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1. Abstract 

Sepsis remains the leading cause of death in the intensive care unit. The limited effectivity of 

current therapies suggests that more research targeting the complex pathophysiologic 

processes of sepsis is essential to establish a comprehensive treatment with significant 

outcome improvement. This thesis is aimed to describe the counterintuitive pathophysiology 

of sepsis while focusing on the immunologic course of sepsis, the effects of cytokine storm, 

the cellular hibernation response to stress and their implication in organ dysfunction, the state 

of immune cell paralysis and potential treatment options. 

 

2. Keywords  

Sepsis, MODS, Cytokine Storm, Cellular Hibernation, Immunoparalysis, Immunotherapy 

 

3. Introduction  

Sepsis is defined as a dysregulated host immune response to infection, which can lead to life-

threatening organ dysfunction (1). 

The epidemiologic relevance was presented in 2020 by the World Health Organization in the 

“Global Report on the Epidemiology and Burden of Sepsis (2020)”, stating that Sepsis 

accounts for approximately 20% of overall deaths worldwide and the mortality rate of septic 

patients is approximately 20%, while for those requiring treatment in the Intensive Care Unit 

it is up to 42%.  

Research of the last decades changed the concept of systemic infection from pathogen 

centered to a mixed pathophysiology, in which the host response to infection plays a major 

role and lead to the first consensual definition of sepsis as “Systemic response to an 

infection” in 1992, diagnosed by the presence of  a Systemic Inflammatory Response 

Syndrome (SIRS) plus proven or suspected infection (2). In 2016, a new definition was 

conceptualized, defining sepsis as “Life-threatening organ dysfunction due to a dysregulated 

host immune response to infection”, along with new diagnostic criteria composed of a 

minimum 2 point elevation of the SOFA (Sepsis-related Organ Failure Assessment) Score 

plus proven or suspected infection (1), which allows the early detection of sepsis and timely 
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administration of bundle care, which has essential influence on the clinical course and 

mortality (1). 

The mortality of septic patients is based on the clinical course and increases with the 

development of complications, such as septic shock and/or MODS (multi-organ dysfunction 

syndrome). The former is defined clinically as “persisting hypotension requiring vasopressors 

to maintain MAP >56 mmHg  (Mean Arterial Pressure) plus a serum lactate concentration of 

>2 mmol/L despite adequate volume resuscitation” and increases mortality to 40% (1). The 

latter is assessed with the SOFA score (Sequential Organ Failure Assessment Score), while 

the mortality increases proportionally to the number of failing organs (1).  

Despite intensive scientific research in the field of septic pathology, the clinical translation of 

experimental findings is often unsuccessful. This thesis is aimed to describe the current 

understanding of cellular hibernation and immunoparalysis which are important 

pathophysiologic factors of sepsis-induced organ dysfunction. 

 

4. Literature Search Strategy  

A Systematic literature search was conducted using the Database “Medline” with the search 

engine “PubMed”, which is maintained by the “National Center for Biotechnology and 

Information (NCBI)” at the “National Library of Medicine”. The selected time range of 

articles spans from 1986 to 2021. Main key words used: Sepsis, Septic Shock, Septic Organ 

Dysfunction, Cytokine Storm, Inflammatory Cytokines, Inflammatory Mediators, Disease 

Tolerance, Disease Resistance, Immunity, Immunoparalysis, Cellular Hibernation, Mortality 

in Sepsis, Immunotherapy, Blood purification techniques. 

 

5. Sepsis: Course and Mortality 

While many factors, such as pathogen (type, quantity) and patient factors (immune status, 

age, co-morbidities) influence the host response to an infection (3–5), special attention can be 

drawn to the epigenetic control of gene transcription and genetic polymorphism of sepsis-

associated genes, of which many have been and continue to be identified leading to the 

understanding of the role of genotypic clusters involved in the pathway of host response (6–

9). Especially cytokine receptor SNP’s (single nucleotide polymorphisms) and transcription 
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factor SNP’s have been studied, outcome-correlated (6,10–12) and may be used as 

biomarkers of sepsis susceptibility and in the prognosis of the course of the disease (13). 

In contrast to the normal response to an acute infection, which is proportional to the pathogen 

burden and terminated after elimination thereof, sepsis causes a specific pattern of an initial 

hyper inflammatory phase called SIRS (systemic inflammatory response syndrome) followed 

by a late hypo inflammatory phase called CARS (compensatory anti-inflammatory response 

syndrome) (4,5). The former is caused by PAMP (pathogen-associated molecular pattern) and 

DAMP (damage-associated molecular pattern) induced massive and uncontrolled activation 

of PRR’s (pathogen recognition receptors), which are expressed on the surface of cells of the 

innate immune system, for instance TLR’s (toll-like receptors), leading to the excessive 

release of pro-inflammatory cytokines (cytokine storm) (3,14), inducing pro-inflammatory 

cascades, with IL1β, IL-6, IL-12, IL-17 (Interleukins) being the most prominent (6). The 

latter is caused by the down-regulation of the primary effector cells (granulocytes, 

macrophages, monocytes, mast cells and natural killer cells) via anti-inflammatory cytokines, 

mainly IL-1 RA (receptor antagonist), IL-4 and IL-10 (6) with apoptotic and autophagic loss, 

as well as the formation of tolerance mechanisms by lymphocytes (15), resulting in a state of 

immunoparalysis.  

The shift in the immune homeostasis correlates with distinct mortality phases, that can be 

divided into an early phase (day 1-5), late phase I (day 6-15) and late phase II (day 16-150) 

(16). Early phase coincides with the hyperinflammatory phase, where death is mainly caused 

by hyperinflammatory syndromes, such as toxic shock syndrome, refractory shock and severe 

metabolic disturbances (4) but may be anticipated by early recognition using the SOFA score 

with timely bundle treatment initiation (17–20) amidst a cumulative mortality of 10% (15). 

Late phase I and II are divided by different cumulative mortalities of 20-40% and 50-70% 

respectively (15) and marked by immunosuppression making the host vulnerable for a flare 

up of a not sufficiently cleared primary infection, reactivation of latent viruses or 

superinfection by opportunistic pathogens and hospital organisms (4,16). Thus, sepsis-

induced immunosuppression is the major cause of high mortality and organ dysfunction in 

sepsis (13,21). 

It is important to note that certain patient groups exhibit a different pattern of sepsis course. 

Patients with intrinsic or extrinsic immunosuppression may have an absent or diminished 

early pro-inflammatory phase (22,23) and elderly patients are, due to immunosenescence,  
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more likely to develop an early late phase with a pronounced immunoparalysis (22,24), 

which may alter the mortality pattern described above. 

 

6. Disease Resistance vs. Disease Tolerance 

Disease resistance describes the classical view of infectious response, defined as the ability of 

the immune system to recognize and eliminate pathogens, despite the possible causation of 

collateral damage caused by this process (25). In contrast, disease tolerance is the ability to 

limit tissue injury caused by the invading pathogen itself, or the inflammatory/immune 

response to them by utilizing tissue damage control mechanisms as the cellular stress and/or 

damage response (25–27).  

Due to the collateral damage caused by the immune cascades activated in sepsis, the severity 

of the inflammatory responses has been associated with the development of multiple organ 

dysfunction (28). This led to the concept of disease tolerance in septic pathology, as an 

induction of tolerance may regulate or prevent the course of sepsis development, with the 

protective effect being presumable disease- and pathogen-specific (25,27,28). Multiple 

mechanisms of disease tolerance induction are under investigation, for example the low-dose 

treatment with cytostatic drugs (29).  

 

7. Cytokine Storm 

Cytokines are small signaling proteins (< 40 dKa) that bind to specific receptors acting in a 

autocrine, paracrine and endocrine manner to induce target cell activation, proliferation and 

migration, thereby encompassing an important immunomodulating function (6,30). They are 

produced predominantly by macrophages and T cells (31) and are classified into Interleukins, 

Chemokines, Interferons, Tumor Necrosis Factors and Growth Factors with Interleukins 

having the major impact on immune cells in the context of infectious disease (6). The 

excessive release of cytokines during the early stage of sepsis pathogenesis is termed 

“Cytokine Storm” in which cytokine cascades build a positive feedback loop with immune 

cells resulting in an overwhelming inflammatory response to infection (31).  

Important potentiators and potentially therapeutic targets of the cytokine storm are 

transcription factors. Especially NFkB (nuclear transcription factor κ  B), SP-1 (specific 
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Protein 1), hPNPase(old-35) (polynucleotide phosphorylase), AP-1 (activator protein 1) and 

PPARs (peroxisome proliferator-activated receptors) have been identified to play a role in 

upregulating genes coding for cytokines (32–34). 

In this context NFkB is a transcription factor of major importance. It is activated by more 

than 400 stimuli, for example bacterial toxins, bacterial products and pro-inflammatory 

cytokines, by binding to specific subtypes of TLR’s (toll-like receptors) and, in turn, 

upregulates the transcription of many pro-inflammatory genes encoding cytokines, cellular 

adhesion molecules and enzymes, such as COX-2 and iNOS (cyclooxygenase 2, inducible 

nitric oxide synthase) (31,35–37).  Mycobacteria are identified to activate TLR1, gram-

positive bacteria predominantly activate TLR 2 via PG (peptidoglycan) and gram-negative 

bacteria primarily bind to TLR-4 via LPS (lipopolysaccharide) (37–39).  

Studies have shown an elevation of NFkB in all organs upon exposure of bacterial toxins, as 

well as in PMN’s (peripheral mononuclear cells) of septic patients, indicating a role in septic 

pathology (37,40–43). Further the NFkB level positively correlates with sepsis mortality and 

the APACHE Score (Acute Physiology and Chronic Health Evaluation Score) predicting 

hospital mortality in critically-ill patients (37,44,45). The resulting signaling cascades of 

NFkB activation eventually leads to tissue injury and contributes to the development of tissue 

injury and MODS (37).  

Various NFkB inhibitors have been identified and tested clinically or in animal models to 

identify their therapeutic potential and are found to have a positive effect on septic mortality. 

An improved survival of patients with severe sepsis was be observed upon treatment with 

Human Recombinant Active Protein C (37,38), which has been approved by the EMA 

(European Medical Association) in 2002 after the PROWESS trial results indicated a 

significant improvement in the 28 day mortality rate (46) but was taken off-market in 2011 

after further trials could not reproduce the positive effect of the drug. The outcome of 

endotoxemia in LPS-induced Shock is positively influenced by IL-10 and a deletion of the 

gene encoding for poly(ADP-ribose)polymerase-1 made mice resistant to endotoxic shock 

(37,47–49). Furthermore an endotoxin tolerance mechanism is observed with increased Iκ 

Bα, p50 or p52 expression manifesting with a diminished NFkB activity and expression of 

NFkB-dependent genes (37,50–52).  

Until today, trials targeting specific cytokines with monoclonal antibodies or the use of 

apheresis to remove cytokines from the circulation have not shown a clear benefit in the 
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treatment of sepsis-associated cytokine storm, so that organ-supportive therapy and antibiotic 

control of pathogen burden remain the mainstay of treatment (53). Although certain patient 

groups may benefit from targeted immunotherapy, the lack of research on inclusion criteria 

for certain drugs does not allow a clear matching, making is necessary to focus on precision 

diagnostics in future research (53). 

 

8.  Mechanisms of MODS 

Multiple organ dysfunction is the most fatal complication of sepsis. Causative molecular 

pathways lead to microcirculatory and mitochondrial dysfunction resulting in organ damage.  

The six most relevant organ systems in septic organ pathology are the cardiovascular, 

respiratory, renal, hepatic, hematologic, nervous and gastrointestinal systems, in order of their 

sequential failure (13). 

The release of pro-inflammatory cytokines, such as TNF-α (tumor necrosis factor alpha), IL-

1, IL-6, IL-12, IL-18 and INF-γ (interferon gamma) trigger an acute phase response leading 

to symptoms such as pyrexia, tachypnea, tachycardia, metabolic alterations, specifically 

increased gluconeogenesis, muscle catabolism and altered lipid metabolism, activation of the 

coagulation and complement pathway, downregulation of natural anticoagulants, leukocytosis 

with neutrophilic predominance, and the production of acute phase proteins in the liver, 

namely C-reactive protein and serum amyloid A, induced by IL-1 and TNF-α plus fibrinogen 

and α-2 macroglobulin, induced by IL-6 (54,55,37,56). In turn they upregulate the NFKb 

pathway leading to a positive feedback loop of pro-inflammatory mediator production 

(37,53). 

Increased expression of cellular adhesion molecules such as ICAM-1 (intracellular adhesion 

molecule 1) and VCAM-1 (vascular adhesion molecule 1) and chemokines such as IL-8, 

MIP-1/2 (macrophage inflammatory protein 1/2), MCP 1/2 (monocyte chemoattractant 

protein 1/2) and CINC (cytokine-induced neutrophil chemoattractant) are a milestone for 

neutrophilic infiltration into organs, their activation, and the subsequent release of ROS 

(reactive oxygen species), RNS (reactive nitrogen species) and proteolytic enzymes 

(13,37,57–61). This leads to the development of endotheliopathy, which is describing 

endothelial activation and injury followed by increased vascular permeability leading to 



 - 8 - 

leakage of molecules and cells into tissue with resulting edema, hemorrhage, infection or 

ischemia (13,37,57–61). 

A upregulated expression of COX-2 (cyclo-oxygenase 2), 5-LO (5 lipo-oxygenase) and 

FLAP (5-LO-activating protein) lead to the production of PG’s (prostaglandins), LT’s 

(leukotrienes) and TBXA2 (thromboxane A2), which have an effect on the cardiovascular 

system, contributing by vasodilation to systemic hypotension and may cause direct tissue 

injury by various mechanisms (37,38,62).  

Furthermore increased iNOS (inducible nitric oxide synthase) expression leads to elevated 

levels of NO (nitric oxide), which acts, along with PG’s on VSMC’s (vascular smooth muscle 

cells) to cause vasodilation and consequent systemic hypotension and vascular hyporeactivity 

(37,38,63–67). This effect may be anticipated by utilization of iNOS inhibitors (37,65,66).  

Increased levels of TF (tissue factor), PAI-1 (plasminogen activator inhibitor -1) and factor 

VIII (coagulation factor 8) caused by pro-inflammatory cytokines activate the coagulation 

system and impair fibrinolysis, which may be causative for the development of the DIC 

(disseminated intravascular coagulation) syndrome, characterized by an initial  

hypercoagulable state with the formation of organ-threatening microthrombi, which may 

result in microvascular occlusion and/or may embolize, followed by an hypocoagulable state 

characterized by  thrombocytopenia caused by the consumption of platelets, fibrinogen and 

coagulation factors, eventually leading to severe internal hemorrhage (68–72,35,37). The 

treatment for the DIC syndrome is based on general control of the causative agent for sepsis 

plus anticoagulant therapy in the hypercoagulable state and plasma or coagulation factor 

concentrates and/or platelet transfusion according to the PT (prothrombin time), fibrinogen 

concentration and platelet count, for bleeding patients (68,73–77).  

Cumulation of a diminished vascular tone caused by NO and PG’s and the formation of 

microthrombi or hemorrhages caused by DIC, lead to microcirculatory dysfunction, tissue 

hypoperfusion and hypoxia, resulting, along with increased vascular permeability caused by 

endotheliopathy, in tissue injury, which may precipitate organ failure (visualized in Fig.1). 
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9. Cellular Hibernation 

Contrary to the assumption that septic organ dysfunction is a result of direct tissue injury 

followed by cellular apoptosis or necrosis, post-mortem histological examination of cells 

taken from patients who died from sepsis or septic shock showed a quantitative lack of 

apoptotic and necrotic cells sufficient to impair organ dysfunction (78). This finding lead to 

the theory of cellular hibernation describing the rearrangement of cellular metabolism in 

response to hypoxia and oxidative stress to a low-energy consumption state to preserve long-

term viability (79–81).  

The energy required for all cellular processes is ATP (adenosine triphosphate), which can be 

cleaved to ADP (adenosine diphosphate) and Pi (inorganic phosphate), thereby releasing free 

energy. The production of ATP occurs in the mitochondria by either glycolysis or the 

OXPHOS (oxidative phosphorylation) process, that couples the tricarboxylic acid cycle with 

the electron transport chain to produce ATP. In the tricarboxylic acid cycle, proteins, fatty 

iNOS → NO 

Pro-inflammatory 

cytokines 

COX-2, 5-LO, 

FLAP → PG’s 

TF, PAI-1, Factor VIII 

→ Coagulation system 

→ DIC 

ICAM-1, VCAM-1 

→ Neutrophils 

CVS: Hypotension → 

Tissue Hypoperfusion 

+ Hypoxia 

Endotheliopathy → 

increased vascular 

permeability 

Tissue injury  

Fig. 1: Mechanisms of tissue injury in septic patients 

Graphic adapted from: Liu SF, Malik AB. NF-kappa B activation as a pathological mechanism of septic shock and 

inflammation. Am J Physiol Lung Cell Mol Physiol. 2006 Apr;290(4):L622-L645. 

 



 - 10 - 

acids and carbohydrates are oxidized and electrons are transferred by NADH (nicotinamide 

adenine dinucleotide) and FADH2 (flavin adenine dinucleotide) to the electron transport 

chain, where the oxidation of the coenzymes yields ATP in a series of reactions by creation 

of a proton gradient across the inner mitochondrial membrane.  Oxygen is essential for this 

process of energy production. Other factors such as the bio-availability of NADH and 

FADH2 and the integrity of the numerous enzymes involved in the process of OXPHOS may 

also influence the efficiency (80). 

Tissue injury caused by a change in mitochondrial respiration can be described in the concept 

of cytopathic hypoxia - a diminished oxygen utilization by cells due to mitochondrial 

dysfunction (82).  Multiple theories about the mechanism behind the development of 

cytopathic hypoxia in septic pathology have been established – the inhibition of pyruvate 

dehydrogenase, the nitric-oxide-mediated inhibition of cytochrome a,a3, the peroxynitrite-

mediated inhibition of mitochondrial enzymes and the poly(ADP-ribose) polymerase 

hypothesis (82). 

Pyruvate dehydrogenase is an enzyme catalyzing the reaction from pyruvate, the end product 

of glycolysis, to acetyl CoA (Acetyl Coenzyme A), which subsequently enters the 

tricarboxylic acid cycle whose activity is regulated by negative feedback and enzyme 

phosphorylation mediated by the pyruvate dehydrogenase kinase family. Studies have shown 

increased activity of the pyruvate dehydrogenase kinases (82–84) and an increased ratio of 

the inactive to active form of the pyruvate dehydrogenase complex has been found in animal 

models of chronic sepsis (82,85,86), limiting the utilization of the tricarboxylic acid cycle 

coupled to the electron transport chain to produce ATP, leading to increased lactate 

production and the possibility of metabolic acidosis.  

As described earlier, sepsis leads to upregulation of iNOS enzymes, and subsequent increased 

production of NO. Cytochrome a,a3 is the terminal complex of the electron transport chain 

and subject to competition between NO, which acts as an inhibitor, and oxygen (O2), which 

acts as an activator. In conditions of a raised NO concentration (> ~1 mcM ) or in a state of 

low pO2 (partial oxygen pressure), NO reversibly inhibits cytochrome a,a3 and thereby 

prevents ATP production (82,87–92).  

Furthermore, NO forms ONOO- (peroxynitrite) by a reaction with O2-. Increased production 

of O2- by mitochondria was found in hypoxic conditions or in a state of cytochrome a,a3 

inhibition (82,93,94). Combined with raised NO levels this may lead to a substantial increase 
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in ONOO- production , which causes irreversible inhibition of mitochondrial energy 

production in in-vitro conditions by inhibition of mitochondrial F0F1ATPase responsible for 

ATP production from ADP (95), inhibition of complexes of the electron transport chain (95) 

and inhibition of the aconitase enzyme of the tricarboxylic acid cycle (96).  

Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme activated by single-strand 

breaks in nuclear DNA, that catalyzes the production of ADP-ribose from NAD+ and 

polymerization thereof (82,97,98). ROS like ONOO- produced in sepsis may induce PARP-1 

by DNA damage and lead to a depletion of cellular NAD+/NADH content which is essential 

for the OXPHOS process to generate ATP (82,99).  

In total, the altered macro- and microcirculation in early sepsis prior resuscitation results in a 

decreased PO2 in tissues (100) with changes in the microcirculation remaining even post 

macrocirculatory resuscitation, which leads to sustained tissue hypoxia causing cellular 

hibernation in response to low PO2, and mechanisms of cytopathic hypoxia, and other direct 

insults caused by inflammatory mediators with resulting organ dysfunction (101). Due to the 

diminished O2 utilization by mitochondria, a decreased tissue VO2 stands in contrast to the 

rising tissue PO2, which is sending a negative feedback to the microcirculation causing 

vasoconstriction, thereby further potentiating the process of cellular hibernation (102) 

(visualized in figure 2). 

 

 

 

 

 

 

 

 

 

10. Immunoparalysis 
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Fig. 2: Mechanisms of Cellular Hibernation 
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10. Immunoparalysis 

Beside the quantitative loss of immune cells (15) during late phase of sepsis, namely T- cells, 

B- cells, macrophages and dendritic cells, as shown in post-mortem analysis (78,103–106), 

several mechanisms are suggested to cause a qualitative loss in innate and adaptive immune 

cell function, termed immunoparalysis, resulting in insufficient clearance of septic foci and 

the potential for superinfections and reactivation of latent viruses (22,107,108). Although it is 

thought to occur in the late phase of sepsis during CARS, some evidence also suggests that a 

certain degree of immunoparalysis may exist from the onset of sepsis (22,16,109,110). The 

mortality associated with the immunoparalytic state (15) suggests the importance of biologic 

markers to assess the degree of immunoparalysis and potentially aid in prediction of the 

disease course and outcome (22,111,4,112). Moreover they could be decisive for the 

therapeutic induction of immunocompetence by the use of immunomodulatory medications 

(22,111,4,112). 

Monocytes have been shown to exhibit an impairment in antigen presentation and pro-

inflammatory mediator production due to decreased expression of mHLA-DR (monocyte 

human leukocyte antigen DR isotype), which is the most researched biomarker for 

immunoparalysis to date and has been positively correlated with mortality (22,113–116). 

Further, several receptors that initiate pro-inflammatory cascades upon stimulation have been 

shown to be downregulated in immunoparalytic conditions (117). Together with upregulation 

of negative costimulatory molecules located on lymphocytes and monocytes, PD-1 

(programmed cell death protein 1) and PD-L1 (programmed cell death protein ligand 1), 

whose binding induces a IL-10 mediated down-regulation of inflammatory functions, this 

leads to a diminished immune functional capacity (22,107,118). 

An upregulation of Treg’s (T regulatory lymphocytes) is associated with immunoparalysis 

and actively down-regulate the adaptive immune response (22,119–121) by TGF-β 

(transforming growth factor β) and IL-10 secretion and attenuation of pro-inflammatory 

cytokines, as well, as induction of cytotoxic T-cells  and Monocyte down-regulation (22,121–

124).  

Epigenetic regulation plays a major role in the development of immunoparalysis by 

modulation of pro- and anti-inflammatory gene expression (125) through multiple 

mechanisms such as histone deacetylation or methylation (125–127). An example for 

epigenetic modification is the shift of macrophages to the M2 phenotype (128).  
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Macrophages are thought to be the key mediator of shifting the cytokine balance to the anti-

inflammatory site by polarizing into M2 phenotype, which is secreting high levels of diverse 

anti-inflammatory molecules, such as IL-10 and IL-1-RA (IL-1 receptor antagonist), thereby 

down-regulating pro-inflammatory cytokine release (129). In vitro experiments also suggest a 

generalized diminished capacity of pro-inflammatory cytokine secretion by monocytes 

without changes in anti-inflammatory cytokine secretion capability (130).  

Further pathophysiologic mechanisms causative for sepsis-induced immunoparalysis are 

under investigation and provide scientists with several potential therapeutic targets of sepsis. 

 

11. Clinical implications 

Despite the establishment of timely bundle care with focus on infection source control and 

organ-supportive therapy, sepsis remains the leading cause of death in the ICU.  

To anticipate deterioration of a septic patient, the pathophysiological processes described in 

the previous chapters need to be taken into consideration when searching for further 

treatment options. Until today many scientists are focused on finding ways to target the 

immunopathology of sepsis, with only a limited number of successful translations of in-vitro 

to in-vivo conditions.  

Regarding the cytokine storm as initiator of the septic sequelae, either a decreased cytokine 

and inflammatory mediator production or an increased elimination can be targeted. The 

former implies the investigation of immunotherapeutic drugs, with many concepts from 

oncology being utilized for research, while for the latter, the effectivity of extracorporeal 

blood purification techniques in the context of sepsis is investigated.  

Extracorporeal blood purification therapies implicate convection, adsorption, combination 

and further therapies, as listed in table 1 (131). Although evidence for their potential in 

extracting inflammatory mediators and bacterial toxins from blood has been established, there 

is a lack of high-quality trials in septic patients (132). 

Convection techniques include HVFT (high volume hemofiltration therapy), CCRT 

(continuous renal replacement therapy) and HCO (high-cut-off) membrane therapy. In 

HVFT, an increased convective target dose of  > 35 ml/kg/h is used, compared to CCRT, 

leading to mediator elimination and the effectivity of different convective target dosages and 
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application modes (continuous vs. intermittent) for certain septic patient groups have been 

investigated (133,134), but a comprehensive conclusion cannot be drawn for all sepsis patient 

groups. Similar to HVFT, the utilization of HCO membrane therapy resulted in increased 

removal of mediators in a septic patient subgroup, but was associated with concomitant loss 

of albumin (135), while further trials were not completed (132).  

TPE (therapeutic plasma exchange) is thought to be beneficial not only by clearing the body 

from mediators and toxins, but also by providing instant replenishment of plasma molecules 

and the utilization is currently under investigation (131,136) 

The combination of filtration and adsorption, CPFA (coupled filtration and adsorption) did 

not show any benefit in clinical trials (131,137,138). 

Adsorption techniques include hemoperfusion through PMX (polymyxin B immobilized) 

fiber columns, for which the data is contradictory until today (131,139–141), and 

Hemadsorption using CytoSorb, which is able to absorb many cytokines and mediators, but 

also free Hb (Hemoglobin), Myoglobin, Bilirubin, Bile acids, bacterial toxins, activated 

components of the complement system and drugs, which might be especially beneficial for 

septic patients when utilized in early phase (131,142–144). Recent studies using CytoSorb in 

patients with sepsis and/or septic shock suggest a decreased vasopressor requirement, 

increased lactate clearance and the resolution of septic shock (145,146) and an improved 28-

day mortality rate (147), making CytoSorb the most promising blood purification technique 

up to this date. 

Convection Therapies CCRT – Continuous Renal Replacement Therapy  

HVFT – High Volume Hemofiltration Therapy 

HCO – High-cut-off Membrane Therapy 

Adsorption Therapies PMX – Immobilized Polymyxin B 

CytoSorb - Hemoadsorption 

Combination Therapies CPFA – Coupled Plasma Filtration Adsorption  

CFA - Combined Filtration and Adsorption 

Further Therapies TPE- Therapeutic Plasma Exchange  

RAD - Renal Assist Device 

SCD – Selective Cytopheretic Device 

 

Immunomodulatory treatment targeting innate and adaptive immune cell function and  

Table 1 – Overview of blood purification techniques 

Graphic adapted from: Jarczak D, Kluge S, Nierhaus A. Sepsis-Pathophysiology and Therapeutic Concepts. Front Med 

(Lausanne). 2021;8:628302 
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Immunomodulatory treatment targeting innate and adaptive immune cell function and 

cytokine production may aid in restoration of immune homeostasis in a septic context and is 

currently highly investigated. Up until today there is not much clear evidence of beneficence, 

mainly due to the lack of clinical translation of in-vivo or animal models, uncompleted trials, 

or negative trial results.  

The previously described down-regulation of immune cell function by upregulation of PD-1 

and PD-L1, representing a “checkpoint” in the negative costimulatory pathway of a normal 

T-cell response, lead to the investigation of monoclonal antibodies blocking either PD-1 or 

PD-L1, thus inhibiting the binding ability, which lead to an unwanted increase in cytokine 

production and secretion by T cells and monocytes in ex-vivo studies (148). A phase I trial 

using Nivolumab, a monoclonal antibody targeting PD-1, in 38 sepsis and/or septic shock 

patients resulted in no increase in inflammatory cytokines and did not result in unexpected 

safety findings and stimulated INF-γ, an anti-inflammatory cytokine, production by T cells 

(131,149), making Nivolumab a potential candidate to target immune cell function without 

increasing cytokine production, yet further trials on larger patient groups are needed.  

IL-7, also called the “maestro of the immune system”, has an important role in the 

development, maturation, expansion and homeostasis of B and T cells (150) with studies 

demonstrating an increase in absolute lymphocyte count and the number of circulating CD4+ 

and CD8+ T cells without increased pro-inflammatory response or organ function 

deterioration and increased INF-γ production by T-cells upon treatment with recombinant 

human IL-7 in patient with septic shock and severe lymphopenia (131,151), making 

recombinant human IL-7 also a potential therapeutic candidate.  

Polyvalent immunoglobins have been shown to be able to neutralize toxins, interact with 

complement factors and increase opsonization of pathogens leading to increased phagocytosis 

(131,152–155). Until today no immunoglobin therapy is recommended for treatment in septic 

patients due to lack of definitive data due to inconsistency of study protocols, heterogeneity 

of patients and alterations of laboratory parameter spectrums, but more RCT’s (randomized 

controlled trials) are on the way to further clarify utility (131,156).  
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12. Conclusion 

Many advances in the understanding of septic pathophysiology have been made and are 

continued to be made, hence allowing the identification of the main therapeutic targets in 

sepsis treatment. Beside source-control and organ support, the immunologic nature of sepsis 

needs to be taken into consideration, namely regulation of the cytokine production and 

secretion, as well, as immune cell function. Many molecular pathways are targeted in 

research in vitro and in vivo, with some having promising results. Nevertheless, more 

research is needed to provide a comprehensive therapy for patients in sepsis and septic shock. 
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13. List of Abbreviations 

List of Abbreviations 

SIRS – systemic inflammatory response syndrome 

SOFA – sepsis-related organ failure assessment 

MODS – multiple organ dysfunction syndrome 

MAP – mean arterial pressure 

NCBI – national center for biotechnology and information 

SNP – single nucleotide polymorphisms 

CARS – compensatory anti-inflammatory response syndrome 

PAMP – pathogen-associated molecular pattern 

DAMP – damage-associated molecular pattern 

PRR – pathogen recognition receptor 

TLR – toll-like receptor 

IL– interleukin 

NK-cell - natural killer cell 

RA- receptor antagonist 

DNA – deoxyribonucleic acid 

NFkB – nuclear transcription factor kappa B 

AP – activator protein  

PPAR – peroxisome proliferator-activated receptors 

COX – cyclooxygenase  

iNOS – inducible nitric oxide synthase 

PG – peptidoglycan 

LPS – lipopolysaccharide 

PMN – peripheral mononuclear cells 

APACHE – acute physiology and chronic health evaluation 

EMA – European medical association  

P – protein 

INF – interferon 

TNF – tumor necrosis factor 

ICAM – intracellular adhesion molecule 

VCAM – vascular adhesion molecule 
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MIP – macrophage inflammatory protein  

MCP – monocyte chemoattractant protein  

CINC - cytokine-induced neutrophil chemoattractant 

ROS – reactive oxygen species 

RNS – reactive nitrogen species 

LO – lipoxygenase 

PG – prostaglandin 

FLAP – 5-LO-activating protein  

LT – leukotrienes 

TBX – thromboxane 

NO – nitric oxide 

VSMC – vascular smooth muscle 

TF – tissue factor 

PAI – platelet activator inhibitor 

DIC – disseminated intravascular coagulation  

PT – prothrombin time  

ATP – adenosine triphosphate 

ADP – adenosine diphosphate 

Pi – inorganic phosphate 

OXPHOS – oxidative phosphorylation  

NADH/NAD+ – nicotinamide adenine dinucleotide 

FADH – flavin adenine dinucleotide 

CoA – coenzyme A 

O2 – oxygen 

pO2 – partial oxygen pressure 

ONOO- – peroxynitrite 

PARP – poly (ADP-ribose) polymerase  

VO2 – Volume of oxygen  

mHLA-DR – monocyte human leukocyte antigen DR isotype 

PD – programmed cell death protein 

PD-L – programmed cell death protein ligand 

Treg – T regulatory lymphocytes 
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TGF-β – transforming growth factor beta 

IL-RA- interleukin receptor antagonist 

HVFT – high volume hemofiltration therapy 

CCRT – continuous renal replacement therapy 

HCO – high-cut-off 

TPE – therapeutic plasma exchange 

CPFA – coupled filtration and adsorption 

PMX – polymyxin B immobilized 

Hb – hemoglobin 
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