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1 Introduction

In our universe, baryonic (visible) matter only comprises ∼ 4% of the universe’s energy content,
while around 70% is attributed to the unknown dark energy [1, 2]. The rest is considered to be
very weakly interacting particles, mostly interacting with matter through gravity and not interacting
electromagnetically, known as dark matter. However, there are possible candidate particles, like
sterile neutrinos, that could be dark matter.

In the Standard Model of particle physics, neutrinos do not have a mass term. That is in contra-
diction with experiments, where, by observing neutrino oscillations, it was shown that neutrinos do
have mass [3]. In the Standard Model, particles acquire mass through the interaction with the Higgs
field with their right-(left-)handed counterparts. However, in the Standard Model, the neutrinos are
only left-handed. Which means that there should be right-handed neutrinos.

These right-handed or sterile neutrinos are weakly interacting - they only allow left-handed
neutrinos (the ones we know) to have mass. One possible extension to the Standard Model, called
the Grimus-Neufeld model not only adds a heavy sterile neutrino, it also states that neutrinos are
Majorana neutrinos and also adds a second Higgs doublet.

Because the sterile neutrinos that come from the Grimus-Neufeld model are weakly interacting,
mainly through the Higgs field and gravity, one can say that these particles could be dark matter.
This is because we assume them to be heavy - heavier than the left-handed neutrinos and maybe
heavier than other particles. And of course because they are so weakly interacting.

In this work, we look over the possibility of sterile neutrinos being dark matter. We begin by
presenting the basics of cosmology. Namely by showing how the Boltzmann and Einstein’s equ-
ations are used to calculate the evolution of all particle densities, including dark matter. This is done
in the case of non-thermal equilibrium.

We then look over possible sterile neutrino generation methods: the Dodelson-Widrow or the
thermal model [4] and the heavy scalar decay model [5]. For both of these models we derive the
neutrino number density 𝑛𝑆 formulas. In the heavy scalar decay, we derive two formulas for two
periods of sterile neutrino production - early scalar production/decay and late scalar decay.

Using these formulas, we calculate the density parameter of sterile neutrinos 𝛺𝑆 for both cases
and a third combined case and show at what sterile neutrino mass does the sterile neutrino density
parameter resemble that of the dark matter density parameter. For the heavy scalar decay we also
look at how the additional parameters that come from this model, like the coupling between the
scalar and neutrino fields and the scalar mass affect the mass of the sterile neutrinos.

Finally, we look at the results and the possible implications of these models. We compare the
two models between themselves. And lastly, we list the possible shortcomings of the models.
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2 Theory

To understand how and why the sterile neutrino particle could be a dark matter candidate, one
must have an understanding of Einstein’s relativity theory and of quantum field theory (QFT). For
readers, who have no knowledge on these subjects, I refer you to appendices A and B, which have
short introductions into the basics of the theories. For those, who are interested in a deeper dive of
the subjects, I refer you to the great books in refs. [1, 6–9].

2.1 On sterile neutrinos

Before we begin talking about the sterile neutrinos, we need to talk about the neutrinos that we
already know of. In the Standard Model (SM), the neutrinos are massless. This comes from the fact
that in the weak interactions, we only have left-handed neutrinos. However, this „masslessness“ is
in contradiction with experimental results, which state that neutrinos oscillate, which means that
they should have a mass [3].

What this means in terms of QFT is that we should have not only left-handed neutrinos, but also
right-handed neutrinos. This is apparent when one considers the construction of the mass term in
a Lagrangian, which is shown here

L𝑚𝑎𝑠𝑠 = 𝜇𝐻𝑙𝐿𝑙𝑅, (1)

where 𝜇 is the Dirac mass (note, this is not the left-handed neutrino mass; the Dirac mass is related to
it via the seesaw mechanism 𝑚𝜈 =

𝜇2

𝑀
[10], where 𝑀 is the Majorana mass), 𝐻 is the Higgs doublet

and 𝑙𝐿,𝑅 is the left- or right-handed lepton. As was noted, the SM only has left-handed neutrinos -
there are no interactions in the SM, which include the right-handed neutrinos. And since the SM is
the most accurate particle physics model to date, this means that we need an extension to the SM,
which does not contradict it.

One of these extension is the Grimus-Neufeld model (GNM), which adds a heavier Majorana
neutrino and a second Higgs doublet. The added Majorana neutrino is right-handed. But since it
doesn’t appear in the SM, that means that the added right-handed neutrino should not interact in
any way with other particles, except through the Higgs field and gravitationally (this is not the case
if we assume more particles, with which the sterile neutrino can interact, like in the heavy scalar
decay picture). And this is where we get the name sterile neutrinos. And these sterile neutrinos,
as was noted, are assumed to be massive, many times more massive than the other neutrinos and
maybe other particles as well.

If we briefly take a look at dark matter particles, we note that they are massive weakly interacting
particles, i.e. they interact through gravity and nothing else that we know of. And as we know, sterile
neutrinos are weakly interacting and are massive. Thus the GNM sterile neutrinos could be dark
matter particles.
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2.2 Boltzmann and Einstein equations in the early universe

But before we can go and start working on the sterile neutrinos and their possible connection
to dark matter, one must understand the background in which we are working. As one knows, the
particles we know today were all created during the early universe period, right after the Big Bang,
via a process 2𝛾 → 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 + 𝑎𝑛𝑡𝑖𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. This includes dark matter particles. So if we want
to talk about sterile neutrinos being a possible candidate for dark matter particles, we need to talk
about this period.

However, there were many particles created in the early universe. Too many to write equations of
motion for each and everyone of them. Because of this, we use the methods from statistical physics
and our parameters usually are the distribution functions 𝑓 and temperature 𝑇 among other things
like mass of the particles. Thus, we require the Boltzmann equation for these distribution functions,
since it allows us to model their evolution and in turn how particles are distributed.

But particles have mass and that mass generates gravitational fields. And particles are distributed
in various ways, so the generated gravitational fields will be different throught all of spacetime. To
account for this, we use a perturbed metric

𝑔00 = −1 − 2𝛹
𝑔0𝑖 = 0

𝑔𝑖 𝑗 = 𝑎2𝛿𝑖 𝑗 (1 + 2𝛷) ,
(2)

where 𝑎 is the scale factor;𝛹 corresponds to the perturbation to the spatial curvature and𝛷 corres-
pons to the Newtonian potential. And these potentials also change over time, so we will have to use
the Einstein’s equations for them aswell. This metric is a perturbation of the Friedmann-Robertson-
Walker (FRW) metric, which is just

𝑔𝜇𝜈 =

©­­­­­«
−1 0 0 0
0 𝑎2 0 0
0 0 𝑎2 0
0 0 0 𝑎2

ª®®®®®¬
. (3)

This metric accounts for the simple flat spacetime expansion. An additional reason, why we use the
perturbed metric is the fact, that we assume the universe not to be thermally at equilibrium.

In the following sections, we will show the basics for early universe calculations, by calculating
the densities of various particles, including cold dark matter (not sterile neutrinos) and how their
distribution functions affect the perturbations of the metric. These calculations will be taken from
the Dodelson’s book on cosmology Modern Cosmology [2]. The main bulk of these sections is to
give a background of understanding for the later calculations, although most of what is written here,
will not be used in the main calculations of this work.
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2.2.1 Boltzmann equations

We turn to calculate the densities of particles in the early universe. Specifically we will be
calculating the densities of photons, cold dark matter and baryons (electrons, protons and so on;
this might seem contradictory as electrons are not baryons, but it is just common to lump the two
groups together and name them baryons). To do that, we will use the Boltzman equation. It can be
shown schematically as

𝑑𝑓

𝑑𝑡
= 𝐶 [ 𝑓 ], (4)

where 𝑓 , is the density distribution function, which depends on coordinates 𝑥 and momenta 𝑃1.
The term 𝐶 [ 𝑓 ] corresponds to all the collision terms.

For photons

Colisionless Boltzmann equation

To begin the calculations we must first calculate the collisionless Boltzman equation. Then we
can calculate the collision terms and combine the two parts in to one simple equation.

So let’s begin by defining the momentum vector2

𝑃𝜇 =
𝑑𝑥𝜇

𝑑𝜆
, (5)

where 𝜆 parametrizes the particle’s path. For a massless photon, the scalar product of this momen-
tum is

𝑃2 = 𝑔𝜇𝜈𝑃
𝜇𝑃𝜈 = 0, (6)

where 𝑔𝜇𝜈 is the perturbed metric (2). We can expand this scalar product

𝑃2 = − (1 + 2𝛹 )
(
𝑃0

)2
+ 𝑝2 = 0, (7)

where 𝑝2 = 𝑔𝑖 𝑗𝑃
𝑖𝑃 𝑗 . Thus using this equation, we can write down 𝑃0

𝑃0 =
𝑝

√
1 + 2𝛹

= 𝑝 (1 −𝛹 ) . (8)

In the last equality we used the first-order perturbation theory.
Eq. (8) allows us to eliminate 𝑃0 in favor of 𝑝. Having that, we can write down the collisionless

Boltzman equation, where we expand the time derivative

𝑑𝑓

𝑑𝑡
=
𝜕 𝑓

𝜕𝑡
+ 𝜕 𝑓

𝜕𝑥𝑖
· 𝑑𝑥

𝑖

𝑑𝑡
+ 𝜕 𝑓

𝜕𝑝
· 𝑑𝑝
𝑑𝑡

+ 𝜕 𝑓

𝜕𝑝𝑖
· 𝑑𝑝

𝑖

𝑑𝑡
, (9)

where 𝑝𝑖 is the unit vector and it stands for the direction vector of momentum. The last term in eq.
1Here 𝑥, 𝑃 stands for 𝑥𝜇, 𝑃𝜇, all spatial coordinates, the time coordinate, the energy and the momentum.
2Note, that here it is not the derivative of a coordinate to gives us velocity, but a derivative of the parametrized path

to gives us momentum of massless photons (if we had mass the momentum would be zero!).
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(9) is a second order term. To see that recall that the Bose-Einstein distribution does not depend
on the direction of momentum. Thus the only way that 𝜕 𝑓

𝜕𝑝𝑖
is non-zero is if it’s first order. But so is

the term that it multiplies, because it depends on the small potentiantls from the perturbed metric.
Thus the whole term is of second-order which means we can neglect it.

Let’s focus on the second term on the right-hand side of the eq.(9). We can rewrite it, using our
definition of momentum (5)

𝑑𝑥𝑖

𝑑𝑡
=
𝑑𝑥𝑖

𝑑𝜆

𝑑𝜆

𝑑𝑡
=

𝑃𝑖

𝑃0 . (10)

Since 𝑃𝑖 is proportional to the unit vector 𝑝𝑖, we can write the proportionality using a constant 𝐶

𝑃𝑖 = 𝑝𝑖𝐶. (11)

Now using the scalar product of the spatial momentum 𝑝2 = 𝑔𝑖 𝑗 𝑝
𝑖𝑝 𝑗𝐶2,we can write down that the

constant 𝐶 =
𝑝(1−𝛷)

𝑎
and with it we can rewrite eq.(10) using eq.(11)

𝑑𝑥𝑖

𝑑𝑡
=

𝑝𝑖

𝑎
(1 +𝛹 −𝛷) . (12)

Note, that in an overdense region, where 𝛹 < 0 and 𝛷 > 0,the terms in parentheses is less than
one. This means that the photon slows down when traveling through an overdense region. However,
in eq.(9) the fraction that multiplies (12) is first-order term. That means that we can neglect the
gravitational potentials and the second term would just be

𝑝𝑖

𝑎
· 𝜕 𝑓
𝜕𝑥𝑖

. (13)

The last term in eq. (9) is a bit more difficult. For it, we need to look at the time component of
the geodesic equation

𝑑𝑃0

𝑑𝜆
= −𝛤0

𝛼𝛽𝑃
𝛼𝑃𝛽. (14)

After making quite a handful of manipulations3 we arrive at the final result

1
𝑝

𝑑𝑝

𝑑𝑡
= −𝐻 − 𝜕𝛷

𝜕𝑡
− 𝑝𝑖

𝑎

𝜕𝛹

𝜕𝑥𝑖
. (15)

With this result we can now rewrite eq.(9)

𝑑𝑓

𝑑𝑡
=
𝜕 𝑓

𝜕𝑡
+ 𝑝𝑖

𝑎
· 𝜕 𝑓
𝜕𝑥𝑖

+ 𝑝
𝜕 𝑓

𝜕𝑝

(
−𝐻 − 𝜕𝛷

𝜕𝑡
− 𝑝𝑖

𝑎

𝜕𝛹

𝜕𝑥𝑖

)
. (16)

Zero and first order equations for the Bose-Einstein distribution

This section will be short, because the only thing that is necessary is the definitions and some
results.

3Here I refer the reader the book by Dodelson [2], where these calculations are made and their results are taken here
to be true.
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To begin, let us define the Bose-Einstein distribution that depends on the unit vector 𝑝𝑖

𝑓 (𝑥, 𝑝, 𝑝) =
(
exp

{
𝑝

𝑇 (𝑡) [1 +𝛩 (𝑥, 𝑝)]

}
− 1

)−1
. (17)

Here, the temperature𝑇 depends only on time and is a zero-order term. The term𝛩 is a perturbation
to the distribution, which describes the inhomogeneities and anisotropies in the photon distribution.
This perturbation is small, so if we expand around it, we can write

𝑓 = 𝑓 (0) − 𝑝
𝜕 𝑓 (0)

𝜕𝑝
𝛩, (18)

where 𝑓 (0) is the zero-order distribution

𝑓 (0) =
(
exp

{ 𝑝
𝑇

}
− 1

)−1
. (19)

For the zero-order equation, one can insert the zero-order distribution (19) into the Boltzman
equation (16) and would get the result(

−𝑑𝑇/𝑑𝑡
𝑇

− 𝑑𝑎/𝑑𝑡
𝑎

)
𝜕 𝑓 (0)

𝜕𝑝
= 0. (20)

The first-order equation now requires us to insert the full expansion (18) into the Boltzman equation
(16). The result, one would get when doing so is

𝑑𝑓

𝑑𝑡
= −𝑝 𝜕 𝑓

(0)

𝜕𝑝

(
𝜕𝛩

𝜕𝑡
+ 𝑝𝑖

𝑎

𝜕𝛩

𝜕𝑥𝑖
+ 𝜕𝛷

𝜕𝑡
+ 𝑝𝑖

𝑎

𝜕𝛹

𝜕𝑥𝑖

)
. (21)

Collision terms

Now that we have a collisionless Boltzmann equation for photons and having applied it to the
Bose-Einstein distribution, we must consider more of reality. In the cosmic soup, there aren’t just
photons in it. There are also other particles. And photons can scatter from them, specifically from
electrons in what is called the Compton Scattering. This would show in our Boltzman equation as
collision terms.

We consider a scattering process where

𝑒− (𝑞) + 𝛾 (𝑝) ↔ 𝑒− (𝑞′) + 𝛾 (𝑝′) , (22)

where each particle’s momentum is indicated explicitly. The collision terms can be written explicitly
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for this process as

𝐶 [ 𝑓 ] = 1
𝑝

∫
𝑑3𝑞

(2𝜋)3 2𝐸𝑒 (𝑞)

∫
𝑑3𝑞′

(2𝜋)3 2𝐸𝑒 (𝑞′)

∫
𝑑3𝑝′

(2𝜋)3 2𝐸𝑒 (𝑝′)
|𝑀 |2 (2𝜋)4

× 𝛿3
(−→𝑝 + −→𝑞 −

−→
𝑝′ −

−→
𝑞′

)
𝛿 (𝐸 (𝑝) + 𝐸𝑒 (𝑞) − 𝐸 (𝑝′) − 𝐸𝑒 (𝑞′))

×
(
𝑓𝑒

(−→𝑞 ′
)
𝑓

(−→𝑝 ′
)
− 𝑓𝑒

(−→𝑞 )
𝑓

(−→𝑝 ))
. (23)

As we can see, this equation is quite messy. The rewritten eq. (23), after many substitutions and
algebraic actions [2] is

𝐶 [ 𝑓 ] = −𝑝 𝜕 𝑓
(0)

𝜕𝑝
𝑛𝑒𝜎𝑇

(
𝛩0 −𝛩 + 𝑝 · −→𝑣𝑏

)
, (24)

where 𝑛𝑒 is the electron density, 𝜎𝑇 is the Thomsom cross–section and 𝑣𝑏is the baryonic velocity.
The other parameter 𝛩0 is

𝛩0 (𝑥) =
1

4𝜋

∫
𝑑𝛺𝛩 (𝑝, 𝑥) , (25)

which in simple words describes the deviation of the monopole at a given point in space form its
average in all space.

Having the collision terms, we can write down the full Boltzmann equations for photons. To do
so, we equate the two equations (16) and (24)

𝜕𝛩

𝜕𝑡
+ 𝑝𝑖

𝑎

𝜕𝛩

𝜕𝑥𝑖
+ 𝜕𝛷

𝜕𝑡
+ 𝑝𝑖

𝑎

𝜕𝛹

𝜕𝑥𝑖
= 𝑛𝑒𝜎𝑇

(
𝛩0 −𝛩 + 𝑝 · −→𝑣𝑏

)
, (26)

which can be rewritten in terms of conformal time 𝜂 =
∫ 𝑡

0
𝑑𝑡 ′

𝑎(𝑡 ′)

¤𝛩 + 𝑝𝑖
𝜕𝛩

𝜕𝑥𝑖
+ ¤𝛷 + 𝑝𝑖

𝜕𝛹

𝜕𝑥𝑖
= 𝑛𝑒𝜎𝑇𝑎

(
𝛩0 −𝛩 + 𝑝 · −→𝑣𝑏

)
, (27)

where the dots represent the derivatives with respect to conformal time.
Let’s introduce more substitutions. Firstly, we introduce the Fourier transform, which can be

written simply as

𝛩

(−→𝑥 )
=

∫
𝑑3𝑘

(2𝜋)3 𝑒
i
−→
𝑘 ·−→𝑥 𝛩̃

(−→
𝑘

)
. (28)

Let’s also introduce the angle between the wavenumber
−→
𝑘 and the photon direction 𝑝

𝜇 =

−→
𝑘 · 𝑝
√
𝑘 𝑖𝑘 𝑖

. (29)

And now let’s define the optical depth

𝜏 (𝜂) =
∫ 𝜂0

𝜂

𝑑𝜂′𝑛𝑒𝜎𝑇𝑎. (30)

so that
¤𝜏 = −𝑛𝑒𝜎𝑇𝑎. (31)
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With these definitions we have the Boltzmann equation

¤̃𝛩 + i𝑘𝜇𝛩̃ + ¤̃𝛷 + i𝑘𝜇𝛹̃ = − ¤𝜏
(
𝛩̃0 − 𝛩̃ + 𝜇𝑣̃𝑏

)
. (32)

For cold dark matter

Having finished working with photons we can take a look at the most domimant matter - dark
matter. First, let’s note that at the temperatures of our desired study, dark matter generation is over
and cannot begin, since the energy needed is lower than the mass of the cold dark matter. That is
why we have cold dark matter.

Secondly, dark matter behaves like a fluid and so can be completely described by the energy-
momentum tensor. Yet we will go the route of Boltzmann equation. This will help us when we have
to work with Bolztmann equations for baryons.

Thirdly, we must note, that unlike photons or neutrinos, dark matter is nonrelativistic and it
does not interact with any other constituents in the universe (except gravitationally but that effect
appears in Einstein’s equations), so there will be no collision terms in the Boltzmann equation.
This is not exactly true, since we only know that dark matter does not interact electromagnetically
and interacts with other particles via gravity, so we cannot assume any other interactions. However,
since we don’t know of any other possible interactions, we will go the simplest route and assume
no collision terms.

With that out of the way, we can begin working on the Bolztmann equation. First, we rewrite
the four-momentum scalar product for particles with mass

𝑔𝜇𝜈𝑃
𝜇𝑃𝜈 = −𝑚2, (33)

where 𝑚 is the mass of the dark matter particle. Also, we can define the energy

𝐸 =

√︃
𝑝2 + 𝑚2. (34)

We will use energy as one of the variables in the Boltzmann equation. So now we can write down
the four-momentum of a massive particle

𝑃𝜇 =

(
𝐸 (1 −𝛹 ) , 𝑝𝑝𝑖 1 −𝛷

𝑎

)
. (35)

Having all of these components we can now expand the total time derivative (4) for the dark
matter distribution function 𝑓𝑑𝑚

𝑑𝑓𝑑𝑚

𝑑𝑡
=
𝜕 𝑓𝑑𝑚

𝜕𝑡
+ 𝜕 𝑓𝑑𝑚

𝜕𝑥𝑖
· 𝑑𝑥

𝑖

𝑑𝑡
+ 𝜕 𝑓𝑑𝑚

𝜕𝐸
· 𝑑𝐸
𝑑𝑡

+ 𝜕 𝑓𝑑𝑚

𝜕𝑝𝑖
· 𝑑𝑝

𝑖

𝑑𝑡
. (36)

The equation resembles that of (9) just with one different variable. As it was before, the last term
vanishes since it is a second-order term. If we work through the algebra, which is much the same
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as it was in the photon case our Boltzman equation (36) changes to

𝜕 𝑓𝑑𝑚

𝜕𝑡
+ 𝑝𝑖

𝑎

𝑝

𝐸

𝜕 𝑓𝑑𝑚

𝜕𝑥𝑖
− 𝜕 𝑓𝑑𝑚

𝜕𝐸

(
𝑑𝑎/𝑑𝑡
𝑎

𝑝2

𝐸
+ 𝑝2

𝐸

𝜕𝛷

𝜕𝑡
+ 𝑝𝑖𝑝

𝑎

𝜕𝛹

𝜕𝑥𝑖

)
= 0. (37)

In the massless case this equation reduces to eq. (16).
When we dealt with photons we used the knowledge of their distribution function and perturbed

it. However, for cold dark matter we don’t need to know it. We can neglect the thermal motion of it,
since it is nonrelativistic, thus the effects would be negligable. So to proceed further we will take
moments of eq. (37).

We start by multiplying the eq. (37) with phase space volume 𝑑3𝑝

(2𝜋)3 and integrate it. We now
need to introduce some definitions. First of which is the dark matter density

𝑛𝑑𝑚 =

∫
𝑑3𝑝

(2𝜋)3 𝑓𝑑𝑚 . (38)

Another is the velocity

𝑣𝑖 =
1
𝑛𝑑𝑚

∫
𝑑3𝑝

(2𝜋)3 𝑓𝑑𝑚
𝑝𝑝𝑖

𝐸
. (39)

Then we calculate the integral∫
𝑑3𝑝

(2𝜋)3 𝑝
𝜕 𝑓𝑑𝑚

𝜕𝑝
=

4𝜋
(2𝜋)3

∫ ∞

0
𝑑𝑝𝑝3 𝜕 𝑓𝑑𝑚

𝜕𝑝

= −3𝑛𝑑𝑚 .

Using all these definitions and the fact that 𝑑𝐸
𝑑𝑝

=
𝑝

𝐸
, and putting them in the eq. (37) we get the

zeroth moment of the Bolztmann equation

𝜕𝑛𝑑𝑚

𝜕𝑡
+ 1
𝑎

𝜕
(
𝑛𝑑𝑚𝑣

𝑖
)

𝜕𝑥𝑖
+ 3

(
𝑑𝑎/𝑑𝑡
𝑎

+ 𝜕𝛷

𝜕𝑡

)
𝑛𝑑𝑚 = 0. (40)

Now let us write down the zero-order and first order terms. Since velocity and the metric per-
turbations are first-order, then we get from eq. (40) only the zero-order terms

𝜕𝑛
(0)
𝑑𝑚

𝜕𝑡
+ 3

𝑑𝑎/𝑑𝑡
𝑎

𝑛
(0)
𝑑𝑚

= 0, (41)

where 𝑛
(0)
𝑑𝑚

is the zero-order, homogeneous part of the dark matter density. However, the full dark
matter density is

𝑛𝑑𝑚 = 𝑛
(0)
𝑑𝑚

(1 + 𝛿 (𝑥)) , (42)

where 𝑛(0)
𝑑𝑚
𝛿 (𝑥) is a first-order term and 𝛿 is the fractional overdensity 𝛿𝜌

𝜌
. If we now introduce this

density to eq. (40), we will get the first-order equation

𝜕𝛿

𝜕𝑡
+ 1
𝑎

𝜕𝑣𝑖

𝜕𝑥𝑖
+ 3

𝜕𝛷

𝜕𝑡
= 0. (43)
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However this is not a complete set of functions because we have another variable that we did not
calculate. That is the velocity 𝑣𝑖 . We have it’s definition from eq. (39), but we need to know how it
evolves over time. For this, we must return to the eq. (37) and take it’s first moment. To do this, we
multiply the eq. (37) by 𝑑3𝑝𝑝 𝑗

(2𝜋)3
𝑝

𝐸
and then integrate it. We get the first moment equation to be

𝜕
(
𝑛𝑑𝑚𝑣

𝑗
)

𝜕𝑡
+ 4

𝑑𝑎/𝑑𝑡
𝑎

𝑛𝑑𝑚𝑣
𝑗 + 𝑛𝑑𝑚

𝑎

𝜕𝛹

𝜕𝑥 𝑗
= 0. (44)

From here we can take the first-order terms and do some differentiation to get the first-order equation
for velocity

𝜕𝑣 𝑗

𝜕𝑡
+ 𝑑𝑎/𝑑𝑡

𝑎
𝑣 𝑗 + 1

𝑎

𝜕𝛹

𝜕𝑥 𝑗
= 0. (45)

Eqs. (43) and (45) complete the set for the first-order equations that we need. We can also rewrite
them in terms of conformal time and Fourier transforms. We start with the Fourier transform of the
velocity

𝑣̃𝑖 =

∫ ∞

−∞
𝑣𝑖𝑒i𝜔𝑘 𝑖𝑑𝑘𝑖 . (46)

Now, if we assume that the velocity is irrotational [2], we can assume that every velocity component
is a projection of the velocity vector onto the wave-direction vector

−→
𝑘 , then we have the identity

𝑣̃ = 𝑣̃𝑖 𝑘
𝑘 𝑖

, where 𝑘 =
√
𝑘 𝑖𝑘 𝑖. And if we not put everything together and switch to conformal time,

we have the equations
¤̃𝛿 + i𝑘𝑣̃ + 3 ¤̃𝛷 = 0
¤̃𝑣 + ¤𝑎

𝑎
𝑣̃ + i𝑘𝛹̃ = 0.

(47)

For baryons

Now that we have written the Boltzmann equation for both photons and cold dark matter, we
can move on to baryons. Unlike cold dark matter, baryons will have collision terms. Electrons
and protons are coupled by the Coulomb scattering. Also, electrons are coupled to photons by the
Compton scattering. However, the Coulomb scattering rate is much larger than the expansion rate
at all epochs of our interest, that it forces the electron and proton overdensities to have the same
value

𝜌𝑒 − 𝜌
(0)
𝑒

𝜌
(0)
𝑒

=
𝜌𝑝 − 𝜌

(0)
𝑝

𝜌
(0)
𝑝

= 𝛿𝑏 . (48)

On a similar note, their velocity also become the same

−→𝑣 𝑒 =
−→𝑣 𝑝 =

−→𝑣 𝑏 . (49)

Now we can write down the Boltzmann equations for both electrons and protons

𝑑𝑓𝑒
𝑑𝑡

= 𝐶𝐶𝑜𝑢𝑙𝑜𝑢𝑚𝑏 + 𝐶𝐶𝑜𝑚𝑝𝑡𝑜𝑛
𝑑𝑓𝑝
𝑑𝑡

= 𝐶𝐶𝑜𝑢𝑙𝑜𝑚𝑏 .
(50)

Since we are dealing with particles with mass, we can take the same route we took with cold dark
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matter. So for that, let’s take the electron Botlzmann equation and multiply it by the phase element
𝑑3𝑝

(2𝜋)3 and integrate it. What we get is the identical equation to the eq. (40)

𝜕𝑛𝑒

𝜕𝑡
+ 1
𝑎

𝜕

(
𝑛𝑒𝑣

𝑖
𝑏

)
𝜕𝑥𝑖

+ 3
(
𝑑𝑎/𝑑𝑡
𝑎

+ 𝜕𝛷

𝜕𝑡

)
𝑛𝑒 = 0, (51)

where the collision terms vanish. That happens because when we multiply an unintegrated collision
term by a conserved quantity and then integrate, we get zero [2]. Now if we perturb the eq. (51)
and switch to the familiar Fourier space and conformal time we get the equation identical to that of
dark matter

¤̃𝛿𝑏 + i𝑘𝑣̃𝑏 + 3 ¤̃𝛷 = 0. (52)

The second equation for baryons is a little trickier. Firstly, we need to take the first moments of
both the Boltzmann equations (50) for protons and electrons and add them together. We do this as
we did for the cold dark matter case but here we will multiply each equation by it’s momentum and
then by the mass 𝑚. So the results from the dark matter will carry over here. Except for the collision
terms. Since the proton mass 𝑚𝑝 is so much more bigger than the electron mass in the sum, it will
only dominate.

After doing algebra calculations, we get the first moment equation

𝑚𝑝

𝜕

(
𝑛𝑏𝑣

𝑗

𝑏

)
𝜕𝑡

+ 4
𝑑𝑎/𝑑𝑡
𝑎

𝑚𝑝𝑛𝑏𝑣
𝑗

𝑏
+
𝑛𝑏𝑚𝑝

𝑎

𝜕𝛹

𝜕𝑥 𝑗
= 𝐶, (53)

where 𝐶 is the sum of all the collision terms. We can make the Coloumb scatter terms vanish by
using the law of momentum conservation. Then the only term that stays is the integrated Compton
scattering term. But we already have the Compton scattering term from eq. (24). All we need to do
is switch to Fourier space, multiply it by 𝑝𝜇

𝜌𝑏
and integrate over all momentum. Of course, that is

not such a simple task, unless we introduce another definition

𝛩1 = i
∫ 1

−1

𝑑𝜇

2
𝜇𝛩 (𝜇) . (54)

We now can write down the second equation for baryons

¤̃𝑣𝑏 +
¤𝑎
𝑎
𝑣̃𝑏 + i𝑘𝛹̃ = ¤𝜏

4𝜌𝛾
3𝜌𝑏

(
3i𝛩̃1 + 𝑣̃𝑏

)
. (55)

You may be wondering why is there a factor of 𝜌𝑏. That simply arises from the fact, that moving
electrons is difficult because they are tightly coupled to protons. If the proton was infinitely heavy
and so 𝜌𝑏 → ∞ we would get no effect from Compton scattering.

2.2.2 Einstein equations

Now that we know how the perturbations in the metric affect particle distribution functions, we
must consider how do these distribution functions affect our perturbations. Because as we all know
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matter does affect gravity. So these particle distributions will changes how the perturbtions𝛹 and
𝛷 evolve over time.

To do that, we must take a look at Einstein equations. For those, who are not that well informed
on general relativity, I again refer you to the Appendix A. For the calculations we will need to take
into account how the Christoffel symbols and especially Ricci tensor look with the perturbed FRW
metric.

Christoffel symbols and the Ricci tensor

To calculate the Christofel symbols one must look at how they are defined in eq.(188). The
Christoffel symbols will be shown as they are in Fourier space. That is done for more simplicity
and ease when writing the full Einstein’s equations.

Let us start by simply writing the time components

𝛤0
00 =

¤𝛹
𝑎
, (56)

where we have only the time components of the Christoffel symbol. It is easier to go through this
route where we will now add atleast one spatial component, because there are so many Christoffel
symbols and their components. So it is much easier to see how they change, when we add only
spatial components.

The next Christoffel symbols are

𝛤0
0𝑖 = 𝛤0

𝑖0 = 𝜕𝛹
𝜕𝑥𝑖

→ i𝑘𝑖𝛹
𝛤0

𝑖 𝑗
= 𝛿𝑖 𝑗𝑎

2
(
𝐻 + 2𝐻 [𝛷 −𝛹 ] + ¤𝛷

𝑎

)
𝛤𝑖

00 = i𝑘 𝑖
𝑎2𝛹

𝛤𝑖
𝑗0 = 𝛤𝑖

0 𝑗 = 𝛿𝑖
𝑗

(
𝐻 + ¤𝛷

𝑎

)
𝛤𝑖

𝑗 𝑘
= i𝛷

(
𝛿𝑖 𝑗 𝑘𝑘 + 𝛿𝑖𝑘 𝑘 𝑗 − 𝛿 𝑗 𝑘 𝑘𝑖

)
.

(57)

Since we now have our Christoffel symbols, we can move on to the Ricci tensor and the Ricci
scalar. However, these quantities require quite a bit of calculation, since they have a lot of terms.
Instead of writing their full calculations, just like with Christoffel symbols we will just write down
the final results and refer to the book [2].

For the Ricci tensor we have the time components

𝑅00 = −3
𝑑2𝑎/𝑑𝑡2

𝑎
− 𝑘2

𝑎2𝛹 − 3
𝜕

𝜕𝑡

( ¤𝛷
𝑎

)
+ 3𝐻

( ¤𝛹
𝑎
− 2

¤𝛷
𝑎

)
, (58)
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while the space-space part4 is

𝑅𝑖 𝑗 = 𝛿𝑖 𝑗

( [
2𝑎2𝐻2 + 𝑎

𝑑2𝑎

𝑑𝑡2

]
[1 + 2𝛷 − 2𝛹 ] + 𝑎2𝐻

[
6
¤𝛷
𝑎
−

¤𝛹
𝑎

]
+ 𝑎2 𝜕

𝜕𝑡

( ¤𝛷
𝑎

)
+ 𝑘2𝛷

)
+ 𝑘𝑖𝑘 𝑗 (𝛷 +𝛹 ) . (59)

Having the Ricci tensor we can write down the Ricci scalar

𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈

= (−1 + 2𝛹 )
(
−3

𝑑2𝑎/𝑑𝑡2
𝑎

− 𝑘2

𝑎2𝛹 − 3
𝜕

𝜕𝑡

( ¤𝛷
𝑎

)
+ 3𝐻

( ¤𝛹
𝑎
− 2

¤𝛷
𝑎

))
+ 3

(
1 − 2𝛷
𝑎2

)
(
(
2𝑎2𝐻2 + 𝑎

𝑑2𝑎

𝑑𝑡2

)
(1 + 2𝛷 − 2𝛹 )

+ 𝑎2𝐻

(
6
¤𝛷
𝑎
−

¤𝛹
𝑎

)
+ 𝑎2 𝜕

𝜕𝑡

( ¤𝛷
𝑎

)
+ 𝑘2𝛷 + 𝑘2 (𝛷 +𝛹 )

3
), (60)

where the first-order part is

𝛿𝑅 = −12𝛹
(
𝐻2 + 𝑑2𝑎/𝑑𝑡2

𝑎

)
+ 2𝑘2

𝑎2 𝛹 + 6
𝜕

𝜕𝑡

( ¤𝛷
𝑎

)
− 6𝐻

( ¤𝛹
𝑎
− 4

¤𝛷
𝑎

)
+ 4

𝑘2𝛷

𝑎2 , (61)

where 𝛿𝑅 now denotes first-order terms of the Ricci scalar 𝑅.

Two components of the Einstein equations

Now that we have the Ricci scalar and the Christoffel symbols, we can finally calculate evolu-
tions for the metric perturbations. To do that, we take a look at the Einstein equations

𝐺
𝜇
𝜈 = 8𝜋𝐺𝑇

𝜇
𝜈 . (62)

Since the Einstein equations have ten components that would seem a daunting task. But we need
only two components. The remaining eight would either be zero at first-order or be redundant.

To start calculating the first component we take the time-time component of the Einstein equ-
ations. So we need to evaluate the Eintsein tensor and the stress-energy tensor. Let us start with the
Einstein tensor

𝐺0
0 = 𝑔00

(
𝑅00 −

1
2
𝑔00𝑅

)
= (−1 + 2𝛹 ) 𝑅00 −

𝑅

2
. (63)

Since we have both the time-time component of the Ricci tensor (59) and the perturbed Ricci scalar
4We do not take space-time or time-space parts because in the later calculations we will only need space-space and

time-time components of the Ricci tensor.
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(61) we can write the first-order part of the time-time component of the Einstein tensor (63)

𝛿𝐺0
0 = −6𝐻

¤𝛷
𝑎
+ 6𝛹𝐻2 − 2

𝑘2𝛷

𝑎2 . (64)

Now we need to calculate the time-time component of the stress-energy tensor. Recalling, that
the time-time component 𝑇0

0 of the stress-energy tensor is the energy density. So the stress-energy
tensor for our purposes would be an integral over the distribution functions for each species

𝑇0
0 = −

∑︁
𝑎𝑙𝑙 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖

𝑔𝑖

∫
𝑑3𝑝

(2𝜋)3𝐸𝑖 (𝑝) 𝑓𝑖, (65)

where 𝑔𝑖 is the spin degeneracy of the species.
To calculate the first-order part of the stress-energy tensor, we must calculate the first-order part

of the distribution functions for photons, neutrinos, dark matter and baryons. For dark matter and
baryons we have it easy, since we already defined the right hand side as −𝜌𝑖 (1 + 𝛿𝑖) ,where 𝑖 stands
for dark matter or baryons. For photons however we need to use the perturbed distribution function
(18), which after some calulation we get the stress-energy tensor part for photons

𝑇0
0 = −𝜌𝛾 (1 + 4𝛩0) . (66)

Neutrinos on the other hand are very easy. We take them to be massless and so the first-order
contribution is identical in form to photons

𝑇0
0 = −𝜌𝜈 (1 + 4ℵ0) , (67)

where ℵ0 is similar to 𝛩0 but for neutrinos. We take them to have the similar forms because we
approximate that neutrinos are massless and so we can use the same Bose-Einstein distribution
function, with the perturbation now changed to ℵ0 to distinguish them from photons.

Combining both the first-order terms of the Einstein tensor and stress-energy tensor, we get the
first equation

𝑘2𝛷 + 3
¤𝑎
𝑎

(
¤𝛷 −𝛹

¤𝑎
𝑎

)
= 4𝜋𝐺𝑎2 (

𝜌𝑑𝑚𝛿𝑑𝑚 + 𝜌𝑏𝛿𝑏 + 4𝜌𝛾𝛩0 + 4𝜌𝜈ℵ0
)

(68)

To obtain the second evolution equation we must focus on the spatial part of the Einstein tensor

𝐺𝑖
𝑗 = 𝑔𝑖𝑘

(
𝑅𝑘 𝑗 −

𝑔𝑘 𝑗

2
𝑅

)
=
𝛿𝑖𝑘 (1 − 2𝛷)

𝑎2 𝑅𝑘 𝑗 − 𝛿𝑖𝑗𝑅. (69)

If we now insert the calculated Ricci tensor and scalar, we well have

𝐺𝑖
𝑗 = 𝐴𝛿𝑖𝑗 +

𝑘 𝑖𝑘 𝑗 (𝛷 +𝛹 )
𝑎2 , (70)

where 𝐴 stands for more than ten terms. In order to not write them all out, we can make them
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vanish. For this we need to calculate the longitudinal, traceless part of the Einstein tensor. To do
this, we multiply eq.(70) with 𝑘̂𝑖 𝑘̂

𝑗 − 1
3𝛿

𝑗

𝑖
, which is a projection operator. With it all the terms with

𝛿𝑖 𝑗vanish„ which leaves us with(
𝑘̂𝑖 𝑘̂

𝑗 − 1
3
𝛿
𝑗

𝑖

)
𝐺𝑖

𝑗 =
2

3𝑎2 𝑘
2 (𝛷 +𝛹 ) . (71)

We must calculate the longitudinal, traceless part for the stress-energy tensor as well. For this
we must consider that we are calculating the terms that come with pressure. Yet we know that
baryons and dark matter are pressureless. So we would need to calculate the stress-energy tensor
for neutrinos and photons(

𝑘̂𝑖 𝑘̂
𝑗 − 1

3
𝛿
𝑗

𝑖

)
𝑇 𝑖

𝑗 =
∑︁

𝑎𝑙𝑙 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖

𝑔𝑖

∫
𝑑3𝑝

(2𝜋)3

𝑝2𝜇2 − 1
3 𝑝

2

𝐸𝑖 (𝑝)
𝑓𝑖 . (72)

After some calculations the photon part is(
𝑘̂𝑖 𝑘̂

𝑗 − 1
3
𝛿
𝑗

𝑖

)
𝑇 𝑖

𝑗 = −8𝜌(0)𝛩2
3

, (73)

which in form is similar for neutrinos as well. 𝛩2is quadrupole

𝛩2 =

∫ 1

−1

𝑑𝜇

2
2𝑃 (𝜇)

3
𝛩 (𝜇) , (74)

where 𝑃 (𝜇) is a Legendre polynomial, which is equal to 2
3𝑃 (𝜇) = 𝜇2 − 1

3 .
If we now equate the Einstein and stress-energy tensors longitudinal, traceless parts, we get the

second equation of evolution

𝑘2 (𝛷 +𝛹 ) = −32𝜋𝐺𝑎2 (
𝜌𝛾𝛩2 + 𝜌𝜈ℵ2

)
. (75)

With the equations (68) and (75) we can see what effect the particle densities have on the per-
turbed metric and how it evolves. However, when the metric changes, the distributions shift. So
we have a system of density equations from Boltzmann equations and Einstein’s equations for the
perturbed metric. Using these, one can model how the universe evolves in time, however not anal-
litically. That is because all of these equations are not linearly independant from each other. Thus,
it requires to solve them all at the same time, which can only be done numerically.
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2.3 Dodelson-Widrow model

Now that we have an understanding of how the early universe evolves, we can start taking a look
at sterile neutrinos. To know if neutrinos can be a candidate for dark matter, we first must know
how to calculate the density of sterile neutrinos. Sterile neutrinos can be produced via oscillations
𝜈𝐿 → 𝜈𝑅 [4]. As was mentioned previously, the high temperatures of the early universe allowed
for the production of particles via the process 2𝛾 → 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 + 𝑎𝑛𝑡𝑖𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. This would give
us only the left-handed neutrinos. As was mentioned, the right-handed neutrinos would only be
produced through the neutrino oscillations. But their production, as with other particles, stops when
the temperature of the universe reaches their mass. One can see that, because of the energy-mass
relation 𝐸2 = 𝑚2 + −→𝑝 2. Once the temperature reaches the mass of the particle, only particle with
zero momentum can be produced, and below this temperature no particles (of that mass) could be
produced. In this and later sections, we will assume the thermal equilibrium of the early universe.

The probability of observing the sterile or right-handed neutrino after a time 𝑡 is sin2 2𝜃𝑀 sin2 𝑣𝑡
𝐿
,

if we assume that we start with only monoenergetic left-handed neutrinos, where 𝜃𝑀 is the mixing
angle in the medium, 𝐿 is the oscillation length and 𝑣 is the velocity of the neutrinos. Now, in
vacuum, the mixing angle, assuming the seesaw mechanism is in play, i.e. 𝜇 � 𝑀,is 𝜃2 =

𝑚𝜈

𝑀
5.

The oscillation length in vacuum 𝐿 = 4𝐸
𝑀2−𝜇2 ,where 𝐸 is the energy of the neutrinos. In the early

Universe, the observation time 𝑡 is replaced by the interaction time for the left-handed neutrinos.
That is because the observation time is a rather difficult variable to work with, since we don’t even
know how much time passes for temperature to change by one degree. So it is better to work with
variables that are more easily calculable. And of course, we assume that the collision time is always
much greater than the oscillation time, that sin2 𝑣𝑡

𝐿
averages to 1

2 [4]. Most of the calculations done
below are based on the Dodelson-Widrow paper [4].

Since we are talking about collisions, we then begin with the Boltzmann equation

𝑑

𝑑𝑡
𝑓 = 𝐶 [ 𝑓 ] . (76)

For the sterile neutrino production the Boltzmann equation is(
𝜕

𝜕𝑡
− 𝐻𝐸

𝜕

𝜕𝐸

)
𝑓𝑆 (𝐸, 𝑡) =

(
1
2

sin2 (2𝜃𝑀 (𝐸, 𝑡)) 𝛤 (𝐸, 𝑡)
)
𝑓𝐴 (𝐸, 𝑡) , (77)

where 𝐻 is the Hubble parameter; 𝛤 is the collision rate

𝛤 ' 7𝜋
24

𝐺2
𝐹𝑒𝑟𝑚𝑖𝑇

4𝐸, (78)

where 𝐺2
𝐹𝑒𝑟𝑚𝑖

is the four-Fermi interaction constant. This is a coupling constant when four fermions
interact, without an internal line in the Feynman diagram (typically in a Feynaman diagram we
would have four fermions interacting as external lines, with a mediating particle, e.g. 𝑊 bozons, as
an internal line. However, in the four-Fermi interaction, we take, that the energies are rather low -

5The exact mixing angle is sin2 𝜃 =
𝑚𝜈

𝑀+𝑚𝜈
.However, if we assume that 𝑀 � 𝑚𝜈 , then 𝜃 � 1 and we get that

sin 𝜃 ≈ 𝜃; 𝑀 + 𝑚𝜈 ≈ 𝑀; 𝜃2 =
𝑚𝜈

𝑀
.
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compared to the mass of the mediating particle. So using the the mass energy relation 𝐸2 = 𝑚2+−→𝑝 2,
one can see that the mediating particle’s mass is much larger than it’s momentum𝑚 � |−→𝑝 |. Because
of this, we can neglect the momentum and treat the interaction as point-like, since we treat the
mediating particle as not propagating. This is shown in Fig.1).

.

.

Fig. 1 Four-Fermi interaction. This is a point interaction with no mediating particle. The lines with
arrows represent the interacting particles - arrows to the right are fermions and arrows to the left
are antifermions.

The mixing angle is now the mixing angle in the medium and not in vacuum, since we are
talking about the early universe (there are left-handed neutrinos that the sterile neutrinos interact
with). Thus the mixing angle, which can be derived as shown in [11], is

sin2 (2𝜃𝑀) =
𝜇2

𝜇2 + [(𝑐𝛤𝐸/𝑀) + (𝑀/2)]2 , (79)

where 𝑐 ' 4𝑠𝑖𝑛2(2𝜃𝑊 )/15𝛼 ' 26; 𝑠𝑖𝑛2(2𝜃𝑊 ) is the weak mixing angle, which comes from the
neutrino-lepton scatterings and is part of the left-handed thermal potential [11]; 𝛼 is the fine struc-
ture constant 𝛼 ≈ 137−1.

𝑓𝐴 and 𝑓𝑆 in eq. (77) are the active (left-handed) neutrino and sterile neutrino density distribution
functions. Eq. The mixing angle is different, since 𝜃 =

𝜇

𝑀
is only valid for neutrinos in a vacuum.

For the active neutrinos, since they are fermions, their distribution function is

𝑓𝐴 =
1

𝑒𝐸/𝑇 + 1
≈ 1

𝑒𝑝/𝑇 + 1
; (80)

here we have taken 𝐸 ≈ 𝑝,since 𝐸 =

√︃
−→𝑝 2 + 𝑚2and because the temperature 𝑇 of the universe is

so big compared to the mass of the neutrinos, then −→𝑝 2 � 𝑚2. We assume that the active neutrino
distribution density is as it is since we assume that there is a thermal equilibrium.

Because we can calculate the sterile neutrino density distribution 𝑓𝑆, from eq. (77), we can
calculate the density of the sterile neutrinos. To do that, we must integrate the sterile neutrino
density over all the momenta to get the sterile neutrino number density

𝑛𝑆,𝐴 = 2
∫

𝑑3𝑝

(2𝜋)3 𝑓𝑆,𝐴. (81)

And this equation holds for both sterile and active neutrinos. So to get the equation for the sterile
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neutrino number density evolution, we integrate the Boltzmann equation (77)

2
∫

𝑑3𝑝

(2𝜋)3

(
𝜕

𝜕𝑡
− 𝐻𝐸

𝜕

𝜕𝐸

)
𝑓𝑆 (𝐸, 𝑡) =

∫
𝑑3𝑝

(2𝜋)3

(
sin2 (2𝜃𝑀 (𝐸, 𝑡)) 𝛤 (𝐸, 𝑡)

)
𝑓𝐴 (𝐸, 𝑡) . (82)

Since the Boltzmann equation is in it’s general form as shown in eq. (76), that means in our case

𝑑

𝑑𝑡
=

𝜕

𝜕𝑡
− 𝐻𝐸

𝜕

𝜕𝐸
. (83)

Thus, we can switch the time derivative and the integration, to get

𝑑𝑛𝑆

𝑑𝑡
=

∫
𝑑3𝑝

(2𝜋)3

(
sin2 (2𝜃𝑀 (𝐸, 𝑡)) 𝛤 (𝐸, 𝑡)

)
𝑓𝐴 (𝐸, 𝑡) . (84)

If we want to compare the active and sterile neutrino number densities, then we can define the
ratio

𝑟 =
𝑛𝑆

𝑛𝐴
. (85)

Now, we can take the derivative of the ratio

𝑑𝑟

𝑑𝑡
=

1
𝑛𝐴

𝑑𝑛𝑆

𝑑𝑡
− 𝑛𝑠

𝑛2
𝐴

𝑑𝑛𝐴

𝑑𝑡

=
1
𝑛𝐴

𝑑𝑛𝑆

𝑑𝑡
− 𝑟

𝑑 ln 𝑛𝐴
𝑑𝑡

.

We already know what the first term is in this equation from eq. (84). The second term is the
evolution of the active neutrino number density. Sterile neutrino production happens, when active
neutrinos oscillate to sterile neutrinos. Yet the active neutrinos are continuously produced in the
thermal early universe bath. So we can assume that the active neutrino number density doesn’t
change, i.e. 𝑑 ln 𝑛𝐴

𝑑𝑡
= 0. The production eventually will stop. However, we assume that the sterile

neutrino mass is much larger than the active neutrino mass 𝑀 � 𝜇. Thus for our purposes, we
don’t need to look to the point when the active neutrino production ceases, since by that point the
sterile neutrinos will have been not produced for a significant portion of time (that time being the
time it takes to get from temperature 𝑇 = 𝑀 to temperature 𝑇 = 𝜇). Thus our assumption holds.

Another thing we can do, is replace the time variable 𝑡 with the Robertson-Walker scale factor
𝑎. To do that, we use the differentiation variable change

𝑑𝑟

𝑑𝑡
=

𝑑𝑟

𝑑 ln 𝑎
𝑑 ln 𝑎
𝑑𝑡

. (86)

We use the logarthmic scale factor for a reason. It comes from the definition of the Hubble parameter

𝐻 =
¤𝑎
𝑎
, (87)
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where ¤𝑎 = 𝑑𝑎
𝑑𝑡
. Thus, we can replace the derivative

1
𝑎

𝑑𝑎

𝑑𝑡
=
𝑑 ln 𝑎
𝑑𝑡

= 𝐻. (88)

And from this we get
𝑑𝑟

𝑑 ln 𝑎
=

1
𝐻 · 𝑛𝐴

𝑑𝑛𝑆

𝑑𝑡
. (89)

We don’t replace the sterile neutrino number density time derivative, since we already know what it
is from eq. (84). Introducing the new variable 𝛾 = 1

𝑛𝐴

𝑑𝑛𝑆
𝑑𝑡

,we finally have the evolution of the sterile
neutrino and active neutrino number densities

𝑑𝑟

𝑑 ln 𝑎
=

𝛾

𝐻
. (90)

But in this work, we don’t want to calculate the ratio between active and sterile neutrinos. No,
we wish to see, if sterile neutrinos are dark matter particles, what kind of mass would they have.
For this purpose, we need to calculate the density parameter of sterile neutrinos and see, when it
is within the dark matter density parameter bounds, i.e. 0.25 ≤ 𝛺𝑆 ≤ 0.26. To calculate the sterile
neutrino density parameter, we need to calculate the density of sterile neutrinos and the critical
density as per the definition of the density parameter

𝛺𝑇 =
𝜌𝑇𝑆

𝜌𝑐𝑟𝑖𝑡
, (91)

where 𝜌𝑇𝑆 is the sterile neutrino density from thermal production and 𝜌𝑐𝑟𝑖𝑡 is the critical density

𝜌𝑐𝑟𝑖𝑡 =
3𝐻2

8𝜋𝐺
. (92)

𝐻 is the Hubble parameter and𝐺 is the Newton’s gravitational constant. One must recognize that it’s
not the Hubble constant 𝐻0 being used here so the critical density will depend on the temperature
of the universe (see appendix C.1).

The sterile neutrino density is fairly easy to calculate as it is

𝜌𝑇𝑆 = 𝑛𝑇𝑆 · 𝑀. (93)

Thus we need to calculate the sterile neutrino number density 𝑛𝑇𝑆 whose evolution equation is given
by (84). We can write down the precise form of the number density, derived in the appendix C.1

𝑛𝑇𝑆 = −
∫ 𝑀

∞

7𝜇2𝐺2
𝐹𝑒𝑟𝑚𝑖

𝑇𝑚𝑃

96𝜋2
√︁
(0.1𝑔∗)

𝑑𝑇

∫ ∞

0

𝑝3𝑑𝑝(
𝜇2 +

[
𝑐𝛤𝑝

𝑀
+ 𝑀

2

]2
) (

𝑒
𝑝

𝑇 + 1
) . (94)

One can see, that for small and big momenta 𝑝 the number density is rather negligable. As for high
temperatures, one would expect the production to be the highest at these temperatures, but that is
not the case, since we have an additional 𝑇−8 in the denominator because of the collision rate 𝛤2
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term. Thus we expect that the production actually should not start at the highest temperatures, but
rather have a peak in between the maximum temperature of the universe and the sterile neutrino
mass 𝑀. This is because at low temperatures the exponent begins to dominate our expression and
thus the production again minimizes.
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2.4 Sterile neutrino production from scalar decay

Of course, sterile neutrinos can be produced via other methods, not just through oscillations
from active neutrinos. One of these methods is the heavy scalar decay. As such, we assume that
there is a very heavy scalar - heavier than the sterile neutrino in such a way, that 𝑀

𝑚𝜙
� 1, where

𝑚𝜙 is the mass of the scalar. We can write the relevant Lagrangian as

L𝑟𝑒𝑙 = −1
2
𝜎𝜙𝑁̄𝑁 − 1

2
𝑚2

𝜙𝜙
2 − 𝜆

4!
𝜙4, (95)

where 𝜎 is the Yukawa coupling for scalar-sterile neutrino interaction and the 𝜆 is the selfcoupling
of the scalar field. We could have more terms, but for now these are the most relevant ones. In this
section, all of the calculations and results are referenced from Marco Drewes’ paper Sterile neutrino
Dark Matter production from scalar decay in a thermal bath [5].

2.4.1 Correlations functions, spectral density and the loss/gain rates

To begin with, we need to talk about the correlation functions and the S-matrix.In non-equilibrium
systems at large density, like the one we might have in the early universe, the usual methods for cal-
culating S-matrix elements that we know from QFT cannot be used since there are no well-defined
notions of asymptotic states, and the properties of quasiparticles in a medium may differ sgnificant-
ly from those of particles in a vacuum. Yet, one can use the correlation functions of the fields to
calculate observables, without needing to look at the asymptotic states or free particles. There are
two independent two point functions for each field. For a real scalar field 𝜙 these are often chosen
to be the connected Wightman functions

𝛥> (𝑥1, 𝑥2) = 〈𝜙 (𝑥1) 𝜙 (𝑥2)〉𝑐 , 𝛥< (𝑥1, 𝑥2) = 〈𝜙 (𝑥2) 𝜙 (𝑥1)〉𝑐 , (96)

where
〈...〉 = Tr ( 𝜌̂...) (97)

is the quantum statistical average and 𝜌̂ is the density operator of the system. It is defined as

𝜌̂ =
∑︁
𝑛

𝑝𝑛 |𝜙𝑛〉 〈𝜙𝑛 | , (98)

where 𝑝𝑛 is not the momentum, but the probability of the system being in the state|𝜙𝑛〉. The sum
can be infinite.

From this we can have the linear combinations

𝛥− (𝑥1, 𝑥2) = i (𝛥> (𝑥1, 𝑥2) − 𝛥< (𝑥1, 𝑥2))
𝛥+ (𝑥1, 𝑥2) = 1

2 (𝛥> (𝑥1, 𝑥2) + 𝛥< (𝑥1, 𝑥2)) .
(99)
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Using these relations, we can define the scalar spectral density 𝜌𝜙

𝜌𝜙 (𝑞) = −i𝛥− (𝑞) = −i
∫

𝑑4𝑥

(2𝜋)4 𝛥
− (𝑥) 𝑒i𝑞𝑥 , (100)

not to be confused with the density operator 𝜌̂, since the spectral density 𝜌𝜙 is a quantity not an ope-
rator. Assuming that the other particle fields are in thermal equilibrium, when the sterile neutrinos
𝑁 are produced (the scalar 𝜙 may or may not be in equilibrium, depending on whether 𝑁 produc-
tion during freeze-in is relevant) the correlation functions only depend on the relative coordinate
𝑥1 − 𝑥2, and they are related by the Kubo-Martin-Schwinger (KMS) relations

𝛥< (𝑞) = 𝑒−𝑞0/𝑇𝛥> (𝑞) , (101)

where 𝛥≶ (𝑞) are the Fourier transforms of the 𝛥≶ (𝑥). 𝑞0 is essentially energy.
Now we have two main properties of our calculations - the spectral density 𝜌𝜙 and the correlation

functions in eq. (96). With that, we can start thinking of the scalar decay. And for that we need to
calculate the spectral density.

For a scalar 𝜙 that couples to a plasma in equilibrium, 𝜌𝜙 (𝑞), which depends on the four-vector
𝑞, at leading order can be expressed as

𝜌𝜙 (𝑞) =
−2Im𝛱 𝑅

𝜙
(𝑞) + 2𝑞0𝜖(

𝑞2
0 − 𝑚2

𝜙
− 𝒒2 − Re𝛱 𝑅

𝜙
(𝑞)

)2
+

(
Im𝛱 𝑅

𝜙
(𝑞) + 𝑞0𝜖

)2 (102)

(even if 𝜙 is not in equilibrium), where this arrives from the definitions of the correlation functions
(see eq. (100)). 𝛱 𝑅

𝜙
(𝑞) is the retarted self-energy, which also depends on 𝑇 . The retarded self-

energy can be calculated from the correction at one loop level. If 𝛺̂𝒒 is the pole of 𝜌𝜙 (𝑞) we also
have

𝛺𝜙𝒒 = Re𝛺̂𝒒, 𝛤𝜙𝒒 = 2Im𝛺̂𝒒, (103)

where 𝛺𝜙𝒒 is the mass shell for the scalar particles.
In weakly coupled theories one observes the hierarchy

𝛤𝜙𝒒 � 𝛺𝜙𝒒 (104)

and can make the Breit-Wigner approximation

𝜌𝐵𝑊𝜙 (𝑞) = 2Z
𝑞0𝛤𝜙𝒒(

𝑞2
0 − 𝛺2

𝜙𝒒

)2
+

(
𝑞0𝛤𝜙𝒒

)2
+ 𝜌𝑐𝑜𝑛𝑡𝜙 (𝑞) , (105)

where the residue is

Z =

(
1 − 1

2𝛺𝜙𝒒

𝜕Re𝛱R
𝜙
(𝑞)

𝜕𝑞0

)−1

𝑞0=𝛺𝜙𝒒

. (106)
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Then the dispersion relations can be obtained by solving the equation

𝛺2
𝜙𝒒 − 𝑚2

𝜙 − 𝒒2 − Re𝛱 𝑅
𝜙 (𝑞) |𝑞0=𝛺𝜙𝒒 = 0. (107)

And so the damping rate is given by

𝛤𝜙𝒒 = −Z
Im𝛱 𝑅

𝜙
(𝑞)

𝑞0
|𝑞0=𝛺𝜙𝒒 . (108)

Analogous to 𝛥≶, one can introduce self-energies 𝛱 ≶
𝜙

and define

𝛱−
𝜙 (𝑞) = 𝛱 >

𝜙 − 𝛱 <
𝜙 = 2iIm𝛱 𝑅

𝜙 (𝑞) . (109)

With this we can define

𝛤𝜙𝒒 = Z
i𝛱−

𝜙
(𝑞)

𝑞0
|𝑞0=𝛺𝜙𝒒 = 𝛤>

𝜙𝒒 − 𝛤<
𝜙𝒒, (110)

which are gain and loss rates for 𝜙-particles. With the KMS-relation 𝛱 <
𝜙
= 𝑒−𝑞0/𝑇𝛱 >

𝜙
it is easy to

see that the detailed balanced relation

𝛤<
𝜙𝒒

𝛤>
𝜙𝒒

= 𝑒−𝛺𝜙𝒒/𝑇 (111)

holds and we have the damping rate

𝛤<
𝜙𝒒 = 𝑓𝐵

(
𝛺𝜙𝒒

)
𝛤𝜙𝒒, (112)

where 𝑓𝐵
(
𝛺𝜙𝒒

)
is the Bose-Einstein distribution.

2.4.2 The general Boltzmann equations for the scalar decay

With the retarded self-energies from eq. (109) and the loss/gain rates from eqs. (110) and (111)
we can start calculating the 𝑁-particle number density. Firstly, we must assume that the coupling
𝜎 in the Lagrangian (95) is very small, i.e. 𝜎 � 1. Then, we can look at the Boltzmann equation
for the scalar field 𝜙

𝜕𝑡 𝑓𝜙𝒒 = −𝛤𝜙𝒒
(
𝑓𝜙𝒒 − 𝑓𝜙𝒒

)
, (113)

where 𝑓𝜙𝒒 = 𝑓𝜙
(
𝛺𝜙𝒒

)
; and

𝑓𝜙𝒒 =

(
𝛤>
𝜙𝒒

𝛤<
𝜙𝒒

− 1

)−1

. (114)

Here we can define an expansion
𝛤𝜙𝒒 = 𝛤̃𝜙𝒒 + 𝛤̃0, (115)

25



where 𝛤𝜙𝒒 is the total thermal 𝜙-width and 𝛤̃0 = 𝛤𝜙𝒒 |𝜎=0 is 𝛤𝜙𝒒 at zeroth order in 𝜎. We are able to
do this expansion only because of the small coupling 𝜎. So our Boltzmann equation turns to

𝜕𝑡 𝑓𝜙𝒒 = −
[
𝛤̃𝜙𝒒 + 𝛤̃0

] (
𝑓𝜙𝒒 − 𝑓𝜙𝒒

)
. (116)

In the case of 𝜆 � 𝜎, we would have 𝛤̃𝜙𝒒 � 𝛤̃0.
As one can see, the main issue in calculating the scalar density distribution is finding the dam-

ping rate and subsequent loss and gain rates. Since they can be calculated using the retarded self-
energy 𝛱 𝑅

𝜙
(𝑞), we can calculate their expressions for the one-loop level

𝛱̃ <
𝜙 (𝑞) = i𝜎2

2

∫
𝑑4𝑝

(2𝜋)4 tr
(
𝑆<𝑁 (𝑝) 𝑆>𝑁 (𝑝 − 𝑞)

)
= − i𝜎2

2

∫
𝑑4𝑝

(2𝜋)4 (1 − 𝑓𝑁 (𝑝0 − 𝑞0)) 𝑓𝑁 (𝑝0) tr (𝜌𝑁 (𝑝) 𝜌𝑁 (𝑝 − 𝑞)) (117)

𝛱̃ >
𝜙 (𝑞) = i𝜎2

2

∫
𝑑4𝑝

(2𝜋)4 tr
(
𝑆>𝑁 (𝑝) 𝑆<𝑁 (𝑝 − 𝑞)

)
= − i𝜎2

2

∫
𝑑4𝑝

(2𝜋)4 (1 − 𝑓𝑁 (𝑝0)) 𝑓𝑁 (𝑝0 − 𝑞0) tr (𝜌𝑁 (𝑝) 𝜌𝑁 (𝑝 − 𝑞)) (118)

𝛱̃−
𝜙 (𝑞) = i𝜎2

2

∫
𝑑4𝑝

(2𝜋)4 ( 𝑓𝑁 (𝑝0) − 𝑓𝑁 (𝑝0 − 𝑞0)) tr (𝜌𝑁 (𝑝) 𝜌𝑁 (𝑝 − 𝑞)) . (119)

In these retarted self-energy relations we use the correlaton functions 𝑆<
𝑁

and 𝑆>
𝑁

, which are the
correlation functions for the fermions 𝑁 . These correlation functions are the same in form as for
the scalar fields (96), you just replace the scalar fields with the fermion fields.

And here comes our second approximation because of the small coupling assumption we can
approximate the spectral density with the free spectral density

𝜌𝑁 (𝑝) ≈ 2𝜋sign (𝑝0) (�𝑝 + 𝑚𝑁 ) 𝛿
(
𝑝2 + 𝑚2

𝑁

)
. (120)

The masses and self-energies use the 𝑁 indices since the scalar 𝜙 decays into the 𝑁 field and so the
loop is made of internal 𝑁 fields.

Before we calculate everything two more things must be mentioned. Firstly, the mass of the
scalar 𝑚𝜙 is bigger than our sterile neutrino mass as mentioned earlier, i.e. 𝑚𝑁 � 𝑚𝜙. Another
thing is that since the scalar field in general can have self-interactions as shown in the relevant
Lagrangian (95), thus our 𝜙-quasiparticle pole 𝛺𝜙𝒒 ≠ 𝜔𝜙𝒒 =

√︃
𝑚2

𝜙
+ 𝒒2. The explanation for this

is that the effective mass of the quasiparticle changes with temperature. Thus we have

𝛺2
𝜙𝒒 ≈ 𝒒2 + 𝑀2

𝜙, (121)

where we have our thermal mass
𝑀2

𝜙 = 𝑚2
𝜙 +

𝜆

24
𝑇2. (122)
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And we also assume the vacuum decay rate to be [12]

𝛤̃0 =
𝜎2

16𝜋
𝑚𝜙. (123)

Using all of the approximations and eqs.(110), (111), (117), (118), (119) and (120) we can now
show that the rates are

𝛤̃>
𝜙𝒒 =

𝜎2

16𝜋
𝑀𝜙

𝛺𝜙𝒒

𝑀𝜙

q

∫ (𝛺𝜙𝒒+q)/2

(𝛺𝜙𝒒−q)/2
𝑑p (1 − 𝑓𝑁 (p))

(
1 − 𝑓𝑁

(
𝛺𝜙𝒒 − p

) )
(124)

𝛤̃<
𝜙𝒒 =

𝜎2

16𝜋
𝑀𝜙

𝛺𝜙𝒒

𝑀𝜙

q

∫ (𝛺𝜙𝒒+q)/2

(𝛺𝜙𝒒−q)/2
𝑑p 𝑓𝑁 (p) 𝑓𝑁

(
𝛺𝜙𝒒 − p

)
(125)

and

𝛤̃𝜙𝒒 = 𝛤̃0
𝑀𝜙

𝛺𝜙𝒒

𝑀𝜙

𝑚𝜙q

∫ (𝛺𝜙𝒒+q)/2

(𝛺𝜙𝒒−q)/2
𝑑p

(
1 − 𝑓𝑁 (p) − 𝑓𝑁

(
𝛺𝜙𝒒 − p

) )
, (126)

where we integrate over the neutrino’s momentum’s absolute value p = | 𝒑 | and q = |𝒒 | is the
absolute value of the scalar’s momentum.

Now we can finally calculate the sterile neutrino distribution function or the sterile neutrino
number density. And this number density is the same as the Boltzmann equation for the scalar 𝜙
with a different sign

𝜕𝑡𝑛𝑁 = 2
∫

𝑑3𝒒

(2𝜋)3 𝛤̃𝜙𝒒
(
𝑓𝜙𝒒 − 𝑓𝜙𝒒

)
. (127)

There is no 𝛤̃
(0)
𝜙𝒒 term since we have no thermal corrections for the 𝑁 field, i.e.

𝛺2
𝑁𝒒 ≈ 𝑚2

𝑁 + 𝒒2 = 𝜔2
𝑁𝒒 . (128)

If the main contribution to 𝛤̃𝜙𝒒 comes from 1 → 2 decays and their inverse, one can express

𝛤̃𝜙𝒒 =

∫
𝑑3 𝒑

(2𝜋)3
𝜎2𝜋

2𝛺𝜙𝒒 | 𝒑 − 𝒒 |
(
𝛺𝜙𝒒 − qx

)
(1 − 𝑓𝑁 (𝑝) − 𝑓𝑁 ( | 𝒑 − 𝒒 |)) 𝛿

(
𝛺𝜙𝒒 − 𝛺𝑁 𝒑 − 𝛺𝑁 𝒑−𝒒

)
,

(129)
where qx is a four-vector scalar product of the scalar particle’s momentum q = |𝒒 | and x =

𝒑𝒒
pq - it’s

cosine of the angle between the spatial vectors 𝒑 and 𝒒 6.
Inserting all of what we have into our expression for the sterile neutrino Boltzmann equation,we

get that it is

𝜕𝑡 𝑓𝑁 𝒑 = 2
𝛤̃0
𝑚𝜙

𝑀2
𝜙

𝒑2

∫ ∞

𝑀2
𝜙
/(4𝑝)+𝑝

𝑑𝛺𝜙𝒒
(
1 − 𝑓𝑁 (𝑝) − 𝑓𝑁

(
𝛺𝜙𝒒 − 𝑝

) ) (
𝑓𝜙𝒒 − ¯𝑓𝜙𝒒

)
. (130)

If we assume that when the sterile neutrino production occurs, the scalar 𝜙 is in thermal equilibrium
6Note, one might think that this is a weird mixing between four-vectors and three-vectors. However, it is not, it’s

actaully just a scalar product of three-vectors 𝒒 and 𝒑 divided by the absolute values of 𝒑 and 𝒒.
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[13], then we can simplify our Boltzmann equation to

𝑑𝑓𝑁 (𝑝)
𝑑𝑡

=
2𝑚𝜙𝛤̃0

𝑝2

∫ ∞

𝑝+𝑚2
𝜙
/(4𝑝)

𝑓𝜙𝑞𝑑𝛺𝜙𝑞 . (131)

2.4.3 A specific case of scalar decay

Now we know, that if we want to calculate the sterile neutrino density from the scalar decay, we
must calculate the equations (116) and (131). Now, the sterile neutrino density distribution equation
(131) would be easy to calculate if not for the scalar Boltzmann equation (116). We can see that from
the fact, that it uses the dampening rate, which in turn has our sterile neutrino density distribution
as a function in the dampening rate’s definition (see eq. (126)). Thus we have a problem of coupled
equations which is not so easilly solved numerically, since we have to solve all the equations at the
same time. And the analytical solution most likely doesn’t exist.

But what if we can make it simpler. For instance, if we say, that the self-interaction coupling 𝜆

from the Lagrangian (95) is much bigger than the scalar’s 𝜙 coupling to the sterile neutrino fields
𝜎, i.e. 𝜆 � 𝜎,then our Boltzmann equation for the scalar 𝜙 changes from eq. (116) to

𝑑𝑓𝜙𝒒

𝑑𝑡
= −𝛤̃0

(
𝑓𝜙𝒒 − 𝑓𝜙𝒒

)
. (132)

This is the case, because if 𝜆 � 𝜎, then we have 𝛤̃𝜙𝒒 � 𝛤̃0 as was mentioned in the previous
section. So we can neglect the 𝛤̃𝜙𝒒 term.

But we can make this even simpler to calculate. Firstly, we will be working in the scalar 𝜙

equilibrium case, i.e. eq. (131) applies. Secondly, we will assume that degrees of freedom are cons-
tant. This may not be apparent why we should do it like this, but in the next sections, this will be
explained.

Now we can begin with the main argument for our simplification. Let us assume, that the tem-
perature of the early universe is bigger than the mass of the scalar, i.e. 𝑇 > 𝑚𝜙. If we assume that
the scalar particles 𝜙 are produced via the process 2𝛾 → 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 + 𝑎𝑛𝑡𝑖𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒, one can assume
that the distribution function of the scalar 𝜙 would be the Bose-Einstein function. This just comes
from the scalar particle definition. So in this period we assume that the scalar particles are thermally
produced. But some of these particles decay into sterile neutrinos. And yet the number of the scalar
particles does not change, since we assume that even if the scalar particles decay as many or maybe
even more particles are produced. This means, that in eq. (131) we can insert the Bose-Einstein
distribution instead of the scalar density distribution 𝑓𝜙𝒒

𝑑𝑓𝑁

𝑑𝑡
=

2𝑚𝜙𝛤̃0

𝑝2

∫ ∞

𝑝+𝑚2
𝜙
/(4𝑝)

𝑒−𝛺𝜙𝒒/𝑇𝑑𝛺𝜙𝒒, (133)

where we have assumed that
𝑓𝜙𝒒 =

1
𝑒𝛺𝜙𝒒/𝑇 − 1

≈ 𝑒−𝛺𝜙𝒒/𝑇 . (134)

We can make this assumption since the temperatures 𝑇 are so big compared to 𝑇 = 0 K.

28



Having our simplified Boltzmann equation (133) we can start calculating. We begin with eva-
luating the first integral, which is rather easy to integrate∫ ∞

𝑝+𝑚2
𝜙
/(4𝑝)

𝑒−𝛺𝜙𝒒/𝑇𝑑𝛺𝜙𝒒 = −𝑇𝑒−𝛺𝜙𝒒/𝑇 |∞
𝑝+

𝑚2
𝜙

4𝑝

. = 𝑇𝑒−
𝑝+𝑚2

𝜙
/(4𝑝)

𝑇 . (135)

And thus the Boltzmann equation becomes

𝑑𝑓𝑁

𝑑𝑡
=

2𝑚𝜙𝛤̃0

𝑝2 𝑇𝑒−
𝑝+𝑚2

𝜙
/(4𝑝)

𝑇 . (136)

Now, one has to integrate this equation over temperature and momentum. To do this, we need
to replace the time variable with temperature as was done before in the thermal sterile neutrino
production (see appendix C.1). After one does this, one must realise that we cannot integrate over
the whole temperature range, since the scalar particle distribution function is of the form we use
here, up until scalar particles are made, so until 𝑇 = 𝑚𝜙. Thus, the integral becomes

𝑓𝑁 = −
2𝑚𝜙𝑚𝑝𝛤̃0

𝑝2𝜋

∫ 𝑚𝜙

∞

√︄
90
𝑔∗

1
𝑇2 𝑒

−
𝑝+𝑚2

𝜙
/(4𝑝)

𝑇 𝑑𝑇. (137)

The number density is the integration over the whole momentum space. Since we do not care about
the direction of the momentum, we have

𝑑3𝑝 = 4𝜋𝑝2𝑑𝑝. (138)

Thus the number density is

𝑛𝐸𝑆 = −
∫ 𝑚𝜙

∞

∫ ∞

0

2𝑚𝜙𝑚𝑝𝛤̃0

𝜋3𝑇2

√︄
90
𝑔∗

𝑒−
𝑝+𝑚2

𝜙
/(4𝑝)

𝑇 𝑑𝑝𝑑𝑇. (139)

From this, we can turn to the second period of sterile neutino production - when the temperature
𝑇 is smaller than the mass of the scalar 𝜙, i.e.𝑇 < 𝑚𝜙. For this, we look back at the scalar Boltzmann
equation (132). We see that the second term in this equation is positive, which means that particles
are produced. Yet, in the second time period, the production of scalar particle 𝜙 is impossible, due
to the temperature not being able to produce the particles. Thus we can neglect the second term and
have our simplified Boltzmann equation

𝑑𝑓𝜙𝒒

𝑑𝑡
= −𝛤̃0 𝑓𝜙𝒒 . (140)

Replacing the time variable with temperature, we have

𝑑𝑓𝜙𝒒

𝑑𝑇
=

√︄
90
𝑔∗

𝑚𝑝𝛤̃0

𝜋𝑇3 𝑓𝜙𝒒.. (141)
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This is easy to integrate, but we have to remember that the function that we integrate should be
a function of two variables - the temperature 𝑇 and the scalar’s momentum 𝒒2. So we integrate the
Boltzmann equation

ln 𝑓𝜙𝒒 = −𝐶1𝛤̃0

2𝑇2 + 𝐶2

(
𝒒2

)
, (142)

where 𝐶1 =

√︃
90
𝑔∗

𝑚𝑝

𝜋
. We then exponantiate this equation

𝑓𝜙𝒒 = 𝑒
−𝐶1𝛤̃0

2𝑇 2 +𝐶2(𝒒2)
. (143)

To find the missing function 𝐶2, we must use the initial condition. This condintion is rather
simple - at temperature𝑇 = 𝑚𝜙, the distribution functions of the scalar particles at both temperature
ranges 𝑇 > 𝑚𝜙 and 𝑇 < 𝑚𝜙 must be the same. Thus, we have

𝑓𝜙𝒒
(
𝑇 = 𝑚𝜙

)
= 𝑒

−
𝛺𝜙𝒒 |𝑇 =𝑚𝜙

𝑚𝜙 = 𝑒
−𝐶1𝛤̃0

2𝑚2
𝜙

+𝐶2(𝒒2)
(144)

or
−

𝛺𝜙𝒒 |𝑇=𝑚𝜙

𝑚𝜙

= −𝐶1𝛤̃0

2𝑚2
𝜙

+ 𝐶2

(
𝒒2

)
. (145)

So our missing function is

𝐶2

(
𝒒2

)
=
𝐶1𝛤̃0

2𝑚2
𝜙

−
𝛺𝜙𝒒 |𝑇=𝑚𝜙

𝑚𝜙

. (146)

And the scalar distribution function is

𝑓𝜙𝒒 = 𝑒
−𝐶1𝛤̃0

2𝑇 2 +𝐶1𝛤̃0
2𝑚2

𝜙

−
𝛺𝜙𝒒 |𝑇 =𝑚𝜙

𝑚𝜙
. (147)

From here, we can start calculating the neutrino number density. But before that, there are
several more steps we must make. Firstly, what is the mass shell 𝛺𝜙𝒒 at temperature 𝑇 = 𝑚𝜙? Well,
if we look at it’s fomula in eqs. (121) and (122), we can see that it must be

𝛺𝜙𝒒 |𝑇=𝑚𝜙
=

√︄
𝒒2 + 𝑚2

𝜙

(
1 + 𝜆

24

)
. (148)

Now 1 + 𝜆
24 is rather a small number even if we take for the coupling to be 𝜆 = 0.1 compared to the

mass of the scalar. Thus, we can approximate

𝛺𝜙𝒒 |𝑇=𝑚𝜙
=

√︄
𝒒2 + 𝑚2

𝜙

(
1 + 𝜆

24

)
≈

√︃
𝒒2 + 𝑚2

𝜙
. (149)

Secondly, we need to take a look at the integration variable that is the mass shell in eq. (131). We
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know, from eqs. (121) and (122) that it should be

𝛺𝜙𝒒 =

√︂
𝒒2 + 𝑚2

𝜙
+ 𝜆

24
𝑇2 (150)

or

𝛺𝜙𝒒 =

√︃
𝒒2 + 𝑚2

𝜙

√√
1 +

𝜆
24𝑇

2

𝒒2 + 𝑚2
𝜙

. (151)

If we now take a look at the second term in the second square root, i.e.
𝜆
24𝑇

2

𝒒2+𝑚2
𝜙

one might notice
that it too is quite a small number. This is because the temperatures we are integrating all of the
distribution function are 𝑇 ≤ 𝑚𝜙, which in turn means, that the effective mass 𝑀𝜙 is 𝑀𝜙 ≈ 𝑚𝜙

as is noted in the ref. [13]. That means if take for 𝒒2 = 0 we have
√︃

1 + 𝜆
24 at the highest possible

temperature, i.e. 𝑇 = 𝑚𝜙, we would have√︂
1 + 𝜆

24
≈ 1 + 1

2
𝜆

24
. (152)

Taking 𝜆 = 0.1, we get
1 + 1

2
0.1
24

≈ 1.002 (153)

which is just a number that is very close to 1. And that’s more true the smaller the temperature is.
Thus our variable becomes

𝛺𝜙𝒒 ≈
√︃
𝒒2 + 𝑚2

𝜙
. (154)

Now, inserting the scalar distribution function into the Boltzmann equation, we have

𝑑𝑓𝑁

𝑑𝑡
=

2𝑚𝜙𝛤̃0

𝑝2 𝑒
−𝐶1𝛤̃0

2𝑇 2 +𝐶1𝛤̃0
2𝑚2

𝜙

∫ ∞

𝑝+𝑚2
𝜙
/(4𝑝)

𝑒−𝑦/𝑚𝜙𝑑𝑦, (155)

where 𝑦 =

√︃
𝒒2 + 𝑚2

𝜙
. The neutrino distribution function is then

𝑓𝑁 = −
2𝑚2

𝜙
𝑚𝑝𝛤̃0

𝑝2𝜋

√︄
90
𝑔∗

𝑒

𝐶1𝛤̃0
2𝑚2

𝜙

−
𝑝+𝑚2

𝜙
/(4𝑝)

𝑚𝜙

∫ 2𝑀

𝑚𝜙

𝑒
−𝐶1𝛤̃0

2𝑇 2

𝑇3 𝑑𝑇. (156)

Here, one might ask why do we integrate from the scalar’s mass 𝑚𝜙 to the double of the sterile
neutrino mass 2𝑀 . Firstly, since we split the sterile neutrino period into two, with one period ending
at 𝑚𝜙, when the scalar particle production ends, it only seems natural, for the second period to
begin, where the first ended. Secondly, we have previously assumed that one scalar particle can
produce two sterile neutrinos. Thus the lowest temperature we can reach before the sterile neutrino
production is over is when the scalar particle can produce only two sterile neutrinos, both of which
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have zero momentum. That temperature is 𝑇 = 2𝑀. Then the number density is

𝑛𝐿𝑆 = −
16𝑚2

𝜙
𝑚𝑝𝛤̃0

(2𝜋)3

√︄
90
𝑔∗

𝑒

𝐶1𝛤̃0
2𝑚2

𝜙

∫ ∞

0
𝑒
−

𝑝+𝑚2
𝜙
/(4𝑝)

𝑚𝜙 𝑑𝑝

∫ 2𝑀

𝑚𝜙

𝑒
−𝐶1𝛤̃0

2𝑇 2

𝑇3 𝑑𝑇 (157)

Thus our full number density would be the sum of the early time period - the period when the scalar
particles were produced - and the late time period, when no scalar particles were produced

𝑛𝑁 = 𝑛𝐸𝑆 + 𝑛𝐿𝑆 . (158)
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3 Calculations and results

Now that we have a few methods of calculating the sterile neutrino density parameter, we can
try and find what kind of mass would the sterile neutrino need to have for it to be considered a
dark matter particle candidate. This will be done in two ways. First, we will look into the thermal
production of sterile neutrinos. Then, we shall work with the scalar decay production method and
in the end, combining it with the thermal production. In our calculations, we assume that the sterile
neutrinos are stable and do not decay further.

3.1 Thermal production

In this section, we shall show the main results of the thermal production. To begin calculations
we start with eq. (94)

𝑛𝑇𝑆 = −
∫ 𝑀

∞

7𝜇2𝐺2
𝐹𝑒𝑟𝑚𝑖

𝑇𝑚𝑃

96𝜋2
√︁
(0.1𝑔∗)

𝑑𝑇

∫ ∞

0

𝑝3𝑑𝑝(
𝜇2 +

[
𝑐𝛤𝑝

𝑀
+ 𝑀

2

]2
) (

𝑒
𝑝

𝑇 + 1
) . (159)

Next, we need the density, which is rather easy

𝜌𝑇𝑆 = 𝑛𝑇𝑆 · 𝑀. (160)

The density parameter is density over critical density

𝛺𝑇𝑆 =
𝜌𝑇𝑆

𝜌𝑐𝑟𝑖𝑡
. (161)

Now the critical density is defined as

𝜌𝑐𝑟𝑖𝑡 =
3𝐻2

8𝜋𝐺
. (162)

As was mentioned in the previous sections, the Hubble parameter 𝐻 is not the Hubble constant
𝐻0. That is because, we frankly just don’t know how the sterile neutrino density will evolve to the
present day. However, the density parameter must stay constant, which comes from the fact, that we
assume that neutrinos are stable. Thus, we have to calculate the critical density at the time when
the sterile neutrino production is finished.

To do this, we need to look at both the definitions of the Hubble parameter and the gravitational
constant 𝐺. For the Hubble parameter case, it is fairly easy, as we can look to the appendix C.1,
specifically eq. (216) and just use it

𝐻2 =
𝜋2

90
𝑔∗

𝑇4

𝑚2
𝑃

. (163)

For the gravitational constant we have the definition of the Planck mass [1]

𝑚𝑃 =
1

√
8𝜋𝐺

. (164)
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Thus, we can insert the definitions into the critical density

𝜌𝑐𝑟𝑖𝑡 = 3 · 𝜋
2

90
𝑔∗𝑇

4 =
𝜋2𝑔∗𝑇4

30
. (165)

Now, if we are looking at the time, when the production ends, that means 𝑇 = 𝑀. And for the
degrees of freedom, let us assume they are 𝑔∗ = 100. This will be apparent later. However, now we
have not only the expression of the critical density

𝜌𝑐𝑟𝑖𝑡 =
10𝜋2𝑀4

3
, (166)

but also the density parameter
𝛺𝑇𝑆 =

3𝑛𝑇𝑆
10𝜋2𝑀3 . (167)

If one looks at eq. (94), one will see, that this equation probably does not have an anallitical
solution. Thus, we need to use a computer program. In this case, we used the program MATLAB,
it’s code is shown in appendix C.2. The results we got are shown in Fig. 2
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Fig. 2 The dependence of the sterile neutrino density parameter on the mass of the sterile neutrino.
The three bottom lines are each active neutrinos contribution to the total density parameter of the
sterile neutrino (in purple). The density parameter is 𝛺 = 0.246,when the sterile neutrino mass is
33 GeV.

From Fig. 2 we can see how the sterile neutrino density parameter denpends on the mass of the
sterile neutrino. The lowest three lines in Fig. 2 are the separate additions to the density parameter
from each active neutrino. We can see, that the lower the mass of the active neutrino the less it is
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able to produce sterile neutrinos, which one could see from the eq. (79). And from this graph one
can also understand why we chose the degrees of freedom 𝑔∗ to be 𝑔∗ = 100. That is because, we
do not cross the threshold in temperature for the degrees of freedom to change from this value, as
one can see here

𝑔∗ ≈


100, 𝑇 > 300 MeV

10, 300 MeV > 𝑇 > 1 MeV
3, 𝑇 < 1 MeV

. (168)

There is of course, the more general form of the mixing angle, for sterile neutrino thermal
production [13]

sin2 (2𝜃𝑀) =
sin2 (2𝜃)

sin2 (2𝜃) +
[
cos (2𝜃) − 2𝑝

𝑀2 (𝑉𝐷 +𝑉𝑇 )
]2 , (169)

where sin2 (2𝜃) is the mixing angle in the vacuum (sin2 (2𝜃) = 4 sin2 (𝜃) cos2 (𝜃)); 𝑉𝐷 and 𝑉𝑇 are
finite density and finite temperature matter potentials. 𝑉𝐷 dominates in highly matter-antimatter
asymmetric environments, like stars; in our case it is negligable. The finite temperature matter
potential is given as

𝑉𝑇 = −𝐺2
𝑒 𝑓 𝑓𝑇

4𝑝, (170)

where 𝐺2
𝑒 𝑓 𝑓

= 𝐶𝐺2
𝐹𝑒𝑟𝑚𝑖

and 𝐶 is just some number; the finite temperature matter potential in this
approximation is simply a temperature dependant shift in the effective in-medium mass.

We can see, that the eq. (170) resembles one of the terms in eq.(79), specifically, the right-most
term in the denominator. If we now reshuffled some terms in eq. (169), like in appendix C.3, we
can see that our eq. (169) becomes

sin2 (2𝜃𝑀) =
𝜇2

𝜇2 +
(
𝑀
2 − 𝑝

𝑀
𝑉𝑇

)2 . (171)

And from this equation and the definition of the finite temperature potential (170), we get the co-
efficient to be

𝐺2
𝑒 𝑓 𝑓 =

7𝜋
24

𝐺2
𝐹𝑒𝑟𝑚𝑖𝑐. (172)

3.2 The Scalar Decay

The scalar decay case follows a similar path to the thermal production, albeit a bit different.
That’s because instead of one parameter, the mass of the sterile neutrinos, we have three: the mass
of the sterile neutrino 𝑀 , the mass of the scalar 𝑚𝜙, and the Yukawa coupling between the scalar
and sterile neutrino field 𝜎.

In this case, we don’t need to calculate the density parameter all over again, we can just take it
from the thermal production section, however, there is a problem with this aproach. You may notice
in eqs. (139) and (157), that we finish our integrations over temperature at different times - mainly
at 𝑇 = 𝑚𝜙 and at 𝑇 = 2𝑀. This means, our temperature in the definition of the critical density is
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different. And so our density parameters are different as well

𝛺𝐸𝑆 =
3𝑛𝐸𝑆𝑀
10𝜋2𝑚4

𝜙

, 𝛺𝐿𝑆 =
3𝑛𝐿𝑆

20𝜋2 (2𝑀)3 . (173)

Equations (139) and (157) as was the case with thermal production most likely do not have
analytical solutions. So we turn to the MATLAB program (see appendix C.4 for the program used
in this work). Using a mass of 7.5 · 107 GeV for the mass of the scalar 𝑚𝜙, we were able to get the
graph shown in Fig. 3. The choice of this massive scalar mass was done because later we would
want to combine both the scalar decay and thermal production methods. Then it would be wise to
have density parameters from both methods in the same range of possible sterile neutrinos masses.
Thus, to have sensible results in this range, one has to choose this kind of massive scalar mass.
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M, GeV
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=10-9

Fig. 3 Sterile neutrino number density with respect to the sterile neutrino mass, when the production
method is solely the heavy scalar decay.

In Fig. 3 one can see, that we chose several couplings. The first two couplings give us a fairly
similar picture and a mass of sterile neutrinos close to 10 GeV or lower. However, as the coupling
lowers, we see that the mass of sterile neutrinos grows as well. This will be elaborated later.

For now, let us ask a simple question - could sterile neutrinos be produced solely because of
scalar decay. The answer is rather simple - yes. But would that be realistic is another question. Since,
as we know, the early universe’s temperature was so high, that many heavy particles were produced.
Not only that, in the previous section we discussed how from oscillations between active and sterile
neutrinos, we could produce sterile neutrinos. And that required very high temperatures. The ones,
we assume to be present when the scalar decay would take place. So, we can assume, that the scalar
production in our universe would not be the only source for the sterile neutrino production. We
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must add thermal production to it as well.
That is rather simple, since the whole sterile neutrino density parameter is

𝛺𝑆 = 𝛺𝑇𝑆 + 𝛺𝐸𝑆 + 𝛺𝐿𝑆 . (174)

That was done and shown in Fig. 4. In it, we chose the coupling to be 𝜎 = 10−6 and the mass of
the scalar 𝑚𝜙 = 7.5 · 107 GeV. We can see, that with these parameters, the scalar decay is actually
negligable and the mass of the sterile neutrinos is still around 33 GeV.
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Thermal production
Heavy scalar decay
Total

Fig. 4 Sterile neutrino number density with respect to the sterile neutrino mass, when we have two
sterile neutrino production methods.

However, that is why it was said, that the scalar decay is rather different from the thermal pro-
duction. For instance, let us say, that the coupling is 𝜎 = 10−6 and is constant. What would happen
to the mass of the sterile neutrinos if the mass of the scalar changed? The answer to that question
can be found in Fig. 5. In this graph, we chose many different masses for the scalar particles, calc-
lulated the sterile neutrino density parameter’s dependence on the mass of the sterile neutrinos and
chose those mass which gave the density parameter in the range 0.24 ≤ 𝛺𝑆 ≤ 0.265. One may note,
that this range is rather different from the one given in the previous sections, but that is because that
accuracy of the calculations fell short due to the chosen sterile neutrino mass range, i.e. the chosen
difference between two neighbouring neutrino masses was rather big and thus could give us density
parameters that were close to the previously mentioned range of 0.25 ≤ 𝛺𝑆 ≤ 0.26,but would not
make it and so would not give us any results.
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Fig. 5 Sterile neutrino mass, with respect to the mass of the scalar particle. The process of cal-
culating the sterile neutrino density parameter’s dependence was done for every scalar mass va-
lue. The sterile neutrino mass, that gave us a density parameter, which fulfilled the condintion
0.24 ≤ 𝛺𝑆 ≤ 0.265 was chosen and plotted in this graph.

In Fig. 5 we can see that the mass of the sterile neutrinos goes down and approaches the thermal
production mark of 33 GeV as the mass of the scalar grows. That is because of one simple factor
- the integration period. Remember, in eq. (139) the temperature integral stops at the mass of the
scalar. Thus, the heavier the mass of the scalar 𝜙, the less scalar particles we have, which in turn
gives us less sterile neutrinos. Because of that, the sterile neutrino production becomes dominated
by the thermal production.

The other thing we can do is say that the mass of the scalar is 𝑚𝜙 = 6.6 · 107 GeV and is
constant, but the coupling can now be varied. The graph is shown in Fig. 6. The reason why we
chose the scalar mass to be as it is, was to introduce a significant presence of scalar decay, but not
too significant, so the scalar decay method wouldn’t dominate. I will refer you to Fig. 5. In that
graph, we see, that the previous choice of scalar mass to be 𝑚𝜙 = 7.5 · 107 GeV, meant that the
thermal decay would dominate the sterile neutrino production process. If the mass of the scalar
would be any more smaller, the scalar decay would dominate the production.
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Fig. 6 Sterile neutrino mass with respect to the Yukawa coupling between the sterile neutrino and
the scalar fields. The process of calculating the sterile neutrino density parameter’s dependence was
done for every Yukawa coupling’s value. The sterile neutrino mass, that gave us a density parameter,
which fulfilled the condintion 0.25 ≤ 𝛺𝑆 ≤ 0.26 was chosen and plotted in this graph.

To understand Fig. 6, one must know several things. Firstly, there were over eight hundred dif-
ferent coupling values. However, we wanted to have the same amount of couplings between two
neighbouring powers of 10. For example, there are the same amount of coupling values between
the values 10−9 ≤ 𝜎 ≤ 10−8 and 10−4 ≤ 𝜎 ≤ 10−3. But the problem was, that the intervals could
not have the same step, otherwise it would fit for one range, but be too small for the other. So,
a generation program for these couplings was written. Yet it was not without it’s problems, as it
introduced artifacts that slightly shifted the couplings.

Second thing to note is that while for the previous graphs we were content with a simpler and a
smaller mass range, here that did not work. To understand this, the potential sterile neutrino masses,
for Figs. 3, 4 and 5 were from 10 GeV to 100 GeV, each differing from the neighbouring masses
by 1 GeV. However, for attempts to actually plot the graph in Fig. 6, that was not enough. Thus
the difference between neighbouring mass values was changed from 1 GeV to 0.5 GeV. This seems
like a small change, but that doubled the amount of iterations we were working with and added a
bit more accuracy to our calculations. And due to this newfound accuracy, the density parameter
range, i.e. the range the density parameter must fall into, for us to pick a mass and plot it in Fig. 6,
was changed to 0.25 ≤ 𝛺𝑆 ≤ 0.265, to more accurately reflect our own parameters. And even then,
the graph in Fig. 6 still looks like it can be smoothened. That was not done due to time constraints,
as this graph took too much of time to make.

With this in mind, we can look at the Fig. 6. Firstly, one might notice that in Fig. 6’s left side we
have a constant sterile neutrino mass as the Yukawa coupling is very small. With the added accuracy,
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the sterile neutrino mass is 32.5 GeV in that region. This is important, because in the very weak
coupling scenario, we expect the scalar decay to be negligable, as one can see from the left side in
Fig. 6. That means, that the sterile neutrino mass solely comes from the thermal production. Thus
the mass of the sterile neutrino just from thermal production must be in the range 32 ≤ 𝑀 ≤ 33
GeV for the neutrino to be considered a candidate for dark matter particles.

As the coupling starts growing in Fig. 6 we can see a peculiar thing happen - the mass to coupling
graph begin to resemble a graph of a dampened oscillator. The biggest point of these oscillations
almost reaches 70 GeV, while the lowest point tries to approach the thermal mass limit. Now, why do
these oscillations occur? If we look into eq. (157) as it is more dependant on the Yukawa coupling
than eq. (139) we see that the coupling appears in all sorts of places like the exponents and just as a
second power (remember the 𝛤̃0 definition from eq. (123)). And we see that the sterile neutrino mass
appears as the temperature variable atleast in 𝑀−3 power. That means, to keep eq. (157) somewhat
constant, the mass must shift dramatically in response to the change in the coupling. Why it does
so in an oscillatory manner, is unknown and a topic for future investigations.

But, when the coupling becomes very big in comparison with it’s lowest value, the oscillations
stop and we get a constant value at around 𝑀 = 51 GeV. In this region scalar decay dominates as
one can see that the mass almost matches that of the mass in Fig. 5. How to explain this? Well,
as the coupling is relatively big, that means that more and more scalar particles decay into sterile
neutrinos as opposed to when it was very low, when scalar particles would decay very rarely into
sterile neutrinos. Thus we have a process when scalar particles are created they relatively instantly
decay into sterile neutrino, scalar particles are produced and decay again so on and so forth. This
tells us that the sterile neutrino production not only is dominated by scalar decay but by the early
scalar decay, i.e. eq. (139). That is because of the relatively fast decay, once the threshold of 𝑇 = 𝑚𝜙

is passed, we don’t really have any scalar particles to decay into sterile neutrinos.
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4 Conclusions

In this work, we set out to see if the sterile neutrino particle could be a possible candidate
for dark matter and under what circumstances that could be. We began with a short introduction to
sterile neutrinos and the main reason for a need of them. For this we shortly introduced the Standard
Model of particle physics (SM) and the Grimus-Neufeld model (GNM).

From this, we took a look at the basics of cosmology, starting with the Boltzmann equation.
We used it to calculate how the different types of particles distribute in the early universe when
we have small perturbances in the form of thermal anisotropies and the perturbed metric in eq.
(2). Using these equations, we arrived at the equations of motion for the perturbations. The second
step in the understanding of cosmological basics was to take a look at how the perturbations of the
metric themselves evolve in response to the changing densities of particles because of the Boltzmann
equation. When that was done, a conclusion was reached that solving all of the equations was not
an easy task and requires to solve them numerically.

Having the cosmological background, we went over the Dodelson-Widrow model [4] in regards
of sterile neutrino production via oscillations from active neutrinos. This required the introduction
of the Seesaw mechanism and how it changes when going from a vacuum to a medium. From this,
we calculated what the number density of sterile neutrinos should be in eq. (94).

We also introduced a second method of sterile neutrino production via heavy scalar decay [5].
We introduced how one could calculate the dampening and the loss/gain rates from the retarded
self-energies, which come from the one loop correction to the heavy scalar propogator. After this,
we arrived at a concrete Boltzmann equation for sterile neutrinos in eq. (131) when the heavy scalar
and the universe are in thermal equilibrium. After introducing assumptions about the scalar decay
process we calculated the sterile neutrino number densities, shown in eqs. (139) and (157). The
assumptions were: the possibility of splitting the sterile neutrino production period into two periods:
the first one being the period when scalar particles were produced thermally and decayed into sterile
neutrinos, while the second one being the period when we can’t produce scalar particles but have
leftovers from the first period and they decay into sterile neutrinos; the second assumption was that
the Yukawa coupling between the scalar and sterile neutrino fields 𝜎 was very small compared to
the scalar self-coupling 𝜆, i.e. 𝜎 � 𝜆.

Using the calculated results from the previous sections, more specifically the Dodelson-Widrow
model and the heavy scalar decay under our imposed assumptions, we used the program MATLAB
to calculate the sterile neutrino density parameter. In the first case for thermal production, the graph
we got is shown in Fig. 2. From it we can determine that for sterile neutrinos to have a density
parameter 𝛺𝑇𝑆 = 0.246 the mass of the sterile neutrinos has to be 𝑀 = 33 GeV. We also determined
what the finite temperature potential looks like in our case.

We then calculated the density parameter’s dependence on the sterile neutrino mass when the
sole production method is heavy scalar decay, which is shown in Fig. 3, when the heavy scalar
mass is 𝑚𝜙 = 7.5 · 107 GeV. However, seeing as in our universe we expect sterile neutrinos to
oscillate, scalar decay could not be the sole production method and must be combined with thermal
production, we got the graph as shown in Fig. 4, where the mass of the scalar is the same as in Fig.
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3 and the Yukawa coupling is 𝜎 = 10−6. In this graph, we can see that under these circumstances
the thermal production dominates and the mass of sterile neutrinos, in the case of Fig. 4 is around
𝑀 = 33 GeV.

However, while the thermal production has one parameter - the sterile neutrino mass 𝑀 - the
heavy scalar decay method has three - the Yukawa coupling 𝜎, the heavy scalar mass 𝑚𝜙 and the
sterile neutrino mass 𝑀 . Thus we chose to explore how does the sterile neutrino mass depend on
the other two parameters when we have both heavy scalar decay and thermal production methods.
That was done to see more accuratelly the bounds at which the thermal production dominates or
the heavy scalar decay does.

We began with varying the heavy scalar mass 𝑚𝜙 as show in Fig. 5, while the Yukawa coupling
was 𝜎 = 10−6. One can see from this graph, that as the heavy scalar mass decreases, for the sterile
neutrino to be a candidate for dark matter particles, the neutrino’s mass must increase. That is
because the lower the scalar mass, the longer we can produce the scalar particles as seen in eq.
(139) and thus we can create more sterile neutrinos for longer via the scalar decay. While if the
scalar mass increases, the sterile neutrino mass approaches the thermal production limit, as one
would expect.

From there, we chose to vary the Yukawa coupling, while the scalar mass was 𝑚𝜙 = 6.6 · 107

GeV. This mass was chosen because as seen in Fig. 5 it would allow for less thermal production
domination, unlike the mass we used earlier. The resulting graph is shown in Fig. 6, where on the
left-most side we can see, that when the Yukawa coupling is very small, the scalar decay is negligible
and gives a more accurate mass for the sterile neutrino, that being 𝑀 = 32.5 GeV. Using this graph,
one can argue that with enough accuracy, the sterile neutrino mass falls in the range 32 ≤ 𝑀 ≤ 33
GeV. However, on ther right-most side, when the Yukawa coupling is the largest, we have heavy
scalar decay domination, and the sterile neutrino mass is around 𝑀 = 51 GeV. This comes from the
fact, that if the coupling is big enough, when a scalar particle is produced it then decays relatively
fast to sterile neutrinos. This process repeats until we reach the threshold of 𝑇 = 𝑚𝜙 at which
point the scalar particle production and in turn sterile neutrino production stops since all the scalar
particles would be decayed. This implies that while the Yukawa coupling is relatively big, only the
early scalar decay, i.e. eq. (139) is important, as it dominates over other processes.

Yet there are problems. First of all is the accuracy of the calculations. The potential sterile
neutrino mass range was indeed small, as the difference between two neighbouring mass values
was only 1 GeV. In the case of Fig. 6 it was somewhat increased, by changing the difference to be
0.5 GeV, yet it still gives us not so smooth graphs and somewhat inaccurate masses.

The other problem lies with the models themselves. Specifically, the heavy scalar decay. While
the thermal production model or the Dodelson-Widrow model has it’s own problems like the uns-
pecified masses of active neutrinos, since we only know their mass difference or the assumption
of total thermal equilibriun (this is present in heavy scalar decay as well), the heavy scalar decay
has it’s own set of problems. First of all, to make it simpler, assumptions were made that may have
stretched the limits of possible reality. One of these is the splitting of the scalar to sterile neutrino
production period into two. Whilst the second is rather heavilly reliant on the Yukawa coupling

42



between the two fields, the first period has only one term with it. And this discrepency might intro-
duce differences if we just took eq. (113), where if we were to remove the decay part (the 𝑓𝜙𝒒 term
on the right-hand side) we would have a square of the coupling after integrating. Thus, we would
have had two terms with the coupling in the eq. (139).

The problem that is present in both models is the issue of the sterile neutrino mass. The sterile
neutrinos are quite heavy. So heavy in fact that they dwarf the mass of the proton which is usually
around 938 MeV. And in the papers such as [4, 5, 13] they mainly deal with sterile neutrinos in the
keV range. So where does this quite big difference come from. The main factor might be the range
of integration. We chose, that for the temperatures, the integration would begin from 𝑇 → ∞. It is
a valid assumption, since we assume that the temperature in the early universe, right after the Big
Bang, was very huge, nearly infinite. We would technically assume the Planck temperature, but as it
is so big compared to the masses we were working with, we can just choose infinity as our starting
point instead and make calculations easier. And in the previously mentioned papers, they usually
don’t even begin integrating at infinity, which could explain this difference.

However, having said all that, we could ask, which model is better. In the case of less parameters,
the Dodelson-Widrow model is the superior one, since we really only have one parameter - the sterile
neutrino mass 𝑀 . While the scalar decay method suffers from too many parameters. But, there is a
valid reason to use the scalar decay method. Firstly, if supersymmetry (SUSY) were to be true, we
would have additional, heavier particles, some of which were scalars, which decayed. Secondly, we
know that in the early universe there was a period of inflation [1]. And to model this period we use
a slow rolling potential for a scalar field which, when it reaches it’s minimum, decays. So we might
have good reason to assume, that there were heavy scalar decay. And so, it might actually be better
to use both the Dodelson-Widrow model with the heavy scalar decay.
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A Relativity

In this short appendix, I will go over the basics of Einstein’s Special and General Relativity
theories. They will not be presented in depth. Only the main ideas will be gone over.

Special Relativity

To begin the discussion of Special Relativity (SR) let us first consider it’s main postulates:

• There are no experiments to measure an absolute velocity and all the laws of physics behave
in the same way regardless of the velocity;

• The Speed of Light is the same in all inertial systems and nothing can move faster than it.

These postulates allowed Einstein to construct his SR. But for our short discussion it is enough to
know them.

With that, we can move on to some definitions and rules. But before that, we must state that the
speed of light is 𝑐 = 1. Why do we do this? Because it makes equations pretty. Now we can define
a vector 𝐴𝜇. The index 𝜇 goes over from 0 to 3, 0 representing the time coordinate (all greek letters
used for indices start from 0, while all latin letter indices start from 1). So 𝐴0 would be the timelike
part of the vector. The rest would be spacelike. Simply put, the spacelike like part of the vector is
the same in three dimensional space as it is in four dimensional space.

To calculate the scalar product of a vector we must introduce index lowering or raising. Index
lowering is just writing the index lower like 𝐴𝜇, rather then like 𝐴𝜇 and vice verca. But that is not
done simply but just writing the index lower than it was. For this procedure we must introduce the
metric. A metric is a tensor that defines how we multiply vectors. As anybody, who has studied
vector calculus can remember, the scalar product multiplies in such a way because of the basis
vectors −→𝑒 𝜇. So when we multiply a vector with itself, we write

−→
𝐴 · −→𝐴 =

−→𝑒 𝛼
−→𝑒 𝛽𝐴

𝛼𝐴𝛽. (175)

The multiplication −→𝑒 𝛼
−→𝑒 𝛽 is the metric 𝑔𝛼𝛽. With it, we can lower or raise the indices of any vector

or tensor (a note, a vector has one index, but a tensor has two or more). This lower(raising) can be
written as such

𝐴𝜈 = 𝑔𝜇𝜈𝐴
𝜇 = 𝑔0𝜈𝐴

0 + 𝑔1𝜈𝐴
1 + 𝑔2𝜈𝐴

2 + 𝑔3𝜈𝐴
3. (176)

This is where we introduce Einstein’s summation over indices, which just states that when we have
a multiplication like eq. (176), we must sum over all the matching indice so that the left side and the
right side of the equation has the same indices that are not summed over. The summed over indices
are sometimes called dummy indices.

With this we can move on to Minkowski space and SR in general. For that we must define the
spacetime interval. This interval is invariant under Lorentz transformations and is a four dimensio-
nal distance between events. All inertial observers measure it to be the same between two events. It
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is defined as
𝑑𝑠2 = 𝑔𝛼𝛽d𝑥𝛼d𝑥𝛽. (177)

In Minkowski space the metric7 is

𝑔𝛼𝛽 = 𝜂𝛼𝛽 =

©­­­­­«
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

ª®®®®®¬
(178)

so that the spacetime interval (177) becomes

𝑑𝑠2 = −d𝑡2 + d−→𝑥 2, (179)

where d−→𝑥 2 = d𝑥2 + d𝑦2 + d𝑧2 in Cartesian coordinates.
Now one could write out explicitly Lorentz transformations and velocity summation and many

more things, but for the purposes of this paper, we only need to define a few more things8. More
concretely we need to define the four-momentum and the energy-momentum tensor.

Firstly, let’s begin with the four-momentum. It is defined as

−→𝑝 → (𝐸, 𝑝𝑥 , 𝑝𝑦, 𝑝𝑧) (180)

in Cartesian coordinates, where 𝐸 is the energy of the object. The scalar product for the four-
momentum is

−→𝑝 · −→𝑝 = −𝐸2 + 𝒑2, (181)

where 𝒑2 is the scalar product of momentum in three dimensional space. However if we take a look
from the object’s perspective, the momentum changes. We know that momentum is defined as 𝑝𝜇 =

𝑚𝑣𝜇,where 𝑚 is the mass of the object and 𝑣𝜇 is it’s four-velocity. But from the object’s perspective,
it’s four-velocity is different. It is the basis velocity 𝑢𝜇 which has in the object’s perspective only
one component 𝑢0 = 1, which just means that the object is moving in time. So from the object’s
perspective −→𝑝 · −→𝑝 = 𝑚2−→𝑢 · −→𝑢 = −𝑚2. But this product must be the same in all inertial systems, so
we have

− 𝐸2 + 𝒑2 = −𝑚2 (182)

or
𝐸2 = 𝒑2 + 𝑚2, (183)

which is a well known identity.
From this, we can turn our attentions to the energy-momentum tensor 𝑇𝛼𝛽. Before we write it

explicitly, we must talk about it’s components since the tensor changes from system to system:
7It depends on how you define it, but most cosmologist take the metric to be -,+,+,+, while most particle phisicists

take it to be +,-,-,-
8For those who want to study SR more indepth, I suggest reading Bernard Schutz’s ”A first Course in General

Relativity“ [9].
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• 𝑇00− is always the energy density 𝜌;

• 𝑇0𝑖− is the energy flux through 𝑥𝑖 = 𝑐𝑜𝑛𝑠𝑡. surface;

• 𝑇 𝑖0− is the momentum density components;

• 𝑇 𝑖 𝑗− is the stress tensor (this is why this tensor is also referred to stress energy tensor).

The calculations are more than we need to write out the tensor. For ideal fluids the tensor is

𝑇𝛼𝛽 =

©­­­­­«
𝜌 0 0 0
0 𝑝 0 0
0 0 𝑝 0
0 0 0 𝑝

ª®®®®®¬
. (184)

This tensor has also a very useful identity which is the energy-momentum tensor’s conservation
law

𝜕𝛽𝑇
𝛼𝛽 = 0. (185)

General Relativity

General Relativity (GR) takes SR a step further. To understand this statement we must unders-
tand the tenents of GR:

• You can define a system only locally, not globally;

• No experiment can differentiate the sytem between that of moving with accelaration and that
of being in a gravitational field;

• Einsten’s equivalence principle - the free-falling ovserve in the gravitational field sees his
local surrounding as if he had been in Minkowski space.

In a gravitational field, things move differently than in Minkowski space, since gravity affects mo-
tion. However, the equations for systems in gravitational fields are of similar form to the equations
in SR.

For instance, let’s take eq.(185). Here we see the law written down in flat spacetime. But in
curved spacetime and so in a gravitational field, one can write the same law in a very familiar form

∇𝛽𝑇
𝛼𝛽 = 0, (186)

where ∇𝛽 is the covariant derivative. The form does resemble that of eq. (185) but it has a different
derivative. In fact, you can rewrite any law by replacing derivatives with covariant derivatives and
you will have laws that have been affected by a gravitational field.

But what is a covariant derivative, how does it differ from a normal one? Before one can answer
that, one must understand a few things about curvature and it’s relation to gravity. To do that, we
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must firstly discuss the manifold - what is it? To put it simply, a manifold is the curvature of space-
time taking form. But there is a special feature of a manifold - on small enough scales the manifold
resembles Minkowski space. Or in other words on small scales the manifold resembles Minkowski
flat space. One can imagine this with our own experience of Earth. When we are walking in the
streets or parks, we see that the Earth appears flat, disregarding any hills and pits; however, from
space we can see that the Earth is definetaly not flat, but a sphere (more like of a spherical shape,
because of the Earth’s spinning it bulges out). The same goes for a manifold - on large scales you
apply GR, but on small scales one can apply only SR and not be wrong.

Having said that, one might ask how do you write down this curvature mathematically and relate
it’s features. Well we already know that way, because we already used it previously - the metric. In
Minkowski space we have the very simple metric (178), but in curved spacetime the metric is not
so simple and can have many terms, even crossterms (the terms that are not diagonal in the matrix),
depending on many variables. And with that the metric dictates how curved is spacetime.

But how does this relate to gravity? For that we must come back to the covariant derivatives.
The covariant derivative for a vector 𝑉 𝜇 can be written explicitly as

∇𝛽𝑉
𝜇 = 𝜕𝛽𝑉

𝜇 +𝑉𝜎𝛤
𝜇

𝜎𝛽
, (187)

where 𝛤
𝜇

𝜎𝛽
is the Christoffel symbol, which can be written out explicitly as

𝛤
𝜇

𝜎𝛽
=

1
2
𝑔𝛼𝜇

(
𝜕𝛽𝑔𝛼𝜎 + 𝜕𝜎𝑔𝛼𝛽 − 𝜕𝛼𝑔𝜎𝛽

)
. (188)

Now we can see how the metric and in turn the curvature of spacetime influence how laws behave
in a curved spacetime9. We have to note some behaviour of the covariant derivative. For instance,
if the vector’s index is lowered, then the term in eq.(187) with the Christoffel symbol changes sign

∇𝛽𝑉𝜇 = 𝜕𝛽𝑉𝜇 − 𝛤𝜎
𝜇𝛽𝑉𝜎 . (189)

Also, we get as many Christoffel symbols (with different signs with different types for the types of
indices) as there are indices on the differentiable quantity, such as

∇𝛽𝐵
𝜇
𝜈 = 𝜕𝛽𝐵

𝜇
𝜈 + 𝐵𝛼

𝜈𝛤
𝜇

𝛼𝛽
− 𝛤𝛼

𝜈𝛽𝐵
𝜇
𝛼 . (190)

With these definitions, we can move on to the real question - how does curvature affect gravity.
For that we must ask ourselves what is the shortest path or a geodesic in the curved spacetime.
In Minkowski space we already know the geodesics between to points to be a straight line. But in
curved spacetime that is different. To calculate the geodesics, we use the geodesic equation

𝑑2𝑥𝛼

𝑑𝜆2 + 𝛤𝛼
𝛽𝜏

𝑑𝑥𝛽

𝑑𝜆

𝑑𝑥𝜏

𝑑𝜆
= 0, (191)

9For more reading on how these and other relations can be derived and for more indepth look on GR, I refer you to
Kip Thorne’s, Charles Misner’s and John Wheeler’s book ”Gravitation“ [14]
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where 𝜆 is the scalar parameter of motion, which can be proper time. If we solved this equation
for say spherical curvature we would get geodesics that are orbits or infalling trajectories. With
the geodesic equation we can safely say that gravity is a misnomer. Objects fall because that is the
shortest distance, a path of least resistance. There is no force of gravity. Gravity is the curvature of
spacetime.

Of course, there is one other question - how do objects then interact with gravity, i.e. how do
objects curve spacetime. For that we need only a few definitions. Firstly, we define the Riemann
tensor

𝑅𝛼
𝜇𝜆𝜎 = 𝜕𝜆𝛤

𝛼
𝜇𝜎 − 𝜕𝜎𝛤

𝛼
𝜇𝜆 + 𝛤𝛼

𝜈𝜆𝛤
𝜈
𝜇𝜎 − 𝛤𝛼

𝜈𝜎𝛤
𝜈
𝜇𝜆. (192)

A neet feature of the Riemann tensor is that if atleast one component out of twenty is not zero, then
the spacetime is curved. Using the Riemann tensor we can define the Ricci tensor

𝑅𝛽𝜈 = 𝑅𝛼
𝛽𝛼𝜈 (193)

and using it we can define the scalar curvature

𝑅 = 𝑅𝜈
𝜈 = 𝑔𝛽𝜈𝑅𝛽𝜈 . (194)

Do not confuse the scalar curvature with the radius. Although one can apply the scalar curvature to
a sphere and get that it equals it’s radius, that doesn’t mean anything for other shapes. Now using
eq.(193) and eq. (194) we can combine them to give us the Einstein tensor

𝐺𝛼𝛽 = 𝑅𝛼𝛽 − 1
2
𝑔𝛼𝛽𝑅, (195)

which has a peculiar identity
∇𝛽𝐺

𝛼𝛽 = 0. (196)

So using identities (186) and (196) we can write the Einstein equations for gravity

𝐺𝛼𝛽 = 8𝜋𝐺𝑇𝛼𝛽, (197)

where 𝐺 is the gravitational constant. We can see two sides to this equation - the left side denotes
curvature, while the right side denotes energy density. So curvature ”tells“ how the energy density
must move, but the energy density ”tells“ how spacetime curves.

And just for show, we can write down the spacetime interval for the metric of a spherically
symmetric spacetime in spherical coordinates

𝑑𝑠2 = −
(
1 − 2𝐺𝑀

𝑟

)
d𝑡2 + d𝑟2

1 − 2𝐺𝑀
𝑟

+ 𝑟2𝑑𝛺2, (198)

where 𝑑𝛺2 = d𝜃2 + sin2 𝜃d𝜙2 and 𝑀 the mass of the object that creates the curvature. Anybody,
who is attentive, can see that this metric has singularities at 𝑟 = 0 and 𝑟 = 2𝐺𝑀 , now know as a
black holes singularity and the Event Horizon, respectively. To anybody who doesn’t know, this is
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the Schwarzchild metric also known as the metric for an eternal black hole.10

10For anybody who wants a deeper exploration of black holes, I suggest reading Tai Chow’s book ”Gravity, Black
Holes, and the very Early Universe“ [15]
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B Quantum Field Theory

In this appendix I would like to acquaint you with the theory of quantum fields. However, this
theory is long and requires years of study and cannot easily be simplified to a few pages of text
and formulas. Because of that reason I will ommit some sections like renormalization or symmetry
groups and instead focus on a small number of basics of quantum field theory (QFT).

The explanation here will differ from that of books about QFT like that of Aitchison [6]. In
those books, typically one gets acquainted with special relativity, then with classical field theory
and only then does the quantization happen. It is a very important process for those, who wish
to study QFT, but here that process will be abandoned for a simpler explanation of QFT where
we will not do the tedious steps to get to it and just simply start from it, laying down the basics.
But I will recommend, for those, who wish to study QFT indepth to read books like the ones by
Aitchison [6, 7] or Schwartz [8].

Quantum fields

Before we begin our talk about quantum fields, we need to lay down some ground rules. Firstly,
when we are working with quantum fields, we must also work with special relativity. Thus, we are
working with four dimension of spacetime and we are using natural units

ℏ = 𝑐 = 1, (199)

where ℏ is the reduced Planck’s constant and 𝑐 is the speed of light. Another thing we must unders-
tand is what a field is. A field is simply a function 𝜓 (𝑥𝜇) = 𝜓 (𝑡, 𝒙) that has a value in spacetime
point 𝑥𝜇. This function or field extends all over spacetime, but has non-zero values only in certain
spacetime points (some quantum fields have a non-zero vacuum value, meaning that in all space-
time points it has some fixed non-zero value, but that does not mean, that the field cannot acquire
higher values).

These values, that a field acquires are interesting in a way, because the quantum fields oscillate
about it’s vacuum value and it’s maximums are the acquired value, which we can interpret as a
particle. Due to the Heisenberg’s uncertainty principle, the field always oscillates. That is why, the
quantum fields are expanded in a Fourier series

𝜙 =

∫ ∞

−∞

𝑑3𝑘

(2𝜋)3 √2𝜔

(
𝑎̂ (𝑘) 𝑒i𝒌·𝒙−i𝜔𝑡 + 𝑎̂† (𝑘) 𝑒−i𝒌·𝒙+i𝜔𝑡

)
, (200)

where 𝑎̂ and 𝑎̂† are annihilation and creation operators, respectively, and 𝒌2 = 𝜔2 − 𝑚2, where 𝑚

is the mass of the particle,that the field describes. The value, the field acquires, can be interpreted
to create the particle of momentum 𝑘 and frequency 𝜔.
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Different types of fields

Although we have the Fourier expansion of a quantum field in eq. (200) it only applies to one
type of field - the scalar field. Besides the scalar field we have other types of fields and their formu-
lations to consider. We will begin with the fields and then move onto formulations.

Scalar fields

Since we started with scalar fields, we can continue to add some smalls things about them to
make their description complete. Firstly, we must note that the scalar fields can be complex. That
is, they can be constructed of two real fields in a complex formulation like

𝜙 =
1
√

2
(𝜙1 + i𝜙2) , (201)

𝜙† =
1
√

2
(𝜙1 − i𝜙2) . (202)

Secondly, we also must note that the scalar fields have spin-0. That allows us to construct any
order of their interaction terms with themselves. With that, there isn’t much left to talk about the
scalar fields, except that scalar fields satisfy the Klein-Gordon equation(

� − 𝑚2
)
𝜙 = 0, (203)

where � = −𝜕2
𝑡 + ∇2 is the d’Alambert operator. A typical example of a scalar field is the Higgs

field.

Spinor fields

Spinor fields are a bit different from scalar fields. Firstly, spinor fields 𝜓̂𝛼 have a spinor index
𝛼, which tells us, that spinors have several components - four to be exact (two for a particle, two
for an antiparticle). Spinors also have half integer spin - 1

2 ,
3
2 ,

5
2 , ... so their interaction terms are

constrained, meaning that we cannot construct any kind of term with spinor fields, but more on that
later.

Another important thing about spinor fields is that they satisfy the Dirac equation (it is in a way
backwards, since spinors were „discovered“ by solving the Dirac equation)(

i𝛾𝜇𝜕𝜇 − 𝑚
)
𝜓̂ = 0, (204)

where 𝛾𝜇 is the gamma matrix, which is constructed from Pauli matrices (gamma matrices are 4×4)
and how it is constructed depends on our formalism. Gamma matrices are very important, because
they allow us to construct interaction terms and work with spin. A typical example of a spinor field
is a fermion.
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Vector fields

The final type of fields are vector fields 𝐴̂𝜇. They are integer spin fields and like spinor fields,
they have more than one component (again, four to be exact). The Maxwell or gauge vector fields
must satisfy the equation below, which is imposed by the Lorentz condition

�𝐴̂𝜇 = 0. (205)

Vector fields can be massive, meaning that they can have mass, but they can be massless as well. A
typical example of a gauge vector field is the photon and all the other force carriers.

Dirac, Weyl and Majorana fermions

We have talked about spinors and when talking about the gamma matrices, we mentioned that
their form depends on the formalism we use. This is where we talk about formalisms. However,
we won’t get into to much detail, because each on their own formalisms are quite extensive and we
don’t really need to talk about them much.

We begin with what we already know - Dirac fermions. These types of fermions are rather
simple - their fields satisfy the Dirac equation (eq. (204)). The Dirac fermion fields are complex.
But there was one feature we haven’t really talked about. It was mentioned that spinors have four
components - two for a particle and two for an antiparticle. For now, let’s stick with just the particle
side. We know, that Dirac fermions are massive. However, each component of the spinor is not
massive in the SM. In fact, they are massless. The mass only comes from the interaction with the
Higgs field, which in turn requires that two different components of different chirality to be in the
interaction term with the Higgs field. In general, the two different components can have mass.

But what is chirality. To put it simply, chirality is the eigenvalue of the gamma matrix 𝛾5. It
gives us the „handedness“ of the field. This matrix is constructed as the product of all the gamma
matrices

𝛾5 = 𝛾0𝛾1𝛾2𝛾3. (206)

We have two possible states of „handedness“ - left and right.
What does this have to do with spinors? Only that, the spinor has two components, that have also

two components (making four). The first two components have opposite chirality - one is lefthanded
and the other is righthanded. These either lefthanded or righthanded components of fermions are
known as Weyl fermions. Physical Weyl fermions would be massless, so if we want to describe
real fermions, we need two Weyl fermions with opposite chirality. That is the problem with Weyl
fermions. They usually form an incomplete picture of the real particles that we observe. To this day,
there have been no known detections of particles that are Weyl fermions, although for a brief period
in time, people thought that neutrinos were Weyl, before they were shown to have a mass.

Lastly, we need to talk about another formalism of fermions. We mentioned that Dirac fermion
fields are complex, they give complex solutions. However, if we define the gamma matrices in
another way, we can have solutions that are real. Those are Majorana fermions. Their solutions
must always be real. And that gives us the result that Majorana fermions are their own antiparticles.
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There are ways to go between the Dirac and Majorana formalism, however, we don’t discuss them
here, but one can be referred to Pal’s work [16]. To this day, as with Weyl fermions, there have been
no observations of Majorana fermions as free particles. But it is hypothesised that neutrinos can
be Majorana fermions and that there might be a heavy Majorana neutrino in addition to the known
neutrinos. This is one part of the Grimus-Neufeld model.

Interaction terms and Lagrangians

Having talked about all the kinds of fields that there can be, we can now move onto the bulk of
QFT - how it is written down. To do that we use Lagrangian densities or Lagrangians11. For that,
we lay the ground rules for the Lagrangians. Firstly, Lagrangians are real scalars. This means, we
can have complex Lagrangian terms but there must also be a complex conjugate of that term so that
the total Lagrangian is real; and we cannot have any terms that are just vectors or even tensors -
they can be constructed of such things, but in the end, the indices must be summed over to give us
a scalar.

Secondly, the Lagrangian must have spin zero and be Lorentz invariant. This gives us terms
that cannot be left in a non-zero spin - fields in the constructed terms can have any kind of spin,
but in the end it must sum to zero. And the Lorentz invariance comes from special relativity. The
Lagrangian must be the same for all observers. The fields may be different for different observers,
but the Lagrangian remains the same.

With that in mind, we can move onto the actual terms. For different kinds of fields, we have
different kinds of terms and how we write them down. Let’s begin with the standard scalar field.
For a real scalar field we have the Lagrangian

L̂ =
1
2
𝜕𝜇𝜙𝜕

𝜇𝜙 − 1
2
𝑚2𝜙2. (207)

Since scalar fields are spin-0 then we can come up with a multitude of terms with any amount of
scalar fields in them, although, these interaction terms grow less probable the higher the amount of
fields grows.

Spinor fields are more complex for two reasons. Firstly, we have non-zero spin fields, which
must be accounted for. Secondly, in typical spinor Lagrangians interactions with other kinds of
fields start to occur (they were possible with scalar fields, but due to the historical significance of
quantum electrodynamics (QED), I wanted to move the discussion about those interactions here)
and we need to incorporate them aswell.

Let us begin with a single electron interacting with a vector field, let’s say a photon. To account
for the first problem, we just write down the simple Dirac Lagrangian

L̂ = ¯̂𝜓
(
i𝛾𝜇𝜕𝜇 − 𝑚

)
𝜓̂, (208)

where ¯̂𝜓 = 𝜓̂†𝛾0. This only includes our electron, we need to include the photon and it’s interaction
11Physicists, who work with QFT typically use the word Lagrangian even though they are working with Lagrangian

densities. There will be no exceptions here in regards of the words used ofr definitions.
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with the electron. To do that, we change our derivative a little bit

𝜕𝜇 → 𝐷𝜇 = 𝜕𝜇 + i𝑔𝐴̂𝜇, (209)

where 𝑔 is the coupling constant (typically for an electron interacting with a photon field we would
have the electric charge 𝑒 or 𝑞) and 𝐴̂𝜇 is our photon field. Switching this derivative with what we
had and introducing the electromagnetic field or photon propagation term 1

4𝐹
𝜇𝜈𝐹𝜇𝜈 our Lagrangian

changes to
L̂ = ¯̂𝜓

(
i𝛾𝜇𝐷𝜇 − 𝑚

)
𝜓̂ − 1

4
𝐹𝜇𝜈𝐹𝜇𝜈 . (210)

Using these simple rules, one can construct any kind of a Lagrangian with any kind of terms.
However, we want a Lagrangian that describes the particles and interaction that we observe. Thus
some limitations must apply, like limiting the power of the possible terms. One such Lagrangian is
commonly known as the Stadard Model and it is the most accurate model we have

L̂ESM =
∑︁
𝜓

¯̂𝜓i𝛾𝜇𝐷𝜇𝜓̂ − 1
4
𝑊̂

𝜇𝜈
𝑎 𝑊̂𝑎

𝜇𝜈 −
1
4
𝐵𝜇𝜈𝐵

𝜇𝜈 − 1
4
𝐺𝑎

𝜇𝜈𝐺
𝜇𝜈
𝑎

+
(
𝐷𝜇𝐻̂

)† (
𝐷𝜇𝐻̂

)
−𝑉

(
𝐻̂

)
+

∑︁
𝜓

(
𝐴2
𝜓

¯̂𝜓𝐻̂𝜓̂ + ℎ.𝑐.

)
, (211)

where 𝑊̂
𝜇𝜈
𝑎 is the field strength tensor of the weak interaction and 𝐵𝜇𝜈 is the field strength tensor

of the U(1) gauge field; 𝐺𝑎
𝜇𝜈 is the gluon field strength tensor;𝐻̂ is the scalar Higgs field, which

is a complex doublet; 𝑉
(
𝐻̂

)
is the potential of the Higgs field; 𝜓̂ is every fermion and quark we

know. The last term is the Higgs field’s interaction with the fermion fields, i.e. the terms that give
the masses of particles.

Of course, this is not the complete description. We would also need to talk about symmetries
and how they can be broken. Also, we would need to describe the different interactions possible and
how the fields couple to the Higgs field to give the particles mass. However, that discussion would
not fit in a short appendix. For that reason, these topics and many others, would not be described
here, however if one wishes to study more on the topic of QFT, I refer you to the books by Aitchison
and Schwartz [6–8].

54



C Calculating the sterile neutrino number density

C.1 Writing down the number density

To get the number density, we start with the result we had from the Boltzmann equation (84)

𝑑𝑛𝑆

𝑑𝑡
= 2

∫
𝑑3𝑝

(2𝜋)3 sin2 (2𝜃𝑀) 𝛤 𝑓𝐴, (212)

where the functions in front of the integral are given by eqs. (79), (78) and (80). Here it is assumed
that 𝐸 ≈ 𝑝. We start from this step, since we only want the number density of the sterile neutrinos.
That is because, by multiplying it with the sterile neutrino mass, we get the sterile neutrino density,
which can be used to compare to the dark matter density. Another reason we start from this point
and not from eq. (90) is because we don’t need to compare the sterile neutrino density to active
neutrino density. And so we can just calculate the sterile neutrino density because we already know
how the functions underneath the integral depend on momentum and temperature (more on this
later).

Having said that, we can then start our work with the integral. For starters, it doesn’t really
matter which direction does our momentum point to. We can always choose a coordinate system
in such a way, that we do not look at the direction. So, we can choose to go from the Cartesian
momentum coordinate space to the polar momentum coordinate space, giving us

𝑑3𝑝 = 4𝜋𝑝2𝑑𝑝. (213)

Having done that, we can just put in our functions∫ ∞

0

𝑑3𝑝

(2𝜋)3 sin2 (2𝜃𝑀) 𝛤 𝑓𝐴 = 4𝜋
∫ ∞

0

𝑝2𝑑𝑝

(2𝜋)3
𝜇2

𝜇2 +
(
𝑐𝛤𝑝

𝑀
+ 𝑀

2

)2
7𝜋
24

𝐺2
𝐹𝑒𝑟𝑚𝑖𝑇

4𝑝
1

𝑒
𝑝

𝑇
+1

= 4𝜋
7𝜋𝐺2

𝐹𝑒𝑟𝑚𝑖
𝑇4𝜇2

24(2𝜋)3

∫ ∞

0

𝑝3𝑑𝑝(
𝜇2 +

[
𝑐𝛤𝑝

𝑀
+ 𝑀

2

]2
) (

𝑒
𝑝

𝑇 + 1
)
.

(214)

Our main variables in this integral are the sterile neutrino mass 𝑀 , the temperature 𝑇 , momentum
𝑝 and the active neutrino mass, which is expressed via the Dirac mass 𝜇2 = 𝑚𝜈𝑀.

Now that we have our momentum integral, we need to take a look at our differentiation with res-
pect to time variable 𝑡. Now, one could say, that we don’t really need to do anything here. However,
we know that as the universe expanded and thus got older, i.e. time passed, the universe cooled.
That means the temperature depends on time in some way. And looking at our integral in eq. (214),
we can see that only the dependance on temperature will survive the integration. And one can also
see that there is no explicit time dependance. So we need to change our differentiation variable from
𝑡 to 𝑇.

Another thing to note, that technically we have a differential equation in eq. (212). Now, for
solving this equation analytically, nothing really changes, since we would still have to integrate it.
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However, some computer programs can take differential equations and solve them numerically. And
they also can integrate at the same time. In our case, we don’t really know our sterile neutrino densi-
ty’s 𝑛𝑆 initial conditions. One could make some assumptions and in turn have the initial conditions,
but in this work that will not be done and we will only use integration.

To use integration, we need to know how to change our integration variables. We don’t really
know how temperature depends on time, but we do know how the scale factor 𝑎 depends on time
in the radiation dominated era [1]

𝑎 ∼ 𝑡1/2. (215)

And we also know how temperature is related to the Hubble parameter [1]

𝐻2 =
𝜋2

90
𝑔∗

𝑇4

𝑚2
𝑃

, (216)

where 𝑔∗ is the degrees of freedom, which depend on the temperature

𝑔∗ ≈


100, 𝑇 > 300 MeV

10, 300 MeV > 𝑇 > 1 MeV
3, 𝑇 < 1 MeV

; (217)

and 𝑚𝑃 is the Planck mass. Lastly, there is the usual definition of the Hubble parameter

𝐻 =
¤𝑎
𝑎
=

𝑑𝑎
𝑑𝑡

𝑎
. (218)

Thus, we can take the scale factor to be

𝑎 = 𝐶𝑡1/2, (219)

where 𝐶 is just some constant. Then we will have the Hubble parameter

𝐻 =
𝑑𝑎

𝑑𝑡

1
𝑎
=

1
2
𝐶𝑡−1/2 · 𝐶−1𝑡−1/2 =

1
2𝑡
. (220)

From this, we can equate the right hand sides of eqs. (216) and (220), to get

4𝑡2 =
90𝑚2

𝑃

𝜋2𝑔∗𝑇4 . (221)

We can take the square root of this equation to get

2𝑡 =
√

90𝑚𝑃

𝜋
√
𝑔∗𝑇2 . (222)
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Now, all we have to do is take the differential of this equation and we finally get

𝑑𝑡 = −
√

90𝑚𝑃

𝜋
√
𝑔∗𝑇3 𝑑𝑇. (223)

Thus our sterile neutrino number density equation becomes

𝑛𝑆 = 4𝜋
∫

𝑑𝑡
7𝜋𝐺2

𝐹𝑒𝑟𝑚𝑖
𝑇4𝜇2

24 (2𝜋)3 𝜋

∫ ∞

0

𝑝3𝑑𝑝(
𝜇2 +

[
𝑐𝛤𝑝

𝑀
+ 𝑀

2

]2
) (

𝑒
𝑝

𝑇 + 1
) =

= −
∫ 𝑀

∞

7𝜇2𝐺2
𝐹𝑒𝑟𝑚𝑖

𝑇𝑚𝑃

√
10

16𝜋2√𝑔∗
𝑑𝑇

∫ ∞

0

𝑝3𝑑𝑝(
𝜇2 +

[
𝑐𝛤𝑝

𝑀
+ 𝑀

2

]2
) (

𝑒
𝑝

𝑇 + 1
) . (224)

To get the density parameter 𝛺𝑆 we need the density of sterile neutrinos 𝜌𝑆. It is very simple

𝜌𝑆 = 𝑛𝑆𝑀. (225)

Having the density, we can just plug it in in the density parameter

𝛺𝑆 =
𝜌𝑆

𝜌𝑐𝑟𝑖𝑡
=
𝑛𝑆𝑀

𝜌𝑐𝑟𝑖𝑡
, (226)

where 𝜌𝑐𝑟𝑖𝑡 =
3𝐻2

8𝜋𝐺 is the critical density.

C.2 Using MATLAB to calculate the number density integral

In this section we show, how to use the mathematical program MATLAB to calculate the num-
ber density. Before we do that, we need to consider our double integral’s (224) boundaries. The
momentum integral boundaries stay the same - from 0 to ∞. However, the temperature integral
is different. As was noted, the production of particles cannot happen, if the temperature is lower
than the particle’s mass. So, our sterile neutrino density integral (224) integrates only to the mass
of the sterile neutrino. And remembering how the degrees of freedom change, depending on the
tempereature (eq. (217)), our integrals splits. If the sterile neutrino mass is 𝑀 < 1 MeV,then we
will have three integrals; if the sterile neutrino mass is 1 MeV < 𝑀 < 300 MeV, we will have two
integrals and so on. The integration will end at the neutrino’s mass in all of the cases. It will begin
at ∞ (technically it should begin at Planck temperature 𝑇𝑃𝑙𝑎𝑛𝑐𝑘 = 1.416784(16) × 1032K, which as
you can imagine is very huge. And since it dwarfs the masses we are working with, we can take
replace it with ∞ since it will have the same result).

Now that we have sorted out the issues with the integral, we need to calculate it. For that, we
use the mathematical program MATLAB. This program allows the user to work with data and
mathematical functions, but for our purposes what is most important is that it allows for us to
numerically calculate integrals. A thing to note, is that MATLAB also allows to calculate differential
equations numerically. And even though the integral (224) is given originally as differential equation

57



eq. (212), we do not use differentiation methods, because we don’t know the exact initial conditions,
since even the momentum integral needs to be done numerically. But in theory, one could be able
to use differentiation methods to calculate the number density.

To begin with, we need to define all of our constants. Those definitions are shown in the figure
below

c l o s e a l l
c l e a r a l l
mp=10^18; %%GeV
del ta_m_21 =7 .53∗10^ ( −5 ) ; %%+−0.18 eV^2
de l t a_m_31 =2 .44∗10^ ( −3 ) ; %%+−0.06 eV^2
m_1=0;
m_2=de l t a_m_21 ; %%t h e s e a r e s q u a r e s
m_3=del ta_m_31 −de l t a_m_21 ; %%t h e s e a r e s q u a r e s
g _ s t a r = [ 3 ; 1 0 ; 1 0 0 ] ;
c =26;
M= [ 0 . 0 2 : 0 . 0 0 1 : 0 . 0 9 ] ∗ 1 0 ^ 9 ; %%keV
G_Fermi =1 .166787∗10^ ( −5 ) ; %%GeV^−2
%%f o r keV
m_1n=m_1∗10^ ( −6 ) ;
m_2n=m_2∗10^ ( −6 ) ;
m_3n=m_3∗10^ ( −6 ) ;
mpn=mp∗10^6 ;
G_Fermin=G_Fermi ∗10^ ( −12 ) ;
mn=[m_1n ; m_2n ; m_3n ; ] ;

Fig. 7 The first part of the code for the MATLAB program used to calculate the sterile neutrino
number density, when we have the thermal production mechanism. Here are defined the main cons-
tants and parameters that we use. For simplicity, they are first written in the form of their most
known units of measurement and then written in terms of keV units.

Here we have m_1, m_2 and m_3 as the squared active neutrino masses, where we have chosen
that one is so small it is basically 0. Of course, none of these constants are given in the same units,
since they differ so much from each other. And since we are working with keV scale, because of
sterile neutrinos, we choose that every constant, whose units are not of order keV, to be so.

The next part is to write down the integral, which is shown in the figure below
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sum =0;
f o r i =1 : l e n g t h (mn)
f o r j =1 : l e n g t h (M)

%%f u n c t i o n s
mu= s q r t (mn( i ) ) . ∗M( j ) ;
k o n s t a =−7∗G_Fermin . ^2∗mu∗mpn∗ s q r t ( 1 0 ) / ( 1 6 ∗ p i ^ 2 ) ;
Gamma=@( p , T ) 7 . ∗ p i . / 2 4 . ∗ ( G_Fermin . ^ 2 ) . ∗ ( T . ^ 4 ) . ∗ p ;
f i r s t p =@( p , T ) ( p . ^ 3 ) . / ( mu+( c . ∗Gamma( p , T ) . ∗ p . /M( j )+M( j ) . / 2 ) . ^ 2 ) ;
secondp=@( p , T ) 1 . / ( exp ( p . / T ) + 1 ) ;
f i r s t T =@(T) T ;
t h e i n t =@( p , T , g _ s t a r ) k o n s t a . ∗ f i r s t T (T ) . ∗ f i r s t p ( p , T )
. ∗ secondp ( p , T ) . / s q r t ( g _ s t a r ) ;

%%i n t e g r a l s
i f M( j ) >300∗10^3
r e s 1 ( i , j )= i n t e g r a l 2 (@( p , T ) t h e i n t ( p , T , g _ s t a r ( 3 ) ) , 0 , I n f , I n f , M( j ) ) ;
end
i f M( j ) <=300∗10^3
i f M( j ) >10^3
r e s 1 ( i , j )= i n t e g r a l 2 (@( p , T ) t h e i n t ( p , T , g _ s t a r ( 3 ) ) , 0 , I n f , I n f , 300∗10^6)
+ i n t e g r a l 2 (@( p , T ) t h e i n t ( p , T , g _ s t a r ( 2 ) ) , 0 , I n f , 300∗10^6 , M( j ) ) ;
end
end
i f M( j ) <=10^3
r e s 1 ( i , j )= i n t e g r a l 2 (@( p , T ) t h e i n t ( p , T , g _ s t a r ( 3 ) ) , 0 , I n f , I n f , 300∗10^6)
+ i n t e g r a l 2 (@( p , T ) t h e i n t ( p , T , g _ s t a r ( 2 ) ) , 0 , I n f , 300∗10^6 , 10^6)
+ i n t e g r a l 2 (@( p , T ) t h e i n t ( p , T , g _ s t a r ( 1 ) ) , 0 , I n f , 10^6 , M( j ) ) ;
end
rho ( i , j )= r e s 1 ( i , j )∗M( j ) ;
r h o _ c r i t = ( ( p i . ^ 2 ) . ∗ 1 0 . / 3 ) . ∗ (M( j ) . ^ 4 ) ;
omega ( i , j )= rho ( i , j ) . / r h o _ c r i t ;
end
p l o t (M, omega ( i , : ) ) ;
sum=sum+omega ( i , : ) ;
end
p l o t (M, sum ) ;

Fig. 8 The second part of the code for the MATLAB program used to calculate the sterile neutrino
number density, when we have the thermal production mechanism. Here, we define the functions,
that are in the main eq. (94). Below them we calculate the integrals at the appropriate periods of
temperature, to account for the shift in the degrees of freedom (see eq. (217)).

Here, we write out the integral functions explicitly in the functions of𝐺𝑎𝑚𝑚𝑎, 𝑓 𝑖𝑟𝑠𝑡 𝑝, 𝑠𝑒𝑐𝑜𝑛𝑑𝑝,

𝑓 𝑖𝑟𝑠𝑡𝑇 so that our integral function 𝑡ℎ𝑒𝑖𝑛𝑡 does not get cluttered and looks nicer. Then, we can see
the separations because of the degrees of freedom in the 𝑖 𝑓 functions, which look at the sterile
neutrino’s mass and determine how many integrals will we have. After that, we just calculate the
integral, using the 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙2 function, which is a MATLAB function and allows us to calculate
the dual integral. This function has several modes, but changing them might not allow for infinite
boundaries to be used, so it was left unchosen, because the 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙2 function will automatically
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choose the mode, that allows for such boundaries.
We calculate this double integral for all active neutrino masses 𝑚𝑛 and for all the possible sterile

neutrino masses 𝑀 ( 𝑗) and the sterile neutrino densities are then calculated and shown in Fig. 2.

C.3 Calculating the coefficient for the finite temperature matter potential

We have to begin with a few equations and notations. Firstly, we begin with the seesaw mecha-
nism, mainly

sin2 (𝜃) ≈ 𝑚𝜈

𝑀
(227)

and
𝑚𝜈 =

𝜇2

𝑀
, (228)

where 𝜇 again is the Dirac mass and we have used the fact that 𝑀 � 𝑚𝜈. Then, we rewrite the
equation (169)

sin2 (2𝜃𝑀) =
sin2 (2𝜃)

sin2 (2𝜃) +
[
cos (2𝜃) − 2𝑝

𝑀2𝑉𝑇

]2 . (229)

Note here that instead of the previously mentioned sine, we have a double angle sin2 (2𝜃). So we
begin with writing out the double angle sine and cosine

sin2 (2𝜃) = 4 sin2 (𝜃) cos2 (𝜃) , (230)

cos (2𝜃) = 1 − 2 sin2 (𝜃) . (231)

Here, we can use the facts, that 𝑀 � 𝑚𝜈 and cos2 (𝜃) = 1 − sin2 (𝜃) ≈ 1. Thus our double angle
sine and cosine change to

sin2 (2𝜃) = 4
𝑚𝜈

𝑀
(232)

and
cos (2𝜃) = 1. (233)

With this, we can rewrite our sine in eq. (229)

sin2 (2𝜃𝑀) =
4𝑚𝜈

𝑀

4𝑚𝜈

𝑀
+

[
1 − 2𝑝

𝑀2𝑉𝑇

]2 . (234)

Now, we can divide by 4
𝑀
,to get

sin2 (2𝜃𝑀) =
𝑚𝜈

𝑚𝜈 + 𝑀
4

[
1 − 2𝑝

𝑀2𝑉𝑇

]2 . (235)
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From here we use the eq. (228) and we get

sin2 (2𝜃𝑀) =
𝜇2

𝑀

𝜇2

𝑀
+ 𝑀

4

[
1 − 2𝑝

𝑀2𝑉𝑇

]2 . (236)

Then, we again divide by 1
𝑀

and the result is

sin2 (2𝜃𝑀) =
𝜇2

𝜇2 + 𝑀2

4

[
1 − 2𝑝

𝑀2𝑉𝑇

]2 . (237)

To make this result a bit more like (79), we „put in“ the parameter 𝑀2

4 under the brackets, to get the
result shown in eq. (171)

sin2 (2𝜃𝑀) =
𝜇2

𝜇2 +
(
𝑀
2 − 𝑝

𝑀
𝑉𝑇

)2 . (238)

C.4 Using the MATLAB program for heavy scalar decay

To begin with, the program used for the integration of the heavy scalar decay was quite short
and is shown in the figure below.
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c l o s e a l l
c l e a r a l l
c o u p l i n g = [ 1 0 ^ ( − 3 ) ] ;
m_phi =6 .9∗10^7 ; %%GeV
m_p=10^18; %%GeV
M= [ 1 0 : 1 : 1 0 0 ] ;
g _ s t a r =100;
lambda = 0 . 1 ;
f o r k =1: l e n g t h ( c o u p l i n g )

Gamma=( c o u p l i n g ( k ) . ^ 2 ) ∗ m_phi . / ( 1 6 . ∗ p i ) ;
C_1=(m_p / p i ) . ∗ s q r t ( 9 0 / g _ s t a r ) ;
%%f u n c t i o n s
temp=@(T) 1 . / ( T . ^ 2 ) ;
expon=@( p , T ) exp ( −( p +( m_phi . ^ 2 ) . / ( 4 . ∗ p ) ) / T ) ;
C_2= −2.∗C_1 . ∗Gamma . / ( p i ^ 2 ) ;
i n t =@( p , T ) temp (T ) . ∗ expon ( p , T ) ;
C_3 = −2.∗( m_phi . ^ 2 ) . ∗ C_1 . ∗Gamma . / ( p i . ^ 2 ) ;
C_4=exp ( C_1 . ∗Gamma . / ( 2 . ∗ ( m_phi . ^ 2 ) ) ) ;
C_5=C_4 . ∗ C_3 ;
expon_2=@(T) exp ( −C_1 . ∗Gamma . / ( 2 . ∗ ( T . ^ 2 ) ) ) ;
temp_2=@(T) 1 . / ( T . ^ 3 ) ;
expon_3=@( p ) exp ( −( p +( m_phi . ^ 2 ) . / ( 4 . ∗ p ) ) . / m_phi ) ;
i n t _ 2 =@( p , T ) expon_3 ( p ) . ∗ temp_2 (T ) . ∗ expon_2 (T ) ;

%%i n t e g r a l s
f o r i =1 : l e n g t h (M)

n_1=C_2 . ∗ i n t e g r a l 2 ( i n t , 0 , I n f , I n f , m_phi ) ;
omega_1 ( i , k )=3∗ n_1 . / p i ^ 2 . / 1 0 . / ( m_phi . ^ 3 ) ;
n_2=C_5 . ∗ i n t e g r a l 2 ( i n t _2 , 0 , I n f , m_phi , 2 . ∗M( i ) ) ;
omega_2 ( i , k )=3∗ n_2 . / p i ^ 2 . / 1 0 . / ( ( 2 ∗M( i ) ) . ^ 3 ) ;
omega ( i , k )= omega_1 ( i , k )+ omega_2 ( i , k ) ;

end
p l o t (M, omega )

end

Fig. 9 The code of the MATLAB program used to calculate the sterile neutrino density parameter
just from the scalar decay process. Before the 𝑓 𝑜𝑟 function we have the parameters, then in the
for function we define the function used in the calculations. At the second 𝑓 𝑜𝑟 we calculate the
integrals from eqs. (139) and (157) and in turn the density parameter.

At the top - before the 𝑓 𝑜𝑟 function we have the definitions and parameters we use for the
program. In the 𝑓 𝑜𝑟 function we have a constant 𝛤̃0 that we see in eq. (123), but here it changes
when the coupling changes.

Below we have the functions or the cut up parts of both integrals in eqs. (139) and (157). We do
this for the sake of keeping track of smaller parts so as to see mistakes easier. Lastly, we have the
integrals, which use the same 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙2 function of MATLAB from the thermal production (see
appendix C.2). Except here we have to calculate everything a bit differently. Firstly, eq. (139) holds
only till the temperature reaches the mass of the scalar, i.e. 𝑇 = 𝑚𝜙.. When that is done, the first
process, a.k.a. early scalar decay in eq. (139) stops and the second process, the late scalar decay in
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eq.(157) begins. Now the integration does not become harder. The program will integrate up to a
point we ask it to. However, there might come a question is this okay. Do we have to calculate addi-
tional things for these density parameters? As it turns out - no. We just have to correctly calculate
the critical densities as shown in eq. (173). That is done in functions 𝑜𝑚𝑒𝑔𝑎_1 and 𝑜𝑚𝑒𝑔𝑎_2,where
we divide by the appropriate masses or the temperature thresholds.
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Fizikinės evoliucijos ankstyvoje Visatoje skaičiavimų metodai

Aurimas Vitkus

Santrauka

Dalelių fizikos modeliai, kaip standartinis modelis, neturi jokio paaiškinimo iš kokių dalelių su-
daryta tamsioji materija. Taip pat, standartiniame modelyje, neutrinai neturi masės, kas yra paneig-
ta šiuolaikinių eksperimentų. Grimus-Neufeld modelis, standartinio modelio papildymas, kuriame
yra pridėdamas vienas masyvus Majorana neutrinas ir antras Higso dubletas, išsprendžia neutrinų
masės problemą. Taip pat suteikia galima teigti, kad pridėtas sterilus neutrinas gali būti kandidatas
tamsiajai materijai.

Šiame darbe yra aptariami sterilių neutrinų produkcijos metodai ankstyvoje Visatoje ir išve-
damos pagrindinės sterilių neutrinų tankio formulės. Remiantis jomis, yra apskaičiuojama sterilių
neutrinų tankio priklausomybė nuo jų masės iš jos randama sterilaus neutrino masė, su kuria tankio
parametras atitinką tamsiosios materijos tankio parametrą.

Darbo pradžioje yra aptariami kosmologijos pagrindai, kurie yra reikalingi suprasti sterilių
neutrinų produkcijos metodus. Šie pagrindai yra Boltzmann’o ir Einšteino lygtys. Jomis pasinau-
dojus išvedamos išraiškos, kurios apibūdina visų dalelių tankių evoliuciją ankstyvoje Visatoje. Po
to yra pereinama prie Dodelson-Widrow modelio arba terminės produkcijos. Jo veikimo principas
yra aktyvių neutrinų osciliavimas į sterilius neutrinus. Pasinaudojus šiuo modeliu, yra išvedama
sterilių neutrinų skaičiaus tankio formulė bei sterilių ir aktyvių neutrinų santykio evoliucija.

Po to yra aptariamas antrasis sterilių neutrinų gamybos metodas - sunkaus skaliario skilimo.
Apibrėžiami papildomi reikalingi dydžiai bei parametrai: skaliaro masė, sąveikos konstanta tarp
skaliaro ir neutrino laukų. Išvedamos dvi sterilių neutrinų skaičiaus tankio formulės dviems atski-
riems periodams: kai skaliarai buvo termiškai gaminami ir skilo į sterilius neutrinus ir kai skaliarų
produkcija sustoja ir likę skaliarai skilinėjo.

Pasinaudojus MATLAB programa ir sterilių neutrinų skaičiaus tankio formulėmis buvo apskai-
čiuoti tankio parametrų vertės, kurios buvo palygintos su tamsiosios materijos tankio parametro ver-
te. Terminės produkcijos atveju, sterilių neutrinų tankio parametras yra 𝛺𝑇𝑆 = 0.246, kai sterilių
neutrinų masė yra 𝑀 = 33 GeV. Sunkaus skaliaro atveju, pasirinkus skaliaro masę 𝑚𝜙 = 7.5 · 107

GeV ir sąveikos konstantą 𝜎 = 10−6, sterilių neutrinų masė turi būti apie 𝑀 ≈ 10 GeV. Apjun-
gus šiuos modelius buvo pastebėta, kad kuo mažesnė skaliaro masė, tuo labiau dominuoja skaliaro
skilimo metodas ir sterilių neutrinų masė turi didėti, kad jų tankio parametras atitiktų tamsiosios
materijos tankio parametrą. Taip pat, buvo pastebėta, kad su ypač maža sąveikos konstanta, steri-
lių neutrinų produkcijoje dominuoja terminė produkcija. Atvirkščiu atveju, kai sąveikos konstanta
yra labai didelė, dominuoja skaliaro skilimo metodas. Tarpiniu atveju atsiranda svyravimai sterilių
neutrinų masės priklausomybėje nuo sąveikos konstantos. Šių svyravimų atsiradimas nėra paaiš-
kintas, bet yra manau, kad jie atsiranda dėl antrojo skaliaro skilimo etapo ir terminės produkcijos
konkuravimo.

Pabaigoje yra aptariami modelių skirtuma:parametrų kiekis; terminės produkcijos metodo pra-
našumas parametrų kiekio atžvilgiu prieš sunkaus skaliaro skilimo metodą. Taip pat yra aptariamos
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metodų problemos: neutrinų masė, kuri skiriasi nuo straipsnių, kuriais buvo remtasi šiame darbe;
bei skaičiavimų tikslumas. Pirmoji problema yra paaiškinama temperatūros integravimo ruožu; šia-
me darbe temperatūra pradedama integruoti nuo begalybės, o remtuose straipsniuose nuo 200 MeV.
Antroji problema yra paaiškinama potencialios sterilaus neutrinų masės ruožo per didelio žingsnio
pasirinkimu.
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