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LIST OF ABBREVIATIONS 

Aut – autumn 

CTD - conductivity, temperature, and depth 

Dbar - decibar (equal to 1 meter sea water) 

F – females 

HELCOM - Helsinki Commission 

ICES - International Council for the Exploration of the Sea 

J1 – juveniles, 1’st stage 

J2 – juveniles, 2’nd stage 

Lat - latitude 

Long – longitude 

M - males 

MDS - multidimensional scaling 

nMDS – non-metric multidimensional scaling (nMDS) analysis 

NTRA - nitrate molar concentration (mmol/m3) 

OXY - oxygen concentration (ml/L) 

PC – principal component 

PCA – principal component analysis 

PHOS - dissolved inorganic phosphate molar concentration (mmol/m3) 

PRES - pressure at which samples were collected (dbar) 

PSU - Practical Salinity Unit, equivalent to per thousand or (0/
00) or to g/kg 

SAL – salinity (PSU) 

SLCA - silicate molar concentration, (mmol/m3) 

Spp - multiple species 

Spr – spring 

SST – sea surface temperature 

Sum – summer 

TEMP - Temperature (οC) 

V. – version 

Win – winter 
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INTRODUCTION 

There are many ways in which climate change can affect the ocean. For instance, water temperature 

is rising and consequentially the level of dissolved oxygen is decreasing. Furthermore, the 

concentration of carbon dioxide in the atmosphere is increasing, which causes acidification of water. 

The regional changes are also important: on the sites, where ice is melting, regional freshening 

occurs while regional salinification is detected in the areas of vast evaporation (Käse and Geuer, 

2018). Moreover, using nitrogen fertilizers can cause increasing levels of nitrogen compounds in 

water (Rhein et al., 2013). All these hydrographic changes can affect marine ecosystems. Plankton 

being small, sensitive to their environment water organisms, having fast reproduction rate and short 

life cycle quickly respond to these environmental changes. These features make plankton to be good 

bioindicators, suggesting us how environmental variations affect marine ecosystems. Therefore, the 

desire to better understand climate change influence on living water stocks has led to increased 

interest into long term changes in plankton dynamics (Beaugrand and Reid, 2003, 2012). There are 

already a number of studies analysing changes in plankton abundance or diversity in various seas 

and lakes, which demonstrated significant changes in plankton communities (Kozak and Gołdyn, 

2004; Rousseaux and Gregg, 2015). However, those changes are usually dependent on the regional 

hydrographic conditions, thus the results cannot be applied globally. 

In the Baltic Sea long term changes in plankton dynamics were also analysed. There were a number 

of studies investigated changes in phytoplankton diversity (Wasmund, Nausch and Feistel, 2013; 

Hjerne et al., 2019) and its responses to environment changes (Griffiths et al., 2020). Furthermore, 

studies on zooplankton trends in the Baltic Sea included the analysis of changes in zooplankton size 

and stock in the Northern Baltic sea (HELCOM, 2018) and response to hydrographic environment 

variability in the Southern (Musialik-Koszarowska, Dzierzbicka-Głowacka and Weydmann, 2019) 

and Southeastern Baltic Sea (Aleksandrov, Zhigalova and Zezera, 2009). However, even though the 

Western Baltic Sea is unique in its complex hydrographic conditions due to the in- and out-flux of 

water from the North Sea (Lehmann, Krauss and Hinrichsen, 2002), plankton dynamics in this area 

are only poorly studied and understood. Phytoplankton trends studies from the Mecklenburg Bight 

covered only the period from 1979 until 2005 (Wasmund and Uhlig, 2003; Wasmund et al., 2011) 

and there are no comprehensive studies of zooplankton trends in the Western Baltic Sea. Therefore, 

this study focuses on time series data from Mecklenburg Bight (Western Baltic Sea). It may reveal 

whether climate change (temperature) and related hydrographic shifts (salinity) or eutrophication 

(nutrients) as well as changes in the phytoplankton biomass have influenced the zooplankton 

abundance in the Western Baltic Sea  
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Aim and tasks: 

The aim of the study is to detect long-term (1998-2016) shifts in the Western Baltic Sea (Mecklenburg 

Bight) ecosystem and to indicate how links between plankton abundance and environmental 

conditions as well as between different plankton groups can be established. 

In order to achieve this aim, the following tasks will be performed: 

1. Analysing whether intraannual environmental variability has an influence on the abundance 

of plankton communities. 

2. Detecting monotonic increasing and decreasing long term (1998-2016) trends in the time 

series of the zooplankton abundance, phytoplankton biomass and hydrography variables. 

3. For the plankton taxa, demonstrating shifting trends, relationships between plankton 

abundance and environmental conditions have to be analysed and possible biological 

implications discussed. 

4. Investigating the relationship between zooplankton abundance and phytoplankton biomass. 
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LITERATURE REVIEW 

Plankton – definition, classification and role in the ecosystem 

Plankton are marine and freshwater organisms, which are unable to swim well enough to move 

against forces of tides and currents, therefore they exist in a drifting state. Organisms of some 

species are classified as plankton for their entire life, while others are qualified as plankton only in 

the beginning of their life and eventually become large enough to move against currents (National 

Oceanic and Atmospheric Administration, 2020). Most plankton species are microscopic organisms 

however they also include larger species like some crustaceans and jellyfish. Plankton organisms 

can be classified in several ways, including classification by size (macro, meso, micro, nano, and 

pico), metabolism (autotrophic vs. heterotrophic), by life history (meroplankton - temporary members 

of the plankton, mostly larval forms of some animals - and holoplankton - permanent members of 

the plankton) or by taxonomy (i.e., Crustaceous vs. Gelatinous zooplankton) (Lumini and Nanni, 

2019). However, the most basic categories divide plankton simply into two groups: phytoplankton 

(primary producers) and zooplankton (secondary producers) (Figure 1), although a clear separation 

between these two groups is not always possible. 

 

Figure 1 A simple plankton taxonomy according to Lumini and Nanni, 2019. 

Phytoplankton are defined as a group of microscopic, unicellular organisms that play an essential 

role as the base of food webs in aquatic ecosystems (D’Costa and Naik, 2019). They perform 

photosynthesis to produce energy, therefore phytoplankton are found close to the water surface 

(NOAA, 2017). Chlorophyll-containing photosynthetic protists may also occasionally have a 

heterotrophic nutrition and are called mixotrophs. One prominent example of mixotrophic organisms 
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are dinoflagellates, which include both photosynthetic and heterotrophic flagellates (Flynn et al., 

2013). Since the microscopic phytoplankton analysis also allows the quantification of heterotrophic 

organisms of the typical phytoplankton size (nano- and microplankton), sometimes unicellular 

heterotrophic organisms are also involved in phytoplankton analysis. Therefore mixotrophic and 

heterotrophic organisms were also included in the diverse phytoplankton classes, such as 

Cyanobateria and Dionphyceae, in this study.  

Zooplankton are small (usually less than 2 mm long) aquatic invertebrates which usually drift in 

deeper water throughout the daytime hours and venture up to the surface at night to feed on 

phytoplankton (NOAA, 2017). The best-known examples of zooplankton groups are copepods, 

cladocerans (water fleas) and rotifers (Hendrey, 2001). Zooplankton also sometimes includes 

protozoans, coelenterates, larval flatworms, mites, insect larvae and fish larval stages (Stanley 

Gregory, 2003). Cladocerans and copepods are the main crustacean zooplankton (Sommer and 

Sommer, 2006). These groups of zooplankton differ in their reproduction: cladocerans reproduction 

occurs by parthenogenesis of diploid females whereas males are often absent for many generations, 

while copepods reproduction occurs by sexual fertilization with males always being present. 

Therefore, when data about zooplankton is collected, adult copepods are usually distinguished by 

their sex while cladocerans are not. 

Phytoplankton and zooplankton are closely linked to each other and are dependent on several 

environmental and biological factors, which affect the growth of each community and the interaction 

between them (Aziz, Gharib and Dorgham, 2006). Phytoplankton rapidly reacts to environmental 

changes such as temperature, salinity and nutrient concentration of the water. Zooplankton usually 

consumes phytoplankton as energy source, thus changes of phytoplankton abundance can quickly 

affect zooplankton populations. In addition to their interaction, phytoplankton and zooplankton also 

play an important role in marine ecosystem in general. For instance, plankton is a beneficial food 

source for animals, especially in their larval stages, hence plankton studies aid in understanding the 

natural aquatic ecosystem and in predicting the number of fish which can be received from the ocean 

(Rodríguez et al., 1989). On top of that, studies of plankton may allow to grasp the impact of 

overfishing and the climate change. These facts altogether make plankton analysis a relevant and 

interesting topic in environmental research. 

Collection and storage of the plankton data  

Monitoring plankton 

There are several techniques to sample plankton from the water pond. Integrated per depth samples 

can be collected using a hose (Lindahl, 1986) or by pooling equal amounts of water collected from 
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various depths (Majaneva et al., 2009). In order to obtain plankton samples with high concentrations, 

nets are used. Net mesh-size depends on the plankton which should be collected. For example, to 

collect phytoplankton a net with a 10 μm mesh-size is recommended (HELCOM, 2020), while for 

mesozooplankton sampling net with 100 μm mesh-size is usually used (HELCOM, 2017a). Large 

mesh size can cause losing small-sized species as well as zooplankton nauplii from the sample, 

while choosing small mesh-size might reduce the efficiency of filtration and make large organisms 

to avoid the net (Garcia et al., 2020). Not only devices used to collect data might have an influence 

on the sampling results, there are other factors such as speed, direction and depth at which the net 

is hauled, subsampling techniques among other things. The differences in plankton collection 

methods can make it difficult to interpret the data and compare the results of sampling in time or in 

different locations. To avoid this, common guidelines for the plankton monitoring have to be 

developed and adopted by the research groups.  

Data quality control and storage 

Baltic Sea zooplankton time series data have been collected since the 1950s (Viitasalo, 1992; 

Ojaveer, Lumberg and Ojaveer, 1998). Sampling techniques and analysis methods have to be 

harmonized in order to obtain comparable data. Therefore, the Helsinki Commission (HELCOM) 

started Baltic Sea basin-wide coordination of zooplankton monitoring in 1979 (Helcom, 2017). 

HELCOM provides guidelines for monitoring plankton data, including techniques on describing how 

to sample plankton, the sample collection frequency, as well as quality control procedures which is 

required to generate relevant and reliable data. Currently, the HELCOM members (Denmark, 

Estonia, Finland, Germany, Latvia, Lithuania, Poland, Russia, Sweden and the European Union) are 

obliged to conduct monitoring of coastal waters and to report the data to the Commission. All data 

collected in the Baltic Sea are available for each of the HELCOM sub-basins (Figure 2) from the 

International Council for the Exploration of the Sea (ICES) data portal. The main objective of ICES 

is to improve the scientific knowledge of marine environments and its living resources as well as to 

provide advice to competent authorities (ICES – HELCOM, no date). Consequently, various datasets 

related to marine environments are stored in this portal and can be freely accessed by researchers.  
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Figure 2 Sub-basins of the Baltic Sea (Helcom, 2001). 

The main challenges with plankton time series statistical analysis  

There are several common issues that scientists face when working with plankton time series data, 

especially unevenly spaced data, seasonality in time series and complicated interpretation of the 

results. Researchers developed different approaches to overcome these problems and to present 

informative statistical analysis results which are discussed below. 

Unevenly spaced data 

Time series can be defined as a sequence of observations occurring in time. When measurements 

are performed in regular time intervals, then the time series are evenly spaced. Most methods 

dealing with time series can only handle regular time series (Stanley Gregory, 2003). However, 

unevenly sampled time series are common in many real-life situations. Plankton data are mostly 

collected in irregular time intervals. The main aim of phytoplankton sampling is to cover the growth 

season, therefore winter phytoplankton measurements are only conducted rarely. In zooplankton 
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time series data gaps also occurs for a variety of logistical reasons common to work at sea (Valdés 

and Moral, 1998). 

There are different approaches to deal with unevenly spaced data. One of the ways is to aggregate 

data calculating arithmetic mean over all samples for a station within a season (Wasmund and Uhlig, 

2003). As the timing of blooms differs among individual areas, the definition of season is needed. 

HELCOM recommended the definition of seasons by months in the Baltic Sea (Table 1). Also, 

plankton data can be aggregated for two-month periods (Beaugrand and Reid, 2003). 

Table 1 Definition of seasons (HELCOM, 1996) 

Season Belt Sea, Sound, Kattegat Baltic proper 

Spring February-April March-May 
Summer May-August June-September 
Autumn September-November October-December 
Winter December-January January-February 

The gaps in plankton series can also be filled by imputing missing values (Valdés and Moral, 1998). 

There are various interpolation methods, but in general, good interpolation technique should meet 

these criteria: it should not require a lot of data to fill in missing values; estimation of model 

parameters and missing values should be permitted at the same time; large-series computation must 

be efficient and fast, procedure should be applicable to stationary and non-stationary time series 

(Beveridge, 1992) and selected interpolation methods should be accurate and robust (Lepot, Aubin 

and Clemens, 2017). 

Finally, gaps in time series can be overcome by local smoothing (Fryer and Nicholson, 1999; Kane, 

2007; Bode et al., 2015). Local smoothing operates on the assumption that between a criterion 

variable and a set of predictor variables, there is an unknown but continuous function which 

estimates the value of each point as a weighted average of points defined as "close" by the predictor 

variables (Huber, 1977) (Figure 3). 
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Figure 3 Example for local smoothing. Only a subset of data points (1/3 here) are used to evaluate the 
function for a specific predictor. The closest points have the largest weight for the evaluation. 

In summary, the issue of irregularities in plankton sampling can be solved by different methods. The 

main groups of techniques, used to convert irregular plankton time series into evenly spaced time 

series are data aggregation, interpolation of missing values and imputing missing values by local 

smoothing.  

Seasonality in time series 

Plankton is very sensitive to environmental changes and responds quickly to variations in water 

temperature or salinity (Musialik-Koszarowska, Dzierzbicka-Głowacka and Weydmann, 2019). As a 

consequence, it also reacts to environment seasonality. It was shown, that both phytoplankton and 

zooplankton exhibit consistent seasonal patterns in taxonomic composition and size structure 

(Benedetti et al., 2019). For example, in spring the water temperature is increased by sunlight which 

creates a thermocline trapping nutrients at the ocean surface. Phytoplankton quickly responds to 

these conditions, letting them absorb energy and intake nutrients, which they need for 

photosynthesis and growth, which eventually causes spring blooms and consequently strong 

increase in phytoplankton abundance. Similarly, as autumn begins, vertical water mixing may bring 

nutrients up, resulting in smaller fall blooms (Garrison, 2012). If data is aggregated as described in 

the previous section, every season can be analysed separately (Wasmund and Uhlig, 2003). It is 

important to recognize and remove seasonal components from the time series so they would not be 

confused with long-term trends. 
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Time series can be decomposed into three components: a trend component Tt, a seasonal 

component St and a remainder (error) component Et. A trend is a long-term change (increase or 

decrease) in time series. Seasonality in time series data can be described as a regularly repeating 

pattern that happens on fixed intervals (such as the calendar year) (Gelder, 2018). The remainder 

component comprises the remaining variation in a time series once any trend and seasonal variation 

have been removed (Gary Napier, 2020). The decomposition can be either additive or multiplicative 

(Equation 1).  

Equation 1. Time series decomposition. 1) Additive decomposition 2) Multiplicative decomposition. Yt 

– time series value (actual data) at period t, Tt – trend component, St – seasonal component, Et – 
remainder component.  

1) 𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 +  𝐸𝑡            2)𝑌𝑡 = 𝑇𝑡 ∗ 𝑆𝑡 ∗ 𝐸𝑡    

The additive model is used when the trend and seasonal variation act independently, while a 

multiplicative model should be chosen when seasonal effect depends on the size of the trend (Gary 

Napier, 2020) (Figure 4). 

 

Figure 4 Examples of data for additive (left) and multiplicative (right) models. 

Seasonal movements can be large enough that they mask other characteristics of the data that are 

object of interest for researchers. For example, seasonality in time series can hamper the analysis 

of long term trends. The process of estimating and removing seasonal effects from the time series 

in order to better reveal certain non-seasonal features is known as seasonal adjustment. Removing 

the seasonal component directs focus on characteristics, which seasonal movements tend to mask, 

such as long-term changes of the series (MCD - Seasonal Adjustment Frequently Asked Questions, 

2017). In plankton time series, seasonally adjusted data make the comparison of long-term trends 

of different plankton species and environmental variables possible. 
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Challenges interpreting the results of the analysis 

Even when statistical analysis is already performed, the interpretation of the results is usually not 

straightforward. Although currently clear guidelines for plankton sampling have been developed to 

obtain harmonized data, some challenges related to plankton data analysis remain. First, 

technologies used to monitor plankton may advance over time which may alter the sampling results. 

Moreover, although the zooplankton are collected by towing fine-meshed nets through the water, not 

all species are representatively captured by this method. Some species are too small and cannot be 

captured using nets, others are too fragile and do not survive collection by nets and subsequent 

processing in chemical preservatives (Lalli and Parsons, 1997). Also, changes in zooplankton 

abundance might occur because younger forms of organisms escape the net and are therefore not 

detected. Taken together, it becomes clear that the detected plankton abundance cannot always 

represent the actual plankton abundance. Therefore, other factors that might have an influence on 

the detection of plankton should be kept in mind interpreting the results of the statistical analysis. 

Research on plankton long-term trends 

Plankton and environmental changes 

Both phytoplankton and zooplankton respond strongly on their surrounding environment. 

Phytoplankton depends on many physical features of their environment such as water salinity, 

temperature, availability of nutrients or light (Käse and Geuer, 2018). Various physiological 

processes of zooplankton are also sensitive to water temperature (Mauchline, 1998). Moreover, their 

reproduction rate is fast, and they have short life cycle, so they quite quickly respond to the changes 

in the environment and therefore are good bioindicators (Mitsch and Gosselink, 2011). For these 

reasons, long-term trends of phytoplankton and zooplankton are analysed to provide a better 

understanding about the influence of changes in environment on marine ecosystems. 

Previous plankton time series studies have shown that dynamics in marine ecosystems are 

constantly changing. For example, assessing the trends of phytoplankton composition at a global 

scale have shown, that there is significant decline in diatoms percentage of total phytoplankton 

(Rousseaux and Gregg, 2015). It was also shown that primary production in the Arctic Ocean has 

increased by 57% between 1998 and 2018 due to the ice loss (Lewis, Van Dijken and Arrigo, 2020). 

Zooplankton communities are also changing: the increasing water temperature leads to shift towards 

zooplankton communities dominated by small copepods (Rice, Dam and Stewart, 2015; Kelly et al., 

2016). Demonstrated changes in marine ecosystems prove that long-term trends of the plankton 

data can provide valuable information about how climate change affects marine ecosystems and 

might help to predict their alteration in the future. 
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Zooplankton trends in relation to phytoplankton 

Relationships between zooplankton and phytoplankton have already been studied for a long time. 

Phytoplankton, serving as a food for zooplankton organisms, suggest that peaks in zooplankton 

abundance should coincide with peaks of phytoplankton abundance or immediately follow it. 

However, the dynamics of these two groups of plankton are usually more complicated. Two main 

hypotheses were suggested explaining the inverse correlation between phytoplankton and 

zooplankton. The grazing hypothesis (Harvey et al., 1935) suggests that high concentrations of 

zooplankton lead to grazing down phytoplankton while low zooplankton concentration let 

phytoplankton to thrive. The animal exclusion hypothesis (Hardy, 1936) suppose that when 

concentration of phytoplankton is high, zooplankton just refrain from coming up to the water surface 

or come up for a shorter time. 

Most recent studies usually describe relationships between zooplankton and phytoplankton either 

by bottom-up or top-down control. Bottom-up control refers to the nutrients, which phytoplankton 

consumes as food: higher concentrations of nutrients let phytoplankton to thrive and thus increase 

zooplankton abundance as well. Oppositely, top-down cascades refer to the grazing of 

phytoplankton by higher organisms in the food chain. 

Most studies examining top-down cascades involve freshwater ecosystems. The reason could be 

historical – lake studies usually were performed to learn about the regulation of algal blooms induced 

by cultural eutrophication (Hessen and Kaartvedt, 2014). For example, it was shown, that in Malta 

Lake (artificial lake in Poland) the abundance of nanophytoplankton was limited by zooplankton 

grazing, whereas the development of large phytoplanktonic organisms was stimulated (Kozak and 

Gołdyn, 2004). However, this tendency does not always apply: in a highly eutrophic lake only 

nanophytoplankton species from certain taxonomic groups are suppressed by zooplankton (Gołdyn 

and Kowalczewska-Madura, 2008). 

The studies in marine ecosystems are more oriented to fish yield and consequently, to bottom-up 

processes (Hessen and Kaartvedt, 2014). It was shown that changes in phytoplankton communities 

can affect the fish yield (Daniel M. Ware and Richard E. Thomson, 2005; Frederiksen et al., 2006). 

Originally it was assumed that in contrast to freshwater plankton, top-down cascades are weak in 

marine ecosystems (Shurin et al., 2002). However, later it was demonstrated, that these 

relationships exist, and predators have an influence on copepods abundance, while copepods itself 

reduce large phytoplankton species but simultaneously promote small algae (Stibor et al., 2004). 

The difference of marine ecosystems to lake trophic cascades can be explained by the fact, that 

dominant zooplankton in lakes are cladocerans while in marine ecosystems copepods are the most 

abundant organisms. Cladocerans suppress small phytoplankton, while copepods suppress large 
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ones (Sommer and Sommer, 2006). Even more, despite phytoplankton showing very few links to the 

physical environment, zooplankton have positive relationship with phytoplankton throughout the 

North Atlantic, which suggests that studying marine ecosystems by the bottom-up approach alone 

might be an over-simplification (Allen, 2019). 

In summary, phytoplankton and zooplankton dynamics are closely connected. Both positive and 

negative correlation are observed between abundances of these two plankton groups. Although the 

relationship of phytoplankton and zooplankton is subject of interest for a long time, there are only 

few studies that analyse their direct relationship. 

Plankton in the Baltic Sea 

The Baltic Sea is the largest inland brackish sea in the world. It is connected to the North Sea and 

the Atlantic Ocean only via Skagerrak and Kattegat straits. The salinity of the water in the Baltic Sea 

depends on the introduction of saline marine water from the North Sea (usually during winter storms) 

and freshwater supply from the rivers (Graham and Bergström, 2001). Therefore, a strong marine 

salinity gradient is characteristic to it, changing from highly saline water near the traits to near 

freshwater in the innermost parts (Snoeijs-Leijonmalm, Schubert and Radziejewska, 2017). The 

climate change has caused significant changes in the hydrographic properties of the Baltic Sea: in 

certain areas water salinity has decreased due to increased influx of freshwater  (HELCOM, 2017b), 

surface water has warmed in all seasons since 1985 (HELCOM, 2013) and the number of anoxic 

areas has significantly increased (Hansson, Andersson and Axe, 2011). These characteristics 

encouraged scientists to explore the dynamics of phytoplankton and zooplankton in the Baltic Sea. 

Dominant phytoplankton in the Baltic Sea are diatoms, dinoflagellates and cyanobacteria. The study 

of the long-term data from the Baltic Sea has revealed a relationship between water temperature 

and phytoplankton composition - mild winters were associated with a decrease in diatom growth 

afterwards and allowed motile dinoflagellates to bloom instead (Wasmund, Nausch and Feistel, 

2013). Similarly, it was demonstrated that changes in water temperature are associated with earlier 

spring blooms of diatoms and dinoflagellates and decreased diatom bloom magnitude (Hjerne et al., 

2019). Recent research showed that the evidence of summer phytoplankton biomass relation to 

regional climate is relatively weak, and emphasized the importance of local environmental conditions 

(Griffiths et al., 2020).  

A recent experimental study has shown that most common Baltic Sea benthic organisms prefer 

diatoms over cyanobacteria (Hedberg et al., 2020), however lately less diatoms are reaching benthic 

fauna while cyanobacteria abundance trends are increasing. This could cause changes in 

zooplankton mean size and total stock. An evaluation of these properties in the Northern Baltic Sea 
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has shown that in some areas zooplankton mean size and/or total biomass have declined during the 

last decades (HELCOM, 2018). Hydrographic environment is also important for zooplankton: 

previous studies focusing on the Southern (Musialik-Koszarowska, Dzierzbicka-Głowacka and 

Weydmann, 2019) and Southeastern (Aleksandrov, Zhigalova and Zezera, 2009) Baltic Sea have 

demonstrated that zooplankton dynamics are strongly associated with water temperature and 

salinity. 

In summary, the Baltic Sea has a long history of investigations of its response to climate change. 

Being the largest inland sea and having low salinity compared to many other seas makes it unique 

and attracts the attention of researchers, who investigate the changes in hydrographical variables or 

dynamics of phytoplankton or zooplankton over time. However, not much is known about the 

zooplankton dynamics in the Western Baltic Sea. The fact that plankton communities are highly 

dependent on the local environment suggests that the time series analysis of the Western Baltic Sea 

are also worth deeper investigation. 
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METHODS 

Data 

The data was collected at station TF-0012 (Mecklenburg Bight) which is in the Belt Sea (Figure 2) 

and provided by The Leibniz Institute for Baltic Sea Research Warnemünde, Germany. Samples 

were collected and analysed according to the HELCOM COMBINE Baltic Sea monitoring guidelines 

(Helcom, 2017). All datasets were provided as Excel documents. 

Hydrography data 

Hydrography data covered the period between 1998 and 2018. A list of measured variables including 

their explanation is provided in the Table 2. 

Table 2. Hydrography variables. 

Variable Unit Designation 

NTRA mmol/m3 Dissolved nitrate molar concentration 
OXY ml/L Oxygen concentration 
PHOS mmol/m3 Dissolved inorganic phosphate molar concentration 
PRES dbar Pressure at which samples were collected 

SAL PSU Salinity 
SLCA mmol/m3 Dissolved silicate molar concentration 
TEMP οC Temperature 

The surface and the bottom water differs in its hydrographic properties (e.g. sea surface water 

temperature (SST) can be higher than the bottom water temperature). Also, the surface water has a 

higher seasonal variability than the bottom water. For this reason, vertical structuring has to be taken 

into account, when long-term variation in the plankton abundance is studied. However, the 

zooplankton data is vertically integrated, thus any high vertical resolution in environmental factors 

cannot be linked to zooplankton responses. Therefore, it was decided to create two separate data 

frames: one representing surface water (PRES ϵ [0, 4]) and one representing deep water (PRES ϵ 

[15, 20]). The average values of variables in the specified depth on the specific day were used.  

Phytoplankton biomass time series 

Phytoplankton biomass time series covering the period between 1980 and 2016 contained 515 

phytoplankton taxa assigned to the classes Bacillariophyceae, Chlorophyceae, Choanoflagellatea, 

Chrysophyceae, Ciliophora, Cryptophyceae, Cyanophyceae, Dictyochophyceae, Dinophyceae, 

Ebriophyceae, Euglenophyceae, Incertae sedis, Prasinophyceae, Prymnesiophyceae and 

Trebouxiophyceae. For diverse classes such as Cyanophyceae and Dinophyceae, taxa assigned to 
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orders were provided, because orders represent deeper taxonomic groups which use different 

strategies to generate energy (autotrophic, mixotrophic and heterotrophic taxa). Also, a group of 

“others” was introduced, where unidentified phytoplankton as well as phytoplankton not belonging to 

any of the previously mentioned classes were assigned. Wet weight (µg/L) was provided as 

phytoplankton biomass parameter. Before transferring the information into Python data frames, the 

area of the sampling was filtered according to the coordinates (lat. [54.3063, 54.3198], long. [11.55, 

11.5567]) (TF-0012 station, Mecklenburg Bight). Two separate data frames (one for phytoplankton 

classes and one for Cyanobacteria and Dinophyceae orders) were created, where each column 

represented class or order respectively and rows represented samples, collected at a specific point 

in time. 

Zooplankton abundance time series 

Zooplankton abundance (counts/m³) data from TF-0012 station (Mecklenburg Bight) covered the 

period between 1998 and 2018. The data was structured into three main groups: copepods, 

cladocerans and “others” (Table 3).  

Table 3 Zooplankton taxa and groups kept for further analysis. The groups labelled as removed were 
not included into downstream analysis due to infrequent detection. Abbreviations: L-larvae, N-nauplii, 
T-trochophore. 

Copepods   

Kept for the analysis: Acartia spp. (Acartia bifilosa, Acartia longiremis, Acartia tonsa); Centropages spp. 
(Centropages hamatus, Centropages nauplii, juvenilles); Eurytemora spp. (Eurytemora affinis); 
Harpacticoidea; Microsetella; Oithona similis; Pseudo/Paracalanus spp. (Paracalanus parvus, 
Pseudocalanus spp.); Temora longicornis; others. 
Removed: Calanus spp.; Centropages typicus (adults), Euterpina; Limnocalanus macurus; Longipedia. 

Cladocerans 

Kept for the analysis: Bosmina spp; Cladocera; Evadne nordmanni; Podon intermedius; Podon leuckartii; 
Pleopsis polyphemoides. 
Removed: Cercopagis pengoi; Evadne anonyx; Evadne spinifera; others. 

Others 

Kept for the analysis: Alaurina; Anthoathecatae; Asterias; Balanus N+L; Bivalvia L;  Carcimus; Crangon; 
Ctenophora; Euphysa; Fritellaria; Gastropoda L; Gymnoleata; Oikopleura; Pectenariidae; Polychaeta 
(Harmothoe, Polychaeta L, Polychaeta T, Spionidae L); Sagittidae;  Synchaeta; Teleostei; Tintinnida; others. 
Removed: Aurelia; Diastylis; Facetotecta L; Gammaridea; Keratella; Mysidae; Nematoda; Ostracoda;; 
Phoronis; Rathkea; Sagittidae; Sarsia; Trematoda; Trochophora; Turbellaria. 

Not all zooplankton data was analysed further. Some of the species were only sparsely detected and 

therefore are not suitable for analysing long term trends in their abundance. Hence, only the taxa, 

containing at least five measurements in the same month per time series were included in the further 

analysis. Since most often samples were not collected more than once per month, this cut-off also 

excluded taxa which were not detected at least in five distinct years. After applying this threshold, 
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Cercopagis pengoi, Evadne anonyx, Evadne spinifera and “others” were removed from the 

cladocerans group. In the plankton group of species, not belonging to cladocerans or copepods 

(“others”) nearly half of the given taxa did not meet this criterion, therefore fifteen taxa (Table 3) were 

not analysed further. Polychaeta class larvae (Harmothoe, Polychaeta L, Polychaeta T, Spionidae 

L) were summed up and further analysed as continuous Polychaeta class. In the copepods group 

Calanus spp.; Centropages typicus (adults), Euterpina; Limnocalanus macurus and Longipedia were 

not detected often enough to be kept for further analysis.  

For the copepods the stage of life (N - nauplii, J1 (juveniles 1’st stage), J2 (juveniles 2’nd stage) and 

sex for the adults (females, males) were provided. Usually for nauplii and juveniles, distinct species 

cannot be distinguished from each other. Therefore nauplii and juveniles were assigned to a specific 

genus, but not specific species. 

Software 

The data was provided as Excel documents (.xlsx format). For further analysis Jupyter notebooks 

(Version of the notebook server - v. 6.0.0) were used running a Python (v. 3.7.3) kernel. All data was 

imported into Pandas v. 0.24.2 (The pandas development team, 2020) data frames. For the 

calculations and plots other Python packages and libraries, such as Matplotlib v. 3.2.1 (Hunter, 

2007),  Numpy v. 1.18.4 (Harris et al., 2020), Seaborn v. 0.9.0 (Waskom et al., 2017), Scipy v. 1.4.1 

(Virtanen et al., 2020) also were used. 

Data preprocessing 

Python modules (Appendix 3.1, Appendix 3.2) were written to import the data from the Excel files so 

that all data frames would be represented in a similar structure. Several issues, common to time 

series analysis, such as unevenly spaced data, missing values and seasonality in time series were 

dealt with before applying statistical methods to it. Main data preprocessing steps and created new 

data frames are represented in Figure 5, details of which will be presented later in this section. 
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Figure 5 Data preprocessing steps and created data frames. Yellow ovals indicate the challenges 
during data processing, intermediate data frames are shown in grey, green rectangles represent data 
frames used for the statistical analysis. 

Outliers in the data 

For each variable (plankton abundance/biomass, hydrography variables) box plots were created 

(Appendix 3.3), representing the range of variable values for each month (e.g. Supplementary Figure 

1). There are some outliers in the raw data, however, it was decided to keep them, since it was 

assumed, that they did not appear due to sensor errors or human mistakes (data was validated) and 

are important to describe the variability of the system. 

Dealing with unevenly spaced data 

All time series (hydrography variables, phytoplankton and zooplankton abundance) were unevenly 

spaced. From the bar plot (Supplementary Figure 2) it can be seen, that hydrography samples were 

not collected in June, September and December and only very few zooplankton samples were 

collected during these months. 

To obtain evenly spaced data frames were reshaped so that each row would represent the median 

value for the particular month (Appendix 3.4). The example of the formed monthly data frame is 

represented in Table 4.  
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Table 4 Hydrography variables data frame (1998-2018) where each row represents one month. For 
clarity, only a small subset of the data is shown. 

 Year  Month TEMP OXY SAL NTRA PHOS SLCA 

1998 

1 4.101 7.877 14.902 4.670 0.670 16.400 

2 2.580 7.358 16.897 6.590 0.670 16.000 

3 3.659 9.008 10.425 3.180 0.300 13.100 

··· ··· ··· ··· ··· ··· ··· 

10 10.252 6.790 17.135 1.360 0.450 17.300 

11 NA NA NA NA NA NA 

12 NA NA NA NA NA NA 

1999 

1 2.752 8.070 13.933 6.800 0.580 15.200 

2 2.465 8.348 14.789 7.860 0.600 16.900 

3 3.874 9.767 8.529 4.050 0.390 13.300 

 ··· ··· ··· ··· ··· ··· ··· 

Dealing with missing values 

Missing values in the time series were replaced by the mean value of the two closest months (e.g. 

mean of May and July for June) using a moving average function (window size – 3, centre - true). 

Remaining missing values were replaced by the median value of specific month (Appendix 3.5). 

Detecting and removing seasonality 

For the Mann-Kendall test (see p. 25) data cannot be seasonal. To check for seasonality of the data, 

autocorrelation plots were used (“autocorrelation_plot” function from Pandas (Appendix 3.3)).To 

avoid seasonality in time series the mean value for the months of the specific season (Table 1 (Belt 

Sea)) was calculated for each variable using monthly data (Dealing with unevenly spaced data p. 

23) with filled missing values (Dealing with missing values p. 23). Newly created data frames (e.g. 

Table 5) were used to perform Mann-Kendall test on each season time series separately.  

Table 5 Data frame representing hydrography variables for spring season (1998-2016). The mean value 
of the hydrography variables in February, March and April is calculated per year. 

Year TEMP OXY SAL NTRA PHOS SLCA 

1998 4.277 8.290 12.388 3.797 0.378 12.617 

1999 4.287 8.988 10.688 4.673 0.400 13.475 

2000 4.152 9.093 12.523 2.680 0.322 10.283 

··· ··· ··· ··· ··· ··· ··· 

2014 4.878 8.351 13.672 1.737 0.313 7.675 

2015 5.009 8.401 12.079 1.878 0.275 7.925 

2016 5.680 8.418 12.269 0.947 0.250 4.950 
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Statistical methods 

Kruskal-Wallis test and Post hoc Dunn‘s test 

The Kruskal-Wallis test was used to find out if median of phytoplankton biomass or zooplankton 

abundance is statistically significantly different on any of the seasons. To perform this test SciPy 

“stats.kruskal” function was used. Dunn's multiple comparison post-hoc test (scikit-posthocs v. 0.6.7 

(Terpilowski, 2019) Python package) was used to determine which seasons differ from each other 

season. Both tests were performed with a chosen significance level of p = 0.05. 

The results of these tests were used to find seasons when species are most abundant (Appendix 

3.6). For example, species are considered as “spring” species not only if the median value of their 

abundance is the highest in spring, but also if the median value in spring is not statistically 

significantly different from the season with highest median abundance value). 

Non-metric multidimensional scaling analysis 

The non-metric multidimensional scaling (nMDS) was used to identify the most similar years and 

those which show the largest difference comparing hydrography variables, phytoplankton biomass 

data and zooplankton abundance data (Appendix 3.7). Firstly, distances (𝑑𝑖𝑠𝑡1
 , 𝑑𝑖𝑠𝑡2

 , … 𝑑𝑖𝑠𝑡𝑛
 ) 

between each variable for every pair of years were calculated using the dynamic time warping (DTW) 

technique. For this purpose, the DTAIDistance v. 2.0.0 library was used. The general distance 

between each pair of years was calculated using the Euclidian distance formula (Equation 2). These 

distances were used to fill a symmetric distance matrix representing distances between years (Figure 

6). Finally, using Scikit-Learn’s “Manifold.MDS”, nMDS plots were created. Stress values are used 

to represent the difference between distances in the two-dimensional space compared to the 

complete multidimensional space. Stress values calculated using the “Manifold.MDS” were not 

normalized, therefore Kruskal’s Stress-1 formula (Equation 3) was used to calculate normalized 

stress values. 

Equation 2. Euclidian distance formula. 

𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √𝑑𝑖𝑠𝑡1
 2 + 𝑑𝑖𝑠𝑡2

 2 + ⋯ + 𝑑𝑖𝑠𝑡𝑛
 22
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Figure 6 Creation of the distance matrix for the nMDS analysis (p. 24). 

 

Equation 3. Kruskal's Stress-1 definition. δij refers to the Euclidean distance, across all dimensions, 
between points i and j, dij represents the disparities that are the result from the transformation of the 
dissimilarities. 

𝑆𝑡𝑟𝑒𝑠𝑠 =  √
∑(𝑑𝑖𝑗 − 𝛿𝑖𝑗)

2

∑ 𝑑𝑖𝑗
2  

Hierarchical clustering 

Hierarchical cluster analysis was used to illustrate the most distant points in two-dimensional graphs 

received by nMDS. The single linkage clustering was applied using SciPy’s “cluster.hierarchy” 

(Appendix 3.7). 

Mann-Kendall test 

pyMannKendall v. 1.4.1 (Hussain and Mahmud, 2019) package was used to perform a Mann-Kendall 

test (chosen significance level p = 0.05) (Appendix 3.8). This test was used to identify monotonic 

upward or downward trends in the time series. The Mann-Kendall test can be applied to the data, 
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which is not seasonal (see Detecting and removing seasonality, p. 23) and has only one data point 

per time period (see Dealing with unevenly spaced data p. 22) (Glen, 2016).  

Calculating correlation 

The "spearmanr" function from SciPy was used to calculate the Spearman correlation coefficient 

with a chosen significance level of p = 0.05 (Appendix 3.8).  
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RESULTS 

Influence of short-term changes in environmental conditions on plankton 

communities 

Plankton abundance patterns were scanned for differences to elucidate the effect of short term 

changes in environmental conditions on plankton communities. For that purpose, nMDS (p. 24) was 

performed. Even though the stress values > 0.2 indicate that the representation of the distances 

between years in 2-dimensional graphs are not perfect, it still can be noticed, that 2013 shows a 

large difference from the other years in phytoplankton classes and orders as well as in zooplankton 

cladocerans and copepods groups abundance data (Figure 7). 

No significant differences between 2013 and the other years were noticed with respect to the median 

values of the hydrography variables (Supplementary Table 1). However, comparing median values 

for each month with multiannual median values, significant differences in five out of six studied 

hydrography variables became apparent for March 2013 (Table 6). Moreover, it was shown, that for 

twelve out of sixteen studied phytoplankton classes, biomass in March 2013 was lower than usually 

in March during the studied period (Supplementary Table 2). The general phytoplankton biomass 

also was lower in March of 2013 (386.026 µg/L) than usual (median value 987.335 (503.866-

1842.980) µg/L) for March 1998-2016). Analysis of the copepods species, for which the stage of 

development was also provided, have shown, that for most species nauplii abundance was lower 

and adults’ abundance was higher in March of 2013 than other years from the period between 1998 

and 2018 (Table 7).  

Table 6 Hydrography variables in March 2013 compared to March in 1998-2018. Only oxygen 
concentration (OXY) does not differ significantly from the concentrations detected in other years. 

Variable March 2013 Median (March 1998-2018) IQR(March 1998-2018) 

NTRA 4.155 0.280 0.070 - 1.572 

OXY 9.288 9.008 8.690 - 9.563 

PHOS 0.620 0.180 0.120 - 0.360 

SAL 9.418 11.55 10.13 - 12.17 

SLCA 17.50 7.500 3.000 - 12.75 

TEMP 0.774 3.874 2.822 - 4.379 
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Table 7 Copepods abundance in March 2013 compared to March during 1998-2018. Median values with 
IQRs provided in Supplementary Table 3. 

Copepods species Nauplii Adults 

Acartia spp. less more 

Calanus spp. more - 

Centropages spp. less more 

Oithona similis less - 

Pseudo/Paracalanus spp. more more 

Temora longicornis less more 

 

 Figure 7 Results of the nMDS analysis. Biomass patterns of phytoplankton classes and orders as well 
as abundance patterns of copepods and cladocerans groups were different in 2013 compared to other 
years. Plot colours represent hierarchical clustering results (p. 25). s – stress values. 
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Long term shifts in plankton communities and changes in environmental 

conditions 

Exploratory data analysis has shown, that data is seasonal. For example, autocorrelation plots 

demonstrate a yearly seasonality in hydrography data (Supplementary Figure 3). Some of the 

zooplankton species are more abundant in spring, while others appear more frequent in autumn 

(Supplementary Figure 4). As expected, the highest phytoplankton biomass values are present 

during spring and autumn blooms. Moreover, it could be shown that “spring” species (see Kruskal-

Wallis test and Post hoc Dunn‘s test, p. 24) show higher correlation to hydrography variables in 

spring than to the complete time series (). Altogether, including the results from nMDS analysis 

suggest, that trends of plankton abundance and changes in hydrographic conditions should be 

analysed separately for each season.  

The results of the Mann-Kendall test have shown, that in sea surface (0-4 m) water nitrates 

concentration is decreasing in spring, water temperature is increasing in summer and water salinity 

along with nitrates and inorganic phosphates concentration is decreasing in winter. Deep water (15-

20 m) hydrography variables did not show any significant monotonic trends in the studied period. 

Significant monotonic shifting trends of phytoplankton classes and orders are represented in Table 

8. For seasons with detected trends, the Spearman correlation coefficient to hydrography variables 

was calculated. In some cases, correlation values between hydrography data and phytoplankton 

data showed coincidence with trends of hydrography variables. For example, in summer water 

temperature is increasing and negative correlation exists between Chrysophyceae class biomass 

and surface water temperature. Therefore, it is possible, that due to increasing water temperature, 

biomass values of Chrysophyceae class are decreasing. 
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Table 8 Phytoplankton classes and orders with significant monotonic increasing or decreasing trends 
which were detected at least in one of the seasons. Spearman correlation coefficient shown for 
hydrography variables in seasons with detectable trends. Spr – spring, Sum – summer, Aut – autumn, 
Win – winter.  

 Decreasing Increasing Correlation 

Phytoplankton classes 

Bacillariophyceae Sum - Sum: SLCA -0.6316 

Chrysophyceae Sum - Sum: TEMP -0.4596 

Cryptophyceae Spr, Sum, Aut, Win - Sum: SLCA -0.714, TEMP -0.5772 

Dictyochophyceae - Win Win: PHOS -0.5178 

Euglenophyceae Sum - Sum: SLCA -0.6614 

Prymnesiophyceae - Sum - 

Trebouxiophyceae - Sum - 

Cyanophyceae class orders 

Chroococcales - Spr, Aut, Win Spr: NTRA 0.5316 

Nostocales - Spr, Aut, Win Aut: SAL -0.4827 

Oscillatoriales - Spr, Sum, Aut - 

Dinophyceae class orders 

Dinophysales, AU - Spr, Sum, Win - 

Gonyaulacales, AU Aut Spr - 

Gymnodiniales, AU - Aut, Win - 

Gymnodiniales, HT - Spr, Aut, Win - 

Peridiniales, AU - Spr, Sum, Aut - 

Peridiniales, HT Sum - - 

Prorocentrales, AU Aut Spr - 

 

Similarly, zooplankton trends in relation to environmental conditions are described in Table 9 

(cladocerans, others) and Table 10 (Copepods). Most of the zooplankton taxa are showing 

increasing trends in their abundance. For the copepods, the stage of development and sex for the 

adults is also provided. Copepods nauplii, juveniles and adults could not be analysed together as 

one continuous group, because they may show different preferences for environmental conditions 

at different stages of development. Moreover, copepods males and females sometimes show 

different trends (Table 10), and analysing all adults together these differences can be overlooked. 

Since copepods are the dominating zooplankton group in the Baltic Sea (Dzierzbicka-Glowacka et 

al., 2018), the relationship between copepods abundance and phytoplankton biomass was 

investigated as well. In some cases, it could be shown that even when no correlation to hydrographic 

variables was found (e.g. Eurytemora spp.), correlation to at least to one of phytoplankton classes’ 

biomass was detected (Supplementary Table 5). 
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Table 9 Zooplankton taxa (belonging to cladocerans and “others” groups), with significant monotonic 
increasing or decreasing trends, detected at least in one of the seasons. Spearman correlation 
coefficient shown for hydrography variables in seasons with detectable trends. 

 Decreasing Increasing Correlation 

Cladocerans 

Bosmina spp - Aut  

Cladocera Spr, Aut - Spr: NTRA 0.4657 Aut: NTRA -0.6028 

Pleopsis polyphemoides - Sum, Aut, Win Aut: SLCA -0.4764 Win: PHOS -0.5444 

Podon intermedius - Sum, Aut, Win Sum: TEMP 0.4722 

Podon leuckartii - Spr, Sum, Win Spr: NTRA -0.4678 

Others 

Anthoathecatae - Sum, Aut  

Asterias - Spr, Sum, Aut, Win Spr: TEMP 0.506 

Carcimus - Sum, Aut  

Crangon - Sum  

Ctenophora - Spr, Win  

Euphysa - Sum, Aut  

Pectenariidae - Sum, Aut, Win Win: NTRA -0.4969 

Polychaeta - Spr  

Sagittidae - Spr, Sum, Aut, Win  

Synchaeta Sum - Sum: TEMP -0.4895 

Teleostei - Spr, Sum, Aut, Win  

Tintinnida Spr -  

others - Spr, Sum, Aut, Win  

 
  



 32 

Table 10 Copepods species with significant monotonic increasing or decreasing trends, detected at 
least in one of the seasons. Spearman correlation coefficient shown for hydrography variables in 
seasons with detectable trends. F – females, M - males 

  Decreasing Increasing Correlation 

Acartia spp. 

Acartia indeterminate - Spr, Sum, Aut, Win Sum: TEMP 0.4653 Aut: TEMP 0.517 

A. bifilosa F Aut -  

A. tonsa F - Aut, Win Aut: TEMP 0.6346 

A. tonsa M - Win Win: PHOS -0.4916 

Calanus spp. 

Nauplii - Spr, Sum, Aut, Win Spr: SAL 0.4905 

Centropages spp. 

J1 - Spr   

J2 - Spr Spr: SAL -0.5982 

C. hamatus F Win -   

Eurytemora spp. 

Nauplii - Sum, Aut   

J2 - Aut   

E. affinis M - Sum, Aut  

Others 

Harpacticoidea Spr -   

Microsetella - Spr, Sum, Aut, Win   

Pseudo(Para)calanus spp. 

Nauplii Win - Win: PHOS 0.5947, SAL 0.4842 

J2 Spr, Win - 
Win: OXY -0.5702, PHOS 0.6105, SLCA 
0.5088 

Par. parvus F - Spr, Sum, Aut, Win   

Par. parvus M - Sum, Aut   

Temora longicornis 

J1 - Spr Spr: OXY -0.5965, TEMP 0.6807 

J2 - Win Win: NTRA -0.6982, SAL -0.4561 

T. longicornis F Aut -   

T. longicornis M - Spr   
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DISCUSSION 

In this study, data collected in 1998-2016 was analysed to detect long-term shifts in the Western 

Baltic Sea (Mecklenburg Bight) ecosystem. Additionally, the influence of short-term anomalies in 

hydrographic conditions on plankton communities was analysed. It was shown that the plankton 

abundance patterns in 2013 were significantly different from other years in the studied period (Figure 

7, Table 7, Supplementary Table 2). Moreover, long-term (1998-2016) time series analysis revealed 

that both increasing and decreasing trends in phytoplankton biomass or zooplankton abundance 

could be detected depending on the analysed taxonomic group. Calculated Spearman correlation 

coefficients suggest an existing relationship between organisms in plankton groups itself 

(Supplementary Table 5) as well as associate plankton abundance to hydrographic conditions (Table 

8, Table 9). However, observational analysis and used statistical tests results are not sufficient to 

explain why detected trends are present. Thus, I discuss here how this study results are similar or 

different to the previous studies and provide possible ecologic explanation why particular trends were 

detected and what the reason behind the exceptionality of the year 2013 is. 

Influence of environmental conditions in 2013 on plankton communities 

nMDS analysis showed that values of hydrography variables in 2013 do not differ a lot from the other 

years, however there is a striking difference in the plankton communities’ abundance and biomass 

patterns in 2013 compared to all other years in the studied period. Since values of hydrography 

variables are quite continuous over the year, short-term anomalies do not lead to high distance 

values between years. Additionally, the median values of the hydrography variables for the 2013 

does not differ significantly from overall median values, because the higher values in some months 

compensate the lower values in other months (e.g., higher median temperature in August and 

September and lower temperature than usual in March compensate each other and lead to not 

significantly different overall median temperature value in 2013 (Supplementary Table 1, 

Supplementary Table 6)). In contrast, plankton blooms occur only in specific months and if there are 

changes in plankton bloom season, they can be easily detected. 

Checking the median values for the specific months, it was found that March in 2013 SST was much 

lower than usual (Table 6). This corresponds to multiple reports from different areas in Europe, 

indicating that March 2013 was exceptionally cold, in some areas being the second coldest March 

over the hundred years period (Andrews, 2013; BBC, 2013; World Meteorological Organization, 

2014). This detected short-term change in 2013 had significant influence on plankton communities. 

Lower phytoplankton biomass values in March (Supplementary Table 2) suggest that the spring 

bloom probably started later. Interestingly, less than usual copepods nauplii were detected in March 
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2013, but adults’ abundance was higher (Table 7). This can be explained by the fact, that if the 

conditions for zooplankton development are not favourable, they development to nauplius stage can 

be delayed and copepods can exist in the resting egg stage (M. Engel, 2013). Moreover, the animal 

exclusion hypothesis (Hardy, 1936) suggest, that the lower density of phytoplankton in the surface 

water might lead to zooplankton coming to feed on the surface of water more frequently, or they 

might stay there longer, to get the same amount of energy. For this reason, more zooplankton might 

get caught using a mesh and this would lead to report of higher zooplankton abundance. 

To summarize, these findings show that plankton communities react to temporal changes in their 

environment. The largest difference in plankton abundance and biomass patterns was noticed in 

2013, when March was exceptionally cold, because plankton is most sensitive to changes in the 

environment occurring in bloom season. Also, the fact that plankton react to short-term changes in 

their environment, supports the hypothesis that slight changes in hydrographic conditions in a long-

term might also have a distinct effect. 

Changes in hydrographic conditions in the Baltic Sea 

As just discussed, plankton species show clear seasonality in their abundance and are sensitive to 

changes in hydrographic conditions at the period of their appearance. Therefore, the analysis of 

shifts in hydrographic conditions and the ecosystem was performed for each season separately. 

Indicated trends in hydrographic conditions in the Western Baltic Sea (Mecklenburg Bight) showed 

that SST in summer is increasing while no significant trend was detected in other seasons (p. 29). 

This corresponds to the findings of other researchers who have shown, that SST trends are strongest 

in summer months, especially in the Southern Baltic Sea, while in the Northern Baltic Sea warming 

trends were most obvious in winter and autumn (Siegel, Gerth and Tschersich, 2006; Lehmann, 

Getzlaff and Harlaß, 2011; Reckermann et al., 2014; Stramska and Białogrodzka, 2015). Several 

possible reasons for water temperature increase in summer were summarised by Kniebusch et al., 

(2019), including increasing warm summer inflow events bringing warm surface water from the North 

Sea to the Baltic Sea (Leppäranta and Myrberg, 2009; BACC and Team, 2015), higher absorption 

due to increased turbidity (cloudiness) at water surface as well as increased length of the sea surface 

water warming period. 

The Mann-Kendall test has shown, that there is significant decreasing trend of sea surface water 

salinity in winter (p. 29). Several previous studies expected the Baltic Sea water to get less saline, 

because mild winters might lead to less snow and ice-cover and thus to the greater fresh water run-

off to the Baltic Sea (Störmer, 2011; Gräwe, Friedland and Burchard, 2013). Moreover, it was shown, 

that during the second half of the 20th century, the precipitation was increasing in the Baltic Sea area 

(Reckermann et al., 2014) which could also have led to freshening of the Baltic Sea water. 
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Finally, decreasing concentrations of inorganic phosphates in winter and nitrates in winter and spring 

were detected in the studied area. Previous studies of nutrients in the Baltic Sea have shown that 

both, inorganic phosphorus and nitrogen compounds concentrations in the Southwestern Baltic Sea 

are decreasing (based on long time series (> 10 years)), while in other areas of the Baltic Sea 

increasing trends were noticed (European Environment Agency, 2019). Assumably, the 

concentrations of nutrients are reduced due to reduced loads from the influx of rivers (European 

Environment Agency, 2015). 

To sum up, SST trends in the Mecklenburg Bight are similar as in southern parts of the Baltic Sea, 

however the seasonality differs from the trends in the Northern Baltic Sea. Similarly, findings about 

nutrient concentrations correspond to the previous studies with focus on nutrients near the coasts of 

the Southwestern Baltic Sea but not other parts of the Baltic Sea. This suggests, that trends of 

phytoplankton biomass and zooplankton abundance in the Western Baltic Sea might differ from the 

other areas in the Baltic Sea. 

Phytoplankton trends in 1998-2016 Mecklenburg Bight 

The most abundant and therefore most analysed phytoplankton classes in the Baltic Sea in previous 

studies were Bacillariophycea (diatoms), Dinophyceae (belongs to Dinoflagellata superclass) and 

Cyanophyceae (Cyanobacteria). In this study, trends of less abundant phytoplankton classes’ 

biomass were also investigated. Below it is discussed how detected increasing or decreasing trends 

for distinct phytoplankton classes correspond to the results from studies in other areas of the Baltic 

Sea as well as older studies from the Western Baltic Sea (analysing trends in (1979–1999) and 

(1979–2005) (Wasmund and Uhlig, 2003; Wasmund et al., 2011)) along with ecologic results 

interpretation. 

Previous studies of the diatoms (Bacillariophycea) biomass in the Western Baltic Sea have shown 

that their concentration from 1979 to 2005 decreased in spring (Wasmund and Uhlig, 2003; 

Wasmund et al., 2011) most likely due to competing for food sources with increasing concentrations 

of more motile dinoflagellates after mild winters (Wasmund, Nausch and Feistel, 2013). It was also 

shown that diatoms growth can be estimated by silicates consumption (Wasmund, Nausch and 

Feistel, 2013). Similarly, negative correlation between silicates concentration and Bacillariophycea 

biomass was detected in this study (Table 8), however the decreasing trend was detected not in 

spring but in summer. In a recently published paper (Griffiths et al., 2020) it was suggested that 

summer phytoplankton biomass observations and in turn the ability to detect trends are affected by 

grazing pressure. Most likely, it would have the greatest effect on diatoms which are less common 

in summer, but are preferred food source for zooplankton (Hedberg et al., 2020). This suggest that 



 36 

in more recent years phytoplankton biomass is more affected by large shifts in the whole ecosystem 

than in competition for resources or changes in hydrographic conditions. 

Similarly, decreasing biomass trends were also detected for Chrysophyceae and Cryptophyceae 

classes (Table 8). Interestingly, previous analysis of the Mecklenburg Bight have shown, that 

Cryptophyceae biomass trends in summer were increasing from 1991 until 2005 (Wasmund and 

Uhlig, 2003; Wasmund et al., 2011). In a previous experimental study (Wirth, Limberger and Weisse, 

2019) it was shown, that grow rates of organisms belonging to Chrysophyceae and Cryptophyceae 

classes are increasing until the optimum temperature, but starts to decrease if the temperature is 

too high. In combination with the detection of increasing SST in summer as well as negative 

correlation between SST in summer and biomass of these two phytoplankton classes, this suggest 

that in Mecklenburg Bight SST in summer is becoming higher than optimal for these species. 

In contrast to previously discussed classes, most orders of Cyanophyceae and Dinophyceae classes 

show increasing trends (Table 8). In previous studies, analysing the period from 1979 to 2005, no or 

even decreasing trends of Cyanophyceae and Dinophyceae biomass were detected in Mecklenburg 

Bight (Wasmund and Uhlig, 2003; Wasmund et al., 2011). The increasing abundance of these 

classes in other areas of the Baltic Sea is usually associated with mild winters and increasing SST ( 

Hedberg et al., 2020; Wasmund, Nausch and Feistel, 2013). Additionally, increasing trends of 

Dictyochophyceae biomass were detected (Table 8). The organisms belonging to this class occur 

exclusively in the Western Baltic Sea and only after mild winters (Wasmund, Nausch and Feistel, 

2013).  

In summary, a comparison of this study results to the phytoplankton trends detected in 1979-2005 

have shown that major shifts in the Mecklenburg Bight, causing increase or decrease of the detected 

trends, appeared in the last two decades. Ecological interpretation of the results suggest that 

biomass of phytoplankton classes, which are sensitive to higher water temperatures or the ones 

which are highly consumed by zooplankton in summer are decreasing. On the other hand, biomass 

of phytoplankton classes, which prefers mild winters, are increasing in the Western Baltic Sea. 

Zooplankton trends in 1998-2016 Mecklenburg Bight 

To date, the latest zooplankton trends in the Baltic Sea are not comprehensively analysed. There 

were some studies analysing long-term zooplankton dynamics in the Southeastern Baltic Sea during 

1998–2007 (Aleksandrov, Zhigalova and Zezera, 2009) as well as in the Southern Baltic Sea in the 

periods from 1969 to 2001 (Feike et al., 2007) and from 2006 to 2012 (Musialik-Koszarowska, 

Dzierzbicka-Głowacka and Weydmann, 2019). In this study, zooplankton trends (1998-2016) in the 

Western-Baltic Sea (Mecklenburg Bight) were analysed. Below, a possible ecological explanation 
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for the detected trends together with comparisons to previous studies from other areas of the Baltic 

Sea is provided.  

When zooplankton trends are analysed in relation to hydrographic conditions, usually the most 

attention is directed to water temperature and salinity, because they are considered as the factors 

with the strongest effect on zooplankton abundance. Previous studies in the Southern and 

Southeastern Baltic Sea have shown that increasing water temperature can be associated to 

increasing trends of thermophilous and eurythermous (able to tolerate a wide range of environmental 

temperatures), organisms of both cladocerans (Evadne nordmanni, Bosmina spp.) and copepods 

(T. longicornis, C. hamatus, and Acartia species) groups (Möllmann et al., 2002; Aleksandrov, 

Zhigalova and Zezera, 2009; Musialik-Koszarowska, Dzierzbicka-Głowacka and Weydmann, 2019). 

Also it was shown that warmer years in the Baltic Sea are associated with higher biomass of 

copepods and lower biomass of rotifers (Musialik-Koszarowska, Dzierzbicka-Głowacka and 

Weydmann, 2019). The biomass of some of the rotifers, such as Synchaeta spp., most likely 

decreased not because of increasing temperature itself, but due to the presence of more cyclopoid 

copepods, which consume rotifers as food (Zhang et al., 2015). In addition to that, time series (1960-

1997) analysis has shown that abundance of Podon spp. and Evadne nordmanni were positively 

associated to salinity in summer and autumn in the Gdansk Deep (Central Baltic Sea) (Möllmann et 

al., 2002). The decrease of Pseudocalanus spp. abundance in the Southeastern Baltic Sea (1990-

2000) was associated to the decrease of water salinity (Aleksandrov, Zhigalova and Zezera, 2009).  

Similar trends with some discrepancies were detected in the Mecklenburg Bight (Table 9, Table 10). 

As in other areas of the Baltic Sea, the abundance of thermophilic zooplankton species (Bosmina 

spp., T. longicornis, C. hamatus, and Acartia spp.) is increasing at least at one of the developing 

stages. Moreover, decreasing abundance trends and negative correlation to the increasing SST for 

rotifers Synchaeta spp. were detected. However, in contrast to previous studies, where increasing 

trends (1998–2007) of Bosmina spp. abundance were detected in summer in the Southeastern Baltic 

Sea (Aleksandrov, Zhigalova and Zezera, 2009), in this study increasing trends of Bosmina spp. 

abundance were exclusively detected in autumn. Normally, Bosmina spp. are most abundant in 

August and their abundance decrease in autumn, when the water cools down (Aleksandrov, 

Zhigalova and Zezera, 2009). Increasing trends of Bosmina spp. abundance in autumn suggest that 

the water temperature stays optimal for Bosmina spp. for a longer time after summer. 

Contrary to the previous studies from more eastern regions of the Baltic Sea, significant trends of 

Evadne nordmanni and Pseudocalanus could not be identified. These species were positively 

associated with water salinity (Möllmann et al., 2002; Aleksandrov, Zhigalova and Zezera, 2009; 

Musialik-Koszarowska, Dzierzbicka-Głowacka and Weydmann, 2019). In addition, even though 

positive trends of Podon spp. were detected in the Mecklenburg Bight, unlike in the Central Baltic 



 38 

Sea (Möllmann et al., 2002), it did not show any correlation to water salinity. Keeping in mind, that 

usually only salinity values beyond the optimal range have an influence on plankton development, it 

is very likely that salinity is not the limiting factor for the abundance of these species as the western 

parts of the Baltic Sea are more saline. 

In this study, similarly as in the research from the Southern Baltic Sea (Musialik-Koszarowska, 

Dzierzbicka-Głowacka and Weydmann, 2019) diverse trends for different plankton stages for both 

males and females were detected. Musialik-Koszarowska, Dzierzbicka-Głowacka and Weydmann 

associated trends of copepods stages to different environment preferences of copepods at different 

developing stages, accelerated copepods’ metabolism and life cycle, but did not provide an 

explanation why copepods males and females trends differ. In this study, the trends A. bifilosa, C. 

hamatus, T. longicornis females were decreasing, while for males either no or increasing trends were 

detected. Also increasing trends of E. affinis males, but not females were detected in the Central 

Baltic Sea (Möllmann et al., 2002). Gusmão and McKinnon (2009) suggested, that since skewed sex 

ratios and intersexuality are observed in many copepod species, environmental sex determination 

may be widespread in this group. Their observations suggested that food limitation is an important 

determinant for sex change. However, skewed sex ratios can also be explained by higher predation 

on males than females (Hirst et al., 2010). A similar reasoning might explain why copepods females 

and males of the same species show different trends, but this would require more investigation. 

Since usually male planktonic copepods are smaller in size than females (Gusmão and McKinnon, 

2009), decreasing trends of the abundance of females could lead to decrease of zooplankton mean 

size or total biomass. This corresponds to the findings of other areas of the Baltic Sea, showing that 

zooplankton communities become dominated by smaller size copepods (Rice, Dam and Stewart, 

2015; Kelly et al., 2016; HELCOM, 2018). 

To summarize, zooplankton trends which were detected in the Southern and Southeastern Baltic 

Sea and associated to increasing water temperature in previous studies, are usually detected in the 

Western Baltic Sea as well. However, zooplankton abundance trends associated to changes in water 

salinity do not share similar patterns in the Western and Eastern parts of the Baltic Sea. Furthermore, 

the analysis of the copepods abundance suggest that copepods at different stages of development 

and of different adults sex do not prefer the same environmental conditions. However, this study is 

only observational, therefore further studies will be necessary to explain why these trends are 

different. 

Zooplankton in relation to phytoplankton 

As previously discussed, abiotic conditions mostly associated with zooplankton trends are water 

temperature and salinity. However, in this study correlations between zooplankton abundance and 
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phosphate and nitrate concentrations were also detected. Assumably, these correlations do not exist 

due to direct relationship between water nutrients and zooplankton, but because of the linkage 

through phytoplankton. This idea can be supported by the fact that increasing or decreasing trends 

for zooplankton species were present, even if no correlation with hydrographic variables could be 

found. Most often in those cases, correlations with at least one of the phytoplankton classes' biomass 

were detected (Supplementary Table 5). 

However, only few examples can be found, where specific seasonal trends can be explained by 

correlation between hydrography data and phytoplankton trends and correlation between 

zooplankton abundance and phytoplankton biomass (Figure 8). The lack of such examples suggest 

that analysing plankton communities based solely on a bottom-up approach is an oversimplification 

and experimental studies are required to explain the causality of the detected relationships. 

 

Figure 8 Examples where specific seasonal trends can be explained by relationships between 
environmental conditions, phytoplankton and zooplankton. Concentration of phosphates (PHOS) in 
winter is decreasing (red). It shows negative correlation to Dictyochophyceae biomass. 
Dictyochophyceae biomass is increasing (green) and so is Acartia indeterminate and Calanus spp. 
nauplii organisms. Similar interpretation for temperature (TEMP), Cryptophyceae and Acartia 
indeterminate relationship in summer (red represents decreasing trends, green - increasing). 

Limitations  

The ability to detect trends in hydrographic conditions and plankton abundance as well as to find the 

relationships between them is greatly affected by the data itself. In this study, samples collected in 

one station of the Western Baltic Sea (Mecklenburg Bight) were analysed. Since plankton are drifting 

organisms, the detected abundance of plankton at the specific station can be influenced by sea 

currents, wind direction and the sample collection technique. Therefore, this study could be extended 

by adding more sampling points from several more stations from the Western Baltic Sea, to check if 

common trends at close stations could be detected. Moreover, uneven sample collection always 

introduces some uncertainty about the validity of the results, because missing values have to be 

imputed, and it is not clear how well they represent the reality. After the collection of water samples, 

the next step before providing data for the statistical analysis is examination of collected samples 

using a microscope, counting how many organisms of specific species can be detected and 

extrapolating value to number of organisms per m³ or counting the approximate phytoplankton 

biomass (µg/L). Even though currently more modern techniques, related automated plankton image 
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analysis are being developed (Luo et al., 2018), to this day the quality of data is relying on the 

experience of scientists, analysing plankton samples, and consequentially normal human errors are 

unavoidable, especially if multiple institutions/research groups are involved. Finally, interpretation of 

the results is not straightforward. Detected correlation values just suggest that a relationship between 

variables might exist, however the causality of the events cannot be explained only by observational 

analysis. To fully understand, why detected trends might be present, and explain observed 

correlations further experimental studies are needed. 
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CONCLUSIONS 

1. Extraordinary cold March in 2013 and associated changes in plankton abundance revealed that 

short-term anomalies occurring in bloom season have the highest influence on plankton 

abundance in this particular year. 

2. In the last two decades, the biomass of phytoplankton taxa, negatively associated to higher water 

temperature in summer is decreasing, while biomass of phytoplankton taxa preferring mild 

winters is increasing. 

3. The abundance of zooplankton taxa, playing a key role in ecosystem shifts in the Southern and 

the Southeastern Baltic Sea, share similar trends in the Western Baltic Sea if the increase or 

decrease is associated to the water temperature, but not to water salinity. 

4. Relation between zooplankton abundance and phytoplankton biomass was detected, however 

the underlying reasons could only be explained by experimental studies. 
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SUMMARY 

Plankton organisms are useful bioindicators which can provide information whether changing 

environmental conditions have an influence on marine ecosystems. Previous phytoplankton trends 

studies from the Mecklenburg Bight covered only the period from 1979 until 2005. Moreover, there 

are no comprehensive studies of zooplankton trends in the Western Baltic Sea yet available. 

Therefore, this study focuses on plankton abundance trends during 1998-2016 in the Mecklenburg 

Bight (Western Baltic Sea). Decreasing and increasing trends were detected using Mann-Kendall 

test and associated with changing environmental conditions based on Spearman correlation 

coefficient values. In addition, non-metric multidimensional scaling was used to detect unusual years 

in order to identify anomalies of plankton abundance that are associated with environmental 

variability. The results of this study indicate that shifts in plankton communities in 2013 can be 

associated with an exceptionally cold March this year. It is likely that environmental conditions during 

the bloom season might have the highest influence on plankton abundance. Comparison of 

phytoplankton biomass trends in 1998-2016 with those detected until 2005 in the Mecklenburg Bight 

revealed some changes which occurred due to increasing surface water temperature. Due to the 

salinity gradient in the Baltic Sea, decreasing zooplankton trends of species susceptible to water 

freshening in the Southern and Southeastern Baltic Sea (e.g. Evadne nordmanni and 

Pseudocalanus) were not identified in the Western Baltic Sea. However, long-term trend analysis 

revealed that similar zooplankton abundance trends as in other Baltic Sea areas are detected when 

they are associated with increasing water temperature (e.g. T. longicornis, C. hamatus, and Acartia 

species). Overall observed trends during the last two decades indicate significant shifts in the 

Mecklenburg Bight ecosystem which are related to changes in environmental conditions there. 
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SANTRAUKA 

Planktono organizmai yra vertingi bioindikatoriai, galintys suteikti informacijos apie tai ar 

besikeičiančios aplinkos sąlygos turi įtakos jūrinėms ekosistemoms. Ankstesni Meklenburgo įlankos 

fitoplanktono biomasės pokyčių tyrimai apėmė laikotarpį tik nuo 1979 iki 2005 m. Be to, iki šiol 

nebuvo išsamių tyrimų nagrinėjančių zooplanktono kiekio pokyčius Vakarų Baltijos jūroje. Tai 

paskatino šiame darbe analizuoti planktono kiekio pokyčius Meklenburgo įlankoje (Vakarų Baltijos 

jūra) nuo 1998 iki 2016. Planktono kiekio didėjimas ar mažėjimas buvo nustatytos naudojant Mann-

Kendall testą ir siejamas su besikeičiančiomis aplinkos sąlygomis, remiantis Spearmano koreliacijos 

koeficiento reikšmėmis. Taip pat, siekiant nustatyti, ar planktono gausos anomalijos yra susijusios 

su aplinkos kintamumu, išsiskiriantys planktono kiekiu metai buvo aptikti naudojantis nemetrinių 

daugiamačių skalių (nMDS) analize. Šio tyrimo rezultatai parodė, kad planktono kiekio pokyčiai 2013 

m. gali būti siejami su išskirtinai šaltu šių metų kovo mėnesiu. Tai rodo, kad žydėjimo sezono metu 

esančios aplinkos sąlygos daro didžiausią įtaką planktono gausai. Palyginus fitoplanktono biomasės 

tendencijas Meklenburgo įlankoje 1998–2016 m. su tendencijomis, nustatytomis iki 2005 m., 

pastebėti pasikeitimai, įvykę dėl kylančios paviršiaus vandens temperatūros. Dėl nevienodo 

druskingumo skirtinguose Baltijos jūros regionuose, kai kurių zooplanktono organizmų kiekis 

sumažėjo Pietų ir Pietryčių Baltijos jūroje (pvz. Evadne nordmanni ir Pseudocalanus), tačiau 

sumažėjimas nebuvo nustatytas Vakarų Baltijos jūroje. Vis dėlto, ilgalaikė planktono kiekio pokyčių 

analizė parodė, kad panašios zooplanktono gausos tendencijos, kaip ir kituose Baltijos jūros 

regionuose, nustatomos, jei jas galima susieti su kylančia vandens temperatūra (pvz., T. longicornis, 

C. hamatus, and Acartia rūšys). Per pastaruosius du dešimtmečius nustatyti planktono kiekio 

pokyčiai rodo reikšmingus Meklenburgo įlankos ekosistemos pasikeitimus, susijusius su 

besikeičiančiomis aplinkos sąlygomis. 
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APPENDICES 

Appendix 1. Supplementary tables 

Supplementary Table 1 Median of hydrography data for 2013 and IQR for all years 

Variable Median 2013 IQR 1998-2018 

NTRA 0.650 0.040 - 1.815 

OXY 7.006 6.771 - 8.347 

PHOS 0.393 0.115 - 0.553 

SAL 10.03 9.773 - 13.52 

SLCA 14.08 6.850 - 14.20 

TEMP 11.03 4.379 - 14.09 

 

Supplementary Table 2 Phytoplankton biomass (µg/L) in March 2013 and median values with IQRs in 
March 1998-2016. All phytoplankton classes except Bacillariophyceae, Choanoflagellatea, Cilioph and 
Ebriophyceae have significantly lower biomass in March of 2013 than in March during 1998-2016. 

Variable 2013 March 
Median (1998-2016 
March) 

IQR (1998-2016 
March) 

Bacillariophyceae 240.346 387.537 124.799 - 1278.174 

Chlorophyceae 0.013 0.277 0.117 - 0.434 

Choanoflagellatea 0.768 0.764 0.281 - 1.696 

Chrysophyceae 1.116 4.508 1.943 - 11.282 

Ciliophora 115.469 59.771 40.19 - 117.87 

Cryptophyceae 11.254 30.918 15.391 - 42.238 

Cyanophyceae 0.526 1.138 0.550 - 3.762 

Dictyochophyceae 1.850 6.137 5.382 - 21.394 

Dinophyceae 6.661 106.839 50.55 - 292.89 

Ebriophyceae 4.455 1.226 0.64 - 3.069 

Euglenophyceae 1.315 4.364 1.866 - 6.238 

Incertae sedis 0.853 1.391 1.264 - 1.573 

Others 0.456 20.696 11.868 - 39.321 

Prasinophyceae 0.302 1.545 0.465 - 3.601 

Prymnesiophyceae 0.610 5.338 2.123 - 28.583 

Trebouxiophyceae 0.032 0.284 0.148 - 0.285 
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Supplementary Table 3 Copepods abundance (counts/m³) in March 2013 and median values with IQRs 
in March 1998-2018. 

Copepods species 
Stage of 
development 

2013 
March 

Median 
(March 1998-
2018) 

IQR (March 1998-2018) 

Acartia spp. Nauplii 949.93 1792.44 1038.53 - 3326.387 

 Adults 1094.32 372.86 192.0 - 659.17 

Calanus spp. Nauplii 760.60 0.00 0.0 - 0.0 

Centropages spp. Nauplii 17.47 408.20 156.17 - 1097.05 

 Adults 285.09 63.68 45.72 - 135.22 

Oithona similis Nauplii 82.31 231.13 106.68 - 741.16 

 Adults 465.57 342.42 155.70 - 480.06 

Pseudo(Para)calanus spp. Nauplii 8652.78 1849.09 1137.91 - 2410.13 

 Adults 585.09 86.81 41.95 - 151.98 

Temora longicornis Nauplii 55.99 792.18 305.79 - 1080.28 

 Adults 717.98 134.13 100.33 - 204.57 

 

Supplementary Table 4 Comparison of “spring” species correlation to hydrography variables in spring 
seasons and the entire time series. Spearman correlation between abundance of “spring” species in 
spring and values of hydrography variables in spring was calculated. Spearman correlation was also 
calculated between the same “spring” species abundance and hydrography variables in the complete 
time series. Median values with IQRs of significant correlation coefficients are represented in the table. 

Analyzed group 
Median correlation to hydrography 
variables in spring 

Median correlation to 
hydrography variables during the 
entire year 

Phytoplankton classes 0.217 (0.174 - 0.269)  0.518 (0.466 - 0.571)  

Phytoplankton orders 0.219 (0.170 - 0.282)  0.582 (0.582 - 0.582)  

Cladocera 0.222 (0.178 - 0.286)  0.574 (0.574 - 0.574)  

Copepods 0.247 (0.182 - 0.361)  0.492 (0.482 - 0.533)  

Others 0.217 (0.158 - 0.298)  0.510 (0.506 - 0.516)  

 

Supplementary Table 5 Copepods species with significant monotonic increasing or decreasing trends, 
detected at least at one of the seasons. Spearman correlation coefficient is shown for phytoplankton 
classes’ biomass in seasons with detectable trends 

  Decreasing Increasing Correlation 

Acartia spp. 

Acartia 
indeterminate 

- Spr, Sum, Aut, Win 

Spr: Ebriophyceae 0.5207 
Sum: Cryptophyceae -0.4825, Others -
0.5083 
Aut: Cryptophyceae -0.5133 
Win: Ciliophora -0.4997, Cryptophyceae -
0.5588, Dictyochophyceae 0.479, 
Ebriophyceae 0.5268 

A. bifilosa F Aut - Aut: Ebriophyceae 0.5328 

A. tonsa F - Aut, Win 
Aut: Prymnesiophyceae 0.4572 
Win: Ciliophora -0.5738 

A. tonsa M - Win  
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Supplementary Table 5 (continued) 

 Decreasing Increasing Correlation 

Calanus spp. 

Nauplii - Spr, Sum, Aut, Win 

Sum: Incertae sedis 0.607, Prasinophyceae 
0.5361, Trebouxiophyceae 0.6041 
Aut: Cryptophyceae -0.6263, 
Prymnesiophyceae 0.4563 
Win: Dictyochophyceae 0.6486, 
Dinophyceae 0.4756 

Centropages spp. 

J1 - Spr 
Spr: Chrysophyceae -0.5772, 
Cryptophyceae -0.7246, Prasinophyceae 
0.7228, Prymnesiophyceae 0.5204 

J2 - Spr 
Spr: Euglenophyceae -0.4895, 
Trebouxiophyceae 0.6819 

C. hamatus F Win - Win: Choanoflagellatea -0.4596 

Eurytemora spp. 

Nauplii - Sum, Aut 
Sum: Trebouxiophyceae 0.4582, 
Aut: Cryptophyceae -0.6535, Cyanophyceae 
0.5114 

J2 - Aut 
 Aut: Cryptophyceae -0.7275, Incertae sedis 
0.5488 

E. affinis M - Sum, Aut 
Sum: Prasinophyceae 0.6719,  
Aut: Cryptophyceae -0.615 

Others 

Harpacticoidea Spr - 
Spr: Chrysophyceae 0.4707, 
Prymnesiophyceae -0.4925 

Microsetella - Spr, Sum, Aut, Win 

Spr: Chlorophyceae -0.4934,  
Sum: Incertae sedis 0.4579, Prasinophyceae 
0.5699, Trebouxiophyceae 0.5027, 
Aut: Cryptophyceae -0.679 

Pseudo(Para)calanus spp. 

Nauplii Win -  

J2 Spr, Win - 
Spr: Cryptophyceae 0.4842, Ebriophyceae 
0.486 

Par. parvus F - Spr, Sum, Aut, Win 
Spr: Ebriophyceae 0.4698, 
Sum: Others -0.5061, Prasinophyceae 
0.4869 

Par. parvus M - Sum, Aut Aut: Cryptophyceae -0.6634 

Temora longicornis 

J1 - Spr Spr: Incertae sedis 0.4858 

J2 - Win  

T. longicornis F Aut - Aut: Cryptophyceae 0.5439 

T. longicornis M - Spr 
Spr: Chrysophyceae -0.4649, 
Cryptophyceae -0.6211, Prasinophyceae 
0.5211 
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Supplementary Table 6 Temperature (οC) median values (οC) for 2013 and IQR range for temperature 
values in 1998-2018 for all months. 

Month TEMP in 2013 TEMP IQR 1998-2018 

Jan 2.129 1.648 - 3.303 

Feb 2.129 1.587 - 3.216 

Mar 0.774 2.822 - 4.379 

Apr 4.893 4.945 - 7.295 

May 9.011 9.011 - 10.226 

June 14.319 12.889 - 14.298 

July 19.626 17.323 - 19.065 

Aug 20.528 16.875 - 18.493 

Sep 20.528 12.054 - 15.146 

Oct 11.027 10.163 - 11.256 

Nov 11.027 9.625 - 11.027 

Dec 11.027 6.356 - 10.163 

Appendix 2. Supplementary plots 

 

Supplementary Figure 1 Box plots representing water surface (0-4 m) temperature (°C) distribution 
based on the raw data. No information about the temperature was provided for June, September and 
December. 

Supplementary Figure 2 Bar plot showing how many samples were collected in each month in the 
period 1998-2016. Hydrography samples were not collected in June, September and December and 
only very few zooplankton samples were collected during these months. 
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Supplementary Figure 3 Autocorrelation plots demonstrating hydrography data seasonality. The 
peaks in the autocorrelation plots repeating at lag=12 period indicate yearly seasonality in monthly 
data with filled missing values. The horizontal lines in the plot correspond to 95% and 99% confidence 
intervals. 

 

Supplementary Figure 4 Number of observations of Fritellaria (spring species) and Oikopleura (autumn 
species) in the particular month. Monthly data with imputed missing values were used for this bar plot. 
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Supplementary Figure 5 Temperature (°C) and biomass (µg/L) of Chrysophyceae and Cryptophyceae 
phytoplankton classes in summer. Fraction of data used for the locally weighted scatterplot smoothing 
- 0.75. 

Appendix 3. Python modules 

Appendix 3.1 Module to import data from the Excel files 

# get data 

import pandas as pd 

#path to data 

path_hydrography = 'data/Station_TF-0012-1998-2018_Hydrography.xlsx' 

path_zooplankton = 'data/Station_TF-0012_-_1998-2018_Zooplankton.xlsx' 

path_phytoplankton_classes = 'data/Phytoplankton/Classes_TF0012.xlsx' 

path_phytoplankton_orders = 'data/Phytoplankton/Cyano_Dino_orders_TF0012.xlsx' 

 

def create_dataframe_from_depth(df,minv,maxv): 

    '''Selets rows where pressure is between given values''' 

    columns=df.columns[1:len(df.columns)-1] 

    df=df.loc[df.loc[:,'PRES7PRD']>=minv] 

    df=df.loc[df.loc[:,'PRES7PRD']<=maxv] 

    df=df.loc[:,columns] 

    df=df.reset_index() 

    df=df.groupby(df['Time'].dt.date).agg(['mean']) 

    df=df.droplevel(axis=1, level=1) 

    df.index= pd.to_datetime(pd.Series(list(df.index))) 

    df['Month'] = df.index.month 

    return df 

 

def hydrography(): 

    '''Gets hydrography data: df_h_data, df_h_station, df_h_expediton''' 

    df_h_data = pd.read_excel (path_hydrography, sheet_name='Data') 

    df_h_station = pd.read_excel (path_hydrography, sheet_name='Station Details') 

    df_h_expediton = pd.read_excel (path_hydrography, sheet_name='Expedition Details') 

    df_h_data=df_h_data.set_index('Time') 

    df_h_data=df_h_data.loc[:,'PRES7PRD':'TEMP7STD'] 

    df_h_data=df_h_data.dropna(axis=0, how='all') 

    df_h_data['Month']=df_h_data.index.month 

    return df_h_data 

 

def hydrography_depth(): 
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    '''Returns hydrography data dataframes where pressure is: 0-4; 15-20''' 

    df_h_data=hydrography() 

    depth0_4=create_dataframe_from_depth(df_h_data,0,4) 

    depth15_20=create_dataframe_from_depth(df_h_data,15,20) 

    return depth0_4, depth15_20 

 

def zooplankton(): 

    '''Gets zooplankton data: df_zooplankton''' 

    df_zooplankton_raw = pd.read_excel (path_zooplankton, skiprows=5) 

    df_zooplankton = df_zooplankton_raw.dropna(how='all') #dropping empty lines 

    df_zooplankton = df_zooplankton.drop(axis=0, index=1) 

    df_zooplankton.iloc[:,[0,1]] = df_zooplankton.iloc[:,[0,1]].fillna(method='ffill') 

    df_zooplankton = df_zooplankton.rename(columns = {'Unnamed: 0': 'Subclass/order','Unnamed: 1': 'Genus','month': 'Stage','04.08.002': 

'04/08/2002'}) 

    df_zooplankton = df_zooplankton.set_index(['Subclass/order','Genus','Stage']) 

    df_zooplankton.columns = pd.to_datetime(pd.Series(list(df_zooplankton.columns))) 

    df_zooplankton = df_zooplankton.transpose() 

    return df_zooplankton 

 

def phytoplankton_class(): 

    '''Gets phytoplankton classes data, taxa which belong in classes saved in the dictionary''' 

    df_phy_class = pd.read_excel(path_phytoplankton_classes, parse_dates=[5]) 

    i = 11 

    taxa_in_classes={} 

    while i < (len(df_phy_class.columns)): 

     key = (df_phy_class.iloc[0,i]) 

     value = df_phy_class.columns[i] 

     taxa_in_classes[key] = value 

     i+=1 

    df_phy_class = pd.DataFrame(df_phy_class[:].values) 

    df_phy_class = df_phy_class.rename(columns=df_phy_class.iloc[0]) 

    df_phy_class = df_phy_class.drop(0, axis=0) 

    df_phy_class = df_phy_class.set_index('DATE') 

    df_phy_class = df_phy_class.drop('Month', axis=1) 

    df_phy_class.index = pd.to_datetime(pd.Series(list(df_phy_class.index))) 

    df_phy_class_for_an=pd.DataFrame(df_phy_class.loc[:,'Bacillariophyceae':]) 

    df_phy_class_for_an['Month'] = df_phy_class_for_an.index.month 

    df_phy_class_for_an=df_phy_class_for_an.drop(columns=['Raphidophyceae']) 

    return df_phy_class_for_an, taxa_in_classes 

 

def phytoplankton_order(): 

    '''Gets phytoplankton orders data, to which class order belong is saved in the dictionary''' 

    df_phy_orders = pd.read_excel(path_phytoplankton_orders, parse_dates=[5]) 

    class_of_order={} 

    class_of_order['Cyanophyceae']=list(df_phy_orders.iloc[0,7:10]) 

    class_of_order['Dinophyceae']=list(df_phy_orders.iloc[0,10:]) 

    df_phy_orders = pd.DataFrame(df_phy_orders[:].values) 

    df_phy_orders = df_phy_orders.rename(columns=df_phy_orders.iloc[0]) 

    df_phy_orders = df_phy_orders.drop(0, axis=0) 

    df_phy_orders = df_phy_orders.set_index('DATE') 

    df_phy_orders = df_phy_orders.drop('Month', axis=1) 
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    df_phy_orders.index = pd.to_datetime(pd.Series(list(df_phy_orders.index))) 

    df_phy_order_for_an=pd.DataFrame(df_phy_orders.loc[:,'Chroococcales':]) 

    df_phy_order_for_an['Month'] = df_phy_order_for_an.index.month 

    return df_phy_order_for_an, class_of_order 

 

# Functions to return hydrography data with combined columns 

 

def hydro_with_combined_columns(): 

    '''Combines columns measuring the same property''' 

    df=hydrography() 

    df['TEMP']=df['TEMP7IDD'].fillna(df.TEMP7STD) 

    df['OXY']=df['DOXY4IDD'].fillna(df.DOXY6TID) 

    df['SAL']=df['PSAL7IDD'].fillna(df.PSAL5IBD) 

    df.drop(labels=['TEMP7IDD', 'TEMP7STD', 'DOXY4IDD', 'DOXY6TID', 'PSAL7IDD', 'PSAL5IBD'], axis=1) 

    df=df[['PRES7PRD', 'TEMP', 'OXY', 'SAL', 'NTRA7DXD', 'PHOS7DXD', 'SLCA7DXD']] 

    df=df.rename({'PRES7PRD': 'PRES', 'NTRA7DXD': 'NTRA', 'PHOS7DXD': 'PHOS', 'SLCA7DXD': 'SLCA'}, axis=1) 

    df['Month']=df.index.month 

    return(df) 

 

def create_dataframe_from_depth_PRES(df,minv,maxv): 

    '''Selets rows where pressure is between given values''' 

    columns=df.columns[1:len(df.columns)-1] 

    df=df.loc[df.loc[:,'PRES']>=minv] 

    df=df.loc[df.loc[:,'PRES']<=maxv] 

    df=df.loc[:,columns] 

    df=df.reset_index() 

    df=df.groupby(df['Time'].dt.date).agg(['mean']) 

    df=df.droplevel(axis=1, level=1) 

    df.index= pd.to_datetime(pd.Series(list(df.index))) 

    df['Month'] = df.index.month 

    return df 

 

def hydrography_depth_comb(): 

    '''Returns hydrography data dataframes where pressure is: 0-4; 15-20''' 

    df_h_data=hydro_with_combined_columns() 

    depth0_4=create_dataframe_from_depth_PRES(df_h_data,0,4) 

    depth15_20=create_dataframe_from_depth_PRES(df_h_data,15,20) 

    return depth0_4, depth15_20 

Appendix 3.2 Module to get data frames, representing zooplankton groups 

(copepods, cladocerans, others) 

# functions to get dataframes of zooplankton groups 

import pandas as pd 

import get_data 

 

df_zooplankton = get_data.zooplankton() 

df_zooplankton['Year'] = df_zooplankton.index.year 

df_zooplankton['Month'] = df_zooplankton.index.month 
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df_zooplankton_new=df_zooplankton.drop([('Cladocera', 'Cercopagis pengoi'),('Cladocera', 'Evadne anonyx'),('Cladocera', 'Evadne 

spinifera')], axis=1) 

df_zooplankton_new=df_zooplankton_new.drop([('others', 'Ostracoda'),('others', 'Gammaridea'),('others', 'Trematoda')], axis=1) 

df_zooplankton_new=df_zooplankton_new.drop([('Copepods', 'Limnocalanus macurus')], axis=1) 

  

#Dictionary to have 3 seperate dataframes for Copepods, Cladocera, Others: 

di={} 

for i in df_zooplankton_new.columns.levels[0]: 

    di[i] = df_zooplankton_new[i] 

 

#Defining Copepods dataframe: 

Copepods=di.get('Copepods') 

columns_to_drop_cop=['Calanus spp.', 'Euterpina', 'Longipedia'] 

New_Copepods=Copepods 

for i in columns_to_drop_cop: 

    New_Copepods=New_Copepods.drop(i, axis=1) 

 

#Creating a dictionary to rename columns of Copepods: 

abbrev={} 

for i in New_Copepods.columns.get_level_values(0): 

    if i=='Pseudo/Paracalanus': 

        abbrev.update( {i : 'Pseu/Para'} ) 

    elif i != 'others': 

        split_name = i.split() 

        if len (split_name)>1: 

            if  split_name[1]=='spp.' or split_name[1]=='spp': 

                abbrev.update( {i : split_name[0][0:4]} ) 

            else: 

                abbrev.update( {i : split_name[0][0] + split_name[1][0:3]} ) 

        else: 

            abbrev.update( {i : i[0:4]} ) 

 

#Renaming columns: 

for i in abbrev: 

    New_Copepods=New_Copepods.rename(columns={i:abbrev.get(i)}) 

New_Copepods.head()    

 

def Others_group(): 

    '''Function gets Others group without irrelevant species for the analysis''' 

    Others=di.get('others') 

    Others=Others.droplevel('Stage', axis=1) 

    columns_to_drop=['Diastylis', 'Mysidae', 'Facetotecta L', 'Keratella ', 'Aurelia', 'Rathkea', 'Sarsia', 'Ophiura', 'Spionidae L', 'Trochophora', 

'Nematoda', 'Turbellaria', 'Phoronis'] 

    #Summing up those columns: polychaetes (sum of polychaeta L, polychaeta T, Spionidae, Harmothoe), 

    Others['Polychaetes']=Others.loc[:,['Polychata L', 'Polychata T', 'Harmothoe', 'Spionidae L']].sum(axis=1) 

    Others['Month'] = Others.index.month 

    columns_to_drop.extend(['Polychata L', 'Polychata T', 'Harmothoe']) 

    New_others=Others 

    for i in columns_to_drop: 

        New_others=New_others.drop(i, axis=1) 

    return New_others 
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def Cladocera_group(): 

    '''Function gets Cladocera group without irrelevant species for the analysis''' 

    Cladocera=di.get('Cladocera') 

    Cladocera=Cladocera.droplevel('Stage', axis=1) 

    Cladocera['Month']=Cladocera.index.month 

    New_Cladocera=Cladocera.drop(['others'], axis=1) 

    return New_Cladocera 

 

def Copepods_sep(): 

    '''Function gets Copepods where adults, copepodites and nauplii are searated''' 

    Copepods_sep=New_Copepods.copy() 

    for i in New_Copepods.columns.get_level_values(0): 

        #separating Copepodites 

        if (i,'Copepodites') in Copepods_sep: 

            name=i+'J' 

            Copepods_sep[name, 'J']=Copepods_sep[i]['Copepodites'] 

            Copepods_sep=Copepods_sep.drop([(i, 'Copepodites')], axis=1) 

        if (i,'J1') in Copepods_sep and (i,'J2') in Copepods_sep: 

            name=i+'J1' 

            Copepods_sep[name, 'J1']=Copepods_sep[i]['J1'] 

            name=i+'J2'         

            Copepods_sep[name, 'J2']=Copepods_sep[i]['J2'] 

            name=i+'J1/J2' 

            Copepods_sep[name, 'J1+J2']=Copepods_sep[i]['J2']+Copepods_sep[i]['J1'] 

            Copepods_sep=Copepods_sep.drop([(i, 'J1')], axis=1) 

            Copepods_sep=Copepods_sep.drop([(i, 'J2')], axis=1) 

        #separating Nauplii 

        if (i,'Nauplii') in Copepods_sep: 

            name=i+' Nauplii' 

            Copepods_sep[name, 'Nauplii']=Copepods_sep[i]['Nauplii'] 

            Copepods_sep=Copepods_sep.drop([(i, 'Nauplii')], axis=1) 

        #separating indetermined 

        if (i,'indet') in Copepods_sep: 

            name=i+' indet' 

            Copepods_sep[name, 'indet']=Copepods_sep[i]['indet'] 

            Copepods_sep=Copepods_sep.drop([(i, 'indet')], axis=1) 

        #separating males/females 

        if (i,'females') in Copepods_sep and (i,'males') in Copepods_sep: 

            name=i+'F' 

            Copepods_sep[name, 'females']=Copepods_sep[i]['females'] 

            name=i+'M'         

            Copepods_sep[name, 'males']=Copepods_sep[i]['males'] 

            name=i+'F/M' 

            Copepods_sep[name, 'F/M']=Copepods_sep[i]['females']+Copepods_sep[i]['males'] 

            Copepods_sep=Copepods_sep.drop([(i, 'females')], axis=1) 

            Copepods_sep=Copepods_sep.drop([(i, 'males')], axis=1) 

        #summing up females/males/copepodites (for Temora longicornis, Oithona similis, Limnocalanus macurus) 

        name=i+'J1/J2' 

        name2=i+'F/M' 

        name3=i+'F/M/J1/J2' 
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        name4=i+'J' 

        if (name,'J1+J2') in Copepods_sep and (name2,'F/M') in Copepods_sep: 

            Copepods_sep[name3,'F/M/J1/J2']=Copepods_sep[name]['J1+J2']+Copepods_sep[name2]['F/M'] 

        elif (name4,'J') in Copepods_sep and (name2,'F/M') in Copepods_sep: 

            Copepods_sep[name3,'F/M/J']=Copepods_sep[name4]['J']+Copepods_sep[name2]['F/M'] 

    #Summing up sopepodites with adults where copepodites of different species can't be separated  

    #for Acartia summing up all adults + copepodites: 

    

Copepods_sep['AcarF/M/J1/J2','F/M/J1/J2']=Copepods_sep['AcarJ1/J2']['J1+J2']+Copepods_sep['AbifF/M']['F/M']+Copepods_sep['AlonF

/M']['F/M']+Copepods_sep['AtonF/M']['F/M'] 

    #for Centropages 

    

Copepods_sep['CentF/M/J1/J2','F/M/J1/J2']=Copepods_sep['CentJ1/J2']['J1+J2']+Copepods_sep['ChamF/M']['F/M']+Copepods_sep['Cty

pF/M']['F/M'] 

    #for Eurytemora 

    Copepods_sep['EuryF/M/J1/J2','F/M/J1/J2']=Copepods_sep['EuryJ1/J2']['J1+J2']+Copepods_sep['EaffF/M']['F/M'] 

    #for Pseudo/Paracalanus 

    

Copepods_sep['Pseu/Para','F/M/J1/J2']=Copepods_sep['Pseu/ParaJ1/J2']['J1+J2']+Copepods_sep['PparF/M']['F/M']+Copepods_sep['Ps

euF/M']['F/M'] 

    Copepods_sep_sum=Copepods_sep.sum(level=0, axis=1) 

    Copepods_sep_sum['Month']=Copepods_sep.index.month  

    return Copepods_sep_sum 

 

def Copepods_comb(): 

    '''Function gets Copepods where adults are treated together with not adult forms'''  

    Copepods_comb=New_Copepods.copy() 

    Copepods_comb_sum=Copepods_comb.sum(level=0, axis=1) 

    Copepods_comb_sum['Acar']= Copepods_comb_sum.loc[:, ['Acar', 'Abif', 'Alon', 'Aton' ]].sum(axis=1) 

    Copepods_comb_sum['Cent']= Copepods_comb_sum.loc[:, ['Cent', 'Cham', 'Ctyp']].sum(axis=1) 

    Copepods_comb_sum['Eury']= Copepods_comb_sum.loc[:, ['Eury', 'Eaff']].sum(axis=1) 

    Copepods_comb_sum['Pseu/Para']= Copepods_comb_sum.loc[:, ['Pseu/Para', 'Ppar', 'Pseu']].sum(axis=1) 

    Copepods_comb_sum=Copepods_comb_sum.drop(['Abif', 'Alon', 'Aton' ], axis=1) 

    Copepods_comb_sum=Copepods_comb_sum.drop(['Cham', 'Ctyp'], axis=1) 

    Copepods_comb_sum=Copepods_comb_sum.drop(['Eaff'], axis=1) 

    Copepods_comb_sum=Copepods_comb_sum.drop(['Ppar', 'Pseu'], axis=1) 

    Copepods_comb_sum['Month']=New_Copepods.index.month 

    Copepods_comb_sum.head() 

    return Copepods_comb_sum 

Appendix 3.3 Module to perform descriptive analysis 

# functions to analyze data 

import pandas as pd 

import matplotlib 

import matplotlib.pyplot as plt 

import matplotlib.dates as mdates 

import seaborn as sns 

import numpy as np 

from pandas.plotting import autocorrelation_plot 
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from scipy.stats import spearmanr 

 

def plot_boxplots(df): 

    ''' Function plots boxplots for the dataframe, where the last column is month''' 

    num_of_col=len(list(df.columns))-1 

    cols_to_plot=list(df.columns[0:num_of_col]) 

    fig, axes = plt.subplots(num_of_col, 1, figsize=(20, num_of_col*5), sharex=True) 

    for name, ax in zip(cols_to_plot, axes): 

        sns.boxplot(data=df, x='Month', y=name, ax=ax) 

        ax.set_title(name) 

    return axes 

def one_column(df, i): 

    '''Function to return i'th the column of the dataset without NA values''' 

    df = df.dropna()._get_numeric_data() ##droping missing values 

    column = pd.DataFrame(df[df.columns[i]]) 

    return column 

 

def plot_autocorrelation(df): 

    ''' Function plots autocorrelation plots''' 

    cols=df.columns[:len(df.columns)-1] 

    df_plot=df.loc[:,cols] 

    df_plot=df_plot.astype(float) #type of values-float 

    for i in range(len(df_plot.columns)): 

        column_to_plot=one_column(df_plot,i) 

        autocorrelation_plot(column_to_plot) 

Appendix 3.4 Module to get data frames with median value per month 

# functions to get dataframes with median for the specific period 

import pandas as pd 

 

def add_period_column(df, period): 

    '''Function adds 'two-month period' and 'Year' columns to the dataframe. The second parameter should be one of the 'Season'/'Two-

months'/'Month'/''' 

    df=df.apply(pd.to_numeric) 

    if  period == 'Month':  #part of the code was deleted, because two-monts and seasonal periods are not used anymore 

        df['Month2'] = df.index.month 

    else: 

        print('Period parameter is not correct for add_period_column function.') 

    df['Year'] = df.index.year 

    return df 

 

def genus_median_per_period (df, period): 

    '''Function returns a dataframe were median for the column is calucalated for the specific period. The second paramater is the name of 

the column of period''' 

    a=df.groupby(['Year', period])[df.columns[0]].median() 

    for i in range(1, len(df.columns)-3): 

        b=df.groupby(['Year', period])[df.columns[i]].median() 

        a=pd.concat([a, b], axis=1, sort=False) 

    a=pd.DataFrame(a) 
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    return (a) 

 

def form_multiindex_season(df, period): 

    '''Function returns multiindex. The second parameter should be one of the 'Season'/'Two-months'/'Monthly'/''' 

    min_y=min(df.index).year 

    max_y=max(df.index).year+1 

    years=[] 

    for i in range(min_y, max_y): 

        years.append(i) 

    if period == 'Month': 

        iterables =[years, [1,2,3,4,5,6,7,8,9,10,11,12]] 

    else: 

        print('Period is incorrect') 

    indexes=pd.MultiIndex.from_product(iterables) 

    return indexes 

 

def return_monthly(df): 

    ''' Returns a dataframe where indexes are monthly periods for every year''' 

    df_mon = add_period_column(df, 'Month') 

    df_mon_med = genus_median_per_period(df_mon, 'Month') 

    new_index = form_multiindex_season(df_mon, 'Month') 

    df_mon_med = df_mon_med.reindex(new_index) 

    return df_mon_med 

Appendix 3.5 Module to fill the missing values in monthly data 

# filling monthly data 

import pandas as pd 

 

def first_rolling(df): 

    '''Fills data-frame rolling average, than median for the specific month''' 

    df_filled=df.copy() 

    for col in df.columns: 

        ser=df.loc[:, col] 

        ser=ser.fillna(ser.rolling(3,min_periods=1, center=True).mean()) 

        df_filled.loc[:, col]=ser 

        for month in list(df_filled.index.levels[1]): 

            ser=df_filled.loc[pd.IndexSlice[:, month], col] 

            ser.fillna(ser.median(), inplace=True) ###includes previously filled values into median calculation 

            df_filled.loc[pd.IndexSlice[:, month], col]=ser 

    return(df_filled) 

 

Appendix 3.6 Module to find species of specific season and correlation to 

hydrography variables 

# Finding species for specific season 

 

import pandas as pd 
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import numpy as np 

import scikit_posthocs as sp 

import scipy 

from scipy.stats import spearmanr 

import statistics 

 

def season_with_highest_abundance(df_filled): 

    '''Returns the dataframe with median values for the seasons when species are most abundant''' 

    list_of_rows=[] 

    seasons=['spring', 'summer', 'autumn', 'winter'] 

    for col in df_filled.columns: 

        row={} 

        row['Variable']=col 

        spring=df_filled.loc[pd.IndexSlice[:, [3,4,5]], col] 

        summer=df_filled.loc[pd.IndexSlice[:, [6,7,8,9]], col] 

        autumn=df_filled.loc[pd.IndexSlice[:, [10,11,12]], col] 

        winter=df_filled.loc[pd.IndexSlice[:, [1,2]], col] 

        #Kruskal test: 

        Kruskal_p=scipy.stats.kruskal(spring, summer, autumn, winter, nan_policy='omit')[1] 

        if Kruskal_p>0.05: 

            print (col, 'No difference between seasons') 

        else: 

        #post hoc test 

            x = [spring, summer, autumn, winter] 

            df=sp.posthoc_dunn(x, p_adjust = 'holm') 

            df=df[df<0.05] 

        #finding when the median is the highest: 

            medians=[spring.median(), summer.median(), autumn.median(), winter.median()] 

            highest_idx=[medians.index(max(medians))] 

        #checking if there are some not significantly different: 

            highest_seasons=list(np.where(np.isnan(df.iloc[medians.index(max(medians)),:]))[0]) 

            for i in highest_seasons: 

                if i not in highest_idx: 

                    highest_idx.append(i) 

            for idx in highest_idx: 

                row[seasons[idx]]=medians[idx] 

            list_of_rows.append(row) 

    df_median_on_season=pd.DataFrame(list_of_rows) 

    df_median_on_season=df_median_on_season.set_index('Variable') 

    df_median_on_season.loc[:,['spring', 'summer', 'autumn', 'winter']] 

    return(df_median_on_season) 

 

def season_species_table(df_filled, df_hydro, season): 

    '''Returns the data for the specific season and species, which are the most abundant at that particular season''' 

    df_median_on_season=season_with_highest_abundance(df_filled) 

    if season == 'spring': 

        season_species=df_filled[df_median_on_season[df_median_on_season.spring.notnull()].index] 

        season_species=season_species.loc[pd.IndexSlice[:, [3,4,5]], :] 

        season_hydro=df_hydro.loc[pd.IndexSlice[:, [3,4,5]], :] 

    elif season == 'summer': 

        season_species=df_filled[df_median_on_season[df_median_on_season.summer.notnull()].index] 
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        season_species=season_species.loc[pd.IndexSlice[:, [6,7,8,9]], :] 

        season_hydro=df_hydro.loc[pd.IndexSlice[:, [6,7,8,9]], :] 

    elif season == 'autumn': 

        season_species=df_filled[df_median_on_season[df_median_on_season.autumn.notnull()].index] 

        season_species=season_species.loc[pd.IndexSlice[:, [10,11,12]], :] 

        season_hydro=df_hydro.loc[pd.IndexSlice[:, [10,11,12]], :] 

    elif season == 'winter': 

        season_species=df_filled[df_median_on_season[df_median_on_season.winter.notnull()].index] 

        season_species=season_species.loc[pd.IndexSlice[:, [1,2]], :] 

        season_hydro=df_hydro.loc[pd.IndexSlice[:, [1,2]], :] 

    season_species=season_species.groupby(level=0).mean() #mean value for the season in particular year 

    season_hydro=season_hydro.groupby(level=0).mean() 

    season_hydro=season_hydro.loc[:2016,:] 

    return season_species, season_hydro 

 

def correlation_table(season_species, season_hydro): 

    '''returns the correlation between 2 dataframes variables''' 

    list_of_dict=[] 

    for taxa in season_species.columns: 

        series1 = season_species[taxa].loc[1998:2016] 

        row={'Variable':taxa} 

        for var in season_hydro.columns: 

            series2 = season_hydro[var].loc[1998:2016] 

            corr = spearmanr(series1, series2) 

            if corr[1]<0.05: 

                row[var]=corr[0] 

            else: 

                row[var]=np.nan 

        list_of_dict.append(row) 

    cor_to_hydro=pd.DataFrame(list_of_dict) 

    cor_to_hydro=cor_to_hydro.set_index('Variable') 

    return (cor_to_hydro) 

 

def compare_corr_spring_whole_year(dataframe_to_compare, depth0_4_comb_monthly_full): 

    'Compares correlation coefficients calculated for spring or for the whole year, when correlation is calculated for the species most 

abundant in spring' 

    plankton_spring, hydro_spring=season_species_table(dataframe_to_compare, depth0_4_comb_monthly_full, 'spring') 

    corr_spring=correlation_table(plankton_spring, hydro_spring) 

    cor_all=correlation_table(dataframe_to_compare, depth0_4_comb_monthly_full) 

    cor_all=cor_all.loc[plankton_spring.columns,]#comparison only for species abundant in spring 

    abs_val=np.abs(cor_all) 

    data=abs_val.values[pd.notna(abs_val.values)] 

    abs_val2=np.abs(corr_spring) 

    data2=abs_val2.values[pd.notna(abs_val2.values)] 

    #Correlation through the year 

    median_corr_spring=round(statistics.median(data), 3) 

    IQR_corr_spring=str(round(np.quantile(data, 0.25),3)) + ' - ' + str(round(np.quantile(data, 0.75),3)) 

    #Correlation on spring 

    median_corr_year=round(statistics.median(data2), 3) 

    IQR_corr_year=str(round(np.quantile(data2, 0.25),3)) + ' - ' + str(round(np.quantile(data2, 0.75),3)) 

    return(median_corr_spring, IQR_corr_spring, median_corr_year, IQR_corr_year) 
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def return_dict(df_analysed, median_corr_spring, IQR_corr_spring, median_corr_year,IQR_corr_year): 

    dict_of_medians={} 

    dict_of_medians['Data frame analysed']=df_analysed 

    dict_of_medians['Median_corr_spring']=median_corr_spring 

    dict_of_medians['IQR_corr_spring']=IQR_corr_spring 

    dict_of_medians['Median_corr_year']=median_corr_year 

    dict_of_medians['IQR_year']=IQR_corr_year 

    return dict_of_medians 

 

Appendix 3.7 Module for non-metric multidimensional scaling analysis 

# nMDS analysis 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import math 

from sklearn import manifold 

from sklearn.preprocessing import StandardScaler 

from dtaidistance import dtw_visualisation as dtwvis 

from dtaidistance import dtw 

from sklearn.metrics import euclidean_distances 

from scipy.cluster.hierarchy import linkage, dendrogram 

 

# To represent how years differ from each other: 

  

def calculate_dist_betw_years(df, year1, year2): 

    '''Calculates the distance between two years''' 

    dist_list=[] 

    for col in df.columns: 

        s1 = np.array(df.loc[year1, col]) 

        s2 = np.array(df.loc[year2, col]) 

        distance = dtw.distance(s1, s2) 

        dist_list.append(distance) 

    dist=0 

    for i in dist_list: 

        dist=dist+i*i 

    gen_dist=math.sqrt(dist) 

    return(gen_dist) 

 

def distance_matrix(df_filled): 

    '''Calculates distance matrix''' 

    D=[] 

    years=set(df_filled.index.get_level_values(0)) 

    for year1 in years: 

        dist_ar=[] 

        for year2 in years: 

            dist_ar.append(calculate_dist_betw_years(df_filled, year1, year2)) 

        D.append(dist_ar) 
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    D=np.array(D) 

    return(D) 

 

def plot_2dim_years_in_clusters(df_filled, title): ## idea from: https://stackoverflow.com/a/61964297 

    'Function plots 2-D plots and colours points based on dendrogram colours' 

# DATA EXAMPLE 

    mds = manifold.MDS(2, dissimilarity='precomputed', metric=False, n_init=20) 

    max_value=distance_matrix(df_filled).max() 

    D=(distance_matrix(df_filled))/max_value #normalizing distances 

    coords = mds.fit_transform(D) 

     

    #stress value: 

    # Calculation of stress according to the https://stackoverflow.com/a/64271501 

    points=mds.embedding_    

    ## Manual calculus of sklearn stress 

    DE = euclidean_distances(points) 

    DE = DE/DE.max()  #normalizing distances 

    stress = 0.5 * np.sum((DE - D)**2) 

    ## Kruskal's stress (or stress formula 1) 

    stress1 = np.sqrt(stress / (0.5 * np.sum(D**2))) 

 

    # DENDROGRAM 

    labels_for_graph=list(set(df_filled.index.get_level_values(0))) 

    #plt.figure(figsize=(5, 5)) 

    plt.subplot(121) 

    z = linkage(coords, 'single') 

    d = dendrogram(z, labels=labels_for_graph) 

    plt.yticks([]) 

 

    # COLORED PLOT 

    plt.subplot(111) 

    points = d['leaves'] 

    colors = ['none'] * len(points) 

    for xs, c in zip(d['icoord'], d['color_list']): 

        for xi in xs: 

            if xi % 10 == 5: 

                colors[(int(xi)-5) // 10] = c 

             

    #labels for scatter plot 

    all_years=list(set(df_filled.index.get_level_values(0))) 

    new_years=[] 

    for i in d['leaves']: 

        new_years.append(all_years[i]) 

 

    title_to_show=title+', s='+str(round(stress1,3)) 

    for point, color, year in zip(points, colors, new_years): 

        plt.plot(coords[point, 0], coords[point, 1], 'o', color=color) 

        plt.text(coords[point, 0], coords[point, 1], f' {year}') 

        plt.title(title_to_show, fontsize=15) 

        plt.xlabel('Coordinate 1', fontsize=15) 

        plt.ylabel('Coordinate 2', fontsize=15) 
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        plt.xticks(fontsize=12) 

    plt.tight_layout() 

    saving_name='output/mds/'+title+'.png' 

    plt.savefig(saving_name, dpi=400) 

    plt.show() 

Appendix 3.8 Module to perform Mann-Kendall test and detect correlations 

# Python module to return Mann Kendal test results and correlation 

import pandas as pd 

import numpy as np 

import pymannkendall as mk 

import scipy 

from scipy.stats import spearmanr 

 

def return_seasons(df_filled): 

    '''Function mean for specific season values''' 

    spring=df_filled.loc[pd.IndexSlice[:, [2,3,4]], :].groupby(level=0).mean() 

    summer=df_filled.loc[pd.IndexSlice[:, [5,6,7,8]], :].groupby(level=0).mean() 

    autumn=df_filled.loc[pd.IndexSlice[:, [9,10,11]], :].groupby(level=0).mean() 

    winter=df_filled.loc[pd.IndexSlice[:, [12,1,2]], :].groupby(level=0).mean() 

    return (spring, summer, autumn, winter) 

 

def Mann_Kendal_1_season(season_df): 

    '''Performs Mann Kendall test for seasonal data''' 

    columns=[] 

    results=[] 

    for col in season_df.columns: 

        ser=season_df.loc[:,col] 

        result = mk.original_test(ser) 

        if result[1]==True: 

            #print (col, '', result[0]) 

            columns.append(col) 

            results.append(result[0]) 

    return(columns, results) 

 

def rows_Mann_kendal_for_season(columns, results, season_name, df_correlation_table): 

    '''Creates list of dictionaries for each season with plankton with changing trends and correlation in interest''' 

    list_of_dict_per_season=[] 

    dict_row={} 

    for i in range(len(columns)):     

        dict_row={} 

        dict_row['Season']=season_name 

        dict_row['Plankton with changing trends']=columns[i] 

        dict_row['Mann Kendal test result']=results[i] 

        cor_values=return_correlation_values(df_correlation_table, columns[i]) 

        dict_row['Correlation']=cor_values 

        list_of_dict_per_season.append(dict_row) 

    return (list_of_dict_per_season) 
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def correlation_table(season_species, season_hydro): 

    '''returns the correlation between 2 dataframes variables''' 

    list_of_dict=[] 

    for taxa in season_species.columns: 

        series1 = season_species[taxa].loc[1998:2016] 

        row={'Variable':taxa} 

        for var in season_hydro.columns: 

            series2 = season_hydro[var].loc[1998:2016] 

            corr = spearmanr(series1, series2) 

            if corr[1]<0.05: 

                row[var]=corr[0] 

            else: 

                row[var]=np.nan 

        list_of_dict.append(row) 

    cor_to_hydro=pd.DataFrame(list_of_dict) 

    cor_to_hydro=cor_to_hydro.set_index('Variable') 

   # cor_to_hydro=cor_to_hydro.dropna(how='all') 

    return (cor_to_hydro) 

 

def return_correlation_values(correlation_table, column): 

    '''Return correlation variables and values from the correlation table''' 

    cor_values=correlation_table.loc[column,:][correlation_table.loc[column,:].notna()] 

    string_to_return=[] 

    for i in range(len(cor_values.index)): 

        var=cor_values.index[i] 

        value=round(cor_values.values[i],4) 

        string_var_value=var + ' ' + str(value) 

        string_to_return.append(string_var_value) 

    return(string_to_return) 

 

def return_seasonal_dataframes_list(df_monthly_filled): 

    '''returns list of dataframes for specific season''' 

    spring, summer, autumn, winter = return_seasons(df_monthly_filled) 

    df_list=[spring, summer, autumn, winter] 

    return(df_list) 

 

def table_trends_and_correlations(df_plankton_filled_monthly, df_1_filled_monthly): 

    '''Takes plankton monthly data and hydrography (or other plankton) data and returns trends and correlations'''     

    dfs_season=return_seasonal_dataframes_list(df_plankton_filled_monthly) 

    df_hydro_season=return_seasonal_dataframes_list(df_1_filled_monthly) 

    df=pd.DataFrame() 

    season_names=['Spring', 'Summer', 'Autumn', 'Winter'] 

    for i in range(len(dfs_season)): 

        columns, results=Mann_Kendal_1_season(dfs_season[i]) 

        df_correlation_table=correlation_table(dfs_season[i], df_hydro_season[i]) 

        list_of_dict_per_season=rows_Mann_kendal_for_season(columns, results, season_names[i], df_correlation_table) 

        if len(list_of_dict_per_season)>0 and i==0: 

            df=pd.DataFrame(list_of_dict_per_season) 

        elif len(list_of_dict_per_season)>0: 

            df1=pd.DataFrame(list_of_dict_per_season) 

            df=pd.concat([df, df1], axis=0) 
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    idx=df.loc[:,['Season', 'Plankton with changing trends']] 

    idx=pd.MultiIndex.from_frame(idx) 

    df.index=idx 

    df=df.drop(['Plankton with changing trends', 'Season'], axis=1) 

    df=df[['Mann Kendal test result','Correlation']] 

    return(df) 

 


