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ABSTRACT 

Floods are a common natural disaster with increasingly often devastating results. Disaster 

management is a highly complex and localized process that is difficult to generalize or extract from 

context. With radar data based on modern satellite constellations, the raw extent of floods can be quickly 

assessed at high spatial and temporal resolution, irrespective of cloud cover or time of day. In addition, 

Volunteered Geographic Information in the form of OpenStreetMap now offers an extensive database of 

individual pieces of infrastructure, in particular buildings, on a worldwide scale and free of use. Together 

with a newly available global land cover dataset, these data can be integrated to allow for quick, highly 

reproducible, and globally adaptive spatial impact analysis in the wake of flood events. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Potvyniai yra dažna stichinė nelaimė, kurios padariniai vis dažniau tampa pražūtingais. Efektyvus 

ir greitas reagavimas į stichines nelaimes – lokalizuotas ir itin sudėtingas procesas, apie kurį sunku 

kalbėti bendrai ar išskirti iš įvykio konteksto. Naudojant radarų duomenis, pagrįstus šiuolaikinių 

palydovų konsteliacijomis, galima greitai ir didele erdvine ir laiko raiška įvertinti pirminį potvynių mastą, 

nepaisant debesuotumo ar paros laiko. Be to, OpenStreetMap, kaip Bendruomenės kuriamos geografinės 

informacijos (angl. Volunteered Geographic Information, VGI) dalis, nemokamai siūlo plačią atskirų 

infrastruktūros objektų, ypač pastatų, duomenų bazę pasauliniu mastu. Šiuos duomenis galima sujungti 

su naujai prieinamais pasauliniais žemės paviršiaus duomenimis, kad po potvynių būtų greitai ir paprastai 

atkurta ir pasauliniu mastu pritaikyta stichinių nelaimių teritorijų poveikio analizė.  
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INTRODUCTION 

 

In 2021, 280 billion dollars in economic losses and more than 11,000 deaths were attributed to 

natural disasters [1]. Among these disasters, floods stand out both for how common they are and how 

dangerous they are to any part of the world mostly irrespective of socioeconomic development. It is 

estimated that about 29% of the total world population is exposed to flood risk [2]. In 2021, several 

devastating floods, among others in Europe, China, and Australia, illustrated this point once more. 

When looking at the destructive results of these floods and where they occur, it quickly becomes clear 

that even countries that claim to have large amounts of planning and warning facilities can be hit hard 

by flood events and their emergency response paralyzed by poor oversight and data availability. 

Much attention is paid to figuring out how to prevent or foresee flood events, or how to estimate 

damages in the long run in order to adapt insurance policies accordingly. Less attention is paid to how 

available data now can be used in order to minimize loss of life and property during and in the 

immediate aftermath of flood events. Much of this available data is public and/or open-source and can 

be used irrespective of other available data by private sources that may be out of reach financially for 

many users. In particular, two types of data combine to create an attractive scenario for aiding disaster 

impact analysis: 

• Satellite data by public sources such as the European Space Agency’s (ESA) Copernicus 

program is reliable and available at high spatial and temporal resolutions. 

• Volunteered Geographic Information (VGI) datasets such as OpenStreetMap (OSM) contain 

enormous amounts of high-resolution geospatial data with a consistent framework on a global 

scale that can be exported and used easily. 

Given these data sources, an up to date assessment of their potential needs to be made in order 

to evaluate how useful they can be not only for scientific purposes, but also for aiding disaster 

response. Currently, there are only few works of research integrating the data described above. As 

such, the novelty of this work lies not only in the specific application for this case study, but also in 

developing this scientific approach. 

The purpose of the thesis therefore is to develop and implement a methodology for integrating 

Synthetic Aperture Radar satellite data and VGI data to evaluate their usefulness for flood disaster 

impact analysis. The tasks are as follows: 

 

1. Investigate the state of research for flood disaster impact analysis and usefulness of 

Volunteered Geographic Information for this task. 

2. Evaluate existing algorithms for assessment of satellite data for disaster impact analysis. 

3. Define appropriate data sets and algorithm for a methodological model. 

4. Implement methodology technically. 

5. Assess results and give recommendations. 
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1 LITERATURE REVIEW AND RESEARCH PROBLEM 

 

1.1 Existing Flood Mapping Approaches 

 

Floods are among the most significant natural disasters. They are the most frequently occurring 

natural disaster and cause significant damage worldwide [3]. As an effect of climate change, floods 

are also likely to become more frequent and more hazardous as the entire global hydrological cycle 

intensifies [4–6]. In light of this background, vast resources have been and are being spent to predict, 

prepare for, and diminish the results of flood events all around the globe, much of which is beyond 

the scope of this work. Where attention has to be paid however is all those scientific efforts that fall 

within the broader (extensive) field of Cartography and Geographic Information Sciences (GIS) and 

coincide with this work. Because of the enormous scope and relevance of flood events, this is not as 

much of a limitation as it may be in other fields of research. A further limitation is the ambition of 

this work to use satellite imagery and volunteered geographic information in order to tackle this set 

of problems – as such, special attention will be paid to previous research that integrated either or both 

of these methodologies. Finally, the directions these research activities take broadly correspond to the 

sections of events laid out by general disaster management theory. As such, this theory shall first of 

all be explained shortly. 

Disaster management theory generally defines a cycle of four phases [7]. The Mitigation phase 

consists of activities that reduce the effect that any disaster could have – building and zoning codes, 

maintenance of infrastructure such as dams and bridges and general land-use planning, especially 

when it comes to high-risk areas such as flood meadows. The Preparedness phase similarly describes 

activities to be done before, in between disasters or in an ongoing manner. This includes making sure 

that the public is aware of existing dangers as well as what to do in case of a disaster, but also logistical 

aspects like setting up strategic stores of food, water, medicine, and necessary equipment. Finally, this 

phase also includes making sure that warning systems exist and work. Once a disaster does occur, the 

Response phase begins. This is the phase during and immediately after a disaster where human lives 

are most at risk and emergency operations are ongoing. As such, this phase includes directing relief 

and emergency resources in order to minimize property as well as personal damage. Because of this, 

one of the most crucial aspects of this phase is receiving real-time or near-real-time information as 

fast as possible. Without information, rescue and emergency operations cannot be done in an efficient 

manner. The Response phase ends as soon as all remaining active hazards are removed or otherwise 

conclude. Now, the Recovery phase starts. This phase describes the process in which affected areas 

and communities return to a normal way of life – rebuilding homes and structures, repairing damaged 

infrastructure and restarting essential services. 

GIS research activities with the limitations set above can be broadly grouped into two groups. 

The first group combines the Mitigation and Preparedness phases into what this work will call the 

section of Flood Vulnerability Analysis. Within this section fall efforts to use GIS to mitigate the 

effects of flood events by attempting to predict which areas or structures are especially at risk of flood 

damage. These attempts can also help prepare for potential flood events. The Recovery phase of 

disaster management is mostly restricted to physical “on-the-ground” activities, such as rebuilding, as 

well as reconnecting social structures of affected communities. Cartographic activities play less of a 
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part here, but where they do, they can be grouped into the first section. The second group of GIS 

research activities is where they relate to the Response phase of disaster management and will be 

called Flood Disaster Response in this work. This part of the field attempts to aid immediate 

emergency operations in the wake of flood events. 

In the following section, the two groups as described above will be introduced in their current 

state of research for the broader GIS field. While the focus of this work is on the Response phase, 

interesting developments, especially those regarding satellite data and VGI, are also found in research 

about other phases of disaster management and have to be considered, not only to give wider context 

but also to explore where different applications may be possible. 

 

 

1.1.1 Flood Vulnerability Analysis 

 

Vulnerability in the context of disasters is generally defined in regard to disaster hazards and 

risks. A disaster hazard can be described by a multitude of factors (for example, a 100-year flood as 

an event that has a probability of 1% of occurring each year), and any element that after analysis is 

deemed “vulnerable” to this hazard becomes an “element at risk” [8]. Whether an element or structure 

is regarded as vulnerable depends on vulnerability analyses. As mentioned previously, these analyses 

are therefore closely linked to the Mitigation and particularly the Preparedness phases of disaster 

management. GIS research can play an important part in this analysis, not only for its ability to link 

quantitative assessment with spatial data, but also cartographic works that can give concise overviews 

to stakeholders involved with preparing for disasters, such as emergency services, policy makers, but 

also to inform the general public. 

Flood risk management in general, and flood vulnerability analysis in specific, take on diverse 

forms but can be traced back to the conception of flood risk management in the early 21st century [9]. 

Beginning with this paradigm shift, the field was further developed, in the German-speaking world 

especially by the works of Merz, Thieken and Herrmann [10,11]. What these works have in common 

is a focus on extraordinary thoroughness, where models are developed for a single river at a time. In 

this traditional approach, flow regimes are combined with digital elevation models in order to create 

a flow accumulation model that can be used to produce vulnerability maps. This methodology is 

shown in use by Herrmann et al. for the Elbe river [11]. Isma’il et al. produced a vulnerability map 

for the Kaduna River in Nigeria with a similar approach [12]. More recently, attempts have been made 

to introduce VGI data to the field. This was done by Schelhorn et al. with the conclusion that 

infrastructure data such as is available from OSM can make for an alternative approach that is less 

costly than the in-depth methods described above, and can based on its nature also involve local 

citizens, with downstream effects for general disaster preparedness [13]. Cerri et al. found that the 

usefulness of OSM data for flood vulnerability analyses lies in the fact that as this data is consistent 

structurally across the globe, vulnerability models that were developed for one region can be 

transferred to other regions in a cost-effective and efficient manner [14]. The advent of VGI has 

impacted the field in a positive sense, if only (for now) as an addition to rather than a replacement of 

classical types of research. The issue of whether VGI data in its current form can adhere to the strict 
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quality requirements needed to effectively prepare for disasters is a nontrivial one and beyond the 

scope this work. VGI in general is further discussed in 2.1.2 as well as 2.3. 

In many ways, this section of disaster research is in contrast to disaster response (see 2.1.2). 

Whereas speed is the deciding factor of any disaster response analysis, it plays less of a role for 

vulnerability analyses that focus on long term studies. On the other hand, quality of data has the 

highest priority for preparing for disasters, where every involved party must know precisely to what 

degree which element is in danger – for disaster response, quality of data is important, but not as 

important as knowing quickly which areas are particularly hard hit and where people and property are 

affected the most. Of course, there is an interchange here – a preparatory analysis of the highest quality 

may make ad hoc analysis in the wake of a disaster unnecessary. But recent events show that natural 

disasters continue to be and may increasingly be highly volatile and unpredictable events that defy 

traditional risk management. For this reason, disaster response continues to be an important field of 

research, and all available information must be used to their utmost potential to create methodologies 

for worst case scenarios. The next section and the rest of this work will focus on disaster response. 

 

 

1.1.2 Flood Disaster Response 

 

Disaster response in the context of this work encompasses all research within the wider field of 

GIS aimed at responding to a disaster, be it an ongoing one or in the immediate aftermath. The focus 

in this phase of disaster management is on providing as fast as possible the information necessary to 

prevent further loss of life and property. A common theme at the outbreak of any disaster that obstructs 

precisely that goal is a general deficit of information [15]. Emergency operations, policy/decision 

makers and the general public all need to know what is happening in as much detail as possible. One 

important factor in this situation is that most of the relevant information is of a spatial nature, i.e., 

where something is happening. It quickly becomes clear that GIS is in a crucial position to help fill 

that spatial information gap. This is a fact that has become accepted in recent years [15].  

GIS for disaster response shot into the spotlight in the aftermath of the 2010 Haiti earthquake. 

As one of the poorest developing countries, not even the most basic spatial infrastructure information 

was available digitally for Haiti. This lack of information severely hampered disaster relief at the 

outset of the catastrophe, as emergency operations could neither rely on official sources of information 

that simply did not exist, nor on public sources such as OpenStreetMap or Google Maps, datasets 

taken for granted in developed countries but that were largely uncharted territory for Haiti.  In 

response, countless volunteers began working to fix this gap by downloading satellite images and 

mapping the outlines of roads and buildings en masse [16]. These so-called “crisis mappers” 

showcased the enormous benefits of VGI for disaster response for the first time. This of course goes 

especially for developing countries that do not have the means to develop significant spatial databases 

independently, but it was a lesson for how powerful VGI for disaster response can be, especially in 

combination with more traditional sources of spatial information [16]. Since then, the Humanitarian 

Open Street Map Team (HOT OSM) [17] has formed to tackle similar problems on a global scale, 

springing into action especially where other sources of spatial information are not available. Poiani et 

al. showed the successful collaboration of HOT OSM members in the aftermath of the 2015 
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earthquake in Nepal [18]. Westrope et al. discussed the mapping activities of the OSM community in 

the wake of Typhoon Hayian in the Philippines and in particular utilized on-the-ground research to 

review reports made by remote mappers about the level of destruction of individual buildings [19]. 

They found a significant lack of accuracy – only 26 percent and 40 percent of accurately classified (as 

to their level of damage) buildings for urban and rural locations respectively. This result highlights an 

important issue – VGI for disaster response is powerful in the sense that a large amount of data can 

be collected quickly and at low cost, but at the downside of potentially compromising accuracy. 

However, the Response phase of the Disaster Management cycle requires timely information, first and 

foremost. While highly accurate and qualitative data is always preferred, any data that can estimate 

disaster impact to a reasonable degree is good enough when lives are in danger. Having an 

approximate report of which areas are most affected is the basis on which decisions for directing relief 

and emergency efforts can be made. 

When it comes to disaster response for floods in particular, closing the knowledge gap means 

determining the flood extent first and foremost. This means quantitatively detecting water from 

whichever data sources is being used for the analysis. Details about these methods and which 

methodology was used for this work will be discussed in 2.2 and 3.2 respectively. Aside from just 

detecting the water however, it is also important to know what has been affected by the flood extent. 

Traditionally, these kinds of analyses have been performed using damage models. These models 

generally use water depth as the factor for determining what has been damaged and are accordingly 

called depth-damage functions [20]. Such functions describe a relationship between water depth and 

level of damage based on certain land-use classes such as infrastructure or forest. They are then 

combined with damage values (i.e. a certain amount of money per m2) to produce an estimate of the 

value of damaged property. As early as 2012, Jongman et al. described the downsides of this approach, 

in particular the wide range of existing depth-damage curves, damage values and the resulting 

uncertainty of damage estimates [20]. However, the approach remains widely in use today (for 

example in the Dutch Standard Method [21] or the American Federal Emergency Management 

Agency [22]).  

More recently, some researchers have used the depth-damage model as part of a wider approach 

on socioeconomic damage in the wake of (flood) disasters. Oddo et al. were among the first to 

incorporate publicly available population data by SEDAC as well as VGI infrastructure from OSM to 

produce a thorough damage assessment in near real-time for the 2011 Southeast Asia flood and in a 

follow-up paper innovated further by producing a model for rerouting emergency services based on 

their previous findings [23,24]. Additionally, their conclusions stress the lack of real-time or near-real 

time approaches for disaster response as well as highlighting once more the importance of data with 

acceptable quality coming in time as opposed to perfect quality data coming too late. 

To conclude, disaster research in GIS has a long history and is intimately tied to traditional types 

of disaster management. The increasing availability and complexity of VGI presents a kind of 

paradigm shift, which must be explored further in order to fully grasp its potential, in particular for 

disaster response where time is of the essence and the (at times) lacking quality of VGI data is less of 

an obstacle. 

This work will continue in the vein of these recent conclusions to help provide more 

methodological resources precisely for near-real time disaster impact analysis. One of the most 
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important limitations of any impact analysis is the raw base data from which conclusions are taken. 

The next chapter will explore data available from satellite sources as will be used for this work. 

 

 

1.2 Existing Satellite Data Methodologies for Disaster Impact Analysis 

 

The vital role played by satellite remote sensing in disaster management has been well 

established [25,26]. High accuracy, low revisit times and the number of different sensors available are 

all benefits of this technology in addition to the sheer scale of data that can be quantitatively 

investigated. Generally speaking, satellite remote sensing works can be split into active and passive 

sensors. Passive sensors collect and make use of radiation that has already been emitted, while active 

sensors themselves emit energy pulses that are then received back. Data from passive sensors, or 

optical remote sensing, can create a number of different kinds of images based on the spectral 

information collected from various wavelengths. The information from the spectral bands can be 

combined to produce, for example, true color images based on the red, green, and blue bands visible 

to the human eye. Meanwhile, the most widely used active sensor technology is RADAR (Radio 

Detection and Ranging) [27]. As the name suggests, this technology works by actively sending out 

and receiving back pulses of electromagnetic energy with wavelengths in the radio frequency. The 

information received is not directly spectral information, but rather information about objects relative 

to the sensor from which the energy pulses were reflected or scattered, such as distance (ranging) and 

angle. Images can be produced from calculations based on this information. Of particular importance 

for remote sensing is Synthetic Aperture Radar (SAR). SAR works based on the satellite-borne sensor 

sending out radio waves measuring the same scene multiple times at different times or locations (as 

the satellite is moving), the resulting information of which bears data about ground topography and 

deformations, which can be used to create highly accurate reconstructions such as Digital Elevation 

Models (DEM) [28]. The difference in absorption and reflection rates between water and land areas 

[29] means the technology can also be used to detect water surfaces – including flooded surfaces of 

land area. In addition, radio waves penetrate clouds and SAR does not rely on having to capture 

already emitted radiation (i.e. from sunlight). This means that SAR is not reliant on weather or time 

of day [30], making it the ideal instrument for flood disaster response [31]. However, despite being 

held in high esteem, SAR sensors have traditionally carried with them limitations, especially their 

high revisit times and low accuracy / large pixel size [27].  

Among the most recent remote sensing missions (with data publicly available) are Sentinel-1 

and Sentinel-2 by the European Space Agency Copernicus program. Sentinel-2, initially launched in 

2015, is a constellation of the two satellites Sentinel-2A and Sentinel-2B and provides multi-spectral 

optical imagery. While optical methods are ideal for real color visualization and long-term studies of 

natural disasters [32,33], optical imagery is reliant on cloud-free skies, a prerequisite that is 

problematic for observing many parts of the planet, and in particular flood events that are often 

accompanied by precipitation events and cloudy skies. Sentinel-1 on the other hand is a constellation 

of two satellites (Sentinel-1A and 1B) carrying C-band microwave SAR instruments (see 2.2.2). It 

boasts a low revisit time of 12 days, cut down to just 6 days since the launch of Sentinel-1B [34]. 

Together with its high spatial resolution, it leaves behind many of SAR’s traditional limitations that 
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would have made it much less usable for disaster response. However, Sentinel-1B is unavailable since 

December 2021 based on technical difficulties and is assumed to be out for the long term [35]. In the 

meantime, Sentinel-1A remains available, though the longer revisit times have an effect on its 

effectiveness for disaster applications. In the following section, existing algorithms for using both 

optical (passive sensors) and radar (active sensors) satellite data for disaster impact analysis will be 

introduced. 

 

 

1.2.1 Optical Imagery 

 

As established in 2.2, optical remote sensing passively collects emitted radiation of various 

wavelengths. Multispectral systems such as the Sentinel-2 constellation collect their data in several 

separate bands, each of which is sensitive to a small part of the electromagnetic spectrum. The image 

output of these bands can be combined at will to emphasize elements of the environment that absorb 

and/or reflect specific parts of the electromagnetic spectrum. An example of this approach is the 

Normalised Difference Vegetation Index (NDVI) [36]. The NDVI is calculated as the ratio of reflected 

red to near-infrared light on a scale of -1 to +1. Because the chlorophyll compound in vegetation 

absorbs red light, whereas the mesophyll leaf structure reflects near-infrared light, this index is an 

efficient indicator of absence or presence of vegetation. Optical imagery is also widely used in long 

term studies such as the CORINE land cover program by the European Union. Similarly, it can be 

used to cover the long term effects of disasters on the landscape. Balamurugan et al. studied the long 

term land cover changes in an earthquake-affected area of Gujarat, India [33]. These studies are 

valuable for better understanding of how large disasters can have lasting effects on land cover patterns 

and help decision-making for the Mitigation and Preparedness phases of disaster management.  

When it comes to studying the immediate impact of (flood) disasters, many of these ideas can 

be used as well. Already in 2006, Brakenridge et al. recommended the use of detecting flood (pixels) 

by calculating the variation in NDVI in “typical” and “flooded” conditions [37]. This methodology 

works based on the assumption that NDVI values below a certain threshold in “flooded” conditions 

can be considered inundated. Giordan et al. used NDVI variation in addition to a modified Normalized 

Difference Water Index (NDWI) variation to detect flood extents from Sentinel-2 satellite imagery 

[38]. The NDWI was initially derived to detect water stress in plants as a consequence of drought and 

defined as the ratio of near infrared (NIR) and short-wave infrared (SWIR) channels, where NIR is 

related to the mesophyll leaf structure (see above) and SWIR is negatively related to leaf water content 

[39]. In its modified form (MNDWI), it relates to soil moisture rather than leaf water content and is 

defined as the ratio between the red and SWIR channels. Soil moisture then is an additional indicator 

of flooding. Giordan et al. also used SAR data in their analysis, which will be discussed in 2.2.2, as 

well as concluding that satellite imagery is useful for providing a quick, cost-effective overview for 

larger areas, while lacking in urban areas [38]. Huang et al. similarly used an NDWI index for near 

real-time flood detection in addition to using VGI in the form of tweets and reports to form a flood 

probability distribution as a tool for guiding emergency responders [40]. Other spectral-based indices 

commonly used include the Land Surface Water Index (LSWI) and the Modified Land Surface Water 

Index (MLSWI) [41–43]. The Standard Method described in 2.1.2 calculates damage estimates 
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according to the land cover types affected by a flood. Land cover datasets such as CORINE are 

typically made through a combination of field survey and (automatic) classification (supervised or 

unsupervised) of optical remote sensing imagery [44,45]. 

Further algorithms for disaster management and prevention are also made available by the cloud 

platform for remote sensing Sentinel Hub as a collection of user-made JavaScript scripts [46].  

Optical imagery is easily interpretable (especially in its channels visible to the human eye), 

which is a factor not to be underestimated – disaster response involves presenting data to various 

stakeholders and decision makers, many of which are not familiar with remote sensing. The data made 

available to these stakeholders must be easily and rapidly understandable. With its many spectral 

channels, optical image data can also take on a variety of forms for different purposes and repurposed 

when necessary and found to be successful (such as the MNDWI). Clearly, optical imagery is highly 

useful data for analyzing the impact of disasters. However, its biggest drawback here is the reliance 

on cloud free weather, which is not a given for many latitudes and certainly not in the wake of a flood 

event that is inherently correlated with precipitation [47]. Many visualizations done with optical 

imagery can rely on images taken at different dates in order to create perfect cloud free mosaics. This 

is not the case for disaster events, where data must be quickly and reliably available. For this reason, 

radar data will be used in this work. 

 

 

1.2.2 Radar Data 

 

Radar sensors are unaffected by weather or daytime conditions. With the advent of satellite 

constellations that offer higher resolutions and revisit times, they have thus become popular systems 

for flood impact analysis. Examples for used satellite systems are TerraSAR-X [48], ALOS-2 

PALSAR-2 [49] and the Sentinel-1 constellation launched in 2014 and 2016 (see 2.2).  

Bioresita et al. successfully applied a rapid mapping approach to European flood events using 

Sentinel-1 Ground Range Detected (GRD) data with double polarization as well as developing a 

processing chain for automatic extraction of flood extents [50]. Uddin et al. implemented a 

methodology with the same type of data for flooding in Bangladesh, which stands as an example of 

optical imagery being unhelpful for disaster response actions as a result of the almost complete lack 

of cloud-free images during the flood season [51]. They validated their results using cloud-free 

Landsat-8 images that were classified using NDWI and NDVI (see 2.2.1). Landsat images were also 

used to produce land cover maps for estimating more specific flood damage. Zhang et al. introduced 

a fuzzy logic-based refinement for postprocessing flood extent images to remove areas that looks like 

water, further increasing accuracy, on top of developing flood detection methods that are more suited 

to challenging climates such as the semi-arid areas of Pakistan [52]. In addition, the initial flood 

delineation was done using thresholding based on Probability Density Functions (PDF) – comparing 

the PDFs of flooded and non-flooded areas. Li et al. focused specifically on the issue of flood mapping 

in urban areas using SAR: settlements, in particular densely built-up areas, cause complex 

backscattering effects to occur, which can make SAR flood mapping unreliable in these regions [53]. 

Their solution was to use SAR interferometric coherence in addition to the SAR intensity with 

promising results. The issue of flood mapping accuracy, or lack thereof, in urban areas has been 
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discussed in several other examples [54,55]. In addition to using more complex SAR base data, a 

solution can be to use extremely high resolution, locally sourced data such as from drones or even 

down to using handheld cameras with GPS devices [38] as well as using LiDAR-derived data [56].  

Similar to 2.2.1, Sentinel Hub also offers a number of custom-made JavaScript scripts for 

disaster management with radar data, in particular for flood mapping [57]. The algorithm focuses on 

separation between permanent water bodies and surface water in flood events.  

Regardless of its current limitations, SAR remains the most consistent and reliable data source 

for flood impact analysis, especially in the context of rapid disaster response. 
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1.3 Volunteered Geographic Information 

 

Volunteered Geographic Information (VGI) is an umbrella term used to describe the various 

forms of crowd-sourced geographic information available on the internet. It was first coined by 

Goodchild et al. [58]. In general, it describes geospatial datasets put together in a community effort 

by volunteers in their free time. This distinguishes VGI from efforts made by private or public 

institutions to collect data in an organized and centralized way. VGI instead depends on a large number 

of volunteers to contribute the kind of quantity of data that can compete with the often large budgets 

of public or private institutions. While volunteers may have considerable local knowledge, they are 

not necessarily trained professionals in any relevant surveying field. As a rule then, VGI is different 

from traditional surveying or data collection in two important ways: First, the data is collected in a 

decentralized and not necessarily organized manner, often creating a patchwork of data that is more 

pronounced in areas where many volunteers coincide and less pronounced where there are fewer 

contributors. The consequence of this dynamic is a divide in available data between urban and rural 

areas on the one hand, such that urban areas are mapped more quickly than rural areas with less 

contributors [59], and on a bigger scale also often a divide between highly developed countries with 

many members contributing data and developing countries on the other hand, although there is a lack 

of conclusive studies for this scale [60]. The second way in which VGI is different from traditional 

(spatial) data collection is that volunteers are generally not trained professionals in this field – the 

surveying effort is by and large a non-professional one. 

These factors highlight the biggest advantages of VGI on the one side: It is cheap because of 

the voluntary nature of contributions and can be quickly updated because of the direct action taken by 

volunteers that does not rely on lengthy planning, procurement and quality assurance processes that 

accompany data collection efforts by larger public and private institutions. However, they also 

highlight the biggest downside of VGI: even with community standards and crosschecking efforts in 

place, the final quality of the dataset cannot be wholly assured to the same level as it could with more 

centralized, larger budget organizations. The quality and credibility of VGI in general has been 

discussed at length, in a discussion that is often tied to a larger discussion about user-generated data 

in a Web 2.0 [61,62]. Among its drawbacks are not only the varying quality, but also the lack of an 

overreaching scientific approach and incompleteness of datasets [63]. Quality assurance varies from 

platform to platform. 

Rather than relying on VGI, even relatively complete datasets such as OSM, there are generally 

more comprehensive, detailed, and complete datasets for infrastructure available on a local, regional, 

or national level that could be used for disaster impact analysis. The main advantage of using OSM 

as a global dataset however is the possibility to apply the same methodology used in this work to any 

location in the world. Just as satellite data can be used on a global scale irrespective of borders, OSM 

now provides not only the theoretical possibility to intersect this remote sensing information with 

quantitative data about manmade structures (buildings, roads, railways etc.) anywhere in the world, 

but also a consistent technical framework that makes such an approach comparable and reproducible. 

The innovative approach of using OSM for a disaster impact analysis approach is going beyond the 

many administrative levels – national, regional, and local, each of which with their own approach to 
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data collection, processing, and presentation – and producing a methodology that works on a global 

scale. 

Another aspect that makes using VGI for disaster research and analysis attractive is the well-

established benefits of including the public particularly within the environmental domain in “citizen 

science” efforts [64,65]. Not only is the data offered by volunteers useful and different from other 

more static sources of data, but the result (if well communicated) is a kind of positive feedback loop 

where volunteering data becomes more enticing for the public when they see it being used to great 

effect in humanitarian and environmental accomplishments, which makes existing datasets more 

complete and appealing for researchers. 
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2 METHODOLOGY 

 

The methodology for this work was chosen in a process lasting several months. First was the 

idea of using OSM data for analyzing the impact of disasters in a quick, and cost-effective, and (in 

theory) globally applicable manner. Initially, it was thought to combine this data with optical imagery 

for the most intuitive and presentable result. While this is possible in theory, the issue of cloud cover 

means that in practice it is simply unfeasible – in the case of a disaster, the stakes are too high to rely 

on whether or not a cloud-free image is available. For this reason, SAR data was chosen as the raw 

data for detecting the flood extent instead. SAR carries with it other issues – especially in its lack of 

interpretability, which also has effects on its presentability as raw data. However, in this case, not 

having to rely on weather and daytime means choosing accuracy over interpretability. Next, the 

Rhineland floods of 2021 were chosen as a case study for their recency as well as catastrophic 

magnitude in a highly developed region. The level of completeness of OSM data in this region was 

another reason for choosing it as a kind of prototype for this methodology. When it became clear that 

the statistical output of the analysis does not necessarily reflect the extent of the disaster, the 2021 

floods in the Henan province of China were chosen as an additional case study.  

The reasons for choosing the 2021 Henan floods lay in maximizing the comparability of the 

results of the analysis on the one hand: Choosing the same year, and indeed the same month (July 

2021) was important for checking the validity of integrating OpenStreetMap data. Because the 

OpenStreetMap database is continuously being updated, the data exported from this database reflects 

the most recent real-time situation possible (depending on how up to date the area of interest is). It 

therefore makes sense to pick a recent flood example to compare this data too, or at the very least pick 

an example from a similar time. On the other hand, the 2021 Henan floods were significant for their 

damage done to urban areas, in particular in the cities of Xinxiang and Zhengzhou. They therefore 

were a great opportunity to test the conclusions taken from analyzing the first example, specifically 

whether the methodology can serve a purpose in visualizing damage done to settlements, although 

more precise, locally-sourced data (as described in 2.2.2) was not available for these case studies and 

only raw SAR data was used to detect the flood extent. 
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2.1 Case Studies 

 

Two case studies were selected for this work. In this section, the events leading up to the floods 

will be shortly introduced.  

 

 

2.1.1 Rhineland, Germany 

 

Beginning on the 13th of July 2021 and lasting up to the 15th of July, areas of Western Europe 

experienced torrential rain with precipitation as high as 272 mm within 48 hours in Belgium as well 

as 154 mm within 24 hours at the Köln Stammheim station, more than double the monthly average 

for July [66]. Resulting flash floods led to catastrophic results, especially in the narrow and steep river 

valleys of Rhine tributaries in the Rhineland-Palatinate and North Rhine-Westphalia states of 

Germany. The worst occurred along the Ahr river where 20 of the 35 bridges as well as many streets 

and villages were devastated. Within just hours from the 14th to the 15th of July, the water level of the 

Ahr river had risen to more than 7 meters before malfunctioning (Error! Not a valid bookmark self-

reference.) [67]. In total, 184 people died, including 90 along the Ahr river and 27 in Euskirchen 

north of the Ahr [68]. The case study in this work will focus both on the Ahr valley as well as the 

Euskirchen district. 

 

 

 

 

 

 

 

Figure 1: Sequence of water levels at Altenahr point from the 14th to the 16th of July 2021 [67] 

(modified). 
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2.1.2 Henan, China 

 

From the 16th to the 20th of July, the Henan province of China experienced record amounts of 

rain (Figure 2).The provincial capital of Zhengzhou was hardest-hit with 201.9 mm of rain within just 

an hour and up to 622.7 mm between the 17th and 20th of July, which is more than 95% of the average 

annual rainfall [69]. Other areas particularly affected were the city of Xinxiang with more than 250 

mm of precipitation within the period as well as the city of Xinmi with more than 400 mm [70]. The 

official death toll stands at 398 [71]. More than a million people were evacuated during the event and 

up to 500,000 households affected by damaged or collapsed structures [72]. Direct economic losses 

amount to €12.5 billion [72].  

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 2: 1-day accumulated rainfall in Northeastern China on the 20th of July 2021 [73]. 
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2.2 Classification of SAR Data 

 

Sentinel-1 imagery is freely available as part of the Copernicus program by the European Space 

Agency on the Copernicus Open Access Hub [74]. The goal was to select a date ideally during the 

flood (disaster image) in order to satisfy the aims of this work to fit within the disaster response 

timeline – in other words, to produce an analysis that could be considered real-time or near real-time. 

To produce a flood extent, a date before the disaster was necessary to compare the disaster image 

with. All satellite products were obtained in Interferometric Wide swath (IW) mode and as Ground 

Range Detected (GRD) products at 20 m x 20 m resolution. A GRD product has been multilooked 

(adjacent pixel values averaged to reduce noise) and projected to ground range coordinates before 

being made available on the Copernicus hub. In a SAR GRD product, pixel values are representative 

of the detected amplitude, which means that they first have to be calibrated in order for the product to 

be usable for analysis.  

For the Germany case study, two products were initially chosen for the investigation: the 15th 

of July, coinciding with the peak of the flood events, was ideal for the disaster image. For the before 

date, the 3rd of July was chosen. The reasoning behind choosing this date lay in the repeat cycle of the 

constellation: each satellite (Sentinel-1A as well as 1B) completes 175 orbits per 12-day cycle before 

repeating its orbits and differs only in a 180° orbital phasing difference. So while more dates are 

technically available – both from Sentinel-1B as well as from Sentinel-1A (but from a different orbital 

angle) - sticking to the revisit time of 12 days guarantees the same orbital angle (or relative orbit 

number) as well as an exact corresponding geometry. This not only simplifies the image processing 

stage of the analysis, but also makes possible an exact overlay of the before and disaster scenes. This 

on the other hand means that the result of the analysis can be a stack of images, or in other words a 

layer simply representing the change in pixel values from before to after, and therefore a reliable flood 

extent classification. 

The two scenes were imported into the Sentinel Application Platform (SNAP) software for 

preprocessing. SNAP is an open-source image processing and analysis platform, specifically 

developed in the context of the Sentinel mission [75]. The raw amplitude products were loaded. They 

could be preprocessed separately, but their corresponding geometry means that the steps taken were 

precisely the same. Instead, the SNAP toolbox allows batch processing for multiple scenes. First, the 

scenes were cropped to a subset which covered only the area of interest in question. This decreased 

the file size and processing time by more than 70%. Next, a thermal noise reduction was applied, and 

a radiometric calibration algorithm transformed the raw amplitude pixel values to a calibrated 

backscatter coefficient. In this case, 𝜎0 (Sigma nought) was selected as output band. This is consistent 

with previous studies on SAR processing of flood images [76,77], and 𝜎0 has been found to separate 

well between water and land surfaces [50]. It carries with it the downside of not taking topography 

into account (as it represents a mathematical ratio projected onto a horizontal plane) [29], however, 

for the relatively flat areas of interest in this work, this could be ignored. After applying a speckle 

filter, the exact orbits for the images were computed (either downloaded from the internet or taken 

from the product metadata) and the images were projected onto a geographic reference system, in this 

case WGS 84 (EPSG:4326). Finally, the pixel values were transformed from linear to logarithmic 

(dB) values in order to improve readability of the pixel histogram. This histogram (of the disaster 
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image) was investigated in order to find an acceptable threshold for creating the binary flood extent 

image. This method takes advantage of the difference in radar backscatter values between flooded 

areas (i.e. areas of water) and land areas, such as agricultural or grass land. Urban areas show higher 

backscatter values still, appearing light on the raw image. Because most of the image is still non-

flooded areas, investigating the histogram of the entire image usually yields little results: The non-

flooded areas dominate statistically and create a histogram result not dissimilar from a Gaussian 

distribution. To get a more accurate view, SNAP toolbox allows creating geometry containers (Figure 

3). Several smaller areas showing flood evidence were selected with the polygon drawing tool and 

thus included into the geometry container. This container could now be investigated statistically, 

separate from the image as a whole, with the result of a much clearer image of the essentially binary 

nature of the image (Figure 3.4) – areas of low backscatter value (water) and areas of higher 

backscatter value (land). The valley in between these two peaks was defined as the threshold for the 

next step. In this next step, both images were altered with the Band Maths function of SNAP toolbox. 

Using the threshold defined in the previous step. a binary image was created which separates the many 

backscatter values into simple ranges of “larger” or “smaller” than the threshold.  

 

 

Figure 3: Henan Province preprocessed SAR flood extent and geometry containers for thresholding 

(SNAP Toolbox). 
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The final step in processing the images was to overlay them into a single stack image and finally 

subtract the values of the before image from the disaster image. Since both of them were now binary 

images, and all light areas were representative of water (or at the very least low backscatter values), 

this step was equivalent to removing from the after image all low backscatter values that were already 

present in the before image. Put another way, all sources of water that are irrelevant for the flood 

analysis (standing water bodies, rivers etc.) were removed from the classified flood extent. What was 

left was simply the difference in low backscatter values between the two dates – since they were just 

12 days apart, it could be said with some certainty that the difference represented the extent of the 

flooding which happened in the meantime. 

For analyzing the Henan floods, two SAR products were used: Similar to the previous example, 

one scene before and one during the disaster was preferred. In the case of Henan however, the satellite 

flyover dates did not perfectly correspond to the flood event. As established in 3.1.2, the rains that 

caused the floods happened largely between the 16th and 20th of July. The only scenes available near 

these dates were from 15th of July, which was satisfactory for the before image, but in order to satisfy 

the geometry limitations (that make analyzing the images properly possible), the next image with the 

same relative orbit number had to be chosen – 27th of July. While already six to seven days after the 

initial flood event, an initial overview of the amplitude band showed that evidence of the flood event 

was still very much visible and therefore adequate for a comparative analysis at this stage. The two 

products were subject to the same processing stages as in the previous case study, with one difference 

– the Sentinel product could not be subset suitably based on the enormous scale of the Henan floods 

as well as the unique geometry of the product with Zhengzhou city on one end and the worst hit areas 

around Xinxiang along the Wei River on the other end meant that the product could not be cropped 

satisfactorily. However, the result of this difference was only one of computing time: Batch processing 

the two images took around 6 minutes as opposed to half a minute for the Germany case study. 

These final flood extents were exported as a georeferenced raster (geoTIFF format) and 

imported into QGIS. 

Figure 4: Pixel value histogram of the raw image (left) and geometry container (right). 
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2.3 Incorporation of VGI Data  

 

For exporting infrastructure data from OSM, the HOT OSM Export tool [78] was selected. The 

HOT OSM Export tool has several advantages over other OSM export tools: First, it is possible to 

export by custom bounding box rather than a predefined area (such as a state, or county). As this work 

looks at the impact of a natural disaster that in its extent bears no similarity to predefined regions, this 

is both a way to optimize data storage as well as a more precise way of working. Second, it is possible 

to select the precise type of data wanted for export, by specifying through the OSM tag tree as well as 

through a preset XML file. This is preferable instead of a bulk download as the properties of the data 

received are much clearer, as well as again optimizing data storage. Third, it is possible to clone an 

export configuration. This is especially advantageous for scenarios where data for the same area, but 

for different feature types is needed. 

The Extract layer extent algorithm in QGIS was used to create the minimum bounding box 

covering all features within the flood extent layer as exported in 3.2. This box in form of a GeoJSON 

file was imported into HOT OSM Export as the spatial extent of the export file. Further, only building 

extent polygons mapped in OSM were selected through the tag tree, which is based on all objects 

identified by the building key. The result of this operation was a vector layer containing the (polygon) 

geometries of individual buildings mapped in OSM. This raw export layer included 47136 buildings 

for the China case study within an area (minimum bounding box of the flood extent) of 20501 km2, 

and 664233 buildings for the Germany case study in an area of 3971 km2. This procedure was repeated 

for the OSM data types Road and Railway as classified through the tag tree by the highway and railway 

keys, “highway = yes” being the identifying value for any road, street, or path within OSM. 

The raw export layers were then imported into QGIS and reprojected to the respective local 

UTM projection. 

In the following figures, the exported OSM data is shown over the case study extent in raw 

form. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 Figure 5: Density of raw infrastructure network as exported from OSM. Germany case study at 1:280 000. 
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Figure 6: Density of raw infrastructure network as exported from OSM. China case study at 1:680 000. 



 

 

2.4 Integration of Data Sources and Impact Analysis 

 

The raw flood extent layers were location-checked, vectorized using the Polygonize (Raster to 

Vector) function and reprojected to the respective UTM zone (UTM Zone 32N / EPSG:32632 for 

Germany; UTM Zone 49N / EPSG:32649 for China). Next, the intersection of the flood extent layer 

and the exported Building dataset from OSM was calculated using the Extract by location function. 

While Extract by location does not technically calculate the exact overlap with the flood, this is 

sufficient for buildings as it is less important to know which parts of a building may be affected and 

higher priority lay on getting an overview of which buildings could be affected. Next, the procedure 

was repeated for the Road and Railway datasets, with the difference that here the exact Intersect of 

the two layers was calculated to find out which exact parts of roads and railways were affected. 

Thereafter, the total length of all affected road and railway pieces was calculated. As all layers had 

been previously reprojected to the appropriate UTM zone (i.e., the map units were now meters), this 

could be simply achieved with the Field Calculator. In order to classify bridges affected by the floods, 

the dataset was filtered for where “bridge = yes”, taking advantage of the bridge attribute included in 

the initial dataset. This attribute does not distinguish between bridges across water and other types of 

bridges, i.e. across valleys or elevated stretches of roads. Since the main idea of analyzing the impact 

of floods on bridges is the potentially impaired ability to cross waterways, this is not an ideal scenario. 

However, since a better classifier was not readily available within the dataset, this was accepted as a 

limitation of the analysis. Another constraint of the raw dataset was the OSM custom to map some 

types of roads in parallel, especially large roads such as highways, where each direction of the road is 

mapped as a separate road “piece”, with the consequence of showing up in the dataset with a separate 

ID and therefore as an independent road. In order to get around this limitation, the OSM attribute 

“oneway” was used to identify roads where this was the case. For the post-analysis dataset (the 

affected pieces of infrastructure), the number of one way roads was then divided by two in order to 

get a better general estimate of possibly damaged roads, so that the final estimate is calculated as 

follows: 

𝑛𝑡𝑜𝑡𝑎𝑙 = 𝑛𝑡𝑤𝑜𝑤𝑎𝑦 +
𝑛𝑜𝑛𝑒𝑤𝑎𝑦

2
 

where ntotal = final estimate of number of affected infrastructure, 

ntwoway = number of affected infrastructure where oneway=NULL, 

noneway = number of affected infrastructure where oneway=yes, 

 

This calculation was used for both roads and bridges. The Railway dataset did not show similar 

patterns. 

Further, the flood extent was intersected with a land cover raster in order to get more information 

about what types of land were affected by the floods. This step also helps with identifying potential 

limitations of the approach taken in this work (see 4.3). The land cover raster used here was taken 

from ESA Worldcover [79], a newly available global land cover map at 10m resolution and in 3x3 

degree tiles based on Sentinel-1 and Sentinel-2 input data. The land cover rasters covering the extent 

of the floods (N48E006 for the Germany case study; N33E111 and N33E114 for the Henan case study) 

were imported into QGIS and reprojected to the case study projection (UTM Zone 32N for the 

Germany case study, UTM Zone 49N for the Henan case study). In the case of Henan, the two rasters 
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were first cropped to the approximate area of interest to save computing time and then merged. For 

both case studies, the rasters were then clipped to the precise extent of the flooded area using the Clip 

raster by mask layer function and subsequently spatial statistics were calculated for the clipped raster 

using Raster layer unique values report. This tool generates a HTML report of the pixel values within 

a raster both for number of pixels as well as area covered in m2. 
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3 RESULTS 

 

3.1 Impact Analysis Results of Germany Case Study 

 

The total flood extent as classified was 10.8 km2. A total of 171 buildings and 1042 roads of all 

types covering a length of 46.6 km were shown to be affected by the disaster, including 10 bridges. 

Additionally, 19 railway lines or pieces with a total length of 819 m were shown to be within the 

extent of the flood.  

In terms of land cover, the overwhelming amount of terrain was cropland at 6.27 km2 or just 

over 58%. Other major land cover types were grassland at 3.05 km2 or 28% and tree cover at 1.17 km2 

or just under 11%. Settlements (classified as built-up area) included only 2.2% of the total flood extent. 

The methodology failed to classify significant amounts of flooded land in the Ahr valley, where 

the worst of the flooding occurred, and the cost of lives was highest (see 3.1.1). A possible reason for 

this is the narrow nature of the river valley, which led to flash flooding and fast receding of the water 

level. However, the satellite data was obtained at the peak of the disaster on 15th of July 2021, where 

the water level of the Ahr should have still been above normal values, especially when considering 

the partly reconstructed water level (see 3.1.1) on that day. Another possible reason is the hilly nature 

of the surroundings, in contrast to the flat landscape of the Erft and Swist valleys further north (e.g. 

Figure 4.3), which may result in misclassification of radar data, depending on the processing. In this 

work, no special requirements for mountainous regions were considered, as the majority of the area 

of interest was flat landscape. Other classifications of the flood such as the one by the Dartmouth 

Flood Observatory show similar results for the Ahr valley [80]. 

The classification of the landscape further north around Euskirchen generated a much more 

complete outcome with regards to expectations. Large areas, mostly crop- and grassland, were shown 

to be inundated at the time of the satellite flyover. The percentage of urban or built-up area was 

however low. 

The following tables show the spatial statistics as calculated from intersecting infrastructure and 

land cover data with the raw flood extent. The figures show an overview of the classified flood extent 

as a whole as well as several large-scale views of different areas affected by the disaster. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 4.1: Classified flood extent by land cover type and total area in km2 (Germany). 

 

 

 

 

Table 4.2: Infrastructure affected by the flood (Germany). 
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 Figure 7: Small-scale overview of the Germany case study at 1:170 000. 
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 Figure 8: Large-scale view of part of the Germany study at 1:15 000. Village of Lommersum, North Rhine-Westphalia. 
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 Figure 9: Large-scale view of part of the Germany study at 1:15 000. Swist Valley, North Rhine-Westphalia. 
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 Figure 10: Large-scale view of part of the Germany study at 1:10 000. Confluence of Swist and Erft Rivers, North Rhine-Westphalia. 
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Figure 11: Large-scale view of part of the Germany study at 1:10 000. Village of Bad Bodendorf, Rhineland-Palatinate. 
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3.2 Impact Analysis Results of China Case Study 

 

The total flood extent as classified was 437 km2. 618 buildings of the OSM dataset were shown 

to be affected by the disaster. Additionally, 4809 roads of all types covering 941 km as well as 376 

bridges were affected (see 3.4 and 4.3 for discussion on this result). 232 railway lines or pieces 

covering 109 km were classified as affected by the flood. 

84.4% of the flood extent was classified as cropland, with only 18.9 km2 or 4.47% classified as 

built-up. 

The lack of identified buildings is a result of the fragmentary state of China within OSM. 

Relatively few individual structures are mapped and while this is less the case for the road and railway 

network, the dataset remains widely incomplete. The OSM Analytics tool notes 100,091 individual 

buildings and less than 200 contributors for Henan province [81], a region with a population of 99 

million [82]. This issue is clearly shown in the figures below. The fragmentary nature of mapped 

buildings is especially clear in Figures 4.8 and 4.10, with large built-up areas classified as such, but 

very few or no individual buildings affected. 

The vast majority of classified flooded land was cropland. In the first place, this is consistent 

with Henan province as a rural province and a major grain exporter with a relatively low urbanization 

rate [83]. On the other hand it is less consistent with the devastating human cost of the flood (as 

described in 3.1.2), most of which centered on urban areas and especially the city of Zhengzhou. This 

is further discussed in 4.3. 

The following tables show the spatial statistics as calculated from intersecting infrastructure and 

land cover data with the raw flood extent. The figures show an overview of the classified flood extent 

as a whole as well as several large-scale views of different areas affected by the disaster. 
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Table 4.1: Classified flood extent by land cover type and total area in km2 (China). 

 

  

 

 

Table 4.2: Infrastructure affected by the flood (China).
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 Figure 12: Small-scale view of the China case study at 1:1 000 000. 
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 Figure 13: Large-scale view of part of the China case study at 1:20 000. Gongchanzhuyi Canal, Fengquan District, Henan Province. 
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 Figure 14: Large-scale view of part of the China case study at 1:10 000. Zhengzhou, Henan Province. 
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Figure 15: Large-scale view of part of the China case study at 1:10 000. West of Xinzhen, Xun County, Henan Province. 
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 Figure 16: Large-scale view of part of the China case study at 1:3 000. Weihui City, Henan Province. 
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3.3 Discussion 

 

The methodology allows a relatively quick overview of the flood extent. After downloading the 

data, the integration of data is a matter of hours. The largest time investments are with preprocessing 

the data ahead of calculating the flood impact. This is the case both for the raw SAR data, which must 

be preprocessed according to many factors, such as the topography of the landscape in question, as 

well as the OSM data. The landcover dataset can be used with minimal preparation. The longest 

potential delay when using this exact methodology lies in the availability of Sentinel-1 data, which at 

the current moment is affected by the malfunction of Sentinel-1B, prolonging revisit times to 12 days. 

Another consequence of this problem is the fact that a flood disaster may occur at any time and may 

not overlap with the revisit times at hand. As shown in this work, the Henan flood event peaked around 

the 17th to the 20th of July, but the next Sentinel-1 flyover did not happen until the 27th of July. 

 Certainly the biggest advantage of the methodology is in its global approach: SAR data from 

Sentinel-1, OSM data as well as the land cover dataset sourced from the Worldcover project are 

datasets at global scale that can be applied to any region on the planet. However, there are some 

caveats to be considered when using these datasets. 

First, raw SAR data allows only nontrivial interpretation ahead of processing with tools such as 

SNAP and subsequent thresholding. When responding to an active disaster, comparative datasets are 

not available, and it is up to the user to decide whether thresholding was achieved in an appropriate 

and accurate manner. Another result was the misclassification of permanent water bodies as flooded 

land. For Germany, an area of 2.07 km2 or 16.1% was misclassified, for Henan 14.8 km2 or 3.38%. 

This error may be the consequence of thresholding inaccuracies in step 3.2, where some part of the 

permanent water bodies may have not been recognized as such in the “before” scene. Another 

possibility is an inaccuracy within the land cover dataset used for the spatial analysis. While the spatial 

resolution itself is very high at 10 m, the authors acknowledge a 74.4% global accuracy (though this 

ranges from 68-81% based on the continent). While this is high, it could explain some misattribution 

[84]. For comparison, the CORINE land cover program declares thematic accuracies of >85% [85]. 

This is a second caveat to consider and a potential source of misclassification in this work. 

A general limitation for using OSM infrastructure is the unclear number of actual roads 

described within a dataset. While this problem is mitigated by intersecting the road and railway 

network with the precise extent of the flood, it is an issue of the dataset at large. Many separate roads 

marked with their own unique identifier are actually pieces of the same larger road, and on a bigger 

scale, the network of both roads and railways is more likely to reflect a pattern of user mapping styles 

than a perfect register of real-world infrastructure. Clearer and/or more standardized rules for 

displaying and mapping roads and railways in OSM could help mitigate this issue in the future. 

A limitation for estimating the number of affected bridges was the lack of intrinsic partition 

within OSM between bridges across water and other types of bridges, as discussed in 3.4. The results 

here may therefore be viewed as overestimating the effect of the flood on actually crossing bodies of 

water.  

The calculation as described in 3.4 may be seen as a simplification of the real situation, as there 

are evidently one-way roads that are not highways and do not have a parallel road running in the 

opposite direction. However, these roads are less numerous than (pieces of) highway or large roads, 
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especially in China, so that while both the initial dataset as well as the modified version are reduced 

versions of the real picture, the goal of the analysis was to make a post-disaster estimate, which the 

modified version comes closer to doing.  

Finally, the integration of VGI and SAR data for Chinese territory is feasible only at the most 

basic level. China remains largely unmapped on OpenStreetMap not only in terms of specific 

individual buildings, but at every level of infrastructure mostly due to the unclear legal basis of VGI 

activity within Chinese territory. For further reading, [86] explored the sometimes paradoxical 

relationship between state, entrepreneurs and OSM contributors in China. In the meantime, an 

integrated analysis of flood damage with the help of exported infrastructure data from OSM is not 

possible at the same level as in Europe. To illustrate the stark difference in the extent of mapping; the 

Rhineland-Palatinate state of Germany, where the worst of the 2021 summer floods happened, has a 

population of about 4 million [87] and is represented by more than 1.7 million buildings mapped in 

OSM [88]. Meanwhile Henan province, center of the 2021 floods, is represented by just over 100,000 

buildings [89], despite its population of more than 99 million [82].  

It is clear that the impact analysis did not come close to estimating the real damage that 

transpired in the wake of these disasters. Only 171 buildings were flagged as being affected by the 

flood in (the extraordinarily well-mapped) Germany, while in reality whole villages were devastated 

and the total cost has been estimated at $40 billion [90]. Similarly, built-up area was only a small 

percentage of the classified flood extent for the China case study, and especially the denser city 

environments (Zhengzhou, Xinxiang cities) showed up in a fragmentary way at best. Integration of 

OSM data for China was complicated further, as the issues surrounding VGI in China mean that the 

majority of real world structures are missing in OSM and cannot be included in an analysis in the first 

place. The result is paradoxical – more urban environments that are more likely to be mapped at this 

incomplete stage (see 2.3) are less likely to be picked up by SAR data thresholding efforts, while more 

rural settlements are successfully detected as inundated, but few individual structures are mapped in 

these areas and subsequently show up in statistics. However, the methodology is fundamentally highly 

reproducible and applicable globally, so that it may be adapted quickly and developed further. 
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CONCLUSIONS 

 

1. Flood disaster impact analysis has begun incorporating VGI and found it to be a useful 

addition to the more traditional methods of disaster management, but more case studies and 

research is needed. 

2. Flood disaster impact analysis by satellite can be achieved using both active and passive 

remote sensing, although active remote sensing has the crucial advantage of not being reliant 

on weather or daytime. 

3. A thresholding method for Sentinel-1 SAR data was chosen as the appropriate algorithm for 

detecting the flood extent. OSM infrastructure data and a global landcover dataset were 

chosen additionally in order to estimate the impact of the floods. 

4. Two flood case studies, in Germany and China respectively, were chosen and the 

methodology was implemented technically on these examples. Flood extents were classified 

and intersected with the OSM and landcover data in order to produce statistical results as 

well as cartographic products in the form of maps. 

5.  The methodology worked well for free-standing areas such as grass- and cropland but did 

not yield satisfactory results for settled areas. Few individual building footprints were shown 

to intersect with the floods. Integration of OSM data for Chinese case studies is feasible only 

at the most basic level based on a lack of completeness of the dataset. However, the 

methodology is applicable quickly and globally and may be refined in the future. 
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FUTURE RESEARCH SUGGESTIONS 

 

In order to further test the methodology, more case studies of floods should be considered in 

general. In particular, the impact of the time delay between peak flooding and satellite flyover may be 

tested in a more quantitative manner. The methodology should also be tested for more mountainous 

terrain, modifying the preprocessing algorithm used for the SAR data. To test the completeness of 

OSM data for this purpose, other regions of the world should be included. Different levels of 

completeness may be analyzed quantitatively to find a fit-for-purpose threshold, in particular as 

developing countries continue to lag behind in terms of OSM mapping. 

To improve the performance of the methodology in built-up / urban areas, additions to the SAR 

thresholding classification could be considered. The most promising methods currently include 

LiDAR or other very high resolution terrain data sourced locally, such as by drone.  

As Sentinel-1B continues to malfunction, Sentinel-1A’s elapsed active mission time is at the 

time of writing more than a year beyond its schedule, forcing the question of whether or not the 

Sentinel program will continue to be a reliable source of SAR data. While future satellites with SAR 

technology have been announced by ESA, this is not a short-term solution and future data accessibility 

may well pose a problem. While other sources of SAR data are available, different providers may 

offer data structure and preprocessing that is different from Sentinel’s Copernicus program. As such, 

other satellite programs should be investigated for their potential in this methodology. Data by the 

TerraSAR-X constellation may be considered for higher resolution SAR data. 
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Simon Philipp Herbst 

Integrating Volunteered Geographic Information and SAR Data for Disaster Impact Analysis 

 

SUMMARY 

 

Floods are becoming more frequent and increasingly destructive. Disaster management is a well-

developed field of research but relies on detailed data and localized procedures as well as context. 

Disaster response as the phase of disaster management in the immediate wake of the disaster is a 

complicated process that ties together decision makers, emergency response and the affected 

communities. In combination, disaster response often does not or cannot make use of data that is 

publicly and openly available. 

Satellite data is becoming increasingly accurate and reliable. At the same time, much of this data is 

publicly available. Synthetic aperture radar data from such a satellite (Sentinel-1 of the Copernicus 

program by the European Space Agency) allows detecting the extent of floods irrespective of weather 

or daylight conditions and is accessible at good spatial and temporal resolution. This in theory allows 

real-time or near real-time data collection of the scale of flood disasters. 

Volunteered Geographic Information (VGI) is a term coined to describe the location-based data 

collection and accumulation efforts by volunteers on the internet. OpenStreetMap (OSM) is an 

example of this process, having gathered millions of pieces of infrastructure, such as building 

footprints, on a single platform with consistent data structure throughout. This data has been mapped 

globally and separately by individuals in a crowdsourcing effort and can be exported at will for a 

multitude of use cases. While the quality and reliability of VGI in general and OSM in particular are 

part of an ongoing debate and can be flawed, they are a major source of infrastructure data that can be 

applied across the globe. 

The main aim of this Master Thesis is to bring together these two types of data in order to evaluate 

their usefulness for flood disaster impact analysis. 

Two case studies in Germany and China were selected. Synthetic aperture radar data from the 

Sentinel-1 satellites was classified for the flood extent with a thresholding method. VGI data from 

OSM was exported and intersected with the flood extent. Further, a global land cover dataset was also 

intersected with the flood extent. 

The results showed that the methodology works well for free-standing areas such as grass- and 

cropland. It works less well with built-up urban areas, which is mainly a consequence of structures 

such as buildings causing complex backscattering effects for radar pulses.  

The results additionally showed the fragmentary state of mapping of China in OSM. As such, 

individual building footprints are only rarely available. 

The methodology can be applied rapidly and globally in a matter of hours once the algorithm is in 

place. The longest delays are caused by data preprocessing. The impact analysis is contingent on 

satellite data being available, which is limited by satellite flyover (revisit) times. Accurate analysis of 

affected structures is also dependent on how well-mapped the area of interest is within OSM. 

 

Keywords: disaster impact analysis, flood disaster response, SAR data, volunteered geographic 

information, openstreetmap. 
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Simon Philipp Herbst 

Bendruomenės kuriamos geografinės informacijos panaudojimas kartu su SAR duomenimis 

stichinių nelaimių teritorijų analizei 

 

SANTRAUKA 

 

Potvyniai tampa vis dažnesniais ir keliančiais vis daugiau niokojančių padarinių. Efektyvus ir greitas 

reagavimas į stichines nelaimes remiasi duomenų apie paveiktas teritorijas kokybe, kuri priklauso nuo 

naudojamų mokslinių tyrimų metodų, duomenų išsamumo, gamtinės ir urbanizuotos aplinkos, 

valstybės duomenų politikos ir pan. Įvykus stichinei nelaimei itin svarbiu tampa reakcijos laikas, per 

kurį gebama tikslingai organizuoti pagalbą. Tai pirmasis nelaimių valdymo etapas, kuris susieja 

sprendimus priimančiuosius su nukentėjusiomis bendruomenėmis ir greitosios pagalbos 

institucijomis. Tačiau dažnai, reaguojant į nelaimes, turimi duomenų rinkiniai dėl jų geografinės 

turinio aprėpties trūkumo ir aktualumo stokos (stichinės nelaimės smarkiai pakeičia aplinką) tampa 

mažai naudingais.  

Palydoviniai duomenys tampa vis tikslesni ir patikimesni, taip pat daugelis šių duomenų yra viešai 

prieinami. Vieno tokių palydovų (Europos kosmoso agentūros "Copernicus" programos Sentinel-1) 

SAR duomenys leidžia nustatyti potvynių mastą nepriklausomai nuo oro ar dienos šviesos sąlygų ir 

šie duomenys yra prieinami gera erdvine ir laiko raiška, tinkama pagalbos darbų organizavimui. 

Teoriškai, šie duomenys leidžia beveik realiuoju laiku rinkti duomenis apie potvynių mastą. 

Bendruomenės kuriama geografinė informacija (angl. Volunteered Geographic Information, VGI) – 

tai terminas, kuriuo apibūdinamos savanorių pastangos rinkti ir kaupti vietos informacija pagrįstus 

duomenis internete. Šio proceso pavyzdys yra OpenStreetMap (OSM), surinkęs daugybę 

infrastruktūros objektų, tokių kaip pastatų žymenys, vienoje platformoje su nuoseklia visų duomenų 

struktūra. Šiuos duomenis pasauliniu mastu savarankiškomis pastangomis žemėlapiuose žymi 

pavieniai žmonės. Surinktus duomenis galima eksportuoti pagal poreikį įvairiems panaudojimo 

būdams. Nors OSM, kaip VGI dalies, kokybė ir informacijos patikimumas yra nuolatinių diskusijų 

dalis ir gali turėti trūkumų, tai yra pagrindinis infrastruktūros duomenų šaltinis, kurį galima naudoti 

visame pasaulyje. 

Pagrindinis šio magistro darbo tikslas – sujungti šiuos, dviem būdais gautus, duomenų tipus, kad 

galėtų būti įvertintas potvynių poveikis aplinkai.  

Buvo pasirinkti tirti Vokietijos ir Kinijos pavyzdžiai. Sintetinės apertūros radaro duomenys iš 

palydovo Sentinel-1 buvo klasifikuojami potvynio mastui nustatyti taikant slenksčio nustatymo 

metodą. VGI duomenys iš OSM buvo eksportuoti ir susieti su potvynio mastu. Pasaulinis žemės 

paviršiaus duomenų rinkinys taip pat buvo integruotas su potvynio masto duomenimis. 

Rezultatai parodė, kad ši metodika ypač tinkama taikyti neapstatytoms teritorijoms, tokioms kaip 

laukai ar dirbamos žemės. Metodika prasčiau veikia, kai taikoma užstatytoms miesto teritorijoms, kas 

daugiausiai susiję su tokiomis struktūromis kaip pastatai, sukeliančiomis sudėtingą radaro impulsų 

grįžtamosios sklaidos poveikį.  

Be to, rezultatai parodė, kad Kinijos žemėlapiai OSM sistemoje yra fragmentiški, todėl pavienių 

pastatų žymenys prieinami tik retais atvejais. 
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Sukūrus algoritmą, metodiką galima taikyti greitai ir globaliai per kelias valandas, kur ilgiausiai 

užtrunka pirminis duomenų apdorojimas. Poveikio analizė priklauso nuo to, ar yra palydovinių 

duomenų, o tai riboja palydovų sugrįžimo į buvusią padėtį užtrunkamas laikas. Tiksli paveiktų 

struktūrų analizė taip pat priklauso nuo to, kaip išsamiai OSM žemėlapyje yra sužymėta tiriama 

teritorija. 

  

Raktažodžiai: nelaimės poveikio analizė, reagavimas į potvynius, SAR duomenys, Bendruomenės 

kuriama geografinė informacija, Openstreetmap. 
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Appendix A – List of Abbreviations 

 

GIS –   Geographic Information System 

VGI –   Volunteered Geographic Information 

OSM –   OpenStreetMap 

SAR –   Synthetic Aperture Radar 

ESA –   European Space Agency 

DEM –  Digital Elevation Model 

NDVI –   Normalized Difference Vegetation Index 

NDWI –  Normalized Difference Water Index 

NIR –   Near Infrared 

SWIR –   Short-Wave Infrared 

LSWI –   Land Surface Water Index 

MLSWI –  Modified Land Surface Water Index 

PDF –   Probability Density Function 

IW –   Interferometric Wide 

GRD –   Ground Range Detected 
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Appendix B – Code Listings 

 

This section contains the R code used to generate the tables displayed in the results sections 3.1 and 

3.2. 

 

library(tidyverse) # Data Management 

library(gt) # Tables 

library(webshot) # for export function 

webshot::install_phantomjs() # for export function 

 

###### Land Cover Results ###### 

data <- read_csv2("lulc_long_ch.csv") 

tablc <- 

  data %>% 

  gt() %>% 

  tab_options( 

    column_labels.border.top.color = "white", 

    column_labels.border.top.width = px(3), 

    column_labels.border.bottom.color = "black", 

    table_body.hlines.color = "white", 

    table.border.bottom.color = "white", 

    table.border.bottom.width = px(3) 

  ) %>% 

  cols_label( 

    type = "Land Cover Type", 

    area = "Area", 

  ) %>% # Changing the font 

  opt_table_font( 

    font = list( 

      google_font(name = "Merriweather") 

    ) 

  ) %>% # Marking text bold 

  tab_style( 

    style = list( 

      cell_text(weight = "bold") 

    ), 

    locations = list( 

      cells_body( 

        columns = everything(), 

        rows = 8 

      ), 

      cells_column_labels( 

        columns = everything() 

      ) 

    ) 

  ) %>% # Footnote 
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  tab_footnote( 

    footnote = "in square km", 

    locations = cells_column_labels( 

      columns = area) 

    ) %>% # Misclassified cell font style 

  tab_style( 

    style = cell_text(style = "italic"), 

    locations = cells_body( 

      columns = everything(), rows = 9 

    )) %>% # Misclassified cell font style 

  tab_style( 

    style = list( 

      cell_text(color = "firebrick", style = "italic") 

    ), 

    locations = cells_body( 

      columns = area, rows = 9 

    ) 

  ) %>% 

  cols_width(type ~ px(250)) %>% 

  tab_style( 

    style = cell_borders( 

      sides = "top", 

      color = "black", 

      weight = px(2) 

    ), 

    locations = cells_body( 

      columns = everything(), 

      rows = 8 

    ) 

  ) %>% # Increase font size 

  tab_style( 

    style = cell_text( 

      size = px(14) 

    ), 

    locations = cells_body( 

      columns = everything(), 

      rows = 9 

    )) 

tablc %>% 

  gtsave("ch_lulc.png") 

 

###### Infrastructure table ###### 

data_infra <- read_csv2("infra_de.csv") 

tabinf <- 

  data_infra %>% 

  gt() %>% 
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  cols_label( 

    type = "Type", 

    amount = "Amount", 

    length = "Length" 

  ) %>% 

  tab_options( 

    column_labels.border.top.color = "white", 

    column_labels.border.top.width = px(3), 

    column_labels.border.bottom.color = "black", 

    table_body.hlines.color = "white", 

    table.border.bottom.color = "white", 

    table.border.bottom.width = px(3) 

  ) %>% 

  tab_footnote( 

    footnote = "in km", 

    locations = cells_column_labels( 

      columns = length) 

  ) %>% 

  opt_table_font( 

    font = list( 

      google_font(name = "Merriweather") 

    ) 

  ) %>% 

  tab_style( 

    style = list( 

      cell_text(style = "italic") 

    ), 

    locations = cells_body( 

      columns = length, rows = 3:4 

    ) 

  ) %>% 

  tab_style( 

    style = list( 

      cell_text(weight = "bold") 

    ), 

    locations = ( 

      cells_column_labels( 

        columns = everything() 

      ) 

    ) 

  ) %>% 

  fmt_number( 

      columns = length, rows = 1:2, 

    decimals = 1 

  ) 

tabinf %>% 

  gtsave("de_infra.png") 


