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INTRODUCTION 

Just like every other organ of the body, the kidney is also prone to developing pathological 

changes known as diseases of the kidney. Kidney diseases are usually associated with loss of 

glomerular function thus homeostatic control of the body’s internal environment by the kidney is 

lost (Pesce and Schena, 2010). Glomerular diseases can destroy the kidneys and may eventually 

end in kidney failure. During the investigation of every kidney disease, kidney pathologists always 

want to know the morphological states of the kidney including the structure of glomeruli, because 

the glomeruli filtration rate can be used for kidney disease diagnosis (Ebert and Schaeffner, 

2018).  

The use of whole slide image (WSI) has improved clinical diagnosis and really helped kidney 

pathologists. Now, pathologists can have their scanned glass slide as an image at different 

magnification levels, stored and shared among other pathologists. WSI is used in image analysis 

(Hanna et al., 2020). Image analysis is the way of extracting essential information from an image. 

Semantic segmentation is one of the techniques of image analysis used to classify each pixel in 

each image independently (Alom et al., 2019). Semantic segmentation of glomeruli is a way of 

distinguishing pixels of glomeruli from other classes of pixel in each image that consist of glomeruli 

(Zhang and Ji, 2011). 

Generally, in image analysis, the use of the traditional method of conventional image analysis is 

challenging when it comes to analyzing medical images. This is because medical images are high 

content images, the contents have different structures and different magnification (Wetteland et 

al., 2020). Also, conventional image analysis itself involves customization and adjustment of 

parameters as it involves many independent steps and algorithms, and high human error trying 

to implement this method (Godinez et al., 2017).  

However, a better approach of medical images analysis is the use of machine learning algorithms 

where image analysis is performed by machines automatically (He et al., 2015). Traditional 

machine learning workflow is used in classification, segmentation, regression, and anomaly 

detection in image analysis. (Komura and Ishikawa, 2018). Feature extraction stage in machine 

learning workflow is also challenging because filters (such as Gabor, Sobel, edge detection etc.) 

must be handcrafted on images before ML algorithm like random forest or support vector machine 

is used (Komura and Ishikawa, 2018).  
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The most recent method of machine learning is deep convolutional neural networks (DCNN) 

(Gibson et al., 2018; Wulczyn et al., 2021). Deep convolutional neural networks are better 

because a lot of parameters are generated from images and trained automatically (Aatresh et al., 

2021; Roy et al., 2021a, 2021b).  

In recent years, there have been advancements through the innovation of neural network 

architectures for segmentation of high content images in medical image analysis. These 

advancements came through the introduction of inception block (Szegedy et al., 2015), skip 

connections ResNet (He et al., 2015), visualization of CNN layer (Simonyan and Zisserman, 

2015), the use of residual blocks for vanishing gradient problems (He et al., 2016), cardinality (He 

et al., 2020; Zagoruyko and Komodakis, 2016), multiscale convolutional neural networks (MCNN) 

(Godinez et al., 2017), channel boosting (Liang et al., 2019; Wang et al., 2017) and ensemble of 

deep convolutional neural network models (Gu et al., 2022).  

In many current applications DCNN workflow has been engaged in the field of medicine for 

segmentation of medical image, but few innovations of CNN architecture have been used for 

kidney glomeruli segmentation.  One of the most recently used architecture for kidney glomeruli 

semantic segmentation is basic UNET architecture but no innovation of processing unit was used 

in this research (Gallego et al., 2021). Most recently, Moradi and his research team conducted a 

feasibility study on tomographic kidney images using a customized UNET architecture but whole 

slide image fully adopted by pathologist was not used (Moradi et al., 2022). 

More importantly, building a model with deep convolution neural networks for glomeruli 

segmentation involves bulk annotated data, drawing annotations on high content cellular images 

are challenging due to human error, to draw a quality annotation takes a lot of time (Lutnick et al., 

2019). Thus, it is difficult for pathologists to get efficient annotated data to train a good deep 

convolutional neural network algorithms for glomeruli segmentation in whole slide images. And 

because the structure of kidney glomeruli varies in sizes in whole slide images, the prediction 

accuracy by trained neural network model for kidney glomeruli segmentation is affected by image 

resolution (Wetteland et al., 2020).  

In this current research, a new multiresolution of deep convolutional neural network workflow is 

examined. It applies an iterative annotation strategy which involves the customization processing 

units of DCNN architecture. It optimizes kidney glomeruli semantic segmentation accuracy in the 

whole slide image. 
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AIM AND TASKS 

Aim 

Develop a new multiresolution deep convolutional based workflow for glomeruli segmentation 

using an iterative annotation strategy. 

Tasks 

Develop a workflow for multiresolution image patch extraction 

Develop and validate a CNN based algorithm that would be able to generate more annotations 

using an iterative strategy. 

Develop and validate a multiresolution UNET model with attention blocks and residual blocks that 

would be able to perform glomeruli segmentation task. 

Test and evaluate the performance of built models using kidney glomeruli datasets from ZENODO  
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LITERATURE REVIEW 

Function of the kidney 

The kidney is an important organ of the human urinary system. There are two bean shaped 

kidneys located at the posterior ends of the abdomen below the rib cage. Blood enters the kidney 

directly from an abdominal aorta (artery). In the kidney, there are tiny blood vessels called 

glomeruli. On daily basis of a human’s life, about 135 litres of the blood are being filtered by the 

glomeruli and because of this, about 2 litres of urine is being produced every day. Each 

glomerulus is attached to small structure called tubule. The main function of the kidneys is 

excretion of foreign substances and metabolic waste from the blood via the urine, but the kidney 

also has other regulatory or secretory functions (Kaartinen et al., 2019). A unit of a glomerulus 

and a tubule is called nephron, Nephron excrete foreign substances and metabolic waste in the 

urine (Kaartinen et al., 2019). 

Regulatory function of the kidneys 

Kidney regulates the internal environment of the body by constantly monitoring the quality and 

quantity of blood that flows through it per unit time and with the information obtained it makes 

decisions on how to prevent deviation of blood composition away from the expected normal 

(Hoenig & Zeidel, 2014). 

The regulates the internal environment by secreting renin an enzyme which potentiates the Renin 

Angiotensin Aldosterone System (RAAS) and eventually leads to an increase in blood pressure 

(Pluznick and Caplan, 2015); Regulation water loss in the urine (Danziger and Zeidel, 2015); 

Regulation of sodium concentrations by controlling its transportation across the tubular wall 

(Palmer and Schnermann, 2015); Maintaining Potassium balance (Subramanya and Ellison, 

2014); Maintaining potential hydrogen (PH) balance (Curthoys and Moe, 2014); Maintaining the 

Balance of magnesium, Phosphate and Calcium (Blaine et al., 2015). 

 

 

 



9 
 

The secretory function of the kidneys 

Secretion of Calcitriol the active form of Vitamin D. Also, secretion of Erythropoietin: an important 

hormone found in the bone exactly bone marrow, and erythropoietin mainly stimulates red blood 

cells’ production resulting to a low Oxygen concentration of the tissue (Wang and Kestenbaum, 

2018). 

 Morphological changes in glomeruli diseases 

Glomerular cytotoxicity is characterised by reduction of the glomerular cells and monolayer (Haltia 

et al., 1998). Changes in the thickness of the basement membrane of the glomeruli was observed 

in examination of glomerulonephritis (Bohle et al., 1976). Alteration of ultra-structures of the 

glomeruli could be a biomarker for pathophysiology of kidney disease and clinical diagnosis. 

(Kannan et al., 2019). 

Minimal Change disease: or MCD as an acronym which is one of leading causes of nephrotic 

syndrome, whereby protein in large amounts is deposited in the urine. When the filters in the 

kidney are destroyed, protein could escape into the urine to form what is called proteinuria 

(Feehally, 2010).  

Inability of the glomeruli to filter blood could result to immunoglobulin A (antibody) to bind up in 

the kidney, because of this disease such as Berger’s disease emanated (Swaminathan et al., 

2006; Pesce and Schena, 2010).  

In Membranous nephropathy, the glomerular capillary walls thicken homogenously in the later 

stages, and this is due to the formation of immune complex on the basement membrane outer 

parts (Nortier et al., 2021). Idiopathic nodular glomerulosclerosis (ING) has been identified by the 

expansion of the mesangial cells with nodularity of the glomerular highlighted in renal biopsies 

(Chandragiri et al., 2016). 
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Worldwide concern 

Renal disease can be either acute or chronic with the latter having a poor prognosis and higher 

prevalence. Due to the increasing amount of cases, high cost of treatment and high mortality rate, 

renal disease has become a disease of global public health concern (Levey et al., 2011). 

According to Bornstein, 10% of the world population suffer from renal disease (Bornstein et al., 

2014). Amount of renal disease diagnosed in Lithuania has risen dramatically (Vincerževskienė 

et al., 2014). $ US 23 million was budgeted for the treatment and diagnosis of renal diseases in 

Uruguay. An article written by Znaor shows that renal cancer is the most predominant in Europe 

(Znaor et al., 2015). $ US 48 billion is budgeted yearly for the diagnosis and management of 

Renal Disorders. In sub-Saharan Africa, the risk diseases of the kidney are high among the young 

adults (Arogundade et al., 2020) . 

 

 Focal and segmental glomerulosclerosis is the most common glomerular diseases among African 

Americans, and this is a concern today (Pesce and Schena, 2010). In Latin American country like 

Brazil, Lupus nephritis is prominent and most common glomerular disease (Kanjanabuch, 

Kittikowit and Eiam-Ong, 2009).  

According to Briganti et al. in 2001 in Pesce and Schena, 2010, on the prevalence of 

glomerulonephritis in Australia, they observed that “Immunoglobulin A neuropathy, focal and 

segmental glomerulosclerosis, Lupus nephritis and vasculitis were the most common renal 

diseases in adults with a male predominance for all glomerulonephritides except Lupus nephritis” 

(Pesce and Schena, 2010). 
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Digital Pathology 

Digital pathology is one of the fields of pathology in which with technologies pathologists acquire, 

interpret, manage, and share pathology information (Keim et al., 2008; Corvò et al., 2019). 

Specimen slides are converted from glass slides and then studied and analyzed on a computer 

screen. 

 

 

Figure 1. Schematical representation showing the interaction between the three pillars (Data, 

models, and visualization) (Keim et al., 2008; Corvò et al., 2019). 

 
Figure 1 above shows a general step taken by pathologists to investigate the content of glass 

slides. The content of these slides is easily converted to images when they are being scanned by 

digital cameras. These image data could be transformed using some image processing algorithm. 

Visualization is done through mapping and models could also be built by the pathologist using 

some computer algorithms during investigation.  
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Whole slide Image (WSI)  

Whole slide image aka WSI is a specialized type of images, it’s like a pyramid of images as shown 

in figure 2 below (Khened et al., 2021; van Rijthoven et al., 2021; Roy et al., 2021a; Wetteland et 

al., 2020). Normally, Brightfield illumination is used to capture most WSIs. Stained slides such as 

haematoxylin and eosin (H and E), periodic acid Schiff etc. Deep learning applications is made 

more attractive by a wider accessibility of H and E-stained slides compared to custom-tailored 

labeling reagents. Hence in clinical practice, for the characterization of medical tissue samples 

and identification of morphology in tissue samples, H and E-stained tissues are an excellent pick 

(Dimitriou et al., 2019). 

The resolution of the Whole slide image is measured in micrometer per pixel. The pixel size of a 

whole slide image can be influenced by resolution of camera, length of light tube, objective 

magnification. Generally, when 10X scanner is used, images are saved at about 1.0μm per pixel, 

when 20X scanner is used images are saved at about 0.5μm per pixel and when 40X scanner is 

used images would be saved at 0.25μm per pixel (Marini et al., 2021). 

However, the use of stained slides with a cell for in situ molecular data and in cancer research is 

really challenging (Wong et al., 2019). As opposed to numerous other fields where deep learning 

techniques are supervised and adopted, obtaining labeled data is much more difficult and this 

poses a problem on practicing supervised approaches. 

 

Figure 2. Schematical representation of Whole slide image in a pyramidal file format, showing 

different stage of down-sampling versions of the base image (Wetteland et al., 2020). 
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Generally, there are two approaches to be followed to facilitate a deep learning model outcome. 

The first approach involves color variability normalization (Magee et al., 2009) and the second 

approach is through artifact removal (for example, using image filters). The second approach, 

however, is less direct. It makes learning an important part of the training process by developing 

data with synthetically generated data that takes note of a representative variability in staining 

and in artifacts. Although, this finding has not been made universal (Liu et al., 2017), these two 

approaches have been used to adjust the variation from clinical samples that have been archived 

in different clinics and from batch effect (Dimitriou et al., 2019).  

In some real-life applications, the image patches gotten from whole slide images analysis are 

enhanced by image filter-based preprocessing. Color Normalization is used to unify the color 

variation in RGB patches before the training of the network (Anghel et al., 2019). There are various 

other methods of normalization which are also used to improve the quality of patch images such 

as contrast normalization (Komura and Ishikawa, 2018).  

Because a huge amount of training data is required to train a good neural network, data 

augmentation is required to reduce overfitting when the training set is small. Data augmentation 

algorithm is required in most cases to increase the amount of training data. The common 

algorithms for image data augmentation are metal learning, neural time transfer, kernel filters, 

color space augmentation, erasing etc. but the most recently used algorithm is generative 

adversarial networks (GAN) (Shorten and Khoshgoftaar, 2019). 

Role of the pathologist in diagnosis of renal disorders  

In the laboratory, renal function can be assessed by various sample analytic methods which 

includes serum creatinine, blood urea nitrogen, urinalysis, renal biopsy to mention just a few 

(Jialal et al., 2019). Serum creatinine is the gold standard investigation in the diagnosis of renal 

pathology (Koyner, 2012). Creatinine is an endogenous biomarker that is filtered constantly by 

the kidney thus a good biomarker of renal function. It can be used to estimate renal glomerular 

filtration rate. In situations of renal disorders, renal function can be monitored by investigating the 

serum Creatinine level. An increased serum Creatinine level point towards poor renal filtration 

rate and subsequent accumulation of Creatinine in blood (Koyner, 2012). 

It is important to note that the serum creatinine test cannot detect early stages of renal impairment. 

This is because Serum Creatinine level can only be detected in the later part of the disease when 

about half renal function has been lost (Jialal., 2019). This calls for a need to find another 
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diagnostic approach to detecting early stages of renal deterioration and alleviating the deadly 

effect of late diagnosis (Jiang et al., 2020). 

Pathologists make use of appropriate image analysis methods to extract relevant information from 

whole slide images (Aeffner et al., 2016). Method of analysing medical images started at an infant 

stage where a lot of human input was required to arrive at a final diagnosis (Conventional image 

analysis) and is developing towards a more automated form which works on principles of 

convolutional neural network. 

In image analysis with convolutional neural network, pathologist can identify the early stages of 

renal impairment in patients with high risk of developing renal failure (Jiang et al., 2020). For 

example, streams program developed by google could predict the early stages of acute kidney 

injury. It also takes it further by informing the doctor about this new development, thus medical 

intervention is initiated early (Powles and Hodson, 2017). In the kidney, kidney diseases are 

explained by tissue changes and the relationship between different morphology (cells, arteries, 

capsules, etc.) changes in the kidney (Farnik and Zeuzem, 2012). 

Image analysis 

The term "Image analysis" is used to describe the process of retrieving usable information from 

images (Lantuejoul, 2019). The use of images that are produced within the clinical settings (e.g., 

histopathology slide, x-ray film) to solve medical related problems is known as Medical Image 

Analysis). 

Traditionally, medical image analysis involves the use of tools like the microscope to view and 

measure parameters in the laboratory (Aeffner et al., 2019). The pathologist usually identifies 

glomerular diseases by changes in glomerular cells (Farnik and Zeuzem, 2012). In recent years, 

medical image analysis has evolved into a digitized and computerized form. And this has brought 

about the use of a new set of tools like digital slide scanners and Image storage device (Aeffner 

et al., 2019). 

Digital image analysis makes the measurements of cellular components easier.  More details of 

the image on the slide can be appreciated better when viewed on a screen as compared to 

viewing under the microscope. Digitized slides can be archived and organized. There is reduction 

of individual bias when reading the image thus teaching and analysis can be standardized. 

Specialized software can be used for extracting complex data in a manner that is reproducible 

(Aeffner et al., 2016; Godinez et al., 2017).  
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Image Segmentation  

There is need for digital images to be broken down into various segments, regions, or a set of 

pixels to be able to locate lines, curves, and objects in images (Linda G. Shapiro, George C. 

Stockman, 2001), this process is called image segmentation. With the use of any image 

segmentation method, pathologists can extract important information needed for diagnosis and 

then do analysis (Zhang and Ji, 2011). Image contrast, texture, colour etc are criterions utilised 

to achieve successful segmentation of an image (Zhang and Ji, 2011). The segmented image is 

identified and classified by the clinical expert thereby detecting abnormalities in tissue. 

Approaches to Image Segmentation  

There are different approaches to image segmentation. These approaches include a discontinuity 

approach and similarity approach. In discontinuity approach, there is a sudden change in the 

intensity level of the images and the partitions observed in image is based on this sudden change. 

What is of interest in this approach is the identification of isolated points, edges and lines in the 

image and a 3 x 3 mask operation is used in the identification (Kumar, Arthanari and Sivakumar, 

2012). However, in similarity approach images are segmented based on similarity. These 

similarities are detected between image pixels by Machine Learning (ML) algorithms based on a 

threshold (Komura and Ishikawa, 2018). 

Conventional Image Analysis  

Conventional image analysis (CIA) is the first set of technique used to analyse digitized medical 

image. Convectional Image analysis workflow pipeline consists of various independent data 

analytic steps, which includes Segmentation, Classification, Detection of abnormalities (Anwar et 

al., 2018). According to Godinez, “Conventional image analysis approaches essentially transform 

the image data into different levels of abstraction, starting from the pixel intensities and ending in 

the higher-level semantics describing the data” (Godinez et al., 2017). 

The disadvantage of CIA is that the steps are independent of each other and thus requires 

massive human participation (Anwar et al., 2018). It is a time-consuming process (Anwar et al., 

2018). The amount of data necessary is massive and analysing it as a human can be quiet 

challenging (Jiang et al., 2020) . There is risk of human error occurring (Jiang et al., 2020). 

 In-dept analysis of information is necessary and this might be difficult for humans to achieve 

(Jiang et al., 2020). In a bid to solve this problem research has been ongoing on how to integrate 

all the steps in conventional image analysis and automate it. 
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“Conventional image analysis approaches have certain limitations. For instance, several steps 

along the analysis pipeline, such as object segmentation, dimension reduction, and phenotype 

classification, typically require customization to each specific assay using a priori knowledge, such 

as the geometric properties of the expected phenotypes” (Godinez et al., 2017). 

Machine learning 

Machine learning is a technique of data analysis that automates the creation of analytical models. 

ML uses algorithms capable of detecting patterns in existing data, then makes predictions on new 

data after training itself (Komura and Ishikawa, 2018; Sultan et al., 2020). Machine and deep 

learning are both subsets of artificial intelligence of which deep learning is the most recently used 

in research (Lutnick et al., 2019).  In traditional machine learning for image segmentation, features 

from the input image are hand crafted for independent pixel classification (Alom et al., 2019). It 

has a training phase where good values are learned for bias and weight from labelled data. The 

model accuracy based on predictions of the learned model goes through a testing phase on blind 

data to determine the model having the lowest error on generalization (Wulczyn et al., 2021). 

Several applications of machine learning in modern day exist in various forms such as online 

advertising, traffic prediction (OATP) for global positioning system, email spam filtering, storm 

model weather predictions and recommendation systems used for books or movies online (Sultan 

et al., 2020).  

Methods of ML 

Supervised and unsupervised learning are the major two techniques in machine learning mostly 

used in image analysis under digital pathology (Guégan and Hassani, 2018). For supervised 

learning, several algorithms are used which include random forest algorithm, support vector 

machines, and convolutional neural networks (Huang et al., 2018). Conversely, deducing a 

function which, from unlabeled images can describe hidden structures, is the main purpose of 

unsupervised learning. This task involves anomaly detection, clustering and reduction of 

dimensionality and the algorithms involved include autoencoders, k-means and principal 

component analysis (Sultan et al., 2020). 
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Other techniques of ML are semi-supervised learning and multiple instance learning (figure 3). 

The derivative of unsupervised and supervised learning is semi-supervised.  The idea of semi-

supervised learning is that few data are labeled while in multiple instant learning groups of data 

are labelled instead of individual labelling (Komura and Ishikawa, 2018). 

. 

 

 

Figure 3. Schematic diagram explaining the techniques of ML in histopathology (Komura and 

Ishikawa, 2018). 
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Convolutional Neural Networks 

CNN is an algorithm that is used to process data that is in grid form (such as image) (Woo et al 

2018). Convolutional neural network is recently used in image segmentation (Kayalibay et al., 

2017), image classification (Recht et al., 2019), lesion detection (Jiang et al., 2020), image 

reconstruction (Huang and Cao, 2020) etc. In contrast to traditional machine learning, 

convolutional neural networks are designed in such a way that, they can automatically learn 

features from images and use these features for prediction, there is no hand engineering of 

features in convolutional neural networks (Zhou et al., 2014).  

Convolution, pooling, and fully connected layers are the major components of most CNN 

architectures (Lutnick et al., 2019; Yamashita et al., 2018). Sometimes, an average global pooling 

layer replaces a fully connected layer. Each of these layers performs its functions independently. 

Aside from mapping functions in these layers, dropout and normalization of batches which are 

regulatory units are also included to increase the performance of CNNs  (Bouvrie, 2006). In 

attaining enhanced performance and in new architectural designs, arrangement of components 

(layers) in the CNN plays an important role (Khan et al., 2020a). 

Convolution layer 

The first layer of the convolutional neural network is the convolution layer; therefore, it is being 

referred to as the basic unit of CNN, this layer plays a leading role in CNN (Yamashita et al., 

2018). A convolutional neural network layer consists of convolution operations (equation 

1equation 2) and activation function. In convolution layer, mapping of features is done by 

mathematical operations called convolution (matrix multiplication) (Qu et al., 2021). Input image 

is also called tensor and it just an array of numbers in form of grid. Kernel is a small array of 

numbers (grid of parameters) which could be 3x3 or 5x5 or 7x7 matrix (Yamashita et al., 2018).  

During convolution, there is binary operation (matrix multiplication) between the elements of the 

kernel and the element of the tensor of a given stride. This product is summed to form an element 

of feature map in equivalent position of output tensor (He et al., 2021). This operation is repeatedly 

done at a given stride resulting in feature maps which signify the input image characteristics. Then 

nonlinear operation (such as sigmoid or rectified linear unit) is applied on feature maps. 
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Figure 4. This is an example of how each element of a feature map is calculated during 

convolution. Kernel serves as the feature extractor (Yamashita et al., 2018).  

Image (input) is the tensor while the output is the feature map. In figure 4 above, 3 x 3 matrix is 

used as the kernel to multiply the input tensor resulting to feature map.  

           

 (1) 

Equation 1. General mathematical formular of convolutional operation. 

From equation 1 above, flk(p,q) the product of matrix multiplication of ic (x,y) and el
k(u,v).  ic 

represents the tensor (input image) and el is the kernel (filter), x and y are the elements of input 

image ic , u and v are the elements of kernel el, k is the index of convolutional kernel, fl is the 

feature map, p and q are the elements of the feature map, c is the image channel index (Litjens 

et al., 2017). 
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As a result of convolutional operation weight sharing ability, various types of image features can 

be drawn out by sliding kernels with the same weight set on the image. As opposed to fully 

connected networks, this makes CNN parameter efficient. Categorically, convolution operations 

differ by direction of convolution, size and type of filters and type of padding (Lecun et al., 2015). 

In some multiscale convolutional neural networks, it is possible to concatenate multiple features. 

Concatenation of features means summing of two or more feature maps (Roy et al., 2021a) or 

using a function that would take the union of two or more feature maps (Ma et al., 2019). 

CNN Pooling Layer 

In image analysis, a result of convolution operation is feature motifs which can occur at various 

locations. The precise location of a feature, once extracted, becomes unimportant so long the 

estimated relative position to others remains unchanged. An interesting local operation is pooling. 

It collates information on receptive fields within the local region and produces the dominant 

response (maximum number is selected) (Lee et al., 2016). 

      (2) 

Equation 2: Mathematical expression explaining the pooling operation. 

 Zl
k
 represents the feature map that had been pooled, Fl

k
 is the feature map to be pooled, gp(.) is 

the pooling operation. (Litjens et al., 2017). 

 

Pooling operations (equation 2) help when extracting a blend of features that usually don’t change 

in the presence of little distortions and translational shifts (Scherer et al., 2010). Generalization 

made by overfitting reduction increases and network complexity is regulated when a feature-map 

size is reduced relative to a non-changing feature set. In previous research, pooling methods such 

as average spatial pyramid, max pooling, L2, overlapping, max pooling were used while max 

pooling is the most popular method (Bouvrie, 2006; Wang et al., 2017). 

Activation function 

Activation function helps in making decisions and learning patterns that are intricate. Selecting 

the right activation function helps to fasten up the learning process. 
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       (3) 

Equation 3. Mathematical expression of activation function, Fl
k denotes the output of convolution 

passed to the activation function ga(.) (Litjens et al., 2017). 

According to Litjens et al in 2017, Activation functions such as tanh, sigmoid, RELU, parametric 

ReLU (PReLU) are the most common activation functions in CNN (Litjens et al., 2017). 

             (4) 

Equation 4: Simple formular of ReLU activation function. This function would return zero (0) if the 

value of Fl
k (input) is negative or returns Fl

k if the input is positive. Fl
k is the output of convolution 

layer passed to the activation function ReLU (ga(.)). (Litjens et al., 2017). 

 

 

Figure 5. Showing the curve of the most used activation function in neural networks: figure 5a is 

ReLu, figure 5b is sigmoid function and figure 5c is tanh (Yamashita et al., 2018). 
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Batch Normalization 

Batch normalization takes care of problems in feature maps involving internal covariance shift. 

This internal covariance shift causes hidden unit value distribution to change which in turn slows 

converge down and demands careful parameter initialization.  

     (5) 

Equation 5. Mathematical expression of batch normalization operation, Nl
k is the normalized 

feature map, μB is the mean, while σ2
B is the variance with batch normalization there is unification 

of the feature map’s distribution, Fl
k is the output of convolution, ϵ is the number being added for 

numerical stability (Litjens et al., 2017). 

 

Dropout 

Dropout improves generalization when it is introduced within the network by dropping some 

connections randomly or some units with a certain probability, network with low weight are 

dropped out of the connection to avoid overfitting of the network. Overfitting occurs in deep 

convolutional neural network because a non-linear relation that has been learnt by the multiple 

connections co-adapt. Some units or connections are randomly dropped, and they produce 

respective thinned architectural networks and then, small weights are picked with a representative 

network (Litjens et al., 2017).  

Placing dropouts in between convolutions is now outdated as new architectures are no more 

using, instead of average pooling is calculated in some architecture to improve generalization, 

some architectures are making use of residual blocks (He et al., 2016). 

 

 

 

 



23 
 

Fully connected layer 

This layer is majorly used for classifying a network at the end. It is a global operation unlike 

convolution and pooling. It surveys the output of all preceding layers globally when it receives 

input from the stages in feature extraction. It helps in classifying data by making selected features 

of a non-linear combination (Litjens et al., 2017). This layer could also be referred to as the dense 

layer, in this layer, there is transformation of the last pooling or convolution layer (2-dimensional 

array of number) into 1-dimensional vector. Each fully connected layer is associated with weight 

and bias.  

Loss function 

Loss function is the error function or can be called the cost function. It is one of the 

hyperparameters that needs to be defined in DCNN. To measure the similarities (quantifies error) 

between labels of a ground truth and a network output, a particular loss function is required in 

CNN workflow (Yamashita et al., 2018).  Binary cross entropy is used in classification task while 

mean squared error is used in regression task. Nevertheless, sometimes it is required to combine 

two or more loss functions for sanity (Gu et al., 2022).  

 

 (6) 

Equation 6. Showing the mathematical expression of the cross-entropy loss function, p denotes 

the network prediction, y1 and y2 are the annotations in the input image and w is the weight, n is 

the pixel number of input image (Zhang et al., 2021; Gu et al., 2022). 

 

Optimizer 

The major interest of optimization is to find the minimum value of the loss function (equation 

6)(Lee and Myung, 2017). Gradient descent is a highly used iterative optimization algorithm. In 

gradient descent, the parameters (weight and bias) are initialized to random values and move in 

slope’s direction in small step at each iteration. 
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Gradient descent repeatedly updates the weight and bias (learnable parameters) (Yamashita et 

al., 2018). Practically, because of insufficient computation memory, mini batch (subset of training 

dataset) is widely used to compute the loss function gradient irrespective of the parameters 

involved, this process is called stochastic gradient descent. (Yamashita et al., 2018).  

Most recently used first order optimization algorithm is adaptive moment estimation aka ADAM. 

Adam is a method for stochastic gradient decent that incorporates root mean square propagation 

and momentum (Lee and Myung, 2017).  

However, one of the major problems neural networks faced when using any gradient descent-

based algorithms for training is called vanishing gradient problem. When the layers of neural 

network increase and more activations occur, loss function gradient approaches zero and this 

makes the network stop learning. (Alom et al., 2019). The output of loss function activation like 

sigmoid function (figure 5) is small, therefore its derivative becomes smaller. To tackle this 

problem some researchers used rectified linear units instead of loss function. However, adding 

residual blocks (figure 9) neural networks can also help to prevent vanishing gradient problem 

when sigmoid function must be used (He et al., 2016). 

Learnable parameters are generated in each layer of CNN before training, for example learnable 

parameters weights and bias. Hyperparameters are not trainable but set before training any CNN 

algorithm. For example, in convolution layers hyperparameter are size of the kernel, the value of 

stride, padding and the type of activation function to be executed (equation 4equation 5).  

In pooling layers methods of pooling, the size of filter, value of stride, padding must also be set 

before the training of network (Yamashita et al., 2018).  
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Figure 6. General overview of CNN architecture (Yamashita et al., 2018). 

Figure 6 shows the basic fully convolutional neural network, kernels are associated with 

convolution blocks while the weights and bias are associated with the dense layer (fully connected 

layer). 

The way to move from input layer to output is called forward propagation while the opposite 

movement is back propagation. Back propagation   
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Basic U-NET Architecture 

U-NET is a CNN architecture to segment medical images (Alom et al., 2019; Cireşan et al., 2012; 

Ronneberger et al., 2015). This architecture has a right part (encoder) which is an expansive path 

and a left part (decoder) which is a contracting path as shown in figure 7. The right part generates 

automatic features from an input image while the left part captures context and allows learning 

from the image masks (ben Hamida et al., 2021).  

 

 

 

Figure 7. Showing the structure of a U-Net architecture; encoding unit and the decoding unit, the 

green blocks are contracting path while the blue blocks are expanding path, the layers of the 

architecture from the convolution layers are connected to the output layer formed a U structure. 

(Alom et al., 2019). 

Furthermore, one of the major reasons for using U-NET architecture in research is that U-NET 

models can perform segmentation task correctly with small amount of training and validation data 

better than many other known architectures such as Mask R-CNN and SegNet (Alom et al., 2019). 
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Innovations of deep CNN 

All deep learning are neural networks, but not all neural networks are deep learning. Example of 

neural networks deep that are not learning are self-organising maps (Qu et al., 2021), radial basis 

function networks, spiking neural networks, physical neural networks using physical “synapse”, 

hierarchical temporal memory (HTM) (Zyarah and Kudithipudi, 2019). However, CNN could be 

explored considering distinct aspects like loss functions, different activation, regularisation, 

optimization of parameters and dynamic innovations of CNN architecture (Khan et al., 2020a; 

Litjens et al., 2017). In recent years the great advancement is accomplished via the dynamic 

innovations of CNN architecture. Information on channels and spaces, architectural depth and 

width, processing multipath information are being exploited garnering attention.  

Block layered structural units have likewise amassed attention. CNN innovations involve various 

features such as pattern design, layer connectivity, processing unit modifications, parameter and 

hyperparameter), etc. Notably, redesigning of new blocks and processing units have been 

suggested and accredited to CNN innovations (Khan et al., 2020).  

Residual block 

Residual blocks were introduced to DCNN to overcome the problem called vanishing gradient 

problem (Alom et al., 2019). Residual networks come with the idea of skip connections (He et al., 

2016).  

 

Figure 8. Showing different processing units in CNN (Alom et al., 2019). 
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In figure 8 above, 8a depicts an example of forward convolutional units (Gadermayr et al., 2019), 

recurrent convolution block is found in 8b (Alom et al., 2019), 8c is residual convolutional 

connection unit (He et al., 2016) and 8d is showing an example of recurrent residual convolutional 

units (Alom et al., 2019). 

       (7) 

Equation 7.  Showing the mathematical representation of convolution blocks with residual block 

added. y is the output vector; x is the input vector, Wi is the weight,” F (x, {Wi})” is the feature map, i 

is the index of the weight (He et al., 2016). 

 

Figure 9. A residual building block (He et al., 2016). 

From figure 9, a residual block is a combination of normal convolution block (convolutional 

operation and activation function) and features from lower layer (equation 7). Sometimes residual 

blocks are called residual convolution blocks. 

     

Attention block 

During the training process, only the relevant activations are highlighted by attention method. 

Computational resources wasted on irrelevant activations is minimized and provides better 

generalization of the network (Oktay et al., 2018). There are two types of attention: hard and soft 

attention (Luong et al., 2015; Oktay et al., 2018). Hard attention highlights relevant regions by 

cropping. In hard attention, just one image region is considered per time and its either network 

pay attention or not. There is no backpropagation in hard attention (Luong et al., 2015). 

Soft attention adds weight to pixels of the image based on relevance. The relevant parts gain 

weight and less relevant parts gain a small weight (Khan et al., 2020b). This can be trained with 

backpropagation (figure 6). During training in soft attention, the weight also gets trained making 

the model pay more attention to relevant regions (Luong et al., 2015).  
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The process called skip connection combines spatial information from the down-sampling path 

with the up-sampling path to retain good spatial information. But the problem of skip connection 

is that it brings along the poor feature representation from the initial layers (Oktay et al., 2018). 

Therefore, soft attention suppresses activations at irrelevant regions when its being implemented 

at the skip connections. 

 

 

Figure 10. Attention gate (Oktay et al., 2018). There are two inputs g and xl, g is the gating signal 

which comes from the next step lower layer of the network, and it has better feature representation 

since it comes from deeper layer. xl comes from skip connections, since it comes from early layers, 

it has better spatial information but not more feature information. “Fg x Hg xWg Dg” is the dimension 

of g while “Fl x Hx x Wx x Dx” is the dimension of input image xl. F, H, W and D. are features, height, 

width, and channel, respectively.  

Attention block checks what comes from skip connection using a particular algorithm (figure 10).  
 

Multiscale VS Multiresolution inputs 

The input of convolution neural network cannot be underestimated because the performance of 

the network relies on the strategies and the methods adopted to build the network. One must be 

sure of the input to trust the network result accuracy. Nevertheless, let us consider what 

researchers have called multiscale patch images in their research works. 

Because biological samples (high content images) have different shapes, texture and levels and 

numerous dimensions, they are difficult to analyze (Godinez et al., 2017). Godinez et al., was able 

to capture a spatial scale of image samples by developing an architecture he called Multiscale 

convolutional Neural network (MCNN) for classification problem. He fabricated a single network 

that handles seven different scales of image inputs simultaneously.  
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MCNN takes seven different image scale inputs through two channels. He therefore uses the 

trained network for both binary and multiclass labelled prediction. Notably in this research work 

scaling dimension is referred to as (width/scale X height/scale) while the value of scale is 

1,2,4,8,16,32 or 64 (figure 11). Given an Image I with dimension of 1000 X 1000, the dimension 

of image I2 when scale = 4 would be 250 X 250 while the aspect ratio is being kept constant. In 

view of this research work this scaling method only affects the physical size of the input images 

while the magnification of the image object is kept constant. A similar method of scaling was 

published in 2019 by “Institute of Electrical and Electronics Engineers” (IEEE Circuits and 

Systems Society et al., 2019), also most recently in Oakland University (Oakland University et al., 

2021). 

 

Figure 11. Showing multiscale convolutional neural network algorithm developed by Godinez et 

al (Godinez et al., 2017). 

However, another method of scaling a network input (Wetteland et al., 2020) could be considering 

the pixel size of an image. In this case there would be input with same physical dimension (e.g., 

256 X 256) but different zoom level (e.g., 10X, 20X, 40X as shown in figure 12). In this case the 

objects in the images appeared to be in varied sizes or levels of magnification, this means object 

are at different resolution. The higher the magnification level the bigger the object in the image. 

Wetteland et al., eventually adopted the use of VGG16 (CNN with 16 layers) as the base 

architecture and three different input scales.  
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A trained VGG16 network was used for both single and multiclass image segmentation. Roy et 

al., 2021 adopted the style of image scaling but different CNN architecture. Most recently, 

Rijthoven and his colleagues used the same scaling method to innovate an architecture called 

Hooknet (van Rijthoven et al., 2021). 

 

Figure 12. Showing various levels of resolution of multiscale convolutional neural network 

adopted by Wetteland (Wetteland et al 2020). 

 

Image interpolation 

The word interpolation simply means, calculation a value from two given values (Roszkowiak et 

al., 2017). In image interpolation, there is transformation of image from discrete to continuous 

image sample. It could also mean changing a 1-dimensional interpolation signal to 2-dimensional 

and 3-dimensional image stacks. Therefore, interpolation is used when we need to get a number 

from two discrete values.in image processing, interpolation could be used for resizing, image 

registration, image compression, image decomposition, spatial distortion correction, geometric 

operation like scaling, translation, and rotation of image (Sellaro et al., 2013). 
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The major reason why interpolation is required in research while Whole slide images are being 

used is that immunohistochemical tissue samples vary in shapes, pixel size and resolution. 

Methods of image interpolation are Nearest neighbor, Linear/bilinear, bicubic (Huang and Cao, 

2020), Cosine, b-splines, Hermite, interarea interpolation, Lagrange polynomial interpolation and 

quadratic polynomial equation (Roszkowiak et al., 2017). According to (Roszkowiak et al., 2017) 

in their recent. 

Innovation of U-net Architecture 

Figure 7 above shows the basic configuration and structure of U-net architecture. This 

architecture is used enormously in much medical research to demonstrate segmentation tasks 

(Alom et al., 2019). Nevertheless, with U-Net architecture feature maps can easily be copied from 

the encoder unit to any decoding unit (Ronneberger et al., 2015). Basic U-net architecture 

consists of pipeline process from end-to-end and protects the integrity of the image patches (Türk 

et al., 2020). Nabla-Net was proposed in 2016 for multiple sclerosis segmentation (McKinley et 

al., 2016).  

Modification of the processing units in U-net framework had resulted in innovation of architecture 

Attention U-Net etc. (Zhang et al.,2018). No tangible significant result was observed when 

compared the performance of basic U-net model and U-net model with multiple feature maps 

summation (Kayalibay et al., 2017), V-net is a type of 3-D U-net for multiple sclerosis 

segmentation (Milletari et al., 2016), Recurrent residual U-net (Alom et al., 2019), Recurrent U-

net (Alom et al., 2019).  
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Figure 13. Showing attention- UNET architecture (Oktay et al., 2018).  

This is how attention gates can be added to the decoding unit of basic UNET architecture (figure 

13). In most deep CNN, vanishing gradient problem is the major issue where the weight and bias 

are unable to be updated, therefore loss function is increased. This prevents the network from 

learning and in turn decreases the performance of the network.  

Kidney glomeruli segmentation review 

In recent years different approaches were used to segment glomeruli from other kidney structures. 

Temerinac-Ott used a method called mutual information and convolutional neural network for 

segmentation, detection, and evaluation of glomeruli structures in whole slide images, Temerinac-

Ott obtained 76% F1-Score (Temerinac-Ott et al., 2017). Kakimoto used “histogram of oriented 

gradients (HOG) and support vector machine” for glomeruli segmentation and obtained 82.1% F1 

score (Kakimoto et al., 2014). Kato used “Segmental histogram of oriented gradients (S-HOG) 

and support vector machine” for glomeruli segmentation and obtained 86.6% F1-Score  (Kato et 

al., 2015) Gagermayr et al used U-net to obtain 90% accuracy of Dice Coefficient performance 

metrics (Gadermayr et al., 2019). Bueno recently used “SEGNET and VGG19” for glomeruli 

identification and characterization, he obtained 81.9% F1-Score (Bueno, Gonzalez-Lopez, et al., 

2020). Gallego et al. obtained 86.6% F1-score using basic UNET (Gallego et al., 2021). 

Dice coefficient or F1-score (table 1) is mostly used to measure the performance of DCNN model 

for glomeruli segmentation when image ground truth is given. Some researchers use the meaning 

of two intersections over union or mean of F1-score. 
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During segmentation of glomeruli in whole slide images, one of the most recent approaches that 

could be used to optimizing the segmentation accuracy is ensemble modelling (Gu et al., 2022). 

In ensemble models, more than one model is combined during prediction process to obtain more 

predictive accuracy. There are a lot of challenges when a single estimator is built, accuracy might 

be very low, there might be high variance and bias from image feature noise. To this effect 

ensemble models are used during prediction. 

 

Performance Metric                                                                
Formular 

Accuracy TP + TN

TP + FP + TN + FN
 

 
Recall TP

TP+FN  
  

 

precision TP

TP+FP  
  

 

F1-Score 2 ∗ Precision ∗ Recall

Precision +  Recall
 

 

Mean of F1-score Total of F1 − Scores from prediction

Total number of predictions
 

 

Table 1. Showing the performance metrics that could be used to evaluate model for glomeruli 

segmentation (Bueno et al., 2020; Gu et al., 2022). 
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The concept of Human in the loop (HIL) 

For supervised deep learning methods, well-annotated samples are an important prerequisite 

because large amount of training parameters are involved (Zhou et al., 2014; Siméoni et al., 

2020). And due to the bulky amount of effort and time required to generate these samples, 

annotations could become a very daunting task (Lutnick et al., 2019; Wu et al., 2021). The expert 

annotation that is required to produce training sets is less practical as compared to the traditional 

data sets due to the medical dataset’s complex nature, imagine glomeruli existing with varied 

sizes in the same cell (Meng et al., 2021). This therefore becomes a problem when CNNs are 

applied to medical imaging databases which require an adept knowledge of image annotation to 

perform (Bobes-Bascarán et al., 2021).  

Human in the loop is a concept where human subject is actively involved in machine learning 

modelling process (Wu et al., 2021). Nevertheless, with humans in the loop interface in any DCNN 

research, false positive predictions are being deleted in a particular loop of modelling which in 

turn increases the chance of true positive predictions at the final stage of modelling. (Lutnick et 

al., 2019). 

 

Figure 14. Showing an example of human in the loop interface usage in deep convolutional neural 

Network (Wu et al., 2021) 
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The main stages of the workflow in figure 14 above involve preprocessing, training of the network, 

human participant, human feedback and retraining of the network. After the collection of data, 

data is preprocessed and serves as input layer into the network, the first prediction from this 

process is the beginning of the first loop. Human participants look at the result gotten from the 

first output of the network and correct the errors, then retrain the network for better performance. 

This process continues until the perfect output is gotten. the gaps in network performances can 

easily be identified and the predictions of a network are corrected by users using this method Chai 

and Li, 2020; Gnjatović et al., 2020; Lutnick et al., 2019; Wang et al., 2019; Wu et al., 2021; 

Yeruva et al., 2020). 

This concept of human in the loop had been used in different research work. In security systems, 

it had been used to check the effect of warning on behavior (Wogalter, 2019). Human in the loop 

is used in producing software inform of integrated developed environments for developers (Taleb 

et al., 2019). Most common applications of human in the loop in real world are multimedia search 

engine, robotics, optimization of health care systems (Wu et al., 2021). 

 

Evaluation of HIL performance  

HIL performance is estimated based on the different evaluation criteria and this is challenging in 

most applications (Recht et al., 2019; Wu et al., 2021). However, it’s important to observe the 

progress of the model performance in each loop although there are no universal evaluation 

criteria. HIL performance can be determined by comparing the rate of false positives predictions 

in each loop. The decrease the error of prediction the better the model performance. In other 

words, the lower the error of prediction the higher the model predicting accuracy (Lutnick et al., 

2019). Also, the duration of HIL method can be measured by estimating time per every annotated 

region and the number of annotations.  

      (8) 

Equation 8. Showing the mathematical expression of HIL (Lutnick et al., 2019).  

 R denoted the overall number annotated region while the number annotated regions is r, τ is the 

constant of exponential time. H is the normalized time for annotation, A is annotation time per 

region.  
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        (9) 

Equation 9. Formular to measure the time saving performance in HIL (Lutnick et al., 2019).   

  

R denoted the overall number annotated region while the number annotated regions is r, τ is the 

constant (exponential time). H is the normalized time for annotation, P is the time saving 

performance, B denotes the baseline annotation time in normalized form. 

 

However, the above estimation method (equation 8 and equation 9) was not used in this research, 

instead patch counts from good predictions per iteration was used. 

 

 

Figure 15. Showing the F1 score of HIL performance in segmentation of glomeruli (Lutnick et al., 

2019). 

Figure 15 shows how F1 score is used to evaluate HIL performance when the golden standard 

annotation is given. This shows the results of F1 score in 5 iterations. The F1 increases in each 

iteration increase.  

 

 

 
 
 
 
 



38 
 

DATA AND METHODS 

In this chapter, the data materials used for this research work are introduced and the methods 

used are explained in detail. 

Data Materials 

In this study two data sources were used, and the datasets were named dataset1 and dataset2. 

The major dataset for this research is dataset1 but dataset2 was introduced to build the control 

models for the experiment and ZENODO kidney dataset was chosen because it has ground truth 

labels. 

Dataset1  

The first datasets used in this research work were obtained from Vilnius national center of 

pathology at Santariskes. The data sets consist of about 250 whole slide images in svs extension 

stained with hematoxylin and pico-Sirius and their corresponding segmented markup file in tiff 

format. The markup images consist of segmented glomeruli, background, and other structures. 

There were manual annotations drawn by kidney pathologist, these annotations were used to 

produce given masks using halo software. The round green structures (in figure 17) are the 

segmented glomeruli, and these are the region we are interested in. In this dataset, annotations 

were converted to these given masks 
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Figure 16. Showing whole slide image and its corresponding markup file. 

Figure 16A is one of the markup images, the green circles are showing the segmented glomeruli, 

while figure 16B is the corresponding whole slide image.  
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Dataset2 

The second dataset used in this research is gotten from an opensource database of ZENEDO. 

This dataset is used as a control set. ZENEDO kidney dataset is mostly used in research that 

involves glomeruli segmentation (Gallego et al., 2021). This dataset consists of 47 masks and 47 

RGB whole slide images of kidney showing glomeruli stained with H and E, captured with x10 

scanner, and stored at 1μm. 

 

Figure 17. Showing one mask image and WSI from ZENODO kidney glomeruli dataset. 

(Appendix B) 

The mask shows segmented glomeruli annotations in green color and background in black color 

(figure 17A). Figure 17B is the corresponding RGB WSI. This dataset2 is useful in this research 

because its annotations are used as ground truth for performance metrics (figure 7). Also, 

dataset2 was captured at x10 magnification and this is relevant to testing the performance of 

MAR-UNET. 

In this research, this dataset is used in the following investigation. 

1. To train, validate and test basic UNET model. 

2. To train, validate and test Attention-Residual-U-NET model. 

3. To test models from proposed architecture. 
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Patch extraction 

Training, testing, and evaluation of the networks in this research is done at the patch level. Image 

patches are small portions of whole slide images. The networks input layers take cropped image 

patches which is better than using complete whole slide image (Hou et al., 2016).  

Dataset1:  

Normally glomeruli are spherical in shape, and in normal kidney (before kidney section) the 

diameter of glomeruli ranges from 100 to 350 µm (Gallego et al., 2018).  

During image patch extraction from dataset1, mask is being converted to border using 

“find_contours” function from “skimage.measure” library package in python, this function returns 

borders of the glomeruli in the masks and then the borders were used to draw a boundary box on 

the on glomeruli in whole slide image using “regionprops” from “skimage.measure” library 

package in python.  

These boundary boxes range from 21 x 21 (width (pixels) x length (pixels)) to 381 x 366 (width 

(pixels) x length (pixels)) in size. In most medical research 256 x 256 (width (pixels) x length 

(pixels)) image patch is being used. Therefore, all these drawn boundary boxes were adjusted to 

256 x 256 (width (pixels) x length (pixels)) on all the located glomeruli and cropped out, this makes 

the first image patch size used, then 176 x 176 (width (pixels) x length (pixels)), 336 x 336 (width 

(pixels) x length (pixels)) and 416 x 416 (width (pixels) x length (pixels)). 
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Figure 18. Showing 4 different resolutions were extracted (Appendix A, file 
‘patch_extraction.py’). 

All the patches were interpolated using the bicubic interpolation method figure 18, bicubic 

interpolation was chosen because it is very fast and more accurate than nearest neighbor or 

bilinear (Li et al., 2019).  

 

Size = (n*width, n*height)                       (10) 

 
Equation 10. Showing how the size of pixels in the whole slide image is calculated. n is the value 

of apparent magnification (resolution in μm/pixel) of the WSI.  

In most cases resolution of WSI at 20x is usually 0.5μm per pixel (Marini et al., 2021). 

98.8% of the dataset1 was captured at 20x, and the value of n is 0.4925 μm per pixel 

(approximately 0.5 μm per pixel).  

 

 

 



43 
 

 

Dataset 2:  

 

Figure 18. Showing how patches in dataset 2 were extracted. 

From figure 19, one single image patch resolution was cropped out from whole slide image both 
the widths and heights were 256 pixels (1 μm/pixel) (Appendix A, file ‘svs_slice.py’). 

. 

  

Preprocessing 

Thresholding 

Thresholding is a type of image segmentation; Thresholding method is required on the markup 

patches to convert the multiclass mask image to single class (binary) since the major task is to 

segment glomeruli. Using mode attribute from pillow library in python to checking the color 

channel of masks in dataset1, the color mode is ‘palettized’, which means there are more than 3 

colors [0, 64, 128, 192], the threshold of glomeruli pixels consists of 64 and 128 and were selected 

and set as 1 while 0 and 64 were set to 0. Therefore, the threshold of pixel intensities of masks 

was converted to 0 and 1. In each mask image I, the glomeruli pixels are set to 1 and all other 

pixels are set to 0 resulting to the new mask up image IB.  
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Figure 19. Showing image thresholding method (Kotte et al., 2018) (Appendix A, file 
‘multiclas_to_binary.py’). 

Figure 20 above shows how the multiclass marks images were converted to single class (binary)  
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Stain color normalization 

Color variations influence model performance (Tellez et al., 2019). Therefore, in this current study 

it is necessary to regulate color variations in image patches. Dataset2 has two different types of 

color.  Dataset1 was produced from hematoxylin and pico-Sirius stain while dataset2 was 

produced from H and E stain. To unify these color variations, a normalization algorithm is applied. 

Procedure according to (Macenko et al., 2009), the results are shown in figure 21. “Step1: import 

of RGB Image patch (P) using ‘IMREAD’ function from cv2 library in python. Step2: Conversion 

of image P RGB color space to optical density (Dp) 

 

                                                                                                                     11 

From equation 11 (Macenko et al., 2009), Dp is the optical density space, P is the RGB input 

image. 

Step3: Filter Dp using 0.15 threshold for transparent pixels (Default threshold value is 0.15), 

denotes filtered Dp as F. Step4: Compute the eigen values and vector of F. Step5: data is 

projected and normalized to unit length. Step 6: “Calculation of angle of each point wrt the first 

single value decomposition direction". Step 7: normalize the concentration of stain by calculating 

the percentile of the angle. Step 8: convert back to OD and save to disk. 

 

Figure 20. showing the result of color normalization in dataset1 and dataset2. (Code: Appendix 
A, file “color_normalisation.py”). 
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Network topology 

 

Figure 21. Showing the schematic diagram of the proposed architecture multi-resolution-
attention-residual-UNET (MAR-UNET) (Appendix A, file ‘all_model.py’). 

 
Figure 22 depicts the proposed architecture called MAR-UNET. This innovation combines a basic 

UNET architecture using multiple resolution mage patches with attention blocks between the 

encoding and the decoding units, and residual connection (figure 8c). This architecture consists 

of the expansive path called the encoder and the contractive path called the decoder. The encoder 

consists of an input layer which takes the multiresolution image patches, In between each residual 

connection is the attention block (figure 10). The decoder involves the deconvolutional operations 

and segmentation map, and each decoding unit receives a signal from the encoding units through 

residual connection. The input layer has one channel that takes 4 different resolutions of image 

patch, images pass through the input layer individually at random. 
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Network hyperparameters Set values 

Convolutional kernel size 3 x 3 

Up sampling filter size 2 x 2 

Polling size 2 x 2 

Activation function Sigmoid (figure 5b, equation 4) 

Optimizer Adam 

Loss function:  Binary Focal Loss (gamma=2) 

 

Batch normalization True (equation 5) 

Dropout rate 0.0 

Batch size 1 

Table 4. Showing the parameters set before training of the networks. 

For the evaluation of the model performance, the Mean of the F1-score (Dice metrics in table 1) 

was used when prediction was made on 500 image patches from ZENODO kidney dataset. 

To optimize glomeruli segmentation in dataset 2, ensemble models were used. 

 

Figure 22. Showing ensemble model (Appendix A, file ‘Em_model.py’). 
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Proposed workflow 

 

 

Figure 23. Showing the flow diagram of the proposed workflow. 

The above workflow shows how MAR-UNET was used to generate more annotations while 

humans would do some corrections, this creates an iterative patch extraction workflow. 

 
The pathologist at Vilnius pathology center annotates some glomeruli in whole slide Images, then 

trains a network with halo software, then tests this network/model on some whole slide images. 

The results obtained are segmented multiclass markup files or masks (Dataset 1).  

The dataset1 used in this research is a product of this built network (M0) from halo software. Multi 

resolution image patches were extracted from these given samples using the proposed patch 

extraction method, then preprocessed. This gives a set of training and validation image patches 

and their respective binary masks. These samples are used to train a MAR-UNET network (figure 

22) which produced another model. This model is then used to segment glomeruli in a new set of 
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preprocessed multiresolution image patches from another set of images from 250 WSI that were 

not initially involved MAR-UNET network. Then the accuracy of MAR-UNET was tested on 500 

image patches from ZENODO kidney glomeruli datasets. These steps were repeated several 

times until the best model was produced based. The mean of F1- score was calculated in each 

iteration (figure 15) 

 

Experimental setup 

The following UNET architectures were configured in this investigation. 

 Basic U-net architecture was setup and configured (figure 7 and table 4). This is a basic U-net 

architecture, this architecture uses single resolution image patches extracted from ZENODO 

dataset (dataset 2) at the input layer. This is set up to compare its performance with MAR-UNET 

performance. 

Attention-Res-U-net architecture was setup and configured (table 4). This is a basic U-net 

architecture with residual block and attention block, this architecture uses a single resolution 

image patches extracted from ZENODO dataset (dataset 2) at the input layer. To investigate the 

role of attention blocks and residual blocks in glomeruli segmentation using deep learning. 

MAR-U-NET architecture was setup and configured (figure 22 and table 4). This is a basic U-net 

architecture with residual block and attention block and uses 4 different resolutions of image 

patches extracted from dataset1 at the input layer.  

 

Datasets Basic U-net Attention-Res-U-net MAR-U-NET 

Training 0 0 16580 

Validation 0 0 2072 

Test 0 0 0 

Table 5. Showing the number of image patches used from dataset1 

 
 

 

Datasets Basic U-net Attention-Res-U-net MAR-U-NET 

Training 6966 6966 0 

Validation 775 775 0 

Test 500 500 500 

 
Table 6. Showing the number of image patches from ZENODO dataset used by the network 
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RESULTS 

DCNN models for kidney glomeruli segmentation were trained on Nvidia RTX3050 GPU 

(graphical processing units), 24G RAM using karas machine learning libraries on TensorFlow 

framework. All training in this research was stopped at 100 epochs. No early stopping or call back 

was used. 

 

Using dataset1, the first MAR-UNET model was built and used to generate more annotations on 

the image patches. M1 prediction accuracy for glomeruli segmentation was tested on 500 patches 

from ZENODO dataset (dataset2) and the mean of F1-score was calculated, to know if there is 

any tangible relationship between these two datasets. 

This same procedure continues until the best model was chosen after minimal correction of 

prediction and high accuracy on ZENODO kidney dataset.  

 

 

Model Number of 

Training 

patches 

Number of 

Validation 

patches 

Number of 

Additional 

Patches 

Mean F1-Score 

Dataset 2 

(%) 

M1 3713 413 1094 45.13 

M2 4698 522 1891 51.30 

M3 6399 712 2963 59.09 

Best MAR-UNET(M5) 16580 1658 0 61.38 

Table 7. Summarize the results using human in the loop annotation strategy. 

Table 7 explained how new curated annotations in image patches were added to training and 

validation set after prediction my built model and careful observations by the pathologist. The 

accuracy of these models was checked on newly introduced ZENODO dataset patch images.  
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Figure 24. Showing M1 prediction. 58.09% F1-sore, 45.13% mean of F1-score using 500 image 

patches from dataset 2 (1 μm per pixel) (Appendix A, file ‘fig.pptm’). 

This is the lowest F1-score observed in this research, at this stage it was difficult for the network 

to classify some pixels correctly. 

 

 

Figure 25.  Showing M2 prediction.71.67% F1-score, 51.30% mean of F1-score using 500 
image patches from dataset 2 (1 μm per pixel) (Appendix A, file ‘fig.pptm’). 

The F1- score became better, when more patches were added, from predictions of model M1.  
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Figure 26. Showing M3 prediction. 76.78% F1-score, 59.09 mean of F1-score using 500 image 

patches from dataset 2 (1 μm per pixel) (Appendix A, file ‘fig.pptm’). 

The average F1-score (mean IOU) of 500 prediction was increased using M3, as more curated 

annotations were added by pathologists.  

 

 

 

Figure 27. Training and validation dice of the Best MAR-UNET (loop5) chosen after several 

iterations from and predictions using more curated image patches (Appendix A, file ‘fig.pptm’). 

The validation dice score could be better if more epochs were accomplished. 
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Figure 28. Best MAR-UNET prediction. 82.75% F1-score, 61.38% mean of F1-score using 500 

image patches from dataset 2 (1 μm per pixel) (Appendix A, file ‘fig.pptm’). 

 

 

 

Figure 29. Training and validation dice of Basic U-net architecture using ZENODO kidney 

dataset (Dataset2), patches were extracted at x10 magnification (1 μm per pixel) (Appendix A, 

file ‘fig.pptm’). 

The much difference in training and validation dice scores might be due to zero dropout 

hyperparameter used in building the network. Most recent architectures are not using dropout. 

It might also be because of the small batch size used in training the network.  
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Figure 30. Basic UNET prediction on dataset 2 (1 μm per pixel). 87.05% F1-score, 76.61% 

mean F1-score using 500 image patches from dataset 2 (1 μm per pixel) (Appendix A, file 

‘fig.pptm’). 

  

The mean of F1-score obtained from using Basic UNET for glomeruli segmentation in 500 image 

patches from dataset 2 (1 μm per pixel) is more than the result obtained from the best model of 

MARUNET. 
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Figure 31. Training and validation dice of Attention-res-UNET network using ZENODO kidney 

dataset (Dataset2), patches were extracted at x10 magnification (1 μm per pixel) (Appendix A, 

file ‘fig.pptm’). 

 

Attention-res-UNET network has a better fit than basic UNET on ZENODO kidney dataset 

(Dataset2) even with zero dropout. This might be due to the ability of the residual blocks to 

regularize vanishing gradient problems in the deep layers of CNN architecture. 
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SIG

 

 

Figure 32. Attention-Res-UNET’s prediction. 88.91% F1-score, 78.4% mean of F1-score using 

500 image patches from dataset 2 (1 μm per pixel) (Appendix A, file ‘fig.pptm’). 

Attention-Res-UNET’s has the highest mean of F1-score. 
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DISCUSSION 

The word multiscale is used interchangeably with multiresolution DCNN research. Some research 

considered a neural network to be multiscale neural network when different resolutions of an input 

image are given to a network through multiple channels or many input layers (Wetteland et al., 

2020). Mostly in this type of MCNN architecture, concatenation of feature maps is used. However, 

in some research, a neural network is multiscale neural network when different physical 

dimensions of inputs are being used in the network input layer through multiple input 

channel(Godinez et al., 2017) and in some MCNN architectures, different up sampling filter size 

are used but one input layer (Aatresh et al., 2021). In contrast to these, a single input channel 

was used in this research but taking more than one resolution of an input image.  

 

Figure 33. Showing the effect of using neural networks to draw annotations  

Using an iterative patch annotation strategy is better than relying on hand drawing annotation. 

Glomeruli is said to be round, when drawing annotations with hand, there might be some pixels 

left out. These pixels might also be important to differentiate a diseases glomerulus from normal 

glomeruli in kidney diagnosis. 
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Gallego et al (Gallego et al., 2021) obtained 86.6% F1-score for glomeruli segmentation using 

basic UNET architecture on ZENODO kidney dataset (H& E), this is close to the result obtained 

from this research when a basic UNET architecture was use on ZENODO kidney dataset. If we 

are to consider a single patch prediction (F1-score of 87.05%). 

The 61.38% mean of F1-score obtained from glomeruli segmentation in 500 image patches from 

dataset2 (1 μm per pixel) using the best MAR-UNET model is low to result obtained using basic 

UNET or attention-res-UNET. This might be because the resolution of test image patches is more 

than all the resolutions used to build MAR-UNET. MAR-UNET could not classify some pixels 

correctly in ZENODO kidney dataset. 

A single attention residual UNET model produced from using ZENODO glomeruli image patches 

for training and validation has the highest mean of F1-scores on 500 image patches from dataset2 

(1 μm per pixel). Attention residual UNET performs better than basic UNET for glomeruli 

segmentation. 

Using an attention residual UNET model and the best model of MAR-UNET model by model 

ensemble (figure 23) gives a better performance of 89.89% F1-sore and 79.38% mean of F1-

score on 500 image patches from dataset 2 (1 μm per pixel).  
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Figure 34. Showing the performance of all the models for glomeruli segmentation 

Resolution of neural network input can affect the performance of neural network. 
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CONCLUSIONS 

 

A new method of extracting multiresolution image patches is by capturing the region of interest at 

the center of the patch image. A multiresolution deep convolutional neural network can optimize 

glomeruli segmentation in a whole slide image using ensemble models. A new way of evaluating 

human in the loop annotation strategy instead of using time per annotation area in whole slide 

image is counting the number of segmented images patches that are correctly predicted. 
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RECOMMENDATION 
The training of Attention-residual-UNET networks is very slow, it is highly recommended to use 

high GPU workstation when attention-residual-UNET architecture or customizing CNN processing 

unit in the future.  
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SUMMARY 

Institution: Vilnius university, Study program: Systems Biology, Name, surname: Oluwaseun 

Ezekiel Taiwo. 

One of the major approaches engaged by kidney pathologist to knowing the morphological states 

of the kidney glomeruli in any glomeruli disease diagnosis is image analysis using image 

segmentation techniques. There were attempts using various deep convolutional neural network 

workflow to automate glomeruli segmentation in kidney images but not still achieve the most 

accurate results. In this current research, a new multiresolution deep convolutional neural network 

workflow is developed. It applies an iterative annotation strategy which involves the customization 

processing units of deep convolutional neural network architecture. It optimizes kidney glomeruli 

semantic segmentation accuracy in whole slide images. The result from this study showed that a 

multiresolution attention residual UNET model achieves the best segmentation accuracy of 

89.89% with ensemble models. 
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SUMMARY IN LITHUANIAN 
 

Iestāde: Viļņas universitāte, studiju programma: Sistēmas bioloģija, vārds, uzvārds: Oluwaseun 

Ežekīls Taiwo. 

Viena no galvenajām pieejām, ko nieru patologs izmanto, lai noskaidrotu nieru glomeruli 

morfoloģiskos stāvokļus jebkuras glomeruli slimības diagnozes gadījumā, ir attēlu analīze, 

izmantojot attēlu segmentācijas metodes. Tika veikti mēģinājumi, izmantojot dažādu konvolūciju 

nervu tīkla darbplūsmu, lai automatizētu glomeruli segmentāciju nieru attēlos, bet joprojām 

nesasniegtu visprecīzākos rezultātus. Šajā pašreizējā izpētē tiek izstrādāta jauna multiresolution 

dziļo konvolucionālo nervu tīkla darbplūsma. Tas izmanto iteratīvu anotāciju stratēģiju, kas ietver 

dziļās konvolucionālās nervu tīkla arhitektūras pielāgošanas vienības. Tas optimizē nieru 

glomeruli semantiskās segmentācijas precizitāti veselos slaidos attēlos. Šā pētījuma rezultāti 

parādīja, ka multiresolution uzmanības atlikušais UNET modelis sasniedz vislabāko 

segmentācijas precizitāti 89,89% kopā ar komplektiem modeļiem. 
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APPENDICES 
Appendix A 

Scripts written for this research work and figures used in this manuscript are available on 

GitHub “https://github.com/Ezekiel2020/Thesis.git”. 

Appendix B 

ZENODO dataset “https://zenodo.org/record/4299694#.Ym02dtpBy3D” 

 

 

https://github.com/Ezekiel2020/Thesis.git
https://zenodo.org/record/4299694%23.Ym02dtpBy3D

