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Teorinės fizikos ir astronomijos institutas

Rokas Garbačauskas

GRIMUS NEUFELD MODELIO RENORMALIZACIJOS SRAUTAS VIENOS KILPOS
LYGMENY
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Conventions

As is usual in particle physics Minkowski metric 6`a definition with negative signature is used
throughout this thesis. Where possible Einstein summation convention is used and, unless stated
otherwise, Greek indices refer to four vector Minkowski products, whereas Latin indices refer to
three vector products in Euclidean space. The convention is expanded to include two upper or lower
indices too, but in this case it’s referring to an arbitrary sum.

Feynman slash notation is used to denote contractions with gamma matrices: W`�` ≡���.
Feynman 8n prescription is omitted in many Feynman propagators due to brevity as after Wick

rotating the momentum integrals to Euclidean plane (at least at one loop level) all the terms pro-
portional to n can be set to 0.

Glossary

EW - Electroweak
GNM - Grimus-Neufeld model
"( ("() - (modified) minimal subtraction scheme
QFT - Quantum Field Theory
QED - Quantum Electrodynamics
RG - Renormalization Group
RGE - Renormalization Group Equation
SM - Standard Model (of particle physics)
SSB - spantaneous symmetry breaking
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Introduction

Quantum field theories (QFTs henceforth) are one of the most abstract areas of theoretical
physics that have defined the frontiers of it for the entire XXth century and still do now. This intro-
duces a steep learning curve for anyone trying to get into the field but the efforts are worth it. On
the one hand, these theories are known for the elegance of their mathematical formalism. On the
other hand, the methodologies developed in this domain give the most precise theoretical values
for various parameters that can be verified by experiments. A good example of this is the electron
anomalous magnetic moment predicted by Quantum Electrodynamics (QED) whose current value
agrees with the experimental to the eleventh digit ( [1]). In fact due to the precision of these results
the 3.5 sigma discrepancy between the predicted muon anomalous moment and the experimental
value ( [2]) is still considered to be a strong hint of physics beyond the Standard Model (SM) which
incorporates QED and is the current orthodox theory explaining the interactions of subatomic par-
ticles. Another empirical fact that is still to be explained by some SM extensions are the masses of
neutrinos. The requirement that they have masses is due to observed neutrino oscillations (see [3]).
This phenomenon requires neutrinos to have non-zero mass terms.

One minimal extension of the SM that attempts to explain the neutrino masses is the Grimus-
Neufeld model (GNM, [4]) which introduces a heavy Majorana neutrino and an additional Higgs
doublet into the picture of the SM. These additions via the seesaw mechanism and radiative cor-
rections account for two of the three neutrino masses at one loop level. The last mass term can be
achieved at higher order analysis.

One specific area of exploration in QFTs is the renormalization group (RG) equations which
describe how behavior of a given model changes under the change of scale. Originally renormal-
ization in the domain of QFTs was understood as reformulation of the theory in a way that various
UV and IR divergences coming from loop diagrams evaluated at infinite energies and/or containing
massles particles drop out from any calculations that yield physical observable parameters. This is
a huge success on its own as these divergences hindered the penetration of QFTs into mainstream
physics in the early days. But even more importantly some mathematical methods devised in the
latter part of the XXth century allow the description of QFTs as defined on a certain scale to be
extended to an arbitrary scale. This constitutes the basis of our understanding of the phenomenon
of running coupling constants and serves as a tool to explore the fundamentals of all forces except
gravity (as of yet).

In this thesis RG flow analysis of the important GNM parameters are described. Namely the
derivation of counterterm for the field and mass of Majorana neutrino and the fermionic Yukawa
couplings can be found in the third section. In the first part, on the other hand, the building blocks
of the GNM are listed and introduced and the second section is focused on the methodolgy used
for the analysis. Deriving the aforementioned counterterms and describing the RG flow of these
couplings via RG equations was the main goal of this thesis.
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1 The Grimus-Neufeld model

As mentioned in the introduction the SM is very good at accurately describing particle physics
in its domain: 19 parameters are used to calibrate it and after that it yields a huge amount of pre-
dictions for other parameters. The key words still being “its domain”. The SM is still a work in
progress and many extensions of it are currently actively researched or waiting for experimental
confirmation. One area to expand the SM is the description of neutrino masses. As data on neutrino
oscillations accumulated over the years (again, see [3]), since this phenomenon requires neutrinos
to have masses, many SM extensions were proposed that try to derive them from theoretical argu-
ments. One such so called minimal extension is the GNM. In this model the SM is expanded with a
single Majorana neutrino and an additional Higgs doublet. These additions via the seesaw mecha-
nism and radiative mass generation yield analytical expressions for the two measured neutrino mass
square differences at one loop level (see [4]). At higher order analysis all the neutrino masses are
accounted for by this model.

Since the GNM expands on the electroweak (EW henceforth) sector of the SM and the most
important implications of it are contained within it, the analysis in the third section will be focused
on solely this sector. This section, on the other hand, is an attempt of an introduction to the main
concepts of the EW sector of the standard model and the extensions of it proposed by the GNM.

1.1 Electroweak sector of the Standard Model

To emphasize the additions to the SM coming from the GNM a short overview of Glashow-
Salam-Weinberg model ( [5–7]) that essentially constitutes the EW sector of the SM is briefly
presented in this subsection. This model can be arbitrarily separated into 4 parts: Yang-Mills, Higgs,
fermion and Yukawa.

L�, = L." + L� + L� + L. . (1)

The Yang-Mills part describes the gauge fields transforming under (* (2) × * (1) . The La-
grangian (“Lagrangian” ≡ ”Lagrangian density” here and henceforth) of this sector reads:

L." = −1
4
,0

`a,
0`a − 1

4
�`a�

`a

=
1
2
,0

` (6`am2 − m`ma),0
a + 1

2
�` (6`am2 − m`ma)�a

+ 6n012 (m`,0a),1
`,

2
a −

1
4
62(,0`,1a,0

`,
1
a −,0`,0a,1

`,
1
a ), (2)

here,0
`a = m`,

0
a −ma,

0
` −6n012,1

`,
2
a and �`a = m`�a−ma�` are the field strengths of the gauge

fields ,0
a and �`. ,0

a is the isotriplet corresponding to the generators of the weak isospin group
(* (2) and �` is the isosinglet of the group * (1) . n012 are the totally antisymmetric structure
constants that define the (* (2) Lie algebra and 6, 6′ are the gauge coupling constants.

Higgs part is written as follows:

L� = (�`Q)†(�`Q) −+ (Q), (3)
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here Q(G)=
(
q+ (G)
q0 (G)

)
is the Higgs doublet and q+ (G) , q0 (G) are complex scalar fields. Q(G) is

coupled to the gauge fields via the covariant derivative:

�` = m` − 86) 8, 8
` − 86′

.,

2
�`, (4)

) 8 = f8

2 are the (* (2) group generators, with f8 being the Pauli matrices: f1 =

(
0 1
1 0

)
, f2 =(

0 −8
8 0

)
, f3 =

(
1 0
0 −1

)
. ., is the weak hypercharge of the group * (1) . The potential term

in eq. (3), with `2 < 0 being the tachyonic mass and _ > 0 , describes the famous Mexican hat
potential responsible for the spontaneous symmetry breaking (SSB henceforth):

+ (Q) = `2Q†Q + _

(
Q†Q

) 2
. (5)

The fermionic part is as follows:

L� = ! 9 8���! 9 +& 9 8���& 9

+ ;
'

9 8���;'9 + D'9 8���D'9 + 3
'

9 8���3'
9 , (6)

here the left handed fermions and quarks are grouped into (* (2) doublets:

! 9 =

(
a!
9

;!
9

)
, & 9 =

(
D!
9

3!
9

)
, G! = l−G (7)

and right handed fermions (except for neutrinos: for them a'
9
= l+a 9 ≡ 0) and quarks into singlets:

G' = l+G. (8)

In these equations l± =
1±W5

2 are the projection operators that bring Dirac spinors into their left or
right handed representations, W5 ≡ 8W0W1W2W30 and W` are the 4 dimensional Dirac matrices, that

can be summed up as W0 =

(
� 0
0 −�

)
, W8 =

(
0 f8

−f8 0

)
in Dirac representation, with � being the

unit matrix. The index 9 runs over the 3 generations and for fermionic fields k ≡ k†W0. Henceforth,
hopefully without loss of clarity, the superscripts ' in the Lagrangians will be dropped.

The fermionic part involves no mass terms as those are not invariant under (* (2) transforma-
tions. Instead they are generated via the Yukawa couplings through SSB. The Yukawa part of the
Lagrangian describes this:

L. = −! 9.
;
9G;GQ −& 9.

D
9GDGQ̃ −& 9.

3
9G3GQ + ℎ.2., (9)

here . ;
9G

, .D
9G

, . 3
9G

are the Yukawa coupling matrices and Q̃ = 8)2Q† to keep the second term hyper-
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charge neutral.
Under this formalism no mass terms are generated for the SM neutrinos. This is due to the

experimental absence of right handed neutrinos and hence Yukawa couplings in the theory that
would generate these masses.

The outlines of SSB, which generates the masses for the SM matter fields, are presented in the
next subsection and in the latter subsections the EW sector is expanded with some additions that
allow to remedy the absence of neutrino masses.

1.2 Spontaneous symmetry breaking

SSB, as opposed to explicit symmetry breaking, implies that the theory (described by its La-
grangian) is symmetric, but the ground state it occupies is not. The form of the Higgs doublet
potential (see eq. (5)), so long as `2 < 0 and _ > 0, implies that the minima of the Higgs fields lie
on a circle:

m

m
(
Q†Q

) + (
Q†Q

)
= `2 + 2_Q†Q => Q†Q |<8= =

(
q0
<8=

) 2
+

(
q+<8=

) 2
=
−`2

2_
. (10)

Choosing to expand the fields around any one particular minimum (for simplicity one can as well

choose q0
<8=

≡ E√
2
=

√
−`2

2_ and q+
<8=

= 0) breaks the (* (2) ×* (1) gauge symmetry. In the unitary
gauge, where all the goldstone modes in the Higgs doublet are set to 0, this yields:

Q(G) = 1
√

2

(
0

E + ℎ(G)

)
, (11)

where ℎ(G) is now a perturbation from the true ground state. Plugging this into eq. (3), but leaving
out any constant terms, one gets:

L� =
1
2
m`ℎm

`ℎ ++ (E, ℎ)

+ 62

8

(
0 E + ℎ

) (
6′

6
�` +,3

` ,1
` − 8,2

`

,1
` + 8,2

`
6′

6
�` −,3

`

) (
6′

6
�` +,3` ,1` − 8,2`

,1` + 8,2` 6′

6
�` −,3`

) (
0

E + ℎ

)
=

1
2
m`ℎm

`ℎ ++ (E, ℎ) + 62

8
(E + ℎ)2

(��,1
` + 8,2

`

��2 + (
,3

` −
6′

6
�`

) 2
)
. (12)

Redefining these mixed states:

,±
` =

1
√

2

(
,1

` ∓ 8,2
`

)
, /` =

1√
62 + 6′2

(
6,3

` − 6′�`

)
, �` =

1√
62 + 6′2

(
6′,3

` + 6�`

)
(13)

one can see that, as promised, through SSB the bosons responsible for weak interactions obtain
mass terms equal to <,± = E

26 and </ = E
2

√
62 + 6′2, whereas the photon field remains massless.

Plugging this same Higgs field into the Yukawa Lagrangian eq. (9) and restricting our attention
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to leptonic fields only:

L.;4? = −! 9.
;
9G;GQ =

. ;
9G√
2

[ (
a!9 ;

!

9

) (
0

E + ℎ

)
;'G + ;

'

9

(
0 E + ℎ

) (
a!G

;!G

) ]
= −

. ;
9G√
2
(E + ℎ)

(
;
!

9 ;
'
G + ;

'

9 ;
!
G

)
, (14)

here . ;
9G

is a complex non-diagonal 3G3 matrix, but it can be shown using singular value decompo-
sition that, with a rotation of the leptonic fields, it becomes real and diagonal. Then the fermionic
mass of j-th generation lepton <G =

" ;
GG√
2
E, with . ; = *" ;+† and neutrinos remain massless. On

the other hand, going beyond this simple analysis it is known that neutrinos, like quarks, can os-
cillate between flavour eigenstates. The PMNS (CKM in the case of quarks) matrix describes this
mixing. However, these topics are beyond this thesis and so next we turn to the extensions of the
SM proposed by the GNM.

1.3 The Majorana neutrino

One of the additions proposed by the GNM is the Majorana neutrino. Majorana fermions are
special solutions of the Dirac equation: (

8��m − <
)
R = 0. (15)

In the Majorana representation of gamma matrices these solutions are strictly real R̃ = R̃ ∗. But in
general various matrices satisfying eq. (15) can be related by a similarity transformation:

W̃` = *W`*†, (16)

so more generally the reality condition looks like:

*†R =

(
*†R

) ∗
=⇒R = **)R ∗. (17)

A more comfortable parametrization is **) = W0C where C is the charge conjugation matrix
which varies for different representations of W` matrices and is defined by CW`C−1 =

(
−W`

) ) . This
parametrization accentuates an alternative definition of the Majorana field, i. e. a field which is its
own charge conjugate. Defining R̂ ≡ W0CR ∗ the most general reality condition is as follows:

R = 480R̂ , (18)

where the phase 0 is irrelevant for the current discussion but can be important when considering
the mixing of SM neutrinos with the Majorana neutrino.

From this definition it follows that Majorana fermions are their own antiparticles and this in
turn means that by definition they are chargeless. This signifies that they are inert under all gauge
interactions of the SM and hence are sometimes called sterile. Another important consequence of
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this is that the mass term that is forbidden by the EW gauge symmetry for particles that have charge
under weak isospin is left intact. So the Majorana part of the Lagrangian can be written as:

L" =
1
2

(
R8��mR − <RR

)
. (19)

Additionally extra terms have to be added to the Yukawa sector and this addition has non trivial
consequences. The next subsection covers these.

A very intuitive and enlightening introduction to the construction of the Dirac and Majorana
spinors from the fundamental building blocks - Weyl spinors - is presented in [8].

1.4 The additional Higgs Doublet and the seesaw mechanism

The second proposal of the GNM is to expand the Higgs sector. Multiple Higgs doublet schemes
are pretty trivial expansions of the SM. Arbitrary amounts of doublets can be postulated without
any symmetries of the SM being violated, albeit at a steep cost in terms of complexity of the model.
In the GNM only one additional Higgs doublet is added:

Q2 ≡
(
q+2
q0

2

)
, (20)

Regardless of the simplicity of the addition itself it forces the consideration of a lot of new param-
eters in the Lagrangian. The most general Higgs part of the Lagrangian (eq. 3) gets expanded by an
extra kinetic and a batch of potential terms:

L� =
(
�`Q1

) † (�`Q1) +
(
�`Q2

) † (�`Q2) − �01Q
†
0Q1 − �0123

(
Q†

0Q1

) (
Q†

2Q3

)
, (21)

where 0, 1, 2, 3 = 1, 2. Following arguments in [9] one can show that only 14 of all � and �

parameters are unrelated and of those 14 three more can be ruled out by symmetry arguments. The
implications of this and more Higgs doublets including potentials is still an active field of research.

The Yukawa part of the Lagrangian (eq. 9) gets trivially doubled by considering all terms for
both Higgs doublets separately, but there are also extra terms coming from the Higgs doublets and
Majorana neutrino coupling together:

L.0338C8>=0; = −. 90! 9RQ0 + ℎ.2. (22)

The most interesting couplings are the ones that involve neutrinos. The mixing of the 3 SM neu-
trinos with the Majorana neutrino under specific parametrization leads to one non-vanishing mass
term upon transformation from flavor eigenstates to mass eigenstates by say singular value decom-
position. This is the so called seesaw mechanism. It it trivial to exemplify its principle with a 2D
matrix:

� =

(
0 "

" <

)
. (23)
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The eigenvalues of this matrix are _± = <±
√
<2+4"2

2 . Then since

_+_− = |�| = −"2 (24)

if one of the eigenvalues gets bigger the other gets smaller. In the limit < � " one can approximate
the eigenvalues as _+ ≈ < and _− ≈ "2

<
. Assuming that the mass of the Majorana neutrino < is

large this grants that the generated mass of the neutrino is small.
In the GNM to distinguish between the 2 neutrinos that remain massless at the tree level an

assumption is made that only one of them couples to the second Higgs doublet. This assumption
generates an additional mass term for one of the neutrinos at one loop level via the radiative cor-
rections.

This concludes the discussion of the GNM, but in the following subsection one additional impor-
tant feature - gauge fixing via explicit gauge breaking terms in the Lagrangian - will be introduced.
Also, significantly more in depth analysis of the GNM concepts including most of the technical
details can be found in [10].

1.5 Feynman-’t Hooft gauge

Higher order analysis in QFTs is significantly simplified if one fixes the gauge degrees of free-
dom. Specific problems benefit most from specific gauge choices. Most computations in QFT are
simplest in the Feynman-’t Hooft gauge so it was used for the analysis to be described in the third
section. Customary rather than writing the constraints in auxiliary equations in particle physics they
are included in the Lagrangian as additional gauge breaking terms. Following [11] these terms for
the specific gauge in question can be summed up as follows:

L6. 5 8G = −1
2

3∑
U=0

(F U)2, (25)

F 0 = m`�` −
1
2
6′E�0, (26)

F 3 = m`,3
` +

1
2
6E�0, (27)

F 1 = m`,1
` +

1
2
6E�2, (28)

F 2 = m`,2
` −

1
2
6E�1. (29)

In these equations E is the vacuum expectation value of the SM Higgs field, �1 =
(�−+�+)√

2
, �2 =

− 8(�−−�+)√
2

are linear superpositions of �± and �±, �0 are the Goldstone bosons that become the
longitudinal components of ,± and /0 after SSB. The SM Higgs doublet can be parametrized
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in terms of these and an additional neutral field ℎ0 as Q=

(
�+

1√
2
(E + ℎ0 + 8�0)

)
. Writing L6. 5 8G

explicitly after integrating F U by parts:

L6. 5 8G =
1
2
[�`m

`ma�a +,
9
`m

`ma,
9
a −

E2

4
(�0(6′2 + 62) + �−�+62)

+E(6,3
` − 6′�`)m`�0 + 6E(,1

`m
`�2 +,2

`m
`�1)] . (30)

Introducing these gauge fixing terms forces one to also include the Faddeev-Popov ghosts ( [12])
into the Lagrangian. These terms are constructed using the Faddeev-Popov determinant which is
defined in terms of the variations of gauge fixing terms XF ` and the variations of the infinitesimal
gauge transformations XKV (* (K) = 1− 8)UKU, where )0 = ., , ) 8 = f8

2 and KU � 1) that caused
them:

"UV =
XF U

XKV
(31)

Applying the infinitesimal gauge transformations to the fields of interest one can write:

XQ = −86′XK0.,Q − 86XK8) 8Q, (32)

XQ† = 86′Q†XK0., + 86Q†XK8) 8, (33)

X�` = m`XK
0, (34)

X,0
` = m`XK

0 − 6n012,1
`XK

2 . (35)

With that in mind the ghost field Lagrangian looks like:

L6ℎ>BC = [̄U"UV[V = [̄0(m2 + 6′2(E2 + ℎ0E))[0 +
3∑
9=1

[̄ 9 (m2 + 62(E2 + ℎ0E))[ 9

+ [̄1(m2 − 6m`,3
` − 862(E2 + ℎ0E))[2 + [̄1(m2 + 6m`,2

` − 628�2E)[3

+ [̄2(m2 + 6m`,3
` + 862(E2 + ℎ0E))[1 + [̄2(m2 − 6m`,1

` + 628�1E)[3

+ [̄3(m2 − 6m`,2
` + 628�2E)[1 + [̄3(m2 + 6m`,1

` − 628�1E)[2

+ 66′

2
([̄0�1E[1 + [̄0�2E[2 − [̄0(E2 + ℎ0E)[3 + [̄1�1E[0 + [̄2�2E[0 − [̄3(E2 + ℎ0E)[0)

(36)

With all these parts the EW sector of GNM Lagrangian can be summarized as:

L�#" = L�,+Q2+" + L6. 5 8G + L6ℎ>BC . (37)

This concludes the overview of the GNM and in the following section the focus lies on the tech-
niques that were employed to derive the renormalization constants of the aforementioned GNM
parameters.
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2 The renormalization procedure

Beyond the tree level in QFTs it is common to encounter integrals that diverge in the infrared
(IR) or the ultraviolet (UV) limit. IR divergences have to do with vanishing masses of particles in
question and they won’t be explored in this thesis. UV divergences, on the other hand, are encoun-
tered when integrating propagator factors that (following [13]) can be written in the form:

)#
`1...`?

( ?1, ..., ?#−1, <0, ..., <#−1) =
(2c`)4−�

8c2

∫
3�@

@`1 ...@`%

�0�1...�#−1
(38)

here D is the dimension number, N is the number of propagator factors, P is the number of inte-
gration momenta in the numerator and �8 = (@ + ?8)2 − <2

8
+ 8n are the propagators, ?0 = 0 and

8 = 1, ..., # − 1. In general for % + � − 2# ≥ 0 these integrals are UV divergent. Since these
integrals come from Feynman diagrams and play a role in computation of Green’s functions and S
matrix elements which in turn are connected to observable quantities one might conclude that this
methodology is flawed. Alternatively, the problem might be the parametrization of the theory. For
the so called renormalizable theories (QED is one example) the latter is indeed the case and one
can reformulate the parameters of the theory in a way that the aforementioned divergences cancel
out to any order of analysis. For this the diverging part of eq. (38) has to be extracted. There are
multiple ways to achieve this and a brief overview of them is presented in the following subsection.

2.1 The regularization schemes

The first and most straightforward regularization scheme is the momentum cutoff. In it the upper
bound of integrals like in eq. (38) is taken to be equal to an arbitrary finite constant L2 rather than
infinity. This allows to achieve a finite result with some parts depending on L and some not. Then L

can be taken back to infinity. One issue with this methodology is that it violates Lorentz symmetry
in the process, unless specifically accounted for.

Another method that shares one essential detail with the momentum cutoff is the Pauli-Villars
regularization. Here additional terms are added to the propagators in a way that they vanish fast
enough for large momenta:

1
@2 + <2 → 1

@2 + <2 − 1
@2 + Λ2 =

@2 + Λ2 − @2 − <2(
@2 + <2) (

@2 + Λ2) =
Λ2 − <2(

@2 + <2) (
@2 + Λ2) , (39)

this parameter Λ is unrelated to the momentum cutoff but serves a similar purpose - after the finite
result for the integral is achieved and parts with Λ are isolated it can be sent to infinity. This method
too happens to violate symmetries inherent in QFTs in the process.

Third option is defining QFTs on a lattice. Due to the discrete spacing of lattice points the
momenta will be limited to be less than c

0
, where 0 is the size of the gap between the lattice points.

Taking 0 → 0 sends the momentum cap back to infinity. The problem with these theories if that
they struggle with describing scattering events.

Finally, the most popular method is the dimensional regularization proposed in [14]. Under this
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methodology the Feynman integrals are formally continued to an arbitrary dimension � = 4 − 2n
(sometimes simply n). The diverging parts for regular QFTs with 4 spacetime dimensions then show
up as poles 1

n=
for the n-th order loop diagrams. The reason why this method is so popular is that it

avoids interfering with the integral bounds or the integrand itself and hence symmetry violations.
For these reasons this method was chosen for the analysis presented in this thesis.

After the diverging integrals are evaluated and the troublemaker terms isolated next step is to
reparametrize the model. The main approaches to this are summarized in the next subsection.

2.2 Approaches to the renormalization

The usual next step after regularization is the redefinition of the bare parameters of the theory
introducing counterterms that are fixed through the renormalization conditions. It’s an arbitrary
choice how much of the finite part is included in the counterterm so consistency is important.

One way to define the counterterms is such that the renormalized parameters are equal to the
measurable physical parameters to all orders of perturbation theory. This is the so called on-shell
scheme. For example in the SM a popular choice of such parameters are the masses of physical
particles ", , "/ , "� , < 5 , charge of the electron @4 and the quark mixing matrix +8 9 .

A simpler alternative is the Minimal Subtraction ("() scheme which only includes the diver-
gent term in the counterterm or the modified Minimal Subtraction ("(, spelled MS-bar) scheme
which additionally includes a few constants that come up during the dimensional regularization
procedure: the Euler-Mascheroni constant W� and ln (4c) . This approach has been chosen for the
work described in this thesis due to its simplicity and the fact that the masses and couplings of the
particles proposed by the GNM are still free parameters.

The additions of all the counterterms in a multiplicative form (% → /%, / = 1 + X/) result in
Lagrangian of the form:

L = L0 − XL (40)

where L0 stands for the original (bare) Lagrangian that we started with and under XL are all the
counterterms. For renormalizable theories the newly formulated Lagrangian is divergence free, but
to achieve this one has to take the new terms seriously and include Feynman diagrams stemming
from them into the analysis.

In the following subsection the dimensional regularization and "( scheme will be applied to
the simplest possible exemplary integral.

2.3 Dimensional regularization and MS scheme in action

Starting off simple the chosen methods can be applied to a Feynman integral of the form:

� =

∫
34?

(2c)4
1

?2 − <2 + 8n
. (41)

To begin with, such integrals are significantly easier to evaluate in Euclidean rather than Minkowski
space. Hence a trick called Wick rotation is usually performed. Since Feynman integrals usually

14



have their poles lie in the opposite quadrants, integrating over a contour shown in fig. 1, so long
as the integrand vanishes at |:0 | → ∞, implies that the integrals over the real and the imaginary
axes are identical and opposite, i. e. �' + ��< = 0. Practically Wick rotation is performed by sending
?0 → 8?0. This change makes the aforementioned integral purely Euclidean:

� → 8

∫
34?

(2c)4
1

−?2 − <2 . (42)

Note that the 8n term is no longer needed as now one can “cheat” and instead evaluate this integral
in, for example, the spherical coordinate system by making use of the spherical symmetry.

1 Fig. The contour of integration that justifies Wick rotation, i. e. the exchange of integration over
the real axis to integration over the imginary axis, for Feynman integrals that have their poles in

opposite quadrants (taken from [15])

Since this integral is divergent in four dimensions, before shifting to spherical coordinates, the
integral in question is generalised to arbitrary dimension �.

� → `4−�8

∫
3� ?

(2c)�
1

−?2 − <2 , (43)

here ` is the usual factor that keeps track of the mass dimensions. Now one can finally abuse the
spherical symmetry of the integrand and carry out the integration over the polar coordinates:

� = 8`4−�
∫

3S

∫ ∞

0

3?

(2c)�
?�−1

−?2 − <2 = −8`4−� 2c �
2

�
(
�
2
) ∫ ∞

0

3?

(2c)�
?�−1

?2 + <2 . (44)

The numerical prefactor is just the surface area of a unit length D dimensional sphere:
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∫
3S =

2c �
2

�
(
�
2
) . (45)

Massaging the integrand a little yields the following:

� = −8`4−� 2c �
2

�
(
�
2
) <�−2

(2c)�

∫ ∞

0

1
2
3

(
?2

<2

) (
?2

<2

) �−2
2

?2

<2 + 1

= −8`4−� <�−2

(4c)
�
2 �

(
�
2
) ∫ ∞

0
3

(
?2

<2

) (
?2

<2

) �
2 −1

?2

<2 + 1

= −8`4−� <�−2

(4c)
�
2 �

(
�
2
) � (

�

2
, 1 − �

2

)
= −8`4−� <�−2

(4c)
�
2 �

(
�
2
) � (

�
2
)
�

(
1 − �

2
)

� (1)

= −8`4−� <�−2

(4c)
�
2
�

(
1 − �

2

)
= −8

( <
4c

) 2
(
<2

4c`2

)
�−4

2 �

(
1 − �

2

)
. (46)

Here one of the expressions for the beta function, also known as the Euler integral, � (G, H) =∫ ∞
0 3C CG−1

(1+C) G+H and its relation to the gamma function � (G, H) =
� (G)� (H)
� (G+H) were used. From the last

expression one can see that the integral that we started with diverges for all even dimensions � > 0.
Expanding the gamma function around � = 4 − 2n (n � 1) in Laurent series:

� (−1 + n) = −1
n
+ W� − 1 −

(
1 − W� +

W2
�

2
+ c2

12

)
n +$

(
n2

)
, (47)

the remaining factors in Taylor series around the same point:(
<2

`24c

) −n
= 1 − ln

(
<2

4c`2

)
n +$

(
n2

)
(48)

and plugging these into eq. (46) one gets:

� = 8
<2

(4c)2

[
1 + 1

n
− W� − ln

(
<2

4c`2

) ]
+$ (n) . (49)

Grouping the pole and some of the constants under Δ
"(

≡ 1
n
− W� + ln (4c) and introducing

this parameter into the theory in an appropriate way one can make sure that the diverging part
always cancels out. In the next section this methodology is showcased by renormalizing some GNM
parameters.
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3 Renormalization of the relevant GNM parameters

Following [15] for each field and coupling constant (masses included) in the Lagrangian mul-
tiplicative counterterms of the form

Ψ� = /
1
2
Ψ
Ψ', /Ψ = 1 + XΨ

<� = /<<', /< = 1 + X<

6� = /66', /6 = 1 + X6 (50)

are defined. Indexes � and ' stand for bare and renormalized quantities. Henceforth the subscripts
' will be dropped to avoid confusion. These new terms involving XG result in additional Feynman
diagrams and rules and these diagrams, on their own accord, are supposed to cancel any effects of
UV divergences from the regular diagrams. This is what defines the XG and allows one to calculate
them to arbitrary precision. Note that this means that XG is by definition of one or higher loop order.

3.1 The renormalization procedure applied to the Majorana neutrino field
and mass

One advantage of the "( or "( schemes is that one doesn’t need to specify renormalization
conditions to fix the values of the counterterms as they are constant. With this in mind, the simplest
GNM specific parameters to renormalize are the Majorana neutrino mass and field. The renormal-
ization constants for them can be derived by considering the Majorana neutrino two point Green’s
function, also known as the two point correlation function, the propagator or the self-energy. At
one loop level the self-energy gets corrections from processes formally depicted in fig. 2. In these
loops neutral parts of both Higgs doublets can couple to the SM neutrino fields and the charged
parts to the remaining lepton fields. Here I should briefly mention that there are some subtleties
with the Feynman rules for Majorana neutrino fields that stem from the property of self-conjugacy.
For example one can formulate 4 different, but related Majorana propagators. For the purposes of
RG analysis any one of them is as good as any other, so we will not worry about that, but for further
discussion the reader is directed to [16].

Including the multiplicative counterterms into the Majorana Lagrangian eq. (19) yields 2 addi-
tional terms:

L" =
1
2

(
/ΨR8��mR − /Ψ/<<RR

)
=

1
2

(
R8��mR − <RR

)
+ 1

2

(
XΨR8��mR − (X< + XΨ) <RR

)
(51)

and, since both of them couple the Majorana field to itself, one additional Feynman diagram (see
fig. 3). Note that X<XΨ contribution is of 2 loop order and hence can be ignored.
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p
R R ≡ 8�RR ( ?) = 8

�?−<

p

! 9

Q0 q
R R ≡ 8�RR ( ?) 8ΣRR ( ?) 8�RR (@)

2 Fig. One of the four possible Majorana neutrino tree level propagators and one loop corrections
stemming from the additional Yukawa couplings introduced in eq. (22). This Feynman diagram
stands for many identical diagrams in which the neutral parts of the Higgs doublets couple to the

SM neutrinos and the charged parts to the charged leptons.

p q
R R ≡ 8�RR ( ?) 8Σ2.C.8�RR (@)

3 Fig. Majorana neutrino counterterm diagram and coupling. These stem from rewriting the
Lagrangian in terms of renormalized parameters (see eq. (51)) and noting that additional terms

look very much like regular couplings and hence yield additional Feynman diagrams.

Applying Feynman rules to these proceses yields the following:

8 (2c)4 X4 ( ? − @) ΣRR ( ?) =
3∑
9=1

2∑
0=1

2∑
E=1

∫
34?′

(2c)4

∫
34?′′

(2c)4
(
−8. 90

)
8
��?
′ + < 9E

?′2 − <2
9E

(
−8. ∗

90

) 8

?′′2 − <2
0E

× (2c)4 X4 ( ? − ?′ + ?′′) (2c)4 X4 (−@ + ?′ − ?′′)

=
∑
90E

��. 90

��2 ∫
34?′

(2c)4
��?
′ + < 9E

?′2 − <2
9E

1
( ?′ − ?)2 − <2

0E

(2c)4 X4 ( ? − @)

(52)

8Σ2.C. = 8 (XΨ�? − (X< + XΨ) <) (53)

here and in next subsection indices 9 , : are used to track the left handed fermion doublet generation
number and indices 0, 1 are used to track whether Higgs fields come from the first or the second
doublet. The index E is needed to sum over both the neutral and charged contributions coming from
the multiplication of the doublets. Note that any additional counterterms, for example of Yukawa
couplings, can be disregarded as they push the analysis beyond 1 loop order. If one demands that
the sum ΣRR ( ?) + Σ2.C. be finite, one gets an equation for the counterterms. For this the integral in
ΣRR ( ?)

� =

∫
34?′

(2c)4
��?
′ + < 9E

?′2 − <2
9E

1
( ?′ − ?)2 − <2

0E

≡ �? + �< (54)

has to be regularized. Note that this is a tensor integral, as the denominator is a 4G4 matrix ��?
′ +

�4G4< 9E. There are some clever ways to reduce the tensor integrals to scalar ones. They don’t change
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the matrix nature of such Green functions, but at least move the matrices in front of the integrals.
In this case to reduce �? one can make use of identities:

??′ = −1
2

(
( ?′ − ?)2 − ?′2 − ?2

)
= −1

2

( [
( ?′ − ?)2 − <2

0E

]
−

[
?′2 − <2

9E

]
−

[
?2 − <2

0E + <2
9E

] )
.

(55)

�? =
?2

?2

∫
34?′

(2c)4
��?
′

?′2 − <2
9E

1
( ?′ − ?)2 − <2

0E

= − �?

2?2

∫
34?′

(2c)4

©­­«
1

?′2 − <2
9E

− 1
( ?′ − ?)2 − <2

0E

−
?2 − <2

0E + <2
9E(

?′2 − <2
9E

) (
( ?′ − ?)2 − <2

0E

) ª®®¬ (56)

More examples of such tensor integral reductions and a general case proof can be found in [13].
With this the original integral reduces to 3 pieces:

� = �?

2?2

∫
34?′

(2c)4
1

( ?′ − ?)2 − <2
0E

− �?

2?2

∫
34?′

(2c)4
1

?′2 − <2
9E

+
(

�?

2?2

(
?2 + <2

9E − <2
0E

)
+ < 9E

) ∫
34?′

(2c)4
1(

?′2 − <2
9E

) (
( ?′ − ?)2 − <2

0E

) . (57)

The first 2 integrals are identical to the one in eq. (41). The third integral is usually rewritten using
specific parametrization attributed to Feynman:

�3 =

∫
34?′

(2c)4
1(

?′2 − <2
9E

) (
( ?′ − ?) 2 − <2

0E

)
=

∫
34?′

(2c)4

∫ 1

0
3G

1(
(1 − G)

(
?′2 − <2

9E

)
+ G

(
( ?′ − ?) 2 − <2

0E

) ) 2

=

∫
34?′

(2c)4

∫ 1

0
3G

1(
( ?′ − ?G) 2 + G (1 − G) ?2 − G<2

0E − (1 − G) <2
9E

) 2

=

∫ 1

0
3G

∫
34@

(2c)4
1(

@2 −&
) 2 , (58)

here & = G<2
0E + (1 − G)<2

9E
− G(1 − G)?2 and @ = (?′ − ?G). The internal integral is now

spherically symmetric and after Wick rotating the zeroth component of the shifted momentum @

one can generalize this integral to an arbitrary dimension:

�3 = 8

∫ 1

0
3G

∫
34@

(2c)4
1(

−@2 −&
) 2 → 8`4−�

∫ 1

0
3G

∫
3�@

(2c)�
1(

@2 +&
) 2 (59)
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Making use of the spherical symmetry again:

�3 = 8`4−� 2c �
2

�
(
�
2
) ∫ 1

0
3G

∫ ∞

0

3@

(2c)�
@�−1(

@2 +&
) 2

= 8`4−� 2c �
2

�
(
�
2
) ∫ 1

0
3G

∫ ∞

0

1
23

@2

&

(2c)�

(
@2

&

) �−2
2
&

�
2

&2
(
@2

&
+ 1

) 2−

= 8`4−� 1

(4c)
�
2 �

(
�
2
) ∫ 1

0
3G&

�
2 −2�

(
�

2
, 2 − �

2

)
= 8`4−� �

(
�
2
)
�

(
2 − �

2
)

(4c)
�
2 � (2) �

(
�
2
) ∫ 1

0
3G&

�
2 −2 = 8`4−� �

(
2 − �

2
)

(4c)
�
2

∫ 1

0
3G&

�
2 −2

=
8�

(
2 − �

2
)

(4c) 2

∫ 1

0
3G

(
&

`24c

) �−4
2

(60)

Here as in subsection 2.3 the same beta function expression and it’s relation to the gamma functions
was used. Again, next step is to expand this result around � = 4 − 2n , n � 1 and again Laurent
series is used to expand the gamma function due to the pole at � (0):

� (n) = 1
n
− W� + 1

2
(W2

� + c2

6
)n +$

(
n2

)
, (61)(

&

`24c

) −n
= 1 − ln

(
&

`24c

)
n +$

(
n2

)
, (62)

Multiplying these and keeping only non vanishing terms:

�3 =
8

(4c)2

[
1
n
− W� −

∫ 1

0
3G ln

(
&

`24c

) ]
+$ (n) . (63)

The integral in eq. (63) is analitically solved in Appendix A but the result isn’t very enlightening or
relevant for further discussion. Plugging everything back to eq. (52) and denoting �G =

∫ 1
0 3G ln

(
&

G2

)
as well as grouping Δ

"(
= 1

n
− W� + ln (4c) like in the previous section:

ΣRR ( ?) =
∑
90E

��. 90

��2
(4c)2

(
�?<

2
0E

2?2

[
1 + Δ

"(
− ln

(
<2

0E

`2

) ]
− �?<

2
9E

2?2

[
1 + Δ

"(
− ln

(
<2

9E

`2

) ]
+

(
�?

2?2

(
?2 + <2

9E − <2
0E

)
+ < 9E

) [
Δ
"(

−
∫ 1

0
3G ln

(
&

`2

) ] )
=

∑
90E

��. 90

��2
(4c)2

(
�?

2?2

(
<2

0E

[
1 + �<0E

]
− <2

9E

[
1 + �< 9E

] )
−

(
�?

2
+ < 9E

) [
Δ
"(

− �`
] )

. (64)

As one can see, the UV divergent part is isolated solely in the third term of eq. (64). By demanding
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that the terms in Σ2.C. would cancel it one gets the following equation:

XΨ�? − (X< + XΨ) < +
∑
90E

��. 90

��2
(4c)2

(
�?

2
+ < 9E

)
Δ
"(

= 0, (65)

from which the values for the counterterms can be read off:

XΨ = −
∑
90E

��. 90

��2
(4c)2

Δ
"(

2
, (66)

X< + XΨ =
∑
90E

��. 90

��2
(4c)2

< 9E

<
Δ
"(

⇒ X< =
∑
90E

��. 90

��2
(4c)2

[
< 9E

<
+ 1

2

]
Δ
"(

. (67)

These definitions of the counterterms achieve what we aimed for - removing the infinity from the 1
loop Majorana propagator correction. Yet there is additional information one can gather from this
analysis - there is this one term �` left in eq. (64) that depends on the arbitrary parameter of mass
dimension `. In the domain of RG ` is called the renormalization scale. One would prefer any
physical results to be independent of this arbitrary parameter, hence additionaly it is demanded that
the renormalized couplings covariate with it in a way as to cancel any ` dependence in ΣRR ( ?) .
One way to figure this dependence out is to note that the bare parameters of the model are just
numbers and hence:

0 = `
3

3`
<� = `

3

3`
(/<<) = `<

(
3/<

3`
+ /<

<

3<

3`

)
. (68)

This is the so called Renormalization Group Equation (RGE) for the mass of the Majorana neutrino.
From it, by noting that /< = 1 + X<, taking the sum over all fields in front of the counterterm
X< → ∑

90E

X< and using the chain rule, one can arrive at:

`<

(∑
90E

(
3X<

3. 90

3. 90

3`
+ 3X<

3. ∗
90

3. ∗
90

3`
+ 3X<

3< 9E

3< 9E

3`

)
+

∑
90E

3X<

3<

3<

3`
+ /<

<

3<

3`

)
= 0 (69)

and from this the equation for the function that describes how couplings of the theory change with
the scale - the beta function - of the Majorana mass can be read off:

V< ≡ `
3<

3`
= −

∑
90E

(
3X<

3. 90E

`
3. 90

3`
+ 3X<

3. ∗
90E

`
3. ∗

90

3`
+ 3X<

3< 9E

`
3< 9E

3`

) (∑
90E

3X<

3<
+ /<

<

) −1

= −<
Δ
"(

(4c) 2

∑
90E

( (
. ∗
90V. 90

+ . 90V. ∗
90

) [
< 9E

<
+ 1

2

]
+

��. 90

��2 < 9E

<
W< 9E

) (
1 + 1

2
Δ
"(

(4c) 2

∑
90E

��. 90

��2) −1

− 2<
.

∑
90E

( (
. ∗
90V. 90

+ . 90V. ∗
90

) (
< 9E

<
+ 1

2

)
+

��. 90

��2 < 9E

<
W< 9E

) (
2
(4c) 2

.Δ
"(

+ 1
) −1

, (70)
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with W< 9E
≡ `

< 9E

3< 9E

3`
=

V<9E

< 9
being an analogue of the beta function - the so called anomalous

dimension - and . ≡ ∑
90E

��. 90

��2 = 2
∑
90

��. 90

��2. As � → 4, Δ
"(

→ ∞ leaving:

V<
�=4
= −2<

.

∑
90E

( (
. ∗
90V. 90

+ . 90V. ∗
90

) (
< 9E

<
+ 1

2

)
+

��. 90

��2 < 9E

<
W< 9E

)
. (71)

Eq. (71) relates the RG flow of the mass of the Majorana neutrino to the flows of leptonic
Yukawa couplings and leptonic masses. Hence in the next subsection similar analysis is applied to
the leptonic Yukawa couplings.

3.2 The renormalization procedure applied to leptonic Yukawa couplings

For the purposes of this thesis only leptonic part of the Yukawa sector will be considered. With
this in mind, grouping the Majorana neutrino with the right handed lepton fields, dropping the
unnecessary indices and, as in previous section, replacing the bare parameters with renormalized
ones and the counterterms:

L. = −/
1
2
! 9
/

1
2
Q0

/
1
2
;G
/. 90G

! 9. 90GQ0;G , (72)

here ;1, ;2, ;3 are the 3 generations of right handed leptonic fields and ;4 stands for the majorana
fieldR . As in the previous section to track indices easier the indices 9 , : will be used solely for
left handed doublets, 0, 1 for Higgs doublets and G, H ∈ {1, 2, 3, 4} for the singlets.

?1

?2

?3

! 9

;G

Q0

+
?1 ;H

!:

Q1
?2

?3

! 9

;G

Q0

+
?1

?2

?3

! 9

;G

Q0

≡ 8
(
Γ0 90G + Γ1 90G + Γ2.C. 90G

)

4 Fig. Schematic diagrams of the tree level and the 1 particle irreducible (1PI) 1 loop corrections
to Yukawa vertices plus the counterterm diagram. To avoid cumbersome notation the external

propagators were not explicitly written out this time. The field counterterms in eq. (73) are
responsible for renormalizing the propagators of external fields, so demanding Γ1 90G + Γ2.C. 90G to

be finite yields an equation for the counterterms of Yukawa couplings.

One way to look at the counterterms is as perturbative expansions, with XG being the second to
leading order term, so one is justified in using /

1
2
G ≈ 1 + XG

2 as terms of $
(
X2) are beyond 1 loop

level. Hence keeping only the linear counterterm terms one arrives at:

L. = −! 9. 90GQ0;G −
(
X! 9

2
+ XQ0

2
+ X;G

2
+ X. 90G

)
! 9. 90GQ0;G + ℎ.2. +$

(
X2

)
. (73)
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On the other hand, the field counterterms remove the infinities arrising from corrections to field
propagators, hence focusing only on the 1 particle irreducible (1PI - meaning those diagrams that
cannot be split into 2 by cutting a single line) diagrams these terms can be dropped. All the 1PI
diagrams allowed by the Lagrangian of the theory up to 1 loop level can be seen in fig. 4. Tracking
the fermion line in reverse order one can contruct Γ1 90G using Feynman rules:

8 (2c)4 X4 ( ?1 − ?2 − ?3) Γ1 90G =

3∑
:=1

2∑
1=1

4∑
H=1

2∑
E=1

∫
34?′

(2c)4

∫
34?′′

(2c)4

∫
34?′′′

(2c)4 (−8.:1G) 8 �
�?′ + <:E

?′2 − <2
:E

×
(
−8. ∗

:0H

)
8 �

�?′′ + <H

?′′2 − <2
H

(
−8. 9 1H

) 8

?′′′2 − <2
1E

× (2c)4 X4 ( ?′ − ?′′′ − ?2) (2c)4 X4 ( ?′′ − ?3 − ?′) (2c)4 X4 ( ?1 − ?′′ + ?′′′) .
(74)

Note that here, as before, the momenta of the intermediate fields point in the same direction as the
field lines. Carrying out the trivial integrals and dropping the (2c)4 X4 (

?8 − ? 5

)
factors:

8Γ1 90G =
∑
:1HE

.:1G.
∗
:0H. 9 1H

∫
34?

(2c)4
�? + <:E

?2 − <2
:E

��?3 + �? + <H

( ?3 + ?)2 − <2
H

1
( ?3 − ?1 + ?)2 − <2

1E

=
∑
:1HE

.:1G.
∗
:0H. 9 1H

∫
34?

(2c)4

(
5

(
?2

)
+ 5 ( ?) + 5 (�)

)
. (75)

Making use of the identity �?
2 = ?2� and tricks from the previous subsection (see eq. (55)) the

integrals can be simplified:
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1
( ?3 + ?)2 − <2

H

1
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1E

. (78)
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For terms with 2 propagators results from the previous subsection can be used by making a few
adjustments where needed. On the other hand, the terms with three propagators and without any
integration momenta factors in the numerator are not divergent anymore in � = 4 (to convince
oneself, one can look up eq. 38), so they are irrelevant for further discussion, but for completeness
sake the solution of the 3 propagator Feynman integrals is given in Appendix B.

With the 3 propagator terms dropped:∫
34?

(2c)4 5

(
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)
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8
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−
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0
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here

&1 = &3 = (1 − G) <2
H + G

(
<2
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1

)
+ ?2

1G
2,

&2 = (1 − G) <2
:E + G

(
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1E − ( ?3 − ?1)2
)
+ ( ?3 − ?1)2 G2 (81)

are the constant remains left after assembling full square in the denominator in the same way as in
previous subsection. Given that there is only one contribution diverging at � = 4 and demanding
Γ1 90G + Γ2.C. 90G to be finite, one can finally express the counterterms of the Yukawa couplings:

X. 90G =
∑
:1HE

.:1G.
∗
:0H. 9 1H

Δ
"(

(4c)2 = 2
∑
:1H

.:1G.
∗
:0H. 9 1H

Δ
"(

(4c)2 , (82)

The complex conjugated coupling counterterm can be computed either by retracing all the steps
for Feynman diagrams with field lines pointing in the opposite direction or alternatively by taking
complex conjugate of eq. (82), which yields:

X. ∗ 90G = 2
∑
:1H

. ∗
:1G.:0H.

∗
9 1H

Δ
"(

(4c)2 . (83)

With the counterterms expressed one can finally perform the RG analysis. The RGEs for Yukawa
couplings stem from the same consideration of bare parameter independence from the scale param-
eter `:
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3.:1G
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+ /. 90GV. 90G . (84)
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Here the sum over fields has again been moved in front of X. 90G
. Denoting ( 90G ≡

∑
:1H

.:1G.
∗
:0H

. 9 1H:
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( 90G

∑
:1H

(
. ∗
:0H. 9 1HV.:1G + .:1G. 9 1HV. ∗:0H + .:1G. ∗

:0HV. 91H
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∑
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ª®¬
−1ª®®¬

−1

(85)
and letting � → 4 and hence X. 90G → ∞:

V. 90G
�=4
= −

. 90G

( 90G

∑
:1H

(
. ∗
:0H. 9 1HV.:1G + .:1G. 9 1HV. ∗:0H + .:1G. ∗

:0HV. 91H

)
. (86)

The equation for complex conjugated piece is again trivially a complex conjugate of eq. (86). These
sets of coupled linear differential equations describe the interconnected flow of leptonic Yukawa
couplings. Apart from the trivial solution V.GHI = 0 and V. ∗GHI = 0 for all G, H and I, more fixed
point solutions are possible but impractical to solve for analitically.
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Results and conclusions

• Using dimensional regularization Majorana neutrino field, mass and leptonic Yukawa cou-
plings have been renormalized at one loop order. The revelevant counterterms can be found
in eqs. (66, 67, 82, 83). Additionally, the Beta functions for the mass and couplings have been
computed, see eqs. (71, 86). Looking for non-trivial fixed point solutions of these coupled
sets of linear differential equations analitically is impractical.

• The methodology of dimensional regularization indeed works flawlessly for regularizing UV
divergences in Feynman integrals and multiplicative counterterm method for formulating
counterterms indeed yields simple algebraic equations for them. It was found that Passarino-
Veltman type tricks for reducing tensor integrals into scalar and sometimes lower order Feyn-
man integrals works faster than applying Feynman parametrization directly.

• For a full description and numerical analysis of the RG flow of the GNM specific parameters
this work should be expanded to include at least whole EW sector renormalization and some
estimates for Yukawa couplings involving second Higgs doublet.
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Rokas Garbačauskas

RYŠYS TARP RENORMALIZACIJOS SRAUTO, RENORMALIZACIJOS KONSTANTŲ
IR SĄLYGŲ. GRIMUS NEUFELD MODELIO RENORMALIZACIJOS KONSTANTOS

VIENOS KILPOS LYGMENY

Santrauka

Kvantinio Lauko Teorijos (angl. QFTs) ir jose plėtojami matematiniai metodai yra viena ab-
strakčiausių fizikos šakų. Tai kelia nemažai iššūkių studentams bandantiems įsigilinti į šią sritį. Bet
pastangos atsiperka. Viena vertus, šių teorijų formalizmas yra intelektualiai elegantiškas. Kita ver-
tus, matematiniai metodai, naudojami šiose srityse, leidžia gauti vienas tiksliausių teorinių verčių
įvairiems parametrams. Standartinis pavyzdys yra elektrono anomalus magnetinis momentas, ku-
rio vertės gautos iš teorinių skaičiavimų pasinaudojant Kvantinės Elektrodinamikos (angl. QED)
formalizmu ir iš atliktų eksperimentų sutampa iki 11 skaitmens po kablelio ( [1]). Dėl šitokio
metodų tikslumo 3,5 sigmų nesutikimas tarp teorinės ir eksperimentinės anomalaus magnetinio
momento verčių miuono atveju ( [2]) yra laikomas stipriu įrodymu, kad Standartinis Modelis (SM)
- teorija inkorporuojanti QED ir aprašanti subatominių dalelių dinamiką - dar turi būti praplėstas.
Tarp empirinių faktų, kuriuos yra bandoma paaiškinti SM plėtiniais, yra ir daugybė eksperimentų,
tyrinėjančių neutrinų osciliacijas ( [3]). Šiam reiškiniui vykti reikalingos nenykstančios neutrinų
masės. Tuo tarpu SM dėl dešiniarankių neutrinų neegzistavimo šioms dalelėms neįmanoma sufor-
muluti masę aprašančių narių.

Vienas iš pasiūlymų, kaip SM galėtų būti minimaliai praplėstas, yra Grimus-Neufeld modelis
(GNM, [4]), kuriame prie SM esančių dalelių pridedamas dar vienas papildomas Higgs’o dubletas
bei vienas sunkus Majorana neutrinas. Šie priedai sverto mechanizmu bei per pirmos kilpos lyg-
mens pataisas aprašo 2 iš trijų neutrinų masių. Dviejų ir aukštesnių kilpų pataisos leidžia aprašyti
visas neutrinų mases.

Viena specifinė QFTs tyrinėjimų sritis yra Renormalizacijos Grupė (RG). RG lygtys aprašo
kaip specifinis modelis kinta keičiantis mąsteliui. Iš pradžių renormalizacija QFTs buvo suprantama
kaip parametrų reformulavimas teorijos aprašyme siekiant išvengti įvairių diverguojančių integralų
indėlio į fizinius parametrus. Šie UV ir/ar IR diverguojantys integralai yra sutinkami Feynman’o
formalizme dėl begalinių integravimo rėžių bei masės neturinčių dalelių, kai bandomos įskaičiuoti
aukštesnės nei kamieno lygmens pataisos. Šie metodai yra nemažas pasiekimas, bet ne ką mažiau
svarbus atradimas yra minėtos RG kygtys, kurios aprašo, kaip specifinė teorija elgiasi skirtinguose
mąsteliuose. Taip pat ji susieja šiuos teorijų skirtinguose mąsteliuose aprašymus. Tai sudaro mūsų
supratimo apie kintančias sąveikos konstantas pagrindą bei leidžia suprasti visų jėgų, išskyrus (bent
jau kol kas) gravitaciją, prigimtį.

Šiame darbe aprašyta RG srauto analizė svarbiausiems GNM modelio parametrams. Trečioje
dalyje Majorana neutrino laukui bei masei ir leptoninėnims Yukawa sąveikos konstantoms izoli-
avus diverguojančius narius iš atitinkamų Feynmano integralų suformuluoti priešiniai nariai (angl.
counterterms) bei aprašyti šių parametrų RG srautai. Tuo tarpu pirmame skyrelyje nuosekliai pris-
tatytas GNM, o sekančiame su pavyzdžiais aprašyti naudoti metodai. Gauti minėtų priešinių narių
analizines išraiškas bei aprašyti tų parametrų RG srautą ir buvo pagrindinis šio darbo tikslas.
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Appendix A

Here the integral from subsection 3.1 eq. (63) is solved analitically.
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. Partial integration yields:

� =

∫ 1

0
3G ln

(
0G2 + 21G + 2

)
= G ln

(
0G2 + 21G + 2

) ���1
0
−

∫ 1

0
3

(
ln

(
0G2 + 21G + 2

) )
G

= ln (0 + 21 + 2) −
∫ 1

0
3G

G (20G + 21)
0G2 + 21G + 2

= ln (0 + 21 + 2) −
∫ 1

0
3G

2
(
0G2 + 21G + 2

)
− 21G − 22

0G2 + 21G + 2

(88)
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Second order polynomials with complex coefficients have 2 different roots when � ≡
√
12 − 02 ≠ 0

and 2 identical roots when � = 0. In either case the denominator can be rewritten in terms of these
roots:
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Plugging this result back to eq. (88) but grouping some terms under � =
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Appendix B

Here regularization techniques are applied to solve the convergent integrals from subsection
3.2:
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By making use of a trick with Feynman variables this can be rewritten as:
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Let
∫
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With an integration variable shift ?+?3 (D + =)−?1 9 → ? , and defining& = ( ?3 (D + =) − ?1=)2+
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Making use of the spherical symmetry and the same beta and gamma function properties:
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The remaining integral over Feynman variables is convergent, but involves many algebraic manip-
ulations to solve and isn’t very enlightening.
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