximize the potential of machine learning models, feature engineering, permutation feature im-

portance, and cross-validation were used; methods such as di�erence taking, AIC test, ADF test, and

extra features were used to maximize the potential of time series models were employed. Detailed

information about feature engineering is in chapter 3.3 on page 33 Additionally, experiments for the

ideal training data were undertaken to forecast the time between December 14 and December 15 to

enhance the model performance. June 1, 2021 to December 1, 2021 is the optimal training data range.

The results for each date interval can be found on chapter ?? on page ??. This time period was used to

train the models used in the research. Time-series cross-validation using mean and standard deviation

of MAPE and root mean square error (RMSE) were utilized to assess model performance and choose

the optimal training data range for this study. Hyperparameter tuning was not employed because the

default values produced better results than tuned models. Following the evaluation of both models,

the following models were found to be the most accurate:

� Best performing machine learning models:

� Extra Trees Regression

� Ridge Regression

� Linear Regression

� Huber Regression

� Adaboost

� Best performing time-series models:

� Seasonal Naive Forecaster

� Vector Autoregression

Machine learning models and time-series models were evaluated independently, then blending was

applied to each model once it had been evaluated individually. The performance of blended models

outperformed separate ones, while the performance of the time-series model was unsatisfactory. Most

time-series models predicted a constant value and required a signi�cant amount of time to train. On

the other hand, blending time-series models improved their performance, but it was still insu�cient

compared to machine learning models in terms of accuracy. The champion model, which was created

by combining �ve machine learning algorithms, had a MAPE of 2.42% and was selected as the �nal

model.

70

Future work

The �aws and limits methodologies established throughout the research study have led to the

identi�cation of the following topics that should be investigated further in the future.

� Time restrictions prevented us from using approaches and other indicators that may have been

utilized to improve performance in this research because of the large number of machine learning

experiments that were completed.

� Due to the fact that a lot of time was spent on the learning data for the time series models, not

enough e�ort was spent on the parameters of the time series models.

� Since cryptocurrency market is highly volatile and manipulative through social media and other

platforms, text data with support of sentiment analysis can be used for machine learning models.

� To reduce the time of training for time-series models, GPU support or parallel processing can be

employed.

� Training data set experimentations were conducted for only machine learning models due to time

restrictions. Best performing date interval for time-series models can be experimented.

� Rather than time-series cross-validation, other cross-validation techniques can be used such as

Sliding Window Splitter, Expanding Window Splitter.

� Due to time restrictions, and training time; VARMAX, VARIMAX, SARIMAX could not be

implemented.

� In this study, time-steps are 15 minutes; for further research, other time-steps can be experi-

mented.

� Bitcoin is the most popular cryptocurrency and number of transactions are really high. Another

cryptocurrency can be selected to have better results.

� While evaluating the models, monthly RMSE or MAPE might be calculated. During the calcu-

lation, weighted average can be used to make sure that models have less errors as gets closer to

the unseen data.

71

References

[1] Amin Azari. Bitcoin Price Prediction: An ARIMA Approach, CoRR, 2019, 1904.05315,

https://arxiv.org/pdf/1904.05315.pdf

[2] Yike Xu Bitcoin Price Forecast Using LSTM and GRU Recurrent networks, and Hidden Markov

Model, UCLA, 2020, https://escholarship.org/uc/item/70d9n5sd

[3] Yuankai Guo, Yangyang Li, Yuan Xu. Study on the application of LSTM-LightGBM Model in

stock rise and fall prediction, International Conference on Computer Science Communication and

Network Security (CSCNS2020), 2021, 2, 6, https://doi.org/10.1051/matecconf/202133605011

[4] Esam Mahdi, Víctor Leiva, Saed Mara'Beh, Carlos Martin-Barreiro. A New Approach

to Predicting Cryptocurrency Returns Based on the Gold Prices with Support Vector Ma-

chines during the COVID-19 Pandemic Using Sensor-Related Data, Sensors, 2021, 21(18),

https://doi.org/10.3390/s21186319

[5] Ziaul Haque Munim, Mohammad Hassan Shakil, Ilan Alon. Next-Day Bitcoin Price Forecast,

Journal of Risk and Financial Management, 2019, 12(2), https://doi.org/10.3390/jrfm12020103

[6] Kaby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, Yoram Singer. On-

line Passive-Aggressive Algorithms Journal of Machine learning Research, 2006, 7(19),

http://jmlr.org/papers/v7/crammer06a.html

[7] Harris Drucker, Chris J.C. Burges, Linda Kaufman, Alex Smola, Vladimir Vapnik. Support Vector

Rector Machines, 1965

[8] J.R. Quinlan. Induction of Decision Trees, Kluwer Academic Publishers, 1986

[9] Leo Breiman. Random Forests, Machine Learning, 2001, 45, pp. 5-32,

http://dx.doi.org/10.1023/A3A1010933404324

[10] Pierre Geurts, Damien Ernst, Louis Wehenke. Extremely Randomized Trees, Machine Learning,

2006, 63(1), pp. 3-42, http://dblp.uni-trier.de/db/journals/ml/ml63.html/GeurtsEW06

[11] Dimitri P Solomatine, Durga Shrestha. AdaBoost.RT: A boosting algorithm for regression problems,

IEEE International Joint Conference on Neural Networks, 2004

[12] Jerome H. Friedman. Greedy Function Approximation: A Gradient Boosting Machine, Annals of

Statistics, 2001, 23(5), pp. 1189 - 1232

[13] Tianqi Chen, Carlos Guestrin. XGBoost: A Scalable Tree Boosting System, 2016, DOI:

10.1145/2939672.2939785

[14] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, Tie-Yan

Liu. LightGBM: A Highly E�cient Gradient Boosting Decision Tree, Advances in Neural Infor-

mation Processing Systems 30, 2017, pp. 3146-3154, http://papers.nips.cc/paper/6907-lightgbm-

a-highly-e�cient-gradient-boosting-decision-tree.pdf

72

[15] Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. & Gulin, A. CatBoost: un-

biased boosting with categorical features.. NeurIPS. pp. 6639-6649 (2018), http://dblp.uni-

trier.de/db/conf/nips/nips2018.html/ProkhorenkovaGV18

[16] Bergstra, J. & Bengio, Y. Random Search for Hyper-Parameter Optimization. Journal Of Machine

Learning Research. 13 pp. 281-305 (2012)

[17] Larson S. The shrinkage of the coe�cient of multiple correlation, 1931

[18] Assimakopoulos, V. & Nikolopoulos, K. The theta model: a decompo-

sition approach to forecasting. International Journal Of Forecasting. 16,

521-530 (2000), http://www.sciencedirect.com/science/article/B6V92-41J6944-

9/1/2e47�d682aba83ec23c3243e3359d09

[19] Taylor, S. & Letham, B. Forecasting at Scale.. PeerJ PrePrints. 5 pp. e3190 (2017),

http://dblp.uni-trier.de/db/journals/peerjpre/peerjpre5.html

[20] João Almeida, Shravan Tata, Andreas Moser, Vikko Smit. Bitcoin prediction using ANN, IN4015:

Neural Networks, 2015

[21] Amjad, M. & Shah, D. Trading Bitcoin and Online Time Series Prediction.. NIPS Time Series

Workshop. 55 pp. 1-15 (2016), http://dblp.uni-trier.de/db/conf/nips/tsw2016.html

[22] McNally, S., Roche, J. & Caton, S. Predicting the Price of Bitcoin Using Machine Learning.. PDP.

pp. 339-343 (2018), http://dblp.uni-trier.de/db/conf/pdp/pdp2018.html

[23] Georgoula, I., Pournarakis, D., Bilanakos, C., Sotiropoulos, D. & Giaglis, G. Using Time-Series

and Sentiment Analysis to Detect the Determinants of Bitcoin Prices.. MCIS. pp. 20 (2015),

http://dblp.uni-trier.de/db/conf/mcis/mcis2015.html

[24] Madan, I. Automated Bitcoin Trading via Machine Learning Algorithms. (2014)

[25] Ji, S., Kim, J. & Im, H. A Comparative Study of Bitcoin Price Prediction Using Deep Learning.

Mathematics. 7 (2019), https://www.mdpi.com/2227-7390/7/10/898

[26] Jang, H. & Lee, J. An Empirical Study on Modeling and Prediction of Bitcoin Prices With

Bayesian Neural Networks Based on Blockchain Information.. IEEE Access. 6 pp. 5427-5437 (2018),

http://dblp.uni-trier.de/db/journals/access/access6.html

[27] Lahmiri, S. & Bekiros, S. Cryptocurrency forecasting with deep learning

chaotic neural networks. Chaos, Solitons and Fractals. 118 pp. 35-40 (2019),

https://www.sciencedirect.com/science/article/pii/S0960077918310233

[28] Simon, Jeyasheela Rakkini & Geetha, K Block Mining reward prediction with Polynomial Re-

gression, Long short-term memory, and Prophet API for Ethereum blockchain miners. ITM Web

Conf.. 37 pp. 01004 (2021), https://doi.org/10.1051/itmconf/20213701004

73

[29] T. Phaladisailoed and T. Numnonda, "Machine Learning Models Comparison for Bitcoin Price

Prediction," 2018 10th International Conference on Information Technology and Electrical Engi-

neering (ICITEE), 2018, pp. 506-511, doi: 10.1109/ICITEED.2018.8534911.

[30] Jaquart, P., Dann, D. & Weinhardt, C. Short-term bitcoin market prediction via

machine learning. The Journal Of Finance And Data Science. 7 pp. 45-66 (2021),

https://www.sciencedirect.com/science/article/pii/S2405918821000027

[31] Sun, X., Liu, M. & Sima, Z. A novel cryptocurrency price trend forecast-

ing model based on LightGBM. Finance Research Letters. 32 pp. 101084 (2020),

https://www.sciencedirect.com/science/article/pii/S1544612318307918

[32] Hattori, T. A forecast comparison of volatility models using realized volatility: ev-

idence from the Bitcoin market. Applied Economics Letters. 27, 591-595 (2020),

https://doi.org/10.1080/13504851.2019.1644421

[33] Mallqui, D. & Fernandes, R. Predicting the direction, maximum, minimum and closing prices of

daily Bitcoin exchange rate using machine learning techniques.. Appl. Soft Comput.. 75 pp. 596-606

(2019), http://dblp.uni-trier.de/db/journals/asc/asc75.html

[34] Aalborg, H., Molnár, P. & De Vries, J. What can explain the price, volatil-

ity and trading volume of Bitcoin?. Finance Research Letters. 29 pp. 255-265 (2019),

https://www.sciencedirect.com/science/article/pii/S1544612318302058

[35] Robert Adcock, Nikola Gradojevic. Non-fundamental, non-parametric Bitcoin forecasting. Physica

A, Elsevier, 2019, 531, pp.121727 -. �10.1016/j.physa.2019.121727f

[36] Kristjanpoller, W. & Minutolo, M. A hybrid volatility forecasting framework integrating GARCH,

arti�cial neural network, technical analysis and principal components analysis.. Expert Syst. Appl..

109 pp. 1-11 (2018), http://dblp.uni-trier.de/db/journals/eswa/eswa109.html

[37] Walther, T., Klein, T. & Bouri, E. Exogenous drivers of Bitcoin and Cryptocur-

rency volatility � A mixed data sampling approach to forecasting. Journal Of In-

ternational Financial Markets, Institutions And Money. 63 pp. 101133 (2019),

https://www.sciencedirect.com/science/article/pii/S1042443119302446

[38] Devlin, J., Chang, M., Lee, K. & Toutanova, K. BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. CoRR. abs/1810.04805 (2018),

http://arxiv.org/abs/1810.04805

[39] Roy, A. & Ojha, M. Twitter sentiment analysis using deep learning models. 2020 IEEE 17th India

Council International Conference (INDICON). pp. 1-6 (2020)

[40] Mallqui, D. & Fernandes, R. Predicting the direction, maximum, minimum and closing prices of

daily Bitcoin exchange rate using machine learning techniques.. Appl. Soft Comput.. 75 pp. 596-606

(2019), http://dblp.uni-trier.de/db/journals/asc/asc75

74

[41] Briere, Marie and Oosterlinck, Kim and Szafarz, Ariane, Virtual Currency, Tangible Re-

turn: Portfolio Diversi�cation with Bitcoin (2015). Journal of Asset Management, 16, 6,

365-373, doi:10.1057/jam.2015.5 , Available at SSRN: https://ssrn.com/abstract=2324780 or

http://dx.doi.org/10.2139/ssrn.2324780

[42] Catania, L., Grassi, S. & Ravazzolo, F. Forecasting Cryptocurrencies Financial Time Series. (Cen-

tre for Applied Macro-,2018,3), https://ideas.repec.org/p/bny/wpaper/0063.html

[43] Kodama, O., Pichl, L. & Kaizoji, T. REGIME CHANGE AND TREND PREDICTION FOR

BITCOIN TIME SERIES DATA. CBU International Conference Proceedings. 5 pp. 384 (2017,9)

[44] Ebru �eyma Karakoyun. Real-Time Prediction of Time-Series with Deep Learning, 2018

[45] Siami-Namini, S. & Namin, A. Forecasting Economics and Financial Time Series: ARIMA vs.

LSTM. CoRR. abs/1803.06386 (2018), http://arxiv.org/abs/1803.06386

[46] Briere, Marie and Oosterlinck, Kim and Szafarz, Ariane, Virtual Currency, Tangible Re-

turn: Portfolio Diversi�cation with Bitcoin (2015). Journal of Asset Management, 16, 6,

365-373, doi:10.1057/jam.2015.5 , Available at SSRN: https://ssrn.com/abstract=2324780 or

http://dx.doi.org/10.2139/ssrn.2324780

[47] Grachev, O. Application of Time Series Models (ARIMA, GARCH, and ARMA-GARCH) for Stock

Market Forecasting. (2017)

[48] Montaño Moreno JJ, Palmer Pol A, Muñoz Gracia P. Arti�cial neural networks applied to fore-

casting time series. Psicothema. 2011 Apr;23(2):322-9. PMID: 21504688.

[49] Baasher, A. & Fakhr, M. FOREX Daily Trend Prediction using Machine Learning Techniques.

(2011,11)

[50] Biau, G., Scornet, E. A random forest guided tour. TEST 25, 197�227 (2016).

https://doi.org/10.1007/s11749-016-0481-7

[51] Geurts, P., Ernst, D. & Wehenkel, L. Extremely randomized trees.. Mach. Learn.. 63, 3-42 (2006),

http://dblp.uni-trier.de/db/journals/ml/ml63.html

[52] M. Tranmer and M. Elliot, Multiple Linear Regression, The Cathie Marsh Centre for Census and

Survey Research (CCSR) 2008.

[53] Hoerl, Arthur E., and Robert W. Kennard. �Ridge Regression: Biased Estimation for Nonorthog-

onal Problems.� Technometrics, vol. 42, no. 1, [Taylor & Francis, Ltd., American Statistical Asso-

ciation, American Society for Quality], 2000, pp. 80�86, https://doi.org/10.2307/1271436.

[54] Tibshirani, R. Regression shrinkage and selection via the Lasso. Journal Of The Royal Statistical

Society. Series B (Methodological). pp. 267-288 (1996)

[55] Zhou, D. & Jetter, K. Approximation with polynomial kernels and SVM classi�ers.. Adv. Comput.

Math.. 25, 323-344 (2007,2,7), http://dblp.uni-trier.de/db/journals/adcm/adcm25.html

75

[56] Rumelhart, D., Hinton, G. & Williams, R. Learning representations by back-propagating errors.

Nature 323, 533�536 (1986). https://doi.org/10.1038/323533a0

[57] Cunningham, P. & Delany, S. k-Nearest Neighbour Classi�ers: 2nd Edition (with Python exam-

ples). CoRR. abs/2004.04523 (2020), https://arxiv.org/abs/2004.04523

[58] Everette S. Gardner, Jr. Exponential Smoothing: The State of the Art, Journal of Forecasting,

1985, 4(1), pp. 1-18, https://doi.org/10.1002/for.3980040103

[59] Adhikari, R. & Agrawal, R. An Introductory Study on Time Series Modeling and Forecasting.

CoRR. abs/1302.6613 (2013), http://dblp.uni-trier.de/db/journals/corr/corr1302.html

[60] Stock, J. & Watson, M. Vector Autoregressions. Journal Of Economic Perspectives. 15, 101-115

(2001,12), https://www.aeaweb.org/articles?id=10.1257/jep.15.4.101

[61] Canova, Fabio and Ciccarelli, Matteo, Panel Vector Autoregressive Models: A Survey (January

16, 2013). ECB Working Paper No. 1507, Available at SSRN: https://ssrn.com/abstract=2201610

or http://dx.doi.org/10.2139/ssrn.2201610

[62] Li, D., Ling, S. & Tong, H. On moving-average models with feedback. Bernoulli. 18 (2012,5)

[63] Burlando, P., Rosso, R., Cadavid, L. & Salas, J. Forecasting of short-term

rainfall using ARMA models. Journal Of Hydrology. 144, 193-211 (1993),

https://www.sciencedirect.com/science/article/pii/0022169493901726

[64] Abrigo, M. & Love, I. Estimation of Panel Vector Autoregression in Stata. The Stata Journal. 16,

778-804 (2016), doi:10.1177/1536867X1601600314

[65] Isu�, E., Loukas, A., Perraudin, N. & Leus, G. Forecasting Time Series With VARMA

Recursions on Graphs.. IEEE Trans. Signal Process.. 67, 4870-4885 (2019), http://dblp.uni-

trier.de/db/journals/tsp/tsp67.html

[66] Östermark, R. & Saxén, H. VARMAX-modelling of blast furnace pro-

cess variables. European Journal Of Operational Research. 90, 85-101 (1996),

https://www.sciencedirect.com/science/article/pii/0377221794003041

[67] Kwiatkowski, D., Phillips, P., Schmidt, P. & Shin, Y. Testing the null hypothesis

of stationarity against the alternative of a unit root: How sure are we that eco-

nomic time series have a unit root?. Journal Of Econometrics. 54, 159-178 (1992),

https://www.sciencedirect.com/science/article/pii/030440769290104Y

[68] Montgomery, D.C., Jennings, C.L. and Kulachi, M. Introduction to Time Series Analysis and

Forecasting, The Journal of Infectious Diseases, 2008

[69] Hyndman, R. & Athanasopoulos, G. Forecasting: Principles and Practice. (OTexts,2018)

[70] Newbold, P. The Principles of the Box-Jenkins Approach. Operational Research Quarterly (1970-

1977). 26, 397-412 (1975), http://www.jstor.org/stable/3007750

76

[71] Mahesh, B. Machine Learning Algorithms -A Review. (2019,1)

[72] Liaw, A. & Wiener, M. Classi�cation and Regression by RandomForest. Forest. 23 (2001,11)

[73] Ghahramani Z. (2004) Unsupervised Learning. In: Bousquet O., von Luxburg U., Rätsch G. (eds)

Advanced Lectures on Machine Learning. ML 2003. Lecture Notes in Computer Science, vol 3176.

Springer, Berlin, Heidelberg.

[74] Jong, P. A Cross-Validation Filter for Time Series Models. Biometrika. 75, 594-600 (1988),

http://www.jstor.org/stable/2336613

77

	Literature Review
	Scientific Research
	Machine learning Models
	Decision Trees
	Random Forest
	LightGBM
	XGBoost
	Extra Trees
	AdaBoost Regressor
	Catboost Regressor
	Huber Regressor
	Multiple Linear Regression
	Ridge Regression
	Lasso Regression
	Support Vector Regression
	K-Nearest Neighbor Regressor

	Time-Series
	Time-Series Components
	Stationary Time Series
	Autocovariance, Autocorrelation and Partial Correlation Functions
	Differencing
	Unit Root Tests

	Time-Series Forecasting
	Naive Forecaster
	Seasonal Naive Forecaster
	Exponential Smoothing
	Autoregressive Models (AR)
	Moving Average (MA)
	Autoregressive Moving Average (ARMA)
	Autoregressive Integrated Moving Average (ARIMA)
	Vector Autoregression (VAR)
	Vector Autoregressive Moving Average (VARMA)
	Vector Autoregressive Moving Average with Exogenous Regressors (VARMAX)
	Prophet

	Model Selection and Evaluation
	RMSE
	MAPE
	Time Series Cross Validation

	Feature Selection
	Permutation Feature Importance

	Experiments and Results
	Dataset
	Target (Independent) Variable
	Feature Engineering
	Optimal Training Set Experiments
	Experiments for December, 2020 - December, 2021
	Experiments for January 1, 2021 - December 1, 2021
	Experiments for February 1, 2021 - December 1, 2021
	Experiments for March 1, 2021 - December, 2021
	Experiments for April 1, 2021 - December 1, 2021
	Experiments for May 1, 2021 - December 1, 2021
	Experiments for June 1, 2021 - December 1, 2021
	Experiments for July 1, 2021 - December 1, 2021
	Experiments for August 1, 2021 - December 1, 2021
	Experiments for September 1, 2021 - December 1, 2021
	Results of Experiments for Training Set

	Experiments for Machine Learning Models
	Experiment of Lasso Regression
	Experiment of Extra Trees
	Experiment of LightGBM
	Experiment of Random Forest
	Experiment of Extreme Gradient Boosting
	Experiment of Ridge Regression
	Experiment of AdaBoost Regression
	Experiment of Huber Regression
	Experiment of Linear Regression
	Experiment of K - Nearest Neighbors
	Experiment of Decision Trees

	Evaluation of All Algorithms
	Blending of Best Models
	Experiments for Univariate Time Series Models
	Autocorrelation
	Naive Forecaster
	Seasonal Naive Forecaster
	ETS
	ARIMA
	Exponential Smoothing

	Experiments for Multivariate Time Series Models
	Vector Autoregression
	Vector Autoregression Moving Average

	Blending of Best Time Series Models
	Blending of All Models

	Conclusions

