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Summary

Progress of compact high definition digital retinal cameras allowed us to re-

veal structural and functional information about the human retina in a harmless and

non-invasive way. Eye diseases cause noticeable pathological changes, so segmen-

tation of vessels in fundus images is of great importance. In this research work I

developed a new retinal vessel segmentation method that achieves state-of-the-art

performance in several metrics and with threshold optimization the model showed

comparable results to well researched methods on cross datasets experiments on the

segmentation task.
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1. INTRODUCTION

Nowadays researchers seek to develop automated reasoning systems that could

assist ophthalmologists, primary level physicians or optometrists in the eye diseases

screening process. Manual segmentation of retinal vessels is really difficult and

time-consuming; it also requires special training of a specialist. Right now, to di-

agnose some serious disease you must go to hospital and ophthalmologists must

use non-mobile and expensive devices to segment blood vessels. And when people

come for examinations usually the disease is in the late stages and it is difficult to

treat. Mobile technologies like hand-held eye fundus cameras enable the medical

personnel to do screening at the general practitioner, take images and upload them

on the online database for specialist evaluation, which makes the diagnostic process

much faster. Also, the doctor can do all of this at home for those lowmobile patients

who cannot get to the hospital.

The condition of the vascular network of the human eye is an essential diagnos-

tic factor in ophthalmology. Eye diseases cause noticeable pathological changes, so

segmentation of vessels in fundus images is of great importance. Over the decades,

research has been carried out on receipt recognition technologies and algorithms.

Goal of this work

Automatic blood vessel segmentation is an important task for the diagnosis and

the treatment of different ocular diseases. With the advent of portable fundus cam-

eras, it has become important to segment the retinal vessels as accurately as possible

and make a diagnosis outside of hospitals for patients with limited mobility. The

resulting photographs can be very different, but the algorithm must accurately seg-

ment the vessels, regardless of the photograph. This master thesis aims to develop

improvements of an autoencoder based fundus blood vessel segmentation algorithm.

The research consists of analysis on present blood vessel segmentation methods and

suggested approaches.

Tasks

— Investigate literature of the field.

— Develop a blood vessel segmentation autoencoder based model.

— Test and analysis of the developed model.

— Cross-datasets experiment on developed model.
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1.1. Retinal Fundus Imaging

The retina is the inner shell of the eye, which is the peripheral part of the visual

analyzer; contains photoreceptor cells that provide perception and conversion of

electromagnetic radiation in the visible part of the spectrum into nerve impulses,

and also provides their primary processing Blood vessels in retina can be detected

directly non-invasive using special camera.

Figure 1 – Retinal fundus camera [AEE18].

For the starting point of vessel segmentation understanding the 2018 paper

Retinal Vessels Segmentation Techniques and Algorithms: A Survey [AEE18] was

chosen. The fundus camera shown in Figure 1 is a sophisticated optical system for

retina [Kol95] photography. The fundus camera consists of a specialized low-power

microscope with an attached camera and special light for retina illumination. It is

designed to capture the inner surface of the eye, which includes the retina, optic disc,

macula and posterior pole. There are three models that are usually used for retina

photography. Color photography when the retina is illuminated with white light and

the image is in full color. When shooting without red light, the contrast of vessels

and other structures increases, and the light for visualization is filtered to remove

red. Fluorescence angiograms were obtained using a dye tracking method. Special

fluorescent dyes are injected into the bloodstream, and then, when the retina is illu-

minated with blue light, and the dyes emit light, a photograph is taken, as shown in

Figure 2.
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To diagnose diseases of the retina, the condition of the blood vessels of the

retina is examined. In many cases, the vascular structure of the retina has a low

contrast in relation to its background. Therefore, the diagnosis of retinal diseases

becomes a complex task, and it becomes necessary to use an appropriate image

segmentation technique to accurately determine the vascular structure of the retina,

as this leads to an accurate diagnosis.

Figure 2 – Imaging modes of ocular fundus photography: (a) full color retinal

fundus image; (b)monochromatic (filtered) retinal fundus image; (c)fluorescence

angiogram retinal fundus image [AEE18].

The white round or oval 3 mm in diameter area in the center of the retina is

the optic nerve. The retinal vasculature consists of arteries and veins, which are

elongated elements, and their tributaries are visible in the image of the retina. The

width of the vessels in the image depends on the actual width of the vessel and

the resolution of the image, it can range from one to twenty pixels. Blood vessels

fill the entire area of the retina, except “macula” or fovea [Kol95] the oval shape

located in the center of the area and lies directly to the left of the optic disc. It can be

expected that the vessels are connected and form a double tree structure in the retina.

Intersection and branching of the vessel can complicate the profile model also local

level of blood vessels intensity, the shape and size can vary drastically. Lack of

image contrast, image intensity drift, and image noise create serious problems for

segmenting blood vessels.
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Figure 3 – Retina fundus as seen through fundus camera [AEE18].

1.1.1. Challenges of retinal vessel segmentation

Diagnosis of retinal diseases is a difficult task, and the use of an appropriate im-

age segmentation technique becomes a necessity for highly accurate determination

of the structure of the vascular retina since this leads to accurate diagnosis. Identifi-

cation and retinal vascular retrieval face many problems. The width of the reference

vessels can range from one to twenty pixels in the image and can have a wide range

of color intensities, as shown in Figure 4, so identification technology with high

flexibility is needed.In addition, the identification of vessels in pathological images

of the retina faces a dilemma between accurate segmentation of the vascular struc-

ture and false segmentation near non-vascular structures (fovea, optic nerve) and

pathologies (hemorrhages, microaneurysms and others).

In summary, the vascular structure of the retina within normal or abnormal

images of the retina has low contrast compared to the background of the retina. In

addition, non-vascular structures of the retina have high contrast compared to other

backgrounds, but are fuzzy compared to pathological structures. Lesions of the optic

nerve head and exudate are typical examples.

1.1.2. Datasets

There are several well-known retinal images databases. But most of the reti-

nal vessel segmentation methodologies are trained and tested on three databases:
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Figure 4 – Pixel width variation of retinal vessels (in pixels) [AEE18].

DRIVE, CHASE and STARE. There are different reasons for the popularity of these

datasets: the good resolution of the retinal fundus images in CHASE and STARE

datasets and consistently good quality and contrast in DRIVE dataset therefore bet-

ter segmentation results. Also they are freely available manually labeled ground

truth images. However, some researchers use other, less common datasets.

The Digital Retinal Images for Vessel Extraction (DRIVE) dataset [Sta+04]

is a retinal vessel segmentation dataset. It consists of 40 color JPEG images of

the fundus; including 7 cases of abnormal pathology. The images were obtained

as part of the screening program for diabetic retinopathy in the Netherlands. The

images were taken with a non-mydriatic 3CCD Canon CR5 camera with a FOV of

45 degrees. The resolution of each image is 584*565 pixels with eight bits per color

channel (3 channels).

A set of 40 images was equally divided into 20 images for the training set and

20 images for the test set. Within both sets, for each image, there is a circular field

of view (FOV) mask approximately 540 pixels in diameter. Within the training set,

one manual segmentation was applied for each image by an expert ophthalmologist.

Within the test set, two manual segmentations by two different observers were ap-
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plied for each image, where the first segmentation of the observer was taken as valid

for performance evaluation.

Figure 5 – The ”01” entry of the test set in the DRIVE database: retinal image,

manual segmentation.

The Structured Analysis of the Retina (STARE) [HKG00] is a retinal dataset

that can be used for retina segmentation and classification, optic nerve segmentation.

The full set consists of nearly 400 raw images and a list of diagnosis codes and

diagnoses for each image.

Expert annotations of the features visible in each image are written to text files.

In total, experts were asked for 44 possible properties during data collection, and

then reduced to 39 values during coding. Blood vessel segmentationwork, including

40 hand-labeled images. Artery/vein labeling on 10 images by two independent

experts.

CHASE [CG+09] is a retinal vessel segmentation dataset. The dataset contains

28 color retina images of 14 school children with the resolution of 999×960 pixels.

Two professionals independently annotate each image.

Comparing these datasets reveals a serious discrepancy in the data: the

CHASE-DB and STARE datasets are high resolution with backlighting and poor

image contrast, while the DRIVE datasets are consistently good quality and con-

trast but low resolution. The developed model should work stably on both of these

options.
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Figure 6 – The ”01” entry of the dataset in the STARE database: retinal image,

manual segmentation.

Figure 7 – The ”01” entry of the dataset in the CHASE database: retinal image,

manual segmentation.

1.2. Neural networks and auto-encoders

Machine learning studies methods for constructing algorithms that do not di-

rectly solve problems, but are capable of learning. Today there are many problems

that can be solved using machine learning, such as clustering, classification, regres-

sion and others.
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1.2.1. Neural networks

Neural networks - a simplified model of a biological neural network, which is a

collection of artificial neurons that interact with each other. The basic principles of

the operation of neural networks were described back in 1943 byWarrenMcCallock

and Walter Pitt. In 1957, neurophysiologist Frank Rosenblatt developed the first

neural network [FS99], and in 2010, large amounts of training data opened up the

possibility of using neural networks for machine learning.

Currently, neural networks are used in numerous areas of machine learning and

solve problems of varying complexity.

Figure 8 – Artificial neuron circuit.

o = f(
n∑

k=1

ik ·Wk)

As can be seen in Figure 8, the neuron has n inputs xi, each of which has a

weight wi, which is multiplied by the signal passing through the connection. After

that, the weighted signals wixi are sent to the adder, which aggregates all the signals

into a weighted sum. This amount is also called net. Thus,

net =
n∑

i=1

wixi = wTx

It is just pointless to transfer the weighted net sum to the output - the neu-

ron must somehow process it and form an adequate output signal. For these pur-

poses, use the activation function, which converts the weighted sum into some num-
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ber, which will be the output of the neuron. The activation function is denoted by

ϕ(net)). Thus, the output of an artificial neuron is ϕ(net).

1.2.2. Neural network training

Neural network training - the search for such a set of weights, in which the

input signal after passing through the network is converted to the output we need.

This definition of “neural network training” also corresponds to biological neu-

ral networks. Our brain consists of a huge number of neural networks connected to

each other, each of which individually consists of neurons of the same type (with

the same activation function). Our brain is trained through a change in synapses -

elements that enhance or weaken the input signal.

If you train the network using only one input signal, then the network simply

“remembers the correct answer”, and as soon as we give a slightly changed signal,

instead of the correct answer we get nonsense. We expect from the network the

ability to generalize some signs and solve a problem on various input data. It is for

this purpose that training samples are created.

A training sample is a finite set of input signals (sometimes together with the

correct output signals) by which the network is trained. After training the network,

that is, when the network produces the correct results for all input signals from the

training sample, it can be used in practice. However, before immediately using

a neural network, they usually assess the quality of its work on the so-called test

sample.

A test sample is a finite set of input signals (sometimes together with the cor-

rect output signals), which evaluate the quality of the network. The training of the

neural network itself can be divided into two approaches: supervised training and

unsupervised training. In the first case, the weights change so that the network re-

sponses are minimally different from the ready-made correct answers, and in the

second case, the network independently classifies the input signals.

A validation dataset is a collection of example data used to сalculate the error

and select the best model. To prevent overfitting when any classification parameter

requires tuning, it is necessary to have an assertive dataset in addition to the training

and test datasets. The test set operates in a hybrid way: it is the training data that is

used for the test, but is neither part of the low-level training nor part of the final test.
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1.2.3. Hyperparameters

Hyperparameters is a parameter that is not tunable during model training. A

neural network is used to automate feature selection, but some parameters are man-

ually configured.

Learning rate is a very important hyperparameter. If the learning rate is too

low, then even after training the neural network for a long time, it will be far from

optimal results. On the other hand, if the learning rate is too high, then the network

will respond very quickly.

The activation function is one of the most powerful tools that affects the force

attributed to neural networks. In part, it determines which neurons will be activated,

in other words, and what information will be transmitted to subsequent layers.

Without activation functions, deep networks lose much of their learning abil-

ity. The non-linearity of these functions is responsible for increasing the degree of

freedom, which allows generalization of high-dimensional problems in lower di-

mensions.

The loss function is at the center of the neural network. It is used to calculate

the error between real and received responses. Our global goal is to minimize this

error. Thus, the loss function effectively brings neural network training closer to

this goal.

The loss function measures ”how good” the neural network is for a given train-

ing set and expected responses. It can also depend on variables such as weights and

biases.The loss function is one-dimensional and not a vector, as it estimates how

well the neural network is performing as a whole.

To select hyperparameters, it is needed to divide the dataset into three parts:

— Training dataset to train the model.

— Validation dataset for calculating the error and choosing the best model.

— Test dataset to test the selected model.

The model can over fit on the validation dataset. A test dataset is used to detect

overfitting.

1.2.4. Metrics to evaluate capability

The capability of retinal segmentation algorithms to extract the retinal vascu-

lature structure is evaluated by many metrics.
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An intuitive, obvious and almost unused metric is accuracy - the proportion of

correct answers of the algorithm. This metric is useless in problems with unequal

classes. Precision is the proportion of correct answers of the model within the class

- this is the proportion of objects that really belong to this class relative to all objects

that the system assigned to this class. Recall is the percentage of true positive clas-

sifications. The completeness shows what proportion of objects that really belong

to the positive class, we predicted correctly. Specificity is defined as the proportion

of actual negatives, which got predicted as the negative.

Sensitivity(Recall) =
TP

TP + FN

Specificity =
TN

TN + FP

Accuracy =
TP + TN

TP + FN + FP + TN

Precision =
TP

TP + FP

Precision and recall do not depend, unlike accuracy, on the ratio of classes and

therefore are applicable in conditions of unbalanced samples. Often in real practice,

the task is to find the optimal balance between these two metrics. It is clear that

the higher the accuracy and recall, the better. But in real life, maximum accuracy

and completeness are not achievable at the same time, and a certain balance has to

be sought. Therefore, we would like to have a certain metric that would combine

information about the accuracy and completeness of our algorithm. In this case,

it will be easier to make a decision about which implementation to choose. The

F-measure is just such a metric.

F1 =
2

Recall−1 + Precision−1
=

TP

TP + (FP + FN)/2

The performance curve is used to analyze the behavior of classifiers at various

thresholds. Allows you to consider all threshold values for a given classifier. Shows

the proportion of false positives (FPR) compared to the proportion of true positives

(TPR). One way to compare classifiers involves measuring the area under the curve
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(AUC). A perfect classifier will have an area under the ROC curve (ROC-AUC) of

1, while a purely random classifier will have an area of 0.5.

1.2.5. Loss functions.

Paper [Tag+20] described and compared different loss functions. Designing

new loss functions for retinal segmentation can improve segmentation performance.

Cross Entropy is the most used loss function for the segmentation image tasks.

This loss function compares each pixel individually with the ground truth image. For

the case of binary segmentation, let P (Y = 0) = p and P (Y = 1) = 1 − p. The

predictions are given by the logistic/sigmoid function P (Ŷ = 0) = 1
1+e−x = p̂

and P (Ŷ = 1) = 1 − 1
1+e−x = 1 − p̂ where x is output of network. Then cross

entropy (CE) can defined as:

CE(p, p̂) = −(p log(p̂) + (1 − p) log(1 − p̂)).

Equation for the multi-class segmentation can be written as:

CE = −
∑

classes

p log p̂

Weighted Cross Entropy can solve the main problem of cross-entropy loss:

unbalanced representation in the image. Classes that have bigger representation can

dominate the training. WCE was defined as:

WCE(p, p̂) = −(βp log(p̂) + (1 − p) log(1 − p̂))

If there is a need to decrease the number of false positives: β should be smaller

than 1 and to decrease the number of false negatives: β should be larger than 1.

Focal Loss can reduce overfit from easy examples so that during training the

neural network focuses more on the difficult examples. The term (1 − p̂)γ was

added to the cross-entropy loss as:

FL(p, p̂) = − (α(1 − p̂) γ p log(p̂) + (1 − α)p̂ γ (1 − p) log(1 − p̂))
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Dice coefficient is similar to the F1 score and measure ranges from 0 to 1,

where a Dice coefficient of 1 means a perfect prediction from the model. The Dice

coefficient (DC) is calculated as, where X is predicted and Y is ground truth:

DC =
TP

T P + F P + F N
=

2|X ∩ Y |
|X|+ |Y |

We can define a Dice loss (DL) function. p ∈ {0, 1}n and 0 6 p. where

p ∈ 0, 1n and 0 6 p̂ 6 1.pisthegroundtruth and p̂ is the predicted segmentation.

DL(p, p̂) =
2 < p, p̂ >

||p||1 + ||p̂||1
Tversky loss is a generalization of the dice lost and controls the level of FP

and FN by giving them weights. With β = 0.5 it is just a dice lost function.

TL(p, p̂) =
< p, p̂ >

< p, p̂ > +β < 1− p, p̂ > +(1− β) < p, 1− p̂ >

Exponential Logarithmic Loss is a weighted sum of the exponential logarith-

mic Dice loss and the weighted exponential cross-entropy loss. This function can

improve the segmentation accuracy on small structures for tasks where there is a

large variability among the sizes of the objects to be segmented.

L = weld E [(−ln(Di))
γD ] + wweceE[(−ln(pl(x)))

γCE]

X - pixel position, I - predicted label, l - ground truth label and the Di -

smoothed Dice loss.

The Lovasz-Softmax Loss is a smooth extension of the discrete Jaccard loss,

it can be applied for the multi-class segmentation task. ∆Jc (·) is the convex closure

of the submodular Jaccard loss, · is a tight convex closure and polynomial time

computable, C - all the classes, and Jc - Jaccard index and m(c) - the vector of errors

for class c respectively.

LLovaszSoftmax =
1

|C|
∑
c⊆C

∆Jc(m(c))



18

Combo Loss discussed using solo overlap-based loss functions as regulariza-

tions along with a weighted cross entropy to explicitly handle input and output im-

balance.

Combo Loss = α(− 1

N

N∑
i=1

β(ti − ln pi) + (1− β)[(1− ti) ln(1− pi)])+

(1− α)
K∑
i=1

− 2
∑N

i=1 piti + S∑N
i=1 pi +

∑N
i=1 ti + S

(1)

α - the amount of Dice term contribution in the loss function L, and β ∈ [0, 1]

- model penalization for false positives/negatives: when β is set to a value smaller

than 0.5, FP are penalized more than FN as the term (1− ti) ln (1− pi) is weighted

more heavily, and vice versa. S - unity constant to prevent division by 0.

Figure 9 – A comparison of seven loss functions for different extends of overlaps

for a large (left) and a small (right) object [Tag+20].

Figure 9 visualizes the behavior of different loss functions for segmenting large

(left plot) and small objects (right plot). As more FP and FN are predicted the loss

function value should monotonically increase. As shown on the right plot combo

loss and focal loss penalize monotonically more for larger errors. This property
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might increase segmentation perforce so combo loss and focal loss will be tested for

the research alongside standard Cross Entropy and Weighted Cross Entropy.

1.2.6. Auto-encoders

Auto-encoder (AE) [KM91] is a special architecture of artificial neural net-

works that allows you to apply unsupervised learning when using the backpropa-

gation method. The simplest autoencoder architecture is a feed-forward network,

without feedback, most similar to a perceptron and containing an input layer, an in-

termediate layer, and an output layer. Unlike a perceptron, the output layer of an

autoencoder must contain as many neurons as the input layer. The autoencoder can

be used for preliminary investigation, for example, when there are too few tokenized

pairs when it comes to recovery. Or to prevent data scale for early development. Or

when you just need to learn how to acquire the properties of a useful input signal.

The autoencoder consists of two parts: encoder g and decoder f. The encoder

converts the input signal into its representation (code): h = g(x), and the decoder

restores the signal according to its code: x = f(h).

The autoencoder, by changing f and g, seeks to learn the identical function

x = f(g(x)), minimizing some error function. L(x, f(g(x)))

At the same time, the families of functions of the encoder g and decoder f

are somehow limited so that the autoencoder is forced to select the most important

properties of the signal.

The autoencoder can be used for pre-training, for example, when there is a

classification task, and there are too few labeled pairs. Or to downsize the data for

later visualization. Or when you just need to learn to distinguish the useful properties

of the input signal.

A denoising AE was proposed in 2010 in [Vin+10] paper for reconstruction of

the input from the data with added noise. To achieve that AE layers are stacked on

top of each other, this structure is shown in Figure 10 called Stacked Autoencoder

Neural Networks (SAEs). In this structure outputs of each level are connected to the

inputs of the next layer.

It is an auto-encoder architecture that has the encoder part to extract the fea-

tures followed by the decoder part that reconstructs the image again to the same

input dimension and generates the segmented image. Skip connections between the
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Figure 10 – Deep auto-encoder (AE) Ref: [Habr]

encoder and the decoder fuse some features from the encoder with their matched

features from the decoder. The skip connection layers preserve the features details

and help to transfer rich information from the encoder features and fuse them with

the decoder features to better segment the vessels, especially the tiny ones.

1.3. Other types of neural networks that can be used for retina vessels

segmentation

Generative Adversarial Nets (GAN) are a machine learning algorithm that is

part of the family of generative models and is built on a combination of two neu-

ral networks: the generative model G, generates candidates, and the discriminative

model D, which estimates the probability that the candidate came from training data,

not generated by model G. Training for model G consists in maximizing the proba-

bility of error of the discriminator D.

A convolutional neural network (CNN) a special architecture of deep learn-

ing neural networks, initially aimed at efficient image recognition but right now can

be used for other pattern recognitions.

In a convolutional neural network, the outputs of intermediate layers form a

matrix (image) or a set of matrices (multiple image layers). So, for example, three

image layers (R-, G-, B-channels of the image) can be fed to the input of a convolu-

tional neural network. The main types of layers in a convolutional neural network

are convolutional layers, pooling layers, and fully connected layers.
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Table 1 – Advantages and disadvantages of discussed segmentation algorithms.

Algorithm Advantages Disadvantages

CNN Well researched type of

neural networks

Performance is much

lower compare other

algorithms

GAN The best performance Complex model structure

that require powerful

hardware to learn and

execute

Auto-encoder Well researched type of

neural networks.

Relatively fast to learn

and execute models



22

2. MAIN MATERIAL SECTIONS

2.1. Related works

The segmentation task can be solved by many methods and algorithms for spe-

cific cases and situations. This paper only deals with machine learning methods, or

rather, methods based on autoencoders. There are a lot of different approaches in

vessels segmentation using generative adversarial networks or fully convolutional

neural networks, but in this work result will be compared to other autoencoders

based solutions, because those solutions is relatively fast to train with not worse seg-

mentation performance: 4-5 hours on consumer graphics card compare to days to

train GAN based model on the professional graphics card. Also the resulting model

for the autoencoder based model is much smaller in size and complexity compared

to GAN based models. Convolutional neural networks based models were popular

several years ago in the vessel segmentation field, but right now their performance

is much lower compared to autoencoders based solutions.

2.1.1. UNet

U-net [RFB15] is a convolutional neural network that was created in 2015 for

biomedical image segmentation. The novelty of this neural network is that it can

accurately segment images with a limited amount of training data. It is a really

useful property in medical imaging where big annotated datasets are rare. U-net is

common in all kinds of medical fields where segmentation is needed from retina

photography to brain and liver image.

The network architecture is illustrated in Figure 11. There are two parts of

the network: the convolutional part (left) and unfolding part (right). There are 5

different steps in the network and 23 convolutional layers in total:

— 3x3 convolutions - unpadded convolutions with Rectified linear units (ReLU).

— 2x2 max pooling operation with stride 2 for downsampling, double the num-

ber of features.

— 2x2 convolution - up-convolution, halves the number of features.

— A concatenation with the correspondingly cropped feature map from the con-

tracting path.

— 1x1 convolution is for mapping a 64-component feature vector to the number

of classes of segmentation.
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Figure 11 – U-net architecture (example for 32x32 pixels in the lowest resolution).

Each blue box corresponds to a multi-channel feature map. The number of

channels is denoted on top of the box. The x-y-size is provided at the lower left

edge of the box. White boxes represent copied feature maps. The arrows denote

the different operations Ref: [RFB15]

2.1.2. UNet based methods and performance increasing strategies

Nest U-net and patch-learning combine was proposed in paper [WZY21], it

increased fine retinal vessel segmentation performance. Special extraction strate-

gies were designed to effectively generate massive training samples containing fine

retinal vessels. Nest U-net model was designed as an image segmentation network

model, which directly fast-forwards high-resolution feature maps from the encoder

to the decoder network. This model was trained by the k-fold cross-validation strat-

egy, and testing patches were predicted, and the segmentation result was recon-

structed by the sequential reconstruction strategy.

In paper [Cha+20] was presented a Channel Attention Residual U-Net (CAR-

UNet) for retinal vessel segmentation of funds images. CAR-UNet considers the

relationship between the feature channels, so a novel channel attention mechanism
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is introduced to strengthen the network’s discriminative capability. Firstly they in-

troduced a Modified Efficient Channel Attention (MECA) modified from the re-

cently proposed Efficient Channel Attention (ECA). Also they integrated MECA

into Double Residual Block (DRB) to construct the contracting path and expansive

path of the network. In addition, they applied MECA to “skip connections”, assign

weights to feature maps from the contracting path, instead of equally copying to the

corresponding expansive path.

In the article [Alo+18], a recurrent convolutional neural network (RCNN, RU-

Net) and recurrent residual convolutional neural network (RRCNN, R2U-Net) was

proposed. Those two networks are both based on the U-Netmodel. There are several

advantages in these architectures for segmentation tasks. First, the residual unit

helps in teaching deep architecture. Second, the accumulation of features using

repeated residual convolutional layers provides a better representation of features for

segmentation tasks. Third, these architectures have the same number of parameters

and better segmentation performance on retina segmentation.

The researcher suggests a Study Group Learning (SGL) approach in their

[ZYS21] article to increase the resilience of models trained on noisy labels in lim-

ited datasets. It was influenced by knowledge distillation techniques and the K-fold

cross-validation approach. Also researchers proposed a unique enhancermodule in a

model that generates the enhancement map. Using the source image and producing a

3-channel output with a higher contrast level. Researchers compared learnt enhance-

ment of retinal pictures to other baseline approaches such as Histogram Equalization

(HE), Contrast Limited Adaptive Histogram Equalization (CLAHE) [Piz+87], and

Retinex [Zha+15] in their article. Traditional approaches such as HE, CLAHE, and

Retinex are unable to achieve a consistent contrast level both locally and regionally.

The chopped patches are from either the brighter or darker portions of the picture,

making it difficult for the inspector to analyze the vessel pixels effectively. The

learnt map in the fifth column, on the other hand, has a higher contrast and intensity

level, boosting vessel information and making it easier for physicians to identify

dark spots. The vessel sections are highlighted while the textures are preserved.

Visual examination or labeling can also be done with the enhanced photos. In the

DRIVE and CHASE DB1 datasets, their results show that the suggested technique

enhances vessel segmentation performance, even when the training labels are noisy.
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Table 2 – Comparison of discussed algorithms.

Algorithm Augmentation Preprocessing Model Loss function

Channel

Attention

Residual

U-Net

Random

rotation and

horizontal,

vertical and

diagonal flips

- CAR-UNet +

Modified

Efficient

Chanel

Attention

Binary cross

entropy

Nest U-net

and patch-

learning

- image

conversion

and data nor-

malization,

random

extraction

strategy

Nest U-net Categorical

cross-entropy

R2U-Net Data

whitening,

rotation,

translation,

and scaling

Mean

subtraction

and

normalized

according to

the standard

deviation

Residual

RCNN based

U-Net model

Binary cross

entropy

SGL-Retinal-

Vessel-

Segmentation

Deeply

unsupervised

learned

enhancement

Study Group

Learning

Concatenated

UNet

consisting of

an

enhancement

module and a

segmentation

module

pixel-wise

binary cross

entropy loss

All of the related articles was focused on improving performance results on

the same dataset as model was trained. There is a lack of a sufficient number of

modern research papers with cross datasets experiments therefore not it is impossible

to determine how models will work on real world data. For this reason, the studied

topic is highly relevant and of great practical importance in medicine. Also there is

no experiments with different loss functions that can substantially improve model

performance.
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Table 3 – Advantages and disadvantages of discussed models.

Model Advantages Disadvantages

Channel Attention

Residual U-Net

Channel Attention block

for improving the

performance of CNN.

Channel Attention

Double Residual Block

to prevent overfitting.

Complex model structure

without meaningful

performance

improvement

Nest U-net and

patch-learning

Promising performance

improvements using

patch-leaning

Impossible to use general

structure of blood vessel

tree from fundus image

R2U-Net Lower number of

parameters when

compared to other

methods

Path learning. Longer

process of model

learning.

SGL-Retinal-Vessel-

Segmentation

State-of-the-art

performance on the

CHASE dataset.

Proposed learning

scheme can boost the

DICE score.

Vessel label erasing

should emulate

annotators errors, but not

clear from the work why

this needed

This section describes the problem of recognizing the retinal vessels of fundus,

autoencoders, neural networks and the formulation of the segmentation problem.

Fundus datasets were analyzed, which revealed serious inconsistency in data. Ad-

ditionally, a review of articles related to this work was done. The disadvantages of

these methods are noted, which lead to the need to search for new solutions. For

this reason, the studied topic is highly relevant and of great practical importance in

medicine.

2.1.3. Artery/vein Classification

Classification of retinal vessels into arteries and veins is a key step for diagnosis

of several eye diseases. For example glaucoma has been associated with the visible

changes of retinal arteries [Orl+18]. Classification of arteries or veins is a hard

task even for trained ophthalmologists. There are a lot of different approaches for

the Artery/vein Classification task: graph based, neural networks, color properties

based etc. But almost every work is including 3 main steps:
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— Retinal vascular tree is extracted from the input image.

— Location of the optic disc is identified and removed because it is almost im-

possible to classify vessels inside the disk.

— Vessels are finally classified into arteries and veins.

In paper [Gal+19] a Fully-Convolutional Neural Network used for A/V seg-

mentation task, where the task is to classify every pixel in the entire image of an

artery, vein, or background. This is a different task compared to the A/V classifi-

cation task. They used encoder-decoder architecture of the U-NET. Performance

classification of vessel pixels with use of the proposed method was on par with all

current state-of-the-art techniques other than graph-based approach [Est+15]. How-

ever, in testing, the authors use a model trained on only one dataset for all experi-

ments, while competitors restrained their models. This testing approach is of great

importance in the real world because it is important to have consistent performance

regardless of the state of the photo. However, this method can be improved using

a more powerful deep architecture, along with domain match regularization tech-

niques to prevent overfitting.

The paper was published [Li+20b] in 2020. They used a U-net based model to

classify arteries/veins. In addition to that they used post-processing to address errors

around crossing and branching points, this significantly boosted their performance

and because of that experimental results showed that their method can achieve the

state-of-the-art performance on STAIR and DRIVE databases.

2.2. Developed model methodology

Standard UNet is a convolutional auto-encoder based on CNN where the out-

put layer must contain as many neurons as the input layer to restore the original

image size. First, images are downsampled and the resolution is reduced, and then

the opposite occurs, upsampling with increasing image resolution. Skip connec-

tions are common in UNets, and they concatenate or add activation volumes from

the downstream sampling path to the upstream sampling path to recover better reso-

lution information and enable gradient flow during training. The UNet model ϕ can

be parameterized by the number of downscaling and upscaling of the image k, and

the number of filters applied at each level, fk. Only 3 × 3 filters are considered, and
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the number of filters is doubled each time k increases. The UNet can be completely

defined by two numbers (k, f0). After each convolutional layer, batch-Norm layers

are added, and there are standard skip connections for each block.

2.2.1. Stacked UNets

The idea is that passing an image through multiple UNets can improve seg-

mentation performance. In the beginning image x is passed through the standard

UNet φ1(x), then the output is concatenated to the original image, and passed again

through a second UNet. Then again output φ2(x) is concatenated to x, and passed

again through the third UNet φ3(x). Each previous UNet generates vessel segmen-

tation, which is then used by the next as an attention map to focus more on areas

of the image containing vessels. Last autoencoder is generating prediction based on

image and most accurate attention map from the previous steps. Additional layers

of UNet increases capability of fine vessel detection and can be represented as:

Φn(x) = φn(x, φn−1((x, φ1(x))))

The loss is calculated for the final output and combined linearly with the cal-

culated loss for the remaining outputs:

L(Φn(x), y) =
n∑

i=0

L(φi, y)

The number of stacked UNets is a hyper-parameter that should be chosen based

on performance metric and size of the model.

2.2.2. Image enhancer

This model did not use pre-processing to save all image information. The goal

is to process the image by increasing its contrast and highlighting the vessel tree

in the enhanced image and evaluate the vessel segmentation map associated with

the original vessel segmentation image. Resulting image contains maximum image

content, including vessel structures and retinal background. This can help clinicians

validate segmentation results and better explain the model.

The original image goes through the UNet model. A 3-channel output is then

extracted that can visualize the vessel tree with a higher level of contrast.
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Figure 12 – The learned map demonstrates a great contrast and intensity, enhancing

the vessel information for a better identifiable visualization for clinicians.

2.2.3. Augmentation

Data augmentation is a technique that you can use to expand your training set.

The main way to do this is to create modified versions of objects from existing data.

Particularly for images, augmentations include operations such as translations, flips,

scaling, and many others. By artificially enlarging the samples, the representatives

of the sample is improved, which helps machine learning algorithms to better de-

scribe the data space.

It is important to note that augmentations must produce plausible specimens.

For example, horizontally rotating an image of a dog makes sense because the photo

could have been taken from either the right or the left. However, flipping the same

photo vertically is unlikely to make sense, given that the trained model is unlikely

to see a photo of an upside-down dog.

The data transformation approach significantly improves the results, especially

for tasks in which the training sample is not large enough. In the current work, the

problem of a small dataset is present, so various augmentations related to rotations

and mappings were used. Photographs of the main bottom can be rotated by any

number of degrees, since the location of the macula depends on where the patient is

looking at the moment of the photo and the photo of which eye was taken, right or
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left. For this work augmentation of rotation of image by every 10 degrees was used.

Examples can be seen in Figure 13.

Figure 13 – Examples of augmented images from the CHASE Dataset using

rotations.

Color of the picture can’t be changed because this can affect the structure of

the vessel tree in the retina and create impossible structure that will decrease seg-

mentation capability.

2.2.4. Threshold optimisation

Model output is the probability set of being a vessel for each pixel. Threshold

for probability can be chosen based on the best performance in terms of Accuracy, F1

score or other metric on train dataset. To calculate optimal threshold differentiation

of the function should be calculated. This function is composed of two functions:

image(threshold) - function is calculating binary image based on original probability

image and threshold, f(image) - calculating performance metric based on binary

image. Differentiation of this composition can be calculated using central-difference

method:

y′j =
(yj+1 − yj−1)

2 ∗ δx
Assuming that this function is monotonically increasing and then monotoni-

cally decreasing after the optimal threshold. So to find an optimal threshold the point

where differentiation of the function is zero. This method can be used to improve

performance results when testing on different than train datasets. New threshold can
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be calculated based on subset of dataset images, it can dramatically increase model

performance.

2.2.5. K-fold cross-validation

Cross validation is a resampling technique for testing machine learning models

on a small set of data. The process has only one argument, k, which specifies how

many groups this data collection should be split into. As a result, k-fold cross-

validation is a common name for the process.

Cross validation is mostly used in applied machine learning to verify a machine

learning model’s credentials on wasted data. That is, utilize a test sample to see how

the model will perform overall when it is used to generate predictions on data that

was not used during training.

The general procedure is as follows:

— Divide the dataset into k-groups.

— For each unique sample: take a group as a testing dataset, take the rest of the

groups as a sample of the training data, prepare a model on training samples

and evaluate it on a test sample, keep the model evaluation and discard the

model.

— Summarize the quality parameters of the model using the sample estimation

models.

It’s worth noting that each observation in the data sample is allocated to a dif-

ferent group and stays in that group throughout the procedure. This means that each

sample is utilized once in the set and k-1 times to train the model.

Any data preparation prior to fitting the model was done on a sample of train-

ing data generated using cross-validation in a loop, rather than on a larger dataset.

This holds true for any hyperparameter adjustment as well. Data leakage and an

optimistic assessment of the model’s quality can occur if these actions are not per-

formed in a loop. The results of the k-fold cross-validation findings are frequently

summarized with the average overall quality of the model.

After this procedure there are estimated segmentation labels Ĩck of Gk , where

Ĩck = Mk(Gk), k[1, K]
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Then pseudo label was obtained using all the predicted estimated segmentation

labels:

Ĩc = ∪K
k=1Ĩck

Finally, the model M is trained by optimizing the obtained pseudo label set Ĩc

plus the ground truth vessel labels Ic:

L = Loss(Îc, Ic) + Loss(Îc, Ĩc)

where Îc = M(G), Loss is the chosen loss function.



33

3. EXPERIMENTAL RESULTS

3.1. Description of experiments

The loss is backpropagated andminimized usingAdam’s optimizationmethod..

The learning rate initial value is set to λ = 10−2, and annealed cyclically according

to the law of cosines until it reaches λ = 10−8. The training batch size is 6, and a

total of 25 epochs are trained for each dataset. The model was trained with randomly

cropped 256 × 256 patches with applied data augmentation techniques described in

the previous part.

3.2. Loss functions

For the experiments several loss functions were chosen and tested: standard

Cross Entropy and Weighted Cross Entropy as a baseline, Combo Loss and Focal

Loss.

Table 4 – Models with different Loss function performance

Loss function DRIVE CHASE-DB

AUC DICE AUC DICE

Cross Entropy 0.9889 0.8316 0.9918 0.8265

Weighted

Cross Entropy

0.9890 0.8320 0.9920 0.8271

Focal Loss 0.9891 0.8325 0.9922 0.8275

Combo Loss 0.9890 0.8322 0.9917 0.8260

Focal Loss for the small objects penalizes monotonically more for larger errors

and shows the best performance across the board, therefore it will be used in all

experiments. Combo Loss showed disappointing performance even with tweaked

α and β parameters; its performance was on par with Weighted Cross Entropy Loss

on DRIVE dataset and even lower on CHASE dataset.

3.3. K-fold cross-validation

K-fold cross-validation learning scheme overall improves the robustness of a

model output. A higher sensitivity means that the model is able to segment more

thin vessels and edge pixels.
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Table 5 – Results of different fold number K on DRIVE

k Sensitivity Specificity DICE Accuracy AUC

1 0.8451 0.9820 0.8287 0.9698 0.9881

2 0.8454 0.9819 0.8329 0.9701 0.9886

4 0.8465 0.9825 0.8333 0.9704 0.9889

8 0.8481 0.9826 0.8336 0.9705 0.9890

3.4. Stacked UNets
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Figure 14 – Dice/F1 performance dependence of number of layers

Table 6 – Results of different number of stacked UNet layers on DRIVE

n Sensitivity Specificity DICE Accuracy AUC

1 0.8380 0.9834 0.8316 0.9705 0.9886

2 0.8481 0.9827 0.8328 0.9705 0.9889

3 0.8481 0.9826 0.8336 0.9705 0.9890

4 0.8481 0.9820 0.8337 0.9705 0.9890

5 0.8480 0.9812 0.8332 0.9705 0.9889

From this graph 14 we can conclude that the optimal number of stacked UNet

layers is 3, because it is an optimal number of layers for DICE score metric and at the

same time Specificity is not much lower compared to baseline. Further increase of

this number didn’t increase DICE performance of the model and time to train model

became unreasonably high as well as Specificity became much lower compared to

the baseline.
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3.5. Model trained on DRIVE dataset

The Digital Retinal Images for Vessel Extraction (DRIVE) dataset consists of

40 images of size 584*565 with eight bits per color channel (3 channels). The train/-

validation/test splits for DRIVE are provided by the authors and the ground truth

manual annotations are given. The set of 40 images is divided into 20 images for

the testing set and 20 images for the training set.

Table 7 – Comparison with other baseline methods on DRIVE dataset

Method

and Year

Sensitivity Specificity DICE Accuracy AUC

R2U-Net

[Alo+19]

2018

0.7792 0.9813 0.8171 0.9556 0.9784

LadderNet

[Zhu18]

2018

0.7856 0.9810 0.8202 0.9561 0.9793

Dual

E-UNet

[WQH19]

2019

0.7940 0.9816 0.8270 0.9567 0.9772

IterNet

[Li+20a]

2020

0.7791 0.9831 0.8218 0.9574 0.9813

SA-UNet

[Guo+20]

2020

0.8212 0.9840 0.8263 0.9698 0.9864

BEFD-

UNet

[Zha+20]

2020

0.8215 0.9845 0.8267 0.9701 0.9867

SGL

[ZYS21]

2021

0.8380 0.9834 0.8316 0.9705 0.9886

My model 0.8480 0.9828 0.8339 0.9704 0.9893

stderr

×10−3
3 0.4 0.9 0.3 0.7
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Figure 15 – Inference results on one test DRIVE example. Clinicians may only

label some salient vessels while ignoring the ambiguous ones. Bottom left picture

shows the predicted vessel map: red pixels are false negative and green is false

positive. Bottom right picture shows the probability map that was generated by the

model. All of those images as a whole can be used by clinicians to drastically

improve segmentation results.

3.6. Model trained on CHASE dataset

CHASE DB1 dataset consists of 28 retinal images of size 999 × 960. There is

no official split into test and train sets. It was decided to use the most commonly
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used split. The first 20 images are used for training, and the remaining 8 images for

testing.

Table 8 – Comparison with other baseline methods on CHASE dataset.

Method

and Year

Sensitivity Specificity DICE Accuracy AUC

R2U-Net

[Alo+19]

2018

0.7756 0.9712 0.7928 0.9634 0.9815

LadderNet

[Zhu18]

2018

0.7978 0.9818 0.8031 0.9656 0.9839

Dual

E-UNet

[WQH19]

2019

0.8074 0.9821 0.8037 0.9661 0.9812

IterNet

[Li+20a]

2020

0.7969 0.9881 0.8072 0.9760 0.9899

SA-UNet

[Guo+20]

2020

0.8573 0.9835 0.8153 0.9755 0.9905

SGL

[ZYS21]

2021

0.8690 0.9843 0.8271 0.9771 0.9920

My model 0.8570 0.9857 0.8290 0.9774 0.9921

stderr

×10−3
5 0.3 1 0.9 0.4

Each result is reported as an average over 5 runs for DRIVE and CHASE DB

datasets along with the standard errors.
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Figure 16 – Inference results on one test CHASE example. Red pixels on the left

segmented is false negative and green is false positive.

3.7. Cross-dataset experiments and threshold optimisation

To prove the practicality of the model in real life, it should be tested on data

other than training. Actual retinal photographs can vary greatly in terms of reso-

lution of lighting conditions and image quality.The models trained on DRIVE and

CHASE datasets were selected and generated predictions for different than training

datasets.

The threshold optimization technique was applied for each model and dataset

in an attempt to close the performance gap. From the data set without training, 5
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images were selected, on which threshold optimization was performed, and then all

other images were tested with the best optimized threshold.

The results are present in the table 9, threshold optimization technique in-

creased performance in terms of DICE score for cross dataset experiments. This

means that models with a calibrated threshold are better at vessel segmentation for

new data.

This also means that the developed model is able to segment very different

retinal blood vessels, but performance may suffer if threshold calibration has not

been performed.

Table 9 – Cross dataset experiments DICE score results with and without threshold

optimisation technique(TOT).

DRIVE CHASE STARE

Trained dataset

DRIVE 0.3553 0.3905

DRIVE with TOT 0.5308 0.6857

CHASE 0.7570 0.8144

CHASE with

TOT

0.7949 0.8191

From the Figure 17 we can see that the number of false negative segmented

pixel is much lower compare to model with the original threshold and almost all of

the false positive pixels here is out liners of existing vessels therefore this CHASE

based vessel segmentation model showed good cross dataset performance.

From the Figure 18 we can see that the model trained on the DRIVE dataset has

overfit on the trained data. Even with threshold calibration the model couldn’t seg-

ment vessels near the nerve, the number of false negative segmented pixels is much

lower compared to the model with the original threshold, but also there are a lot of

non segmented vessels and a lot of false positive vessels that can confuse practition-

ers. These results can be interpreted as models trained on the DRIVE dataset have

bad adaptability and only show good results on the high quality retina images with

good lighting. Models trained in the CHASE dataset showed much better adaptabil-

ity even on vastly different DRIVE dataset after threshold optimisation.

The STARE dataset is much closer to the CHASE dataset in terms of light

quality and picture resolution compared to DRIVE dataset. Therefore threshold op-
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Figure 17 – Model trained on CHASE dataset. Inference results on one test

DRIVE example with threshold optimisation on the left and without on the right.

Red pixels is false negative and green is false positive.

Figure 18 – Model trained on DRIVE dataset. Inference results on one test STARE

example with threshold optimization on the right and without on the left. Red

pixels is false negative and green is false positive.

timization technique showed not a big difference in performance in terms of DICE

coefficient compared to the original model. But when the model was trained on

the DRIVE dataset threshold optimization technique showed big improvements in
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terms of DICE coefficient with AUC performance nearly identical compared to the

original model.

3.8. Artery/Vein segmentation

Artery/Vein segmentation task is to classify every pixel in the entire image of an

artery, vein, or background. This is a different task compared to A/V classification

task, where a vessel tree is available and then the classification should be performed

for each vessel pixel of the tree among two classes. To account for the greater

complexity of the task, the number of training cycles was doubled, and training was

done with 4 classes considering invalid pixels, as it proved to be useful for this task

[Hem+19]. The results are presented for the artery/vein segmentation problem.

Table 10 – Performance comparison for the artery/vein segmentation task. Perfor-

mance is reported on the entire image domain.

Method and Year DICE Accuracy AUC

Baseline model 0.9671 0.9671 0.9064

My model 0.9678 0.9681 0.9068

Figure 19 – Inference results of Artery/Vein segmentation on one test DRIVE

example. Arteries are colored red while veins are colored blue and uncertain pixels

are colored green.

Table 10 shows the results of the developed model, compared with baseline

SGL [ZYS21] model that was modified for artery/vein segmentation task. Model



42

was trained on the DRIVE dataset and showed improvements in all metrics. That

means that modifications introduced to the developed model are also increasing per-

formance in the artery vein classification task. Some qualitative results of the model

trained on DRIVE are shown in Figure 19.
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CONCLUSION

Summarizing the results of this work, the main stages were listed of the study

and the results obtained. Based on the results of the literature review, in order to

achieve the goal, the task was set of developing and implementing a model for the

retinal vessel segmentation based on autoencoder neural networks because those

solutions is relatively fast to train and segment blood vessels using trained model

along with with competitive segmentation performance compare to other segmen-

tation methods.

The analysis of the DRIVE, CHASE-DB and STARE datasets revealed serious

inconsistency in data: CHASE-DB and STARE datasets has high resolution with

background illumination and poor contrast images and DRIVE is opposite: consis-

tent good quality and contrast, but low resolution.

A set of methods was introduced for improving the model performance such as

stacked UNet method, k-fold cross validation technique, augmentation by rotation

of retina image and using Focal loss function with the highest performance, which

improved the results of previous researchers on tested DRIVE and CHASE datasets.

DICE on the DRIVE dataset score showed the most significant performance advan-

tage: 0.8339±0.0009 compared to the best model with 0.8316. All other metrics

namely sensitivity, specificity, accuracy and area under the error curve showed sim-

ilar performance compared to the state-of-the-art SGLmodel alongwith the standard

errors.

With threshold optimization introduced, the developed model showed com-

parable results to well researched methods on cross datasets experiments. Model

trained on the DRIVE dataset with threshold optimization technique has DICE score

0.7949 and 0.9774 AUC, meanwhile R2U-Net has lower 0.7928 DICE and 0.9784

AUC.

A new method of stacking autoencoders was successfully implemented and

tested. As well as threshold optimisation technique that greatly improved cross

dataset performance results on both variants of datasets.

Artery/Vein segmentation problem was also mentioned in this thesis. The best

segmentation model was modified for the artery/vein segmentation task. The model

was trained on the DRIVE dataset with 4 classes segmentation considering invalid

pixels, as it proved to be useful for this task. The model showed improvements
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of 0.9671 DICE, 0.9681 Accuracy and 0.9068 AUC metrics compared to baseline

model 0.9671 DICE, 0.9671 Accuracy and 0.9064 AUC that was also modified for

artery/vein segmentation task. That means that modifications introduced to the de-

veloped model are also increasing performance in the artery vein classification task.

These are promising results however require more thorough research.

For further research, it would be worth exploring experiments with datasets and

the performance of the model in real-life conditions in more detail as well as investi-

gating how improvement segmentation performance from the developed model can

improve classification.
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